xref: /linux/sound/soc/renesas/rz-ssi.c (revision fc2a31affb22394d1d74d3ecc86b5c68da33d52a)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Renesas RZ/G2L ASoC Serial Sound Interface (SSIF-2) Driver
4 //
5 // Copyright (C) 2021 Renesas Electronics Corp.
6 // Copyright (C) 2019 Chris Brandt.
7 //
8 
9 #include <linux/clk.h>
10 #include <linux/dmaengine.h>
11 #include <linux/io.h>
12 #include <linux/iopoll.h>
13 #include <linux/module.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
16 #include <sound/soc.h>
17 
18 /* REGISTER OFFSET */
19 #define SSICR			0x000
20 #define SSISR			0x004
21 #define SSIFCR			0x010
22 #define SSIFSR			0x014
23 #define SSIFTDR			0x018
24 #define SSIFRDR			0x01c
25 #define SSIOFR			0x020
26 #define SSISCR			0x024
27 
28 /* SSI REGISTER BITS */
29 #define SSICR_DWL(x)		(((x) & 0x7) << 19)
30 #define SSICR_SWL(x)		(((x) & 0x7) << 16)
31 
32 #define SSICR_CKS		BIT(30)
33 #define SSICR_TUIEN		BIT(29)
34 #define SSICR_TOIEN		BIT(28)
35 #define SSICR_RUIEN		BIT(27)
36 #define SSICR_ROIEN		BIT(26)
37 #define SSICR_MST		BIT(14)
38 #define SSICR_BCKP		BIT(13)
39 #define SSICR_LRCKP		BIT(12)
40 #define SSICR_CKDV(x)		(((x) & 0xf) << 4)
41 #define SSICR_TEN		BIT(1)
42 #define SSICR_REN		BIT(0)
43 
44 #define SSISR_TUIRQ		BIT(29)
45 #define SSISR_TOIRQ		BIT(28)
46 #define SSISR_RUIRQ		BIT(27)
47 #define SSISR_ROIRQ		BIT(26)
48 #define SSISR_IIRQ		BIT(25)
49 
50 #define SSIFCR_AUCKE		BIT(31)
51 #define SSIFCR_SSIRST		BIT(16)
52 #define SSIFCR_TIE		BIT(3)
53 #define SSIFCR_RIE		BIT(2)
54 #define SSIFCR_TFRST		BIT(1)
55 #define SSIFCR_RFRST		BIT(0)
56 #define SSIFCR_FIFO_RST		(SSIFCR_TFRST | SSIFCR_RFRST)
57 
58 #define SSIFSR_TDC_MASK		0x3f
59 #define SSIFSR_TDC_SHIFT	24
60 #define SSIFSR_RDC_MASK		0x3f
61 #define SSIFSR_RDC_SHIFT	8
62 
63 #define SSIFSR_TDE		BIT(16)
64 #define SSIFSR_RDF		BIT(0)
65 
66 #define SSIOFR_LRCONT		BIT(8)
67 
68 #define SSISCR_TDES(x)		(((x) & 0x1f) << 8)
69 #define SSISCR_RDFS(x)		(((x) & 0x1f) << 0)
70 
71 /* Pre allocated buffers sizes */
72 #define PREALLOC_BUFFER		(SZ_32K)
73 #define PREALLOC_BUFFER_MAX	(SZ_32K)
74 
75 #define SSI_RATES		SNDRV_PCM_RATE_8000_48000 /* 8k-48kHz */
76 #define SSI_FMTS		SNDRV_PCM_FMTBIT_S16_LE
77 #define SSI_CHAN_MIN		2
78 #define SSI_CHAN_MAX		2
79 #define SSI_FIFO_DEPTH		32
80 
81 struct rz_ssi_priv;
82 
83 struct rz_ssi_stream {
84 	struct rz_ssi_priv *priv;
85 	struct snd_pcm_substream *substream;
86 	int fifo_sample_size;	/* sample capacity of SSI FIFO */
87 	int dma_buffer_pos;	/* The address for the next DMA descriptor */
88 	int period_counter;	/* for keeping track of periods transferred */
89 	int sample_width;
90 	int buffer_pos;		/* current frame position in the buffer */
91 	int running;		/* 0=stopped, 1=running */
92 
93 	int uerr_num;
94 	int oerr_num;
95 
96 	struct dma_chan *dma_ch;
97 
98 	int (*transfer)(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm);
99 };
100 
101 struct rz_ssi_priv {
102 	void __iomem *base;
103 	struct reset_control *rstc;
104 	struct device *dev;
105 	struct clk *sfr_clk;
106 	struct clk *clk;
107 
108 	phys_addr_t phys;
109 	int irq_int;
110 	int irq_tx;
111 	int irq_rx;
112 	int irq_rt;
113 
114 	spinlock_t lock;
115 
116 	/*
117 	 * The SSI supports full-duplex transmission and reception.
118 	 * However, if an error occurs, channel reset (both transmission
119 	 * and reception reset) is required.
120 	 * So it is better to use as half-duplex (playing and recording
121 	 * should be done on separate channels).
122 	 */
123 	struct rz_ssi_stream playback;
124 	struct rz_ssi_stream capture;
125 
126 	/* clock */
127 	unsigned long audio_mck;
128 	unsigned long audio_clk_1;
129 	unsigned long audio_clk_2;
130 
131 	bool lrckp_fsync_fall;	/* LR clock polarity (SSICR.LRCKP) */
132 	bool bckp_rise;	/* Bit clock polarity (SSICR.BCKP) */
133 	bool dma_rt;
134 
135 	/* Full duplex communication support */
136 	struct {
137 		unsigned int rate;
138 		unsigned int channels;
139 		unsigned int sample_width;
140 		unsigned int sample_bits;
141 	} hw_params_cache;
142 };
143 
144 static void rz_ssi_dma_complete(void *data);
145 
146 static void rz_ssi_reg_writel(struct rz_ssi_priv *priv, uint reg, u32 data)
147 {
148 	writel(data, (priv->base + reg));
149 }
150 
151 static u32 rz_ssi_reg_readl(struct rz_ssi_priv *priv, uint reg)
152 {
153 	return readl(priv->base + reg);
154 }
155 
156 static void rz_ssi_reg_mask_setl(struct rz_ssi_priv *priv, uint reg,
157 				 u32 bclr, u32 bset)
158 {
159 	u32 val;
160 
161 	val = readl(priv->base + reg);
162 	val = (val & ~bclr) | bset;
163 	writel(val, (priv->base + reg));
164 }
165 
166 static inline bool rz_ssi_stream_is_play(struct snd_pcm_substream *substream)
167 {
168 	return substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
169 }
170 
171 static inline struct rz_ssi_stream *
172 rz_ssi_stream_get(struct rz_ssi_priv *ssi, struct snd_pcm_substream *substream)
173 {
174 	struct rz_ssi_stream *stream = &ssi->playback;
175 
176 	if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
177 		stream = &ssi->capture;
178 
179 	return stream;
180 }
181 
182 static inline bool rz_ssi_is_dma_enabled(struct rz_ssi_priv *ssi)
183 {
184 	return (ssi->playback.dma_ch && (ssi->dma_rt || ssi->capture.dma_ch));
185 }
186 
187 static void rz_ssi_set_substream(struct rz_ssi_stream *strm,
188 				 struct snd_pcm_substream *substream)
189 {
190 	struct rz_ssi_priv *ssi = strm->priv;
191 	unsigned long flags;
192 
193 	spin_lock_irqsave(&ssi->lock, flags);
194 	strm->substream = substream;
195 	spin_unlock_irqrestore(&ssi->lock, flags);
196 }
197 
198 static bool rz_ssi_stream_is_valid(struct rz_ssi_priv *ssi,
199 				   struct rz_ssi_stream *strm)
200 {
201 	unsigned long flags;
202 	bool ret;
203 
204 	spin_lock_irqsave(&ssi->lock, flags);
205 	ret = strm->substream && strm->substream->runtime;
206 	spin_unlock_irqrestore(&ssi->lock, flags);
207 
208 	return ret;
209 }
210 
211 static inline bool rz_ssi_is_stream_running(struct rz_ssi_stream *strm)
212 {
213 	return strm->substream && strm->running;
214 }
215 
216 static void rz_ssi_stream_init(struct rz_ssi_stream *strm,
217 			       struct snd_pcm_substream *substream)
218 {
219 	struct snd_pcm_runtime *runtime = substream->runtime;
220 
221 	rz_ssi_set_substream(strm, substream);
222 	strm->sample_width = samples_to_bytes(runtime, 1);
223 	strm->dma_buffer_pos = 0;
224 	strm->period_counter = 0;
225 	strm->buffer_pos = 0;
226 
227 	strm->oerr_num = 0;
228 	strm->uerr_num = 0;
229 	strm->running = 0;
230 
231 	/* fifo init */
232 	strm->fifo_sample_size = SSI_FIFO_DEPTH;
233 }
234 
235 static void rz_ssi_stream_quit(struct rz_ssi_priv *ssi,
236 			       struct rz_ssi_stream *strm)
237 {
238 	struct device *dev = ssi->dev;
239 
240 	rz_ssi_set_substream(strm, NULL);
241 
242 	if (strm->oerr_num > 0)
243 		dev_info(dev, "overrun = %d\n", strm->oerr_num);
244 
245 	if (strm->uerr_num > 0)
246 		dev_info(dev, "underrun = %d\n", strm->uerr_num);
247 }
248 
249 static int rz_ssi_clk_setup(struct rz_ssi_priv *ssi, unsigned int rate,
250 			    unsigned int channels)
251 {
252 	static u8 ckdv[] = { 1,  2,  4,  8, 16, 32, 64, 128, 6, 12, 24, 48, 96 };
253 	unsigned int channel_bits = 32;	/* System Word Length */
254 	unsigned long bclk_rate = rate * channels * channel_bits;
255 	unsigned int div;
256 	unsigned int i;
257 	u32 ssicr = 0;
258 	u32 clk_ckdv;
259 
260 	/* Clear AUCKE so we can set MST */
261 	rz_ssi_reg_writel(ssi, SSIFCR, 0);
262 
263 	/* Continue to output LRCK pin even when idle */
264 	rz_ssi_reg_writel(ssi, SSIOFR, SSIOFR_LRCONT);
265 	if (ssi->audio_clk_1 && ssi->audio_clk_2) {
266 		if (ssi->audio_clk_1 % bclk_rate)
267 			ssi->audio_mck = ssi->audio_clk_2;
268 		else
269 			ssi->audio_mck = ssi->audio_clk_1;
270 	}
271 
272 	/* Clock setting */
273 	ssicr |= SSICR_MST;
274 	if (ssi->audio_mck == ssi->audio_clk_1)
275 		ssicr |= SSICR_CKS;
276 	if (ssi->bckp_rise)
277 		ssicr |= SSICR_BCKP;
278 	if (ssi->lrckp_fsync_fall)
279 		ssicr |= SSICR_LRCKP;
280 
281 	/* Determine the clock divider */
282 	clk_ckdv = 0;
283 	div = ssi->audio_mck / bclk_rate;
284 	/* try to find an match */
285 	for (i = 0; i < ARRAY_SIZE(ckdv); i++) {
286 		if (ckdv[i] == div) {
287 			clk_ckdv = i;
288 			break;
289 		}
290 	}
291 
292 	if (i == ARRAY_SIZE(ckdv)) {
293 		dev_err(ssi->dev, "Rate not divisible by audio clock source\n");
294 		return -EINVAL;
295 	}
296 
297 	/*
298 	 * DWL: Data Word Length = 16 bits
299 	 * SWL: System Word Length = 32 bits
300 	 */
301 	ssicr |= SSICR_CKDV(clk_ckdv);
302 	ssicr |= SSICR_DWL(1) | SSICR_SWL(3);
303 	rz_ssi_reg_writel(ssi, SSICR, ssicr);
304 	rz_ssi_reg_writel(ssi, SSIFCR, SSIFCR_AUCKE | SSIFCR_FIFO_RST);
305 
306 	return 0;
307 }
308 
309 static void rz_ssi_set_idle(struct rz_ssi_priv *ssi)
310 {
311 	u32 tmp;
312 	int ret;
313 
314 	/* Disable irqs */
315 	rz_ssi_reg_mask_setl(ssi, SSICR, SSICR_TUIEN | SSICR_TOIEN |
316 			     SSICR_RUIEN | SSICR_ROIEN, 0);
317 	rz_ssi_reg_mask_setl(ssi, SSIFCR, SSIFCR_TIE | SSIFCR_RIE, 0);
318 
319 	/* Clear all error flags */
320 	rz_ssi_reg_mask_setl(ssi, SSISR,
321 			     (SSISR_TOIRQ | SSISR_TUIRQ | SSISR_ROIRQ |
322 			      SSISR_RUIRQ), 0);
323 
324 	/* Wait for idle */
325 	ret = readl_poll_timeout_atomic(ssi->base + SSISR, tmp, (tmp & SSISR_IIRQ), 1, 100);
326 	if (ret)
327 		dev_warn_ratelimited(ssi->dev, "timeout waiting for SSI idle\n");
328 
329 	/* Hold FIFOs in reset */
330 	rz_ssi_reg_mask_setl(ssi, SSIFCR, 0, SSIFCR_FIFO_RST);
331 }
332 
333 static int rz_ssi_start(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm)
334 {
335 	bool is_play = rz_ssi_stream_is_play(strm->substream);
336 	bool is_full_duplex;
337 	u32 ssicr, ssifcr;
338 
339 	is_full_duplex = rz_ssi_is_stream_running(&ssi->playback) ||
340 		rz_ssi_is_stream_running(&ssi->capture);
341 	ssicr = rz_ssi_reg_readl(ssi, SSICR);
342 	ssifcr = rz_ssi_reg_readl(ssi, SSIFCR);
343 	if (!is_full_duplex) {
344 		ssifcr &= ~0xF;
345 	} else {
346 		rz_ssi_reg_mask_setl(ssi, SSICR, SSICR_TEN | SSICR_REN, 0);
347 		rz_ssi_set_idle(ssi);
348 		ssifcr &= ~SSIFCR_FIFO_RST;
349 	}
350 
351 	/* FIFO interrupt thresholds */
352 	if (rz_ssi_is_dma_enabled(ssi))
353 		rz_ssi_reg_writel(ssi, SSISCR, 0);
354 	else
355 		rz_ssi_reg_writel(ssi, SSISCR,
356 				  SSISCR_TDES(strm->fifo_sample_size / 2 - 1) |
357 				  SSISCR_RDFS(0));
358 
359 	/* enable IRQ */
360 	if (is_play) {
361 		ssicr |= SSICR_TUIEN | SSICR_TOIEN;
362 		ssifcr |= SSIFCR_TIE;
363 		if (!is_full_duplex)
364 			ssifcr |= SSIFCR_RFRST;
365 	} else {
366 		ssicr |= SSICR_RUIEN | SSICR_ROIEN;
367 		ssifcr |= SSIFCR_RIE;
368 		if (!is_full_duplex)
369 			ssifcr |= SSIFCR_TFRST;
370 	}
371 
372 	rz_ssi_reg_writel(ssi, SSICR, ssicr);
373 	rz_ssi_reg_writel(ssi, SSIFCR, ssifcr);
374 
375 	/* Clear all error flags */
376 	rz_ssi_reg_mask_setl(ssi, SSISR,
377 			     (SSISR_TOIRQ | SSISR_TUIRQ | SSISR_ROIRQ |
378 			      SSISR_RUIRQ), 0);
379 
380 	strm->running = 1;
381 	if (is_full_duplex)
382 		ssicr |= SSICR_TEN | SSICR_REN;
383 	else
384 		ssicr |= is_play ? SSICR_TEN : SSICR_REN;
385 
386 	rz_ssi_reg_writel(ssi, SSICR, ssicr);
387 
388 	return 0;
389 }
390 
391 static int rz_ssi_swreset(struct rz_ssi_priv *ssi)
392 {
393 	u32 tmp;
394 
395 	rz_ssi_reg_mask_setl(ssi, SSIFCR, 0, SSIFCR_SSIRST);
396 	rz_ssi_reg_mask_setl(ssi, SSIFCR, SSIFCR_SSIRST, 0);
397 	return readl_poll_timeout_atomic(ssi->base + SSIFCR, tmp, !(tmp & SSIFCR_SSIRST), 1, 5);
398 }
399 
400 static int rz_ssi_stop(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm)
401 {
402 	strm->running = 0;
403 
404 	if (rz_ssi_is_stream_running(&ssi->playback) ||
405 	    rz_ssi_is_stream_running(&ssi->capture))
406 		return 0;
407 
408 	/* Disable TX/RX */
409 	rz_ssi_reg_mask_setl(ssi, SSICR, SSICR_TEN | SSICR_REN, 0);
410 
411 	/* Cancel all remaining DMA transactions */
412 	if (rz_ssi_is_dma_enabled(ssi)) {
413 		if (ssi->playback.dma_ch)
414 			dmaengine_terminate_async(ssi->playback.dma_ch);
415 		if (ssi->capture.dma_ch)
416 			dmaengine_terminate_async(ssi->capture.dma_ch);
417 	}
418 
419 	rz_ssi_set_idle(ssi);
420 
421 	return 0;
422 }
423 
424 static void rz_ssi_pointer_update(struct rz_ssi_stream *strm, int frames)
425 {
426 	struct snd_pcm_substream *substream = strm->substream;
427 	struct snd_pcm_runtime *runtime;
428 	int current_period;
429 
430 	if (!strm->running || !substream || !substream->runtime)
431 		return;
432 
433 	runtime = substream->runtime;
434 	strm->buffer_pos += frames;
435 	WARN_ON(strm->buffer_pos > runtime->buffer_size);
436 
437 	/* ring buffer */
438 	if (strm->buffer_pos == runtime->buffer_size)
439 		strm->buffer_pos = 0;
440 
441 	current_period = strm->buffer_pos / runtime->period_size;
442 	if (strm->period_counter != current_period) {
443 		snd_pcm_period_elapsed(strm->substream);
444 		strm->period_counter = current_period;
445 	}
446 }
447 
448 static int rz_ssi_pio_recv(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm)
449 {
450 	struct snd_pcm_substream *substream = strm->substream;
451 	struct snd_pcm_runtime *runtime;
452 	u16 *buf;
453 	int fifo_samples;
454 	int frames_left;
455 	int samples;
456 	int i;
457 
458 	if (!rz_ssi_stream_is_valid(ssi, strm))
459 		return -EINVAL;
460 
461 	runtime = substream->runtime;
462 
463 	do {
464 		/* frames left in this period */
465 		frames_left = runtime->period_size -
466 			      (strm->buffer_pos % runtime->period_size);
467 		if (!frames_left)
468 			frames_left = runtime->period_size;
469 
470 		/* Samples in RX FIFO */
471 		fifo_samples = (rz_ssi_reg_readl(ssi, SSIFSR) >>
472 				SSIFSR_RDC_SHIFT) & SSIFSR_RDC_MASK;
473 
474 		/* Only read full frames at a time */
475 		samples = 0;
476 		while (frames_left && (fifo_samples >= runtime->channels)) {
477 			samples += runtime->channels;
478 			fifo_samples -= runtime->channels;
479 			frames_left--;
480 		}
481 
482 		/* not enough samples yet */
483 		if (!samples)
484 			break;
485 
486 		/* calculate new buffer index */
487 		buf = (u16 *)runtime->dma_area;
488 		buf += strm->buffer_pos * runtime->channels;
489 
490 		/* Note, only supports 16-bit samples */
491 		for (i = 0; i < samples; i++)
492 			*buf++ = (u16)(rz_ssi_reg_readl(ssi, SSIFRDR) >> 16);
493 
494 		rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_RDF, 0);
495 		rz_ssi_pointer_update(strm, samples / runtime->channels);
496 	} while (!frames_left && fifo_samples >= runtime->channels);
497 
498 	return 0;
499 }
500 
501 static int rz_ssi_pio_send(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm)
502 {
503 	struct snd_pcm_substream *substream = strm->substream;
504 	struct snd_pcm_runtime *runtime = substream->runtime;
505 	int sample_space;
506 	int samples = 0;
507 	int frames_left;
508 	int i;
509 	u32 ssifsr;
510 	u16 *buf;
511 
512 	if (!rz_ssi_stream_is_valid(ssi, strm))
513 		return -EINVAL;
514 
515 	/* frames left in this period */
516 	frames_left = runtime->period_size - (strm->buffer_pos %
517 					      runtime->period_size);
518 	if (frames_left == 0)
519 		frames_left = runtime->period_size;
520 
521 	sample_space = strm->fifo_sample_size;
522 	ssifsr = rz_ssi_reg_readl(ssi, SSIFSR);
523 	sample_space -= (ssifsr >> SSIFSR_TDC_SHIFT) & SSIFSR_TDC_MASK;
524 
525 	/* Only add full frames at a time */
526 	while (frames_left && (sample_space >= runtime->channels)) {
527 		samples += runtime->channels;
528 		sample_space -= runtime->channels;
529 		frames_left--;
530 	}
531 
532 	/* no space to send anything right now */
533 	if (samples == 0)
534 		return 0;
535 
536 	/* calculate new buffer index */
537 	buf = (u16 *)(runtime->dma_area);
538 	buf += strm->buffer_pos * runtime->channels;
539 
540 	/* Note, only supports 16-bit samples */
541 	for (i = 0; i < samples; i++)
542 		rz_ssi_reg_writel(ssi, SSIFTDR, ((u32)(*buf++) << 16));
543 
544 	rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_TDE, 0);
545 	rz_ssi_pointer_update(strm, samples / runtime->channels);
546 
547 	return 0;
548 }
549 
550 static irqreturn_t rz_ssi_interrupt(int irq, void *data)
551 {
552 	struct rz_ssi_stream *strm_playback = NULL;
553 	struct rz_ssi_stream *strm_capture = NULL;
554 	struct rz_ssi_priv *ssi = data;
555 	u32 ssisr = rz_ssi_reg_readl(ssi, SSISR);
556 
557 	if (ssi->playback.substream)
558 		strm_playback = &ssi->playback;
559 	if (ssi->capture.substream)
560 		strm_capture = &ssi->capture;
561 
562 	if (!strm_playback && !strm_capture)
563 		return IRQ_HANDLED; /* Left over TX/RX interrupt */
564 
565 	if (irq == ssi->irq_int) { /* error or idle */
566 		bool is_stopped = false;
567 		int i, count;
568 
569 		if (rz_ssi_is_dma_enabled(ssi))
570 			count = 4;
571 		else
572 			count = 1;
573 
574 		if (ssisr & (SSISR_RUIRQ | SSISR_ROIRQ | SSISR_TUIRQ | SSISR_TOIRQ))
575 			is_stopped = true;
576 
577 		if (ssi->capture.substream && is_stopped) {
578 			if (ssisr & SSISR_RUIRQ)
579 				strm_capture->uerr_num++;
580 			if (ssisr & SSISR_ROIRQ)
581 				strm_capture->oerr_num++;
582 
583 			rz_ssi_stop(ssi, strm_capture);
584 		}
585 
586 		if (ssi->playback.substream && is_stopped) {
587 			if (ssisr & SSISR_TUIRQ)
588 				strm_playback->uerr_num++;
589 			if (ssisr & SSISR_TOIRQ)
590 				strm_playback->oerr_num++;
591 
592 			rz_ssi_stop(ssi, strm_playback);
593 		}
594 
595 		/* Clear all flags */
596 		rz_ssi_reg_mask_setl(ssi, SSISR, SSISR_TOIRQ | SSISR_TUIRQ |
597 				     SSISR_ROIRQ | SSISR_RUIRQ, 0);
598 
599 		/* Add/remove more data */
600 		if (ssi->capture.substream && is_stopped) {
601 			for (i = 0; i < count; i++)
602 				strm_capture->transfer(ssi, strm_capture);
603 		}
604 
605 		if (ssi->playback.substream && is_stopped) {
606 			for (i = 0; i < count; i++)
607 				strm_playback->transfer(ssi, strm_playback);
608 		}
609 
610 		/* Resume */
611 		if (ssi->playback.substream && is_stopped)
612 			rz_ssi_start(ssi, &ssi->playback);
613 		if (ssi->capture.substream && is_stopped)
614 			rz_ssi_start(ssi, &ssi->capture);
615 	}
616 
617 	if (!rz_ssi_is_stream_running(&ssi->playback) &&
618 	    !rz_ssi_is_stream_running(&ssi->capture))
619 		return IRQ_HANDLED;
620 
621 	/* tx data empty */
622 	if (irq == ssi->irq_tx && rz_ssi_is_stream_running(&ssi->playback))
623 		strm_playback->transfer(ssi, &ssi->playback);
624 
625 	/* rx data full */
626 	if (irq == ssi->irq_rx && rz_ssi_is_stream_running(&ssi->capture)) {
627 		strm_capture->transfer(ssi, &ssi->capture);
628 		rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_RDF, 0);
629 	}
630 
631 	if (irq == ssi->irq_rt) {
632 		if (ssi->playback.substream) {
633 			strm_playback->transfer(ssi, &ssi->playback);
634 		} else {
635 			strm_capture->transfer(ssi, &ssi->capture);
636 			rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_RDF, 0);
637 		}
638 	}
639 
640 	return IRQ_HANDLED;
641 }
642 
643 static int rz_ssi_dma_slave_config(struct rz_ssi_priv *ssi,
644 				   struct dma_chan *dma_ch, bool is_play)
645 {
646 	struct dma_slave_config cfg;
647 
648 	memset(&cfg, 0, sizeof(cfg));
649 
650 	cfg.direction = is_play ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
651 	cfg.dst_addr = ssi->phys + SSIFTDR;
652 	cfg.src_addr = ssi->phys + SSIFRDR;
653 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
654 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
655 
656 	return dmaengine_slave_config(dma_ch, &cfg);
657 }
658 
659 static int rz_ssi_dma_transfer(struct rz_ssi_priv *ssi,
660 			       struct rz_ssi_stream *strm)
661 {
662 	struct snd_pcm_substream *substream = strm->substream;
663 	struct dma_async_tx_descriptor *desc;
664 	struct snd_pcm_runtime *runtime;
665 	enum dma_transfer_direction dir;
666 	u32 dma_paddr, dma_size;
667 	int amount;
668 
669 	if (!rz_ssi_stream_is_valid(ssi, strm))
670 		return -EINVAL;
671 
672 	runtime = substream->runtime;
673 	if (runtime->state == SNDRV_PCM_STATE_DRAINING)
674 		/*
675 		 * Stream is ending, so do not queue up any more DMA
676 		 * transfers otherwise we play partial sound clips
677 		 * because we can't shut off the DMA quick enough.
678 		 */
679 		return 0;
680 
681 	dir = rz_ssi_stream_is_play(substream) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
682 
683 	/* Always transfer 1 period */
684 	amount = runtime->period_size;
685 
686 	/* DMA physical address and size */
687 	dma_paddr = runtime->dma_addr + frames_to_bytes(runtime,
688 							strm->dma_buffer_pos);
689 	dma_size = frames_to_bytes(runtime, amount);
690 	desc = dmaengine_prep_slave_single(strm->dma_ch, dma_paddr, dma_size,
691 					   dir,
692 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
693 	if (!desc) {
694 		dev_err(ssi->dev, "dmaengine_prep_slave_single() fail\n");
695 		return -ENOMEM;
696 	}
697 
698 	desc->callback = rz_ssi_dma_complete;
699 	desc->callback_param = strm;
700 
701 	if (dmaengine_submit(desc) < 0) {
702 		dev_err(ssi->dev, "dmaengine_submit() fail\n");
703 		return -EIO;
704 	}
705 
706 	/* Update DMA pointer */
707 	strm->dma_buffer_pos += amount;
708 	if (strm->dma_buffer_pos >= runtime->buffer_size)
709 		strm->dma_buffer_pos = 0;
710 
711 	/* Start DMA */
712 	dma_async_issue_pending(strm->dma_ch);
713 
714 	return 0;
715 }
716 
717 static void rz_ssi_dma_complete(void *data)
718 {
719 	struct rz_ssi_stream *strm = (struct rz_ssi_stream *)data;
720 
721 	if (!strm->running || !strm->substream || !strm->substream->runtime)
722 		return;
723 
724 	/* Note that next DMA transaction has probably already started */
725 	rz_ssi_pointer_update(strm, strm->substream->runtime->period_size);
726 
727 	/* Queue up another DMA transaction */
728 	rz_ssi_dma_transfer(strm->priv, strm);
729 }
730 
731 static void rz_ssi_release_dma_channels(struct rz_ssi_priv *ssi)
732 {
733 	if (ssi->playback.dma_ch) {
734 		dma_release_channel(ssi->playback.dma_ch);
735 		ssi->playback.dma_ch = NULL;
736 		if (ssi->dma_rt)
737 			ssi->dma_rt = false;
738 	}
739 
740 	if (ssi->capture.dma_ch) {
741 		dma_release_channel(ssi->capture.dma_ch);
742 		ssi->capture.dma_ch = NULL;
743 	}
744 }
745 
746 static int rz_ssi_dma_request(struct rz_ssi_priv *ssi, struct device *dev)
747 {
748 	ssi->playback.dma_ch = dma_request_chan(dev, "tx");
749 	if (IS_ERR(ssi->playback.dma_ch))
750 		ssi->playback.dma_ch = NULL;
751 
752 	ssi->capture.dma_ch = dma_request_chan(dev, "rx");
753 	if (IS_ERR(ssi->capture.dma_ch))
754 		ssi->capture.dma_ch = NULL;
755 
756 	if (!ssi->playback.dma_ch && !ssi->capture.dma_ch) {
757 		ssi->playback.dma_ch = dma_request_chan(dev, "rt");
758 		if (IS_ERR(ssi->playback.dma_ch)) {
759 			ssi->playback.dma_ch = NULL;
760 			goto no_dma;
761 		}
762 
763 		ssi->dma_rt = true;
764 	}
765 
766 	if (!rz_ssi_is_dma_enabled(ssi))
767 		goto no_dma;
768 
769 	if (ssi->playback.dma_ch &&
770 	    (rz_ssi_dma_slave_config(ssi, ssi->playback.dma_ch, true) < 0))
771 		goto no_dma;
772 
773 	if (ssi->capture.dma_ch &&
774 	    (rz_ssi_dma_slave_config(ssi, ssi->capture.dma_ch, false) < 0))
775 		goto no_dma;
776 
777 	return 0;
778 
779 no_dma:
780 	rz_ssi_release_dma_channels(ssi);
781 
782 	return -ENODEV;
783 }
784 
785 static int rz_ssi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
786 			      struct snd_soc_dai *dai)
787 {
788 	struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai);
789 	struct rz_ssi_stream *strm = rz_ssi_stream_get(ssi, substream);
790 	int ret = 0, i, num_transfer = 1;
791 
792 	switch (cmd) {
793 	case SNDRV_PCM_TRIGGER_START:
794 		rz_ssi_stream_init(strm, substream);
795 
796 		if (ssi->dma_rt) {
797 			bool is_playback;
798 
799 			is_playback = rz_ssi_stream_is_play(substream);
800 			ret = rz_ssi_dma_slave_config(ssi, ssi->playback.dma_ch,
801 						      is_playback);
802 			/* Fallback to pio */
803 			if (ret < 0) {
804 				ssi->playback.transfer = rz_ssi_pio_send;
805 				ssi->capture.transfer = rz_ssi_pio_recv;
806 				rz_ssi_release_dma_channels(ssi);
807 			}
808 		}
809 
810 		/* For DMA, queue up multiple DMA descriptors */
811 		if (rz_ssi_is_dma_enabled(ssi))
812 			num_transfer = 4;
813 
814 		for (i = 0; i < num_transfer; i++) {
815 			ret = strm->transfer(ssi, strm);
816 			if (ret)
817 				goto done;
818 		}
819 
820 		ret = rz_ssi_start(ssi, strm);
821 		break;
822 	case SNDRV_PCM_TRIGGER_STOP:
823 		rz_ssi_stop(ssi, strm);
824 		rz_ssi_stream_quit(ssi, strm);
825 		break;
826 	}
827 
828 done:
829 	return ret;
830 }
831 
832 static int rz_ssi_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
833 {
834 	struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai);
835 
836 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
837 	case SND_SOC_DAIFMT_BP_FP:
838 		break;
839 	default:
840 		dev_err(ssi->dev, "Codec should be clk and frame consumer\n");
841 		return -EINVAL;
842 	}
843 
844 	/*
845 	 * set clock polarity
846 	 *
847 	 * "normal" BCLK = Signal is available at rising edge of BCLK
848 	 * "normal" FSYNC = (I2S) Left ch starts with falling FSYNC edge
849 	 */
850 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
851 	case SND_SOC_DAIFMT_NB_NF:
852 		ssi->bckp_rise = false;
853 		ssi->lrckp_fsync_fall = false;
854 		break;
855 	case SND_SOC_DAIFMT_NB_IF:
856 		ssi->bckp_rise = false;
857 		ssi->lrckp_fsync_fall = true;
858 		break;
859 	case SND_SOC_DAIFMT_IB_NF:
860 		ssi->bckp_rise = true;
861 		ssi->lrckp_fsync_fall = false;
862 		break;
863 	case SND_SOC_DAIFMT_IB_IF:
864 		ssi->bckp_rise = true;
865 		ssi->lrckp_fsync_fall = true;
866 		break;
867 	default:
868 		return -EINVAL;
869 	}
870 
871 	/* only i2s support */
872 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
873 	case SND_SOC_DAIFMT_I2S:
874 		break;
875 	default:
876 		dev_err(ssi->dev, "Only I2S mode is supported.\n");
877 		return -EINVAL;
878 	}
879 
880 	return 0;
881 }
882 
883 static bool rz_ssi_is_valid_hw_params(struct rz_ssi_priv *ssi, unsigned int rate,
884 				      unsigned int channels,
885 				      unsigned int sample_width,
886 				      unsigned int sample_bits)
887 {
888 	if (ssi->hw_params_cache.rate != rate ||
889 	    ssi->hw_params_cache.channels != channels ||
890 	    ssi->hw_params_cache.sample_width != sample_width ||
891 	    ssi->hw_params_cache.sample_bits != sample_bits)
892 		return false;
893 
894 	return true;
895 }
896 
897 static void rz_ssi_cache_hw_params(struct rz_ssi_priv *ssi, unsigned int rate,
898 				   unsigned int channels,
899 				   unsigned int sample_width,
900 				   unsigned int sample_bits)
901 {
902 	ssi->hw_params_cache.rate = rate;
903 	ssi->hw_params_cache.channels = channels;
904 	ssi->hw_params_cache.sample_width = sample_width;
905 	ssi->hw_params_cache.sample_bits = sample_bits;
906 }
907 
908 static int rz_ssi_dai_hw_params(struct snd_pcm_substream *substream,
909 				struct snd_pcm_hw_params *params,
910 				struct snd_soc_dai *dai)
911 {
912 	struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai);
913 	struct rz_ssi_stream *strm = rz_ssi_stream_get(ssi, substream);
914 	unsigned int sample_bits = hw_param_interval(params,
915 					SNDRV_PCM_HW_PARAM_SAMPLE_BITS)->min;
916 	unsigned int channels = params_channels(params);
917 	unsigned int rate = params_rate(params);
918 	int ret;
919 
920 	if (sample_bits != 16) {
921 		dev_err(ssi->dev, "Unsupported sample width: %d\n",
922 			sample_bits);
923 		return -EINVAL;
924 	}
925 
926 	if (channels != 2) {
927 		dev_err(ssi->dev, "Number of channels not matched: %d\n",
928 			channels);
929 		return -EINVAL;
930 	}
931 
932 	if (rz_ssi_is_stream_running(&ssi->playback) ||
933 	    rz_ssi_is_stream_running(&ssi->capture)) {
934 		if (rz_ssi_is_valid_hw_params(ssi, rate, channels,
935 					      strm->sample_width, sample_bits))
936 			return 0;
937 
938 		dev_err(ssi->dev, "Full duplex needs same HW params\n");
939 		return -EINVAL;
940 	}
941 
942 	rz_ssi_cache_hw_params(ssi, rate, channels, strm->sample_width,
943 			       sample_bits);
944 
945 	ret = rz_ssi_swreset(ssi);
946 	if (ret)
947 		return ret;
948 
949 	return rz_ssi_clk_setup(ssi, rate, channels);
950 }
951 
952 static const struct snd_soc_dai_ops rz_ssi_dai_ops = {
953 	.trigger	= rz_ssi_dai_trigger,
954 	.set_fmt	= rz_ssi_dai_set_fmt,
955 	.hw_params	= rz_ssi_dai_hw_params,
956 };
957 
958 static const struct snd_pcm_hardware rz_ssi_pcm_hardware = {
959 	.info			= SNDRV_PCM_INFO_INTERLEAVED	|
960 				  SNDRV_PCM_INFO_MMAP		|
961 				  SNDRV_PCM_INFO_MMAP_VALID,
962 	.buffer_bytes_max	= PREALLOC_BUFFER,
963 	.period_bytes_min	= 32,
964 	.period_bytes_max	= 8192,
965 	.channels_min		= SSI_CHAN_MIN,
966 	.channels_max		= SSI_CHAN_MAX,
967 	.periods_min		= 1,
968 	.periods_max		= 32,
969 	.fifo_size		= 32 * 2,
970 };
971 
972 static int rz_ssi_pcm_open(struct snd_soc_component *component,
973 			   struct snd_pcm_substream *substream)
974 {
975 	snd_soc_set_runtime_hwparams(substream, &rz_ssi_pcm_hardware);
976 
977 	return snd_pcm_hw_constraint_integer(substream->runtime,
978 					    SNDRV_PCM_HW_PARAM_PERIODS);
979 }
980 
981 static snd_pcm_uframes_t rz_ssi_pcm_pointer(struct snd_soc_component *component,
982 					    struct snd_pcm_substream *substream)
983 {
984 	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
985 	struct snd_soc_dai *dai = snd_soc_rtd_to_cpu(rtd, 0);
986 	struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai);
987 	struct rz_ssi_stream *strm = rz_ssi_stream_get(ssi, substream);
988 
989 	return strm->buffer_pos;
990 }
991 
992 static int rz_ssi_pcm_new(struct snd_soc_component *component,
993 			  struct snd_soc_pcm_runtime *rtd)
994 {
995 	snd_pcm_set_managed_buffer_all(rtd->pcm, SNDRV_DMA_TYPE_DEV,
996 				       rtd->card->snd_card->dev,
997 				       PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
998 	return 0;
999 }
1000 
1001 static struct snd_soc_dai_driver rz_ssi_soc_dai[] = {
1002 	{
1003 		.name			= "rz-ssi-dai",
1004 		.playback = {
1005 			.rates		= SSI_RATES,
1006 			.formats	= SSI_FMTS,
1007 			.channels_min	= SSI_CHAN_MIN,
1008 			.channels_max	= SSI_CHAN_MAX,
1009 		},
1010 		.capture = {
1011 			.rates		= SSI_RATES,
1012 			.formats	= SSI_FMTS,
1013 			.channels_min	= SSI_CHAN_MIN,
1014 			.channels_max	= SSI_CHAN_MAX,
1015 		},
1016 		.ops = &rz_ssi_dai_ops,
1017 	},
1018 };
1019 
1020 static const struct snd_soc_component_driver rz_ssi_soc_component = {
1021 	.name			= "rz-ssi",
1022 	.open			= rz_ssi_pcm_open,
1023 	.pointer		= rz_ssi_pcm_pointer,
1024 	.pcm_construct		= rz_ssi_pcm_new,
1025 	.legacy_dai_naming	= 1,
1026 };
1027 
1028 static int rz_ssi_probe(struct platform_device *pdev)
1029 {
1030 	struct device *dev = &pdev->dev;
1031 	struct rz_ssi_priv *ssi;
1032 	struct clk *audio_clk;
1033 	struct resource *res;
1034 	int ret;
1035 
1036 	ssi = devm_kzalloc(dev, sizeof(*ssi), GFP_KERNEL);
1037 	if (!ssi)
1038 		return -ENOMEM;
1039 
1040 	ssi->dev = dev;
1041 	ssi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1042 	if (IS_ERR(ssi->base))
1043 		return PTR_ERR(ssi->base);
1044 
1045 	ssi->phys = res->start;
1046 	ssi->clk = devm_clk_get(dev, "ssi");
1047 	if (IS_ERR(ssi->clk))
1048 		return PTR_ERR(ssi->clk);
1049 
1050 	ssi->sfr_clk = devm_clk_get(dev, "ssi_sfr");
1051 	if (IS_ERR(ssi->sfr_clk))
1052 		return PTR_ERR(ssi->sfr_clk);
1053 
1054 	audio_clk = devm_clk_get(dev, "audio_clk1");
1055 	if (IS_ERR(audio_clk))
1056 		return dev_err_probe(&pdev->dev, PTR_ERR(audio_clk),
1057 				     "no audio clk1");
1058 
1059 	ssi->audio_clk_1 = clk_get_rate(audio_clk);
1060 	audio_clk = devm_clk_get(dev, "audio_clk2");
1061 	if (IS_ERR(audio_clk))
1062 		return dev_err_probe(&pdev->dev, PTR_ERR(audio_clk),
1063 				     "no audio clk2");
1064 
1065 	ssi->audio_clk_2 = clk_get_rate(audio_clk);
1066 	if (!(ssi->audio_clk_1 || ssi->audio_clk_2))
1067 		return dev_err_probe(&pdev->dev, -EINVAL,
1068 				     "no audio clk1 or audio clk2");
1069 
1070 	ssi->audio_mck = ssi->audio_clk_1 ? ssi->audio_clk_1 : ssi->audio_clk_2;
1071 
1072 	/* Detect DMA support */
1073 	ret = rz_ssi_dma_request(ssi, dev);
1074 	if (ret < 0) {
1075 		dev_warn(dev, "DMA not available, using PIO\n");
1076 		ssi->playback.transfer = rz_ssi_pio_send;
1077 		ssi->capture.transfer = rz_ssi_pio_recv;
1078 	} else {
1079 		dev_info(dev, "DMA enabled");
1080 		ssi->playback.transfer = rz_ssi_dma_transfer;
1081 		ssi->capture.transfer = rz_ssi_dma_transfer;
1082 	}
1083 
1084 	ssi->playback.priv = ssi;
1085 	ssi->capture.priv = ssi;
1086 
1087 	spin_lock_init(&ssi->lock);
1088 	dev_set_drvdata(dev, ssi);
1089 
1090 	/* Error Interrupt */
1091 	ssi->irq_int = platform_get_irq_byname(pdev, "int_req");
1092 	if (ssi->irq_int < 0) {
1093 		ret = ssi->irq_int;
1094 		goto err_release_dma_chs;
1095 	}
1096 
1097 	ret = devm_request_irq(dev, ssi->irq_int, &rz_ssi_interrupt,
1098 			       0, dev_name(dev), ssi);
1099 	if (ret < 0) {
1100 		dev_err_probe(dev, ret, "irq request error (int_req)\n");
1101 		goto err_release_dma_chs;
1102 	}
1103 
1104 	if (!rz_ssi_is_dma_enabled(ssi)) {
1105 		/* Tx and Rx interrupts (pio only) */
1106 		ssi->irq_tx = platform_get_irq_byname(pdev, "dma_tx");
1107 		ssi->irq_rx = platform_get_irq_byname(pdev, "dma_rx");
1108 		if (ssi->irq_tx == -ENXIO && ssi->irq_rx == -ENXIO) {
1109 			ssi->irq_rt = platform_get_irq_byname(pdev, "dma_rt");
1110 			if (ssi->irq_rt < 0)
1111 				return ssi->irq_rt;
1112 
1113 			ret = devm_request_irq(dev, ssi->irq_rt,
1114 					       &rz_ssi_interrupt, 0,
1115 					       dev_name(dev), ssi);
1116 			if (ret < 0)
1117 				return dev_err_probe(dev, ret,
1118 						     "irq request error (dma_rt)\n");
1119 		} else {
1120 			if (ssi->irq_tx < 0)
1121 				return ssi->irq_tx;
1122 
1123 			if (ssi->irq_rx < 0)
1124 				return ssi->irq_rx;
1125 
1126 			ret = devm_request_irq(dev, ssi->irq_tx,
1127 					       &rz_ssi_interrupt, 0,
1128 					       dev_name(dev), ssi);
1129 			if (ret < 0)
1130 				return dev_err_probe(dev, ret,
1131 						"irq request error (dma_tx)\n");
1132 
1133 			ret = devm_request_irq(dev, ssi->irq_rx,
1134 					       &rz_ssi_interrupt, 0,
1135 					       dev_name(dev), ssi);
1136 			if (ret < 0)
1137 				return dev_err_probe(dev, ret,
1138 						"irq request error (dma_rx)\n");
1139 		}
1140 	}
1141 
1142 	ssi->rstc = devm_reset_control_get_exclusive(dev, NULL);
1143 	if (IS_ERR(ssi->rstc)) {
1144 		ret = PTR_ERR(ssi->rstc);
1145 		goto err_release_dma_chs;
1146 	}
1147 
1148 	/* Default 0 for power saving. Can be overridden via sysfs. */
1149 	pm_runtime_set_autosuspend_delay(dev, 0);
1150 	pm_runtime_use_autosuspend(dev);
1151 	ret = devm_pm_runtime_enable(dev);
1152 	if (ret < 0) {
1153 		dev_err(dev, "Failed to enable runtime PM!\n");
1154 		goto err_release_dma_chs;
1155 	}
1156 
1157 	ret = devm_snd_soc_register_component(dev, &rz_ssi_soc_component,
1158 					      rz_ssi_soc_dai,
1159 					      ARRAY_SIZE(rz_ssi_soc_dai));
1160 	if (ret < 0) {
1161 		dev_err(dev, "failed to register snd component\n");
1162 		goto err_release_dma_chs;
1163 	}
1164 
1165 	return 0;
1166 
1167 err_release_dma_chs:
1168 	rz_ssi_release_dma_channels(ssi);
1169 
1170 	return ret;
1171 }
1172 
1173 static void rz_ssi_remove(struct platform_device *pdev)
1174 {
1175 	struct rz_ssi_priv *ssi = dev_get_drvdata(&pdev->dev);
1176 
1177 	rz_ssi_release_dma_channels(ssi);
1178 
1179 	reset_control_assert(ssi->rstc);
1180 }
1181 
1182 static const struct of_device_id rz_ssi_of_match[] = {
1183 	{ .compatible = "renesas,rz-ssi", },
1184 	{/* Sentinel */},
1185 };
1186 MODULE_DEVICE_TABLE(of, rz_ssi_of_match);
1187 
1188 static int rz_ssi_runtime_suspend(struct device *dev)
1189 {
1190 	struct rz_ssi_priv *ssi = dev_get_drvdata(dev);
1191 
1192 	return reset_control_assert(ssi->rstc);
1193 }
1194 
1195 static int rz_ssi_runtime_resume(struct device *dev)
1196 {
1197 	struct rz_ssi_priv *ssi = dev_get_drvdata(dev);
1198 
1199 	return reset_control_deassert(ssi->rstc);
1200 }
1201 
1202 static const struct dev_pm_ops rz_ssi_pm_ops = {
1203 	RUNTIME_PM_OPS(rz_ssi_runtime_suspend, rz_ssi_runtime_resume, NULL)
1204 };
1205 
1206 static struct platform_driver rz_ssi_driver = {
1207 	.driver	= {
1208 		.name	= "rz-ssi-pcm-audio",
1209 		.of_match_table = rz_ssi_of_match,
1210 		.pm = pm_ptr(&rz_ssi_pm_ops),
1211 	},
1212 	.probe		= rz_ssi_probe,
1213 	.remove		= rz_ssi_remove,
1214 };
1215 
1216 module_platform_driver(rz_ssi_driver);
1217 
1218 MODULE_LICENSE("GPL v2");
1219 MODULE_DESCRIPTION("Renesas RZ/G2L ASoC Serial Sound Interface Driver");
1220 MODULE_AUTHOR("Biju Das <biju.das.jz@bp.renesas.com>");
1221