xref: /linux/sound/soc/intel/avs/cldma.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Copyright(c) 2021-2022 Intel Corporation. All rights reserved.
4 //
5 // Author: Cezary Rojewski <cezary.rojewski@intel.com>
6 //
7 
8 #include <linux/pci.h>
9 #include <sound/hda_register.h>
10 #include <sound/hdaudio_ext.h>
11 #include "cldma.h"
12 #include "registers.h"
13 
14 /* Stream Registers */
15 #define AZX_CL_SD_BASE			0x80
16 #define AZX_SD_CTL_STRM_MASK		GENMASK(23, 20)
17 #define AZX_SD_CTL_STRM(s)		(((s)->stream_tag << 20) & AZX_SD_CTL_STRM_MASK)
18 #define AZX_SD_BDLPL_BDLPLBA_MASK	GENMASK(31, 7)
19 #define AZX_SD_BDLPL_BDLPLBA(lb)	((lb) & AZX_SD_BDLPL_BDLPLBA_MASK)
20 
21 /* Software Position Based FIFO Capability Registers */
22 #define AZX_CL_SPBFCS			0x20
23 #define AZX_REG_CL_SPBFCTL		(AZX_CL_SPBFCS + 0x4)
24 #define AZX_REG_CL_SD_SPIB		(AZX_CL_SPBFCS + 0x8)
25 
26 #define AVS_CL_OP_INTERVAL_US		3
27 #define AVS_CL_OP_TIMEOUT_US		300
28 #define AVS_CL_IOC_TIMEOUT_MS		300
29 #define AVS_CL_STREAM_INDEX		0
30 
31 struct hda_cldma {
32 	struct device *dev;
33 	struct hdac_bus *bus;
34 	void __iomem *dsp_ba;
35 
36 	unsigned int buffer_size;
37 	unsigned int num_periods;
38 	unsigned int stream_tag;
39 	void __iomem *sd_addr;
40 
41 	struct snd_dma_buffer dmab_data;
42 	struct snd_dma_buffer dmab_bdl;
43 	struct delayed_work memcpy_work;
44 	struct completion completion;
45 
46 	/* runtime */
47 	void *position;
48 	unsigned int remaining;
49 	unsigned int sd_status;
50 };
51 
52 static void cldma_memcpy_work(struct work_struct *work);
53 
54 struct hda_cldma code_loader = {
55 	.stream_tag	= AVS_CL_STREAM_INDEX + 1,
56 	.memcpy_work	= __DELAYED_WORK_INITIALIZER(code_loader.memcpy_work, cldma_memcpy_work, 0),
57 	.completion	= COMPLETION_INITIALIZER(code_loader.completion),
58 };
59 
60 void hda_cldma_fill(struct hda_cldma *cl)
61 {
62 	unsigned int size, offset;
63 
64 	if (cl->remaining > cl->buffer_size)
65 		size = cl->buffer_size;
66 	else
67 		size = cl->remaining;
68 
69 	offset = snd_hdac_stream_readl(cl, CL_SD_SPIB);
70 	if (offset + size > cl->buffer_size) {
71 		unsigned int ss;
72 
73 		ss = cl->buffer_size - offset;
74 		memcpy(cl->dmab_data.area + offset, cl->position, ss);
75 		offset = 0;
76 		size -= ss;
77 		cl->position += ss;
78 		cl->remaining -= ss;
79 	}
80 
81 	memcpy(cl->dmab_data.area + offset, cl->position, size);
82 	cl->position += size;
83 	cl->remaining -= size;
84 
85 	snd_hdac_stream_writel(cl, CL_SD_SPIB, offset + size);
86 }
87 
88 static void cldma_memcpy_work(struct work_struct *work)
89 {
90 	struct hda_cldma *cl = container_of(work, struct hda_cldma, memcpy_work.work);
91 	int ret;
92 
93 	ret = hda_cldma_start(cl);
94 	if (ret < 0) {
95 		dev_err(cl->dev, "cldma set RUN failed: %d\n", ret);
96 		return;
97 	}
98 
99 	while (true) {
100 		ret = wait_for_completion_timeout(&cl->completion,
101 						  msecs_to_jiffies(AVS_CL_IOC_TIMEOUT_MS));
102 		if (!ret) {
103 			dev_err(cl->dev, "cldma IOC timeout\n");
104 			break;
105 		}
106 
107 		if (!(cl->sd_status & SD_INT_COMPLETE)) {
108 			dev_err(cl->dev, "cldma transfer error, SD status: 0x%08x\n",
109 				cl->sd_status);
110 			break;
111 		}
112 
113 		if (!cl->remaining)
114 			break;
115 
116 		reinit_completion(&cl->completion);
117 		hda_cldma_fill(cl);
118 		/* enable CLDMA interrupt */
119 		snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA,
120 				      AVS_ADSP_ADSPIC_CLDMA);
121 	}
122 }
123 
124 void hda_cldma_transfer(struct hda_cldma *cl, unsigned long start_delay)
125 {
126 	if (!cl->remaining)
127 		return;
128 
129 	reinit_completion(&cl->completion);
130 	/* fill buffer with the first chunk before scheduling run */
131 	hda_cldma_fill(cl);
132 
133 	schedule_delayed_work(&cl->memcpy_work, start_delay);
134 }
135 
136 int hda_cldma_start(struct hda_cldma *cl)
137 {
138 	unsigned int reg;
139 
140 	/* enable interrupts */
141 	snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA,
142 			      AVS_ADSP_ADSPIC_CLDMA);
143 	snd_hdac_stream_updateb(cl, SD_CTL, SD_INT_MASK | SD_CTL_DMA_START,
144 				SD_INT_MASK | SD_CTL_DMA_START);
145 
146 	/* await DMA engine start */
147 	return snd_hdac_stream_readb_poll(cl, SD_CTL, reg, reg & SD_CTL_DMA_START,
148 					  AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US);
149 }
150 
151 int hda_cldma_stop(struct hda_cldma *cl)
152 {
153 	unsigned int reg;
154 	int ret;
155 
156 	/* disable interrupts */
157 	snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA, 0);
158 	snd_hdac_stream_updateb(cl, SD_CTL, SD_INT_MASK | SD_CTL_DMA_START, 0);
159 
160 	/* await DMA engine stop */
161 	ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, !(reg & SD_CTL_DMA_START),
162 					 AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US);
163 	cancel_delayed_work_sync(&cl->memcpy_work);
164 
165 	return ret;
166 }
167 
168 int hda_cldma_reset(struct hda_cldma *cl)
169 {
170 	unsigned int reg;
171 	int ret;
172 
173 	ret = hda_cldma_stop(cl);
174 	if (ret < 0) {
175 		dev_err(cl->dev, "cldma stop failed: %d\n", ret);
176 		return ret;
177 	}
178 
179 	snd_hdac_stream_updateb(cl, SD_CTL, SD_CTL_STREAM_RESET, SD_CTL_STREAM_RESET);
180 	ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, (reg & SD_CTL_STREAM_RESET),
181 					 AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US);
182 	if (ret < 0) {
183 		dev_err(cl->dev, "cldma set SRST failed: %d\n", ret);
184 		return ret;
185 	}
186 
187 	snd_hdac_stream_updateb(cl, SD_CTL, SD_CTL_STREAM_RESET, 0);
188 	ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, !(reg & SD_CTL_STREAM_RESET),
189 					 AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US);
190 	if (ret < 0) {
191 		dev_err(cl->dev, "cldma unset SRST failed: %d\n", ret);
192 		return ret;
193 	}
194 
195 	return 0;
196 }
197 
198 void hda_cldma_set_data(struct hda_cldma *cl, void *data, unsigned int size)
199 {
200 	/* setup runtime */
201 	cl->position = data;
202 	cl->remaining = size;
203 }
204 
205 static void cldma_setup_bdle(struct hda_cldma *cl, u32 bdle_size)
206 {
207 	struct snd_dma_buffer *dmab = &cl->dmab_data;
208 	__le32 *bdl = (__le32 *)cl->dmab_bdl.area;
209 	int remaining = cl->buffer_size;
210 	int offset = 0;
211 
212 	cl->num_periods = 0;
213 
214 	while (remaining > 0) {
215 		phys_addr_t addr;
216 		int chunk;
217 
218 		addr = snd_sgbuf_get_addr(dmab, offset);
219 		bdl[0] = cpu_to_le32(lower_32_bits(addr));
220 		bdl[1] = cpu_to_le32(upper_32_bits(addr));
221 		chunk = snd_sgbuf_get_chunk_size(dmab, offset, bdle_size);
222 		bdl[2] = cpu_to_le32(chunk);
223 
224 		remaining -= chunk;
225 		/* set IOC only for the last entry */
226 		bdl[3] = (remaining > 0) ? 0 : cpu_to_le32(0x01);
227 
228 		bdl += 4;
229 		offset += chunk;
230 		cl->num_periods++;
231 	}
232 }
233 
234 void hda_cldma_setup(struct hda_cldma *cl)
235 {
236 	dma_addr_t bdl_addr = cl->dmab_bdl.addr;
237 
238 	cldma_setup_bdle(cl, cl->buffer_size / 2);
239 
240 	snd_hdac_stream_writel(cl, SD_BDLPL, AZX_SD_BDLPL_BDLPLBA(lower_32_bits(bdl_addr)));
241 	snd_hdac_stream_writel(cl, SD_BDLPU, upper_32_bits(bdl_addr));
242 
243 	snd_hdac_stream_writel(cl, SD_CBL, cl->buffer_size);
244 	snd_hdac_stream_writeb(cl, SD_LVI, cl->num_periods - 1);
245 
246 	snd_hdac_stream_updatel(cl, SD_CTL, AZX_SD_CTL_STRM_MASK, AZX_SD_CTL_STRM(cl));
247 	/* enable spib */
248 	snd_hdac_stream_writel(cl, CL_SPBFCTL, 1);
249 }
250 
251 static irqreturn_t cldma_irq_handler(int irq, void *dev_id)
252 {
253 	struct hda_cldma *cl = dev_id;
254 	u32 adspis;
255 
256 	adspis = snd_hdac_adsp_readl(cl, AVS_ADSP_REG_ADSPIS);
257 	if (adspis == UINT_MAX)
258 		return IRQ_NONE;
259 	if (!(adspis & AVS_ADSP_ADSPIS_CLDMA))
260 		return IRQ_NONE;
261 
262 	cl->sd_status = snd_hdac_stream_readb(cl, SD_STS);
263 	dev_warn(cl->dev, "%s sd_status: 0x%08x\n", __func__, cl->sd_status);
264 
265 	/* disable CLDMA interrupt */
266 	snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA, 0);
267 
268 	complete(&cl->completion);
269 
270 	return IRQ_HANDLED;
271 }
272 
273 int hda_cldma_init(struct hda_cldma *cl, struct hdac_bus *bus, void __iomem *dsp_ba,
274 		   unsigned int buffer_size)
275 {
276 	struct pci_dev *pci = to_pci_dev(bus->dev);
277 	int ret;
278 
279 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV_SG, bus->dev, buffer_size, &cl->dmab_data);
280 	if (ret < 0)
281 		return ret;
282 
283 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, bus->dev, BDL_SIZE, &cl->dmab_bdl);
284 	if (ret < 0)
285 		goto alloc_err;
286 
287 	cl->dev = bus->dev;
288 	cl->bus = bus;
289 	cl->dsp_ba = dsp_ba;
290 	cl->buffer_size = buffer_size;
291 	cl->sd_addr = dsp_ba + AZX_CL_SD_BASE;
292 
293 	ret = pci_request_irq(pci, 0, cldma_irq_handler, NULL, cl, "CLDMA");
294 	if (ret < 0) {
295 		dev_err(cl->dev, "Failed to request CLDMA IRQ handler: %d\n", ret);
296 		goto req_err;
297 	}
298 
299 	return 0;
300 
301 req_err:
302 	snd_dma_free_pages(&cl->dmab_bdl);
303 alloc_err:
304 	snd_dma_free_pages(&cl->dmab_data);
305 
306 	return ret;
307 }
308 
309 void hda_cldma_free(struct hda_cldma *cl)
310 {
311 	struct pci_dev *pci = to_pci_dev(cl->dev);
312 
313 	pci_free_irq(pci, 0, cl);
314 	snd_dma_free_pages(&cl->dmab_data);
315 	snd_dma_free_pages(&cl->dmab_bdl);
316 }
317