1 // SPDX-License-Identifier: GPL-2.0-only 2 // 3 // Copyright(c) 2021-2022 Intel Corporation. All rights reserved. 4 // 5 // Author: Cezary Rojewski <cezary.rojewski@intel.com> 6 // 7 8 #include <linux/pci.h> 9 #include <sound/hda_register.h> 10 #include <sound/hdaudio_ext.h> 11 #include "cldma.h" 12 #include "registers.h" 13 14 /* Stream Registers */ 15 #define AZX_CL_SD_BASE 0x80 16 #define AZX_SD_CTL_STRM_MASK GENMASK(23, 20) 17 #define AZX_SD_CTL_STRM(s) (((s)->stream_tag << 20) & AZX_SD_CTL_STRM_MASK) 18 #define AZX_SD_BDLPL_BDLPLBA_MASK GENMASK(31, 7) 19 #define AZX_SD_BDLPL_BDLPLBA(lb) ((lb) & AZX_SD_BDLPL_BDLPLBA_MASK) 20 21 /* Software Position Based FIFO Capability Registers */ 22 #define AZX_CL_SPBFCS 0x20 23 #define AZX_REG_CL_SPBFCTL (AZX_CL_SPBFCS + 0x4) 24 #define AZX_REG_CL_SD_SPIB (AZX_CL_SPBFCS + 0x8) 25 26 #define AVS_CL_OP_INTERVAL_US 3 27 #define AVS_CL_OP_TIMEOUT_US 300 28 #define AVS_CL_IOC_TIMEOUT_MS 300 29 #define AVS_CL_STREAM_INDEX 0 30 31 struct hda_cldma { 32 struct device *dev; 33 struct hdac_bus *bus; 34 void __iomem *dsp_ba; 35 36 unsigned int buffer_size; 37 unsigned int num_periods; 38 unsigned char stream_tag; 39 void __iomem *sd_addr; 40 41 struct snd_dma_buffer dmab_data; 42 struct snd_dma_buffer dmab_bdl; 43 struct delayed_work memcpy_work; 44 struct completion completion; 45 46 /* runtime */ 47 void *position; 48 unsigned int remaining; 49 unsigned int sd_status; 50 }; 51 52 static void cldma_memcpy_work(struct work_struct *work); 53 54 struct hda_cldma code_loader = { 55 .stream_tag = AVS_CL_STREAM_INDEX + 1, 56 .memcpy_work = __DELAYED_WORK_INITIALIZER(code_loader.memcpy_work, cldma_memcpy_work, 0), 57 .completion = COMPLETION_INITIALIZER(code_loader.completion), 58 }; 59 60 void hda_cldma_fill(struct hda_cldma *cl) 61 { 62 unsigned int size, offset; 63 64 if (cl->remaining > cl->buffer_size) 65 size = cl->buffer_size; 66 else 67 size = cl->remaining; 68 69 offset = snd_hdac_stream_readl(cl, CL_SD_SPIB); 70 if (offset + size > cl->buffer_size) { 71 unsigned int ss; 72 73 ss = cl->buffer_size - offset; 74 memcpy(cl->dmab_data.area + offset, cl->position, ss); 75 offset = 0; 76 size -= ss; 77 cl->position += ss; 78 cl->remaining -= ss; 79 } 80 81 memcpy(cl->dmab_data.area + offset, cl->position, size); 82 cl->position += size; 83 cl->remaining -= size; 84 85 snd_hdac_stream_writel(cl, CL_SD_SPIB, offset + size); 86 } 87 88 static void cldma_memcpy_work(struct work_struct *work) 89 { 90 struct hda_cldma *cl = container_of(work, struct hda_cldma, memcpy_work.work); 91 int ret; 92 93 ret = hda_cldma_start(cl); 94 if (ret < 0) { 95 dev_err(cl->dev, "cldma set RUN failed: %d\n", ret); 96 return; 97 } 98 99 while (true) { 100 ret = wait_for_completion_timeout(&cl->completion, 101 msecs_to_jiffies(AVS_CL_IOC_TIMEOUT_MS)); 102 if (!ret) { 103 dev_err(cl->dev, "cldma IOC timeout\n"); 104 break; 105 } 106 107 if (!(cl->sd_status & SD_INT_COMPLETE)) { 108 dev_err(cl->dev, "cldma transfer error, SD status: 0x%08x\n", 109 cl->sd_status); 110 break; 111 } 112 113 if (!cl->remaining) 114 break; 115 116 reinit_completion(&cl->completion); 117 hda_cldma_fill(cl); 118 /* enable CLDMA interrupt */ 119 snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA, 120 AVS_ADSP_ADSPIC_CLDMA); 121 } 122 } 123 124 void hda_cldma_transfer(struct hda_cldma *cl, unsigned long start_delay) 125 { 126 if (!cl->remaining) 127 return; 128 129 reinit_completion(&cl->completion); 130 /* fill buffer with the first chunk before scheduling run */ 131 hda_cldma_fill(cl); 132 133 schedule_delayed_work(&cl->memcpy_work, start_delay); 134 } 135 136 int hda_cldma_start(struct hda_cldma *cl) 137 { 138 unsigned int reg; 139 140 /* enable interrupts */ 141 snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA, 142 AVS_ADSP_ADSPIC_CLDMA); 143 snd_hdac_stream_updateb(cl, SD_CTL, SD_INT_MASK | SD_CTL_DMA_START, 144 SD_INT_MASK | SD_CTL_DMA_START); 145 146 /* await DMA engine start */ 147 return snd_hdac_stream_readb_poll(cl, SD_CTL, reg, reg & SD_CTL_DMA_START, 148 AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US); 149 } 150 151 int hda_cldma_stop(struct hda_cldma *cl) 152 { 153 unsigned int reg; 154 int ret; 155 156 /* disable interrupts */ 157 snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA, 0); 158 snd_hdac_stream_updateb(cl, SD_CTL, SD_INT_MASK | SD_CTL_DMA_START, 0); 159 160 /* await DMA engine stop */ 161 ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, !(reg & SD_CTL_DMA_START), 162 AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US); 163 cancel_delayed_work_sync(&cl->memcpy_work); 164 165 return ret; 166 } 167 168 int hda_cldma_reset(struct hda_cldma *cl) 169 { 170 unsigned int reg; 171 int ret; 172 173 ret = hda_cldma_stop(cl); 174 if (ret < 0) { 175 dev_err(cl->dev, "cldma stop failed: %d\n", ret); 176 return ret; 177 } 178 179 snd_hdac_stream_updateb(cl, SD_CTL, SD_CTL_STREAM_RESET, SD_CTL_STREAM_RESET); 180 ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, (reg & SD_CTL_STREAM_RESET), 181 AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US); 182 if (ret < 0) { 183 dev_err(cl->dev, "cldma set SRST failed: %d\n", ret); 184 return ret; 185 } 186 187 snd_hdac_stream_updateb(cl, SD_CTL, SD_CTL_STREAM_RESET, 0); 188 ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, !(reg & SD_CTL_STREAM_RESET), 189 AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US); 190 if (ret < 0) { 191 dev_err(cl->dev, "cldma unset SRST failed: %d\n", ret); 192 return ret; 193 } 194 195 return 0; 196 } 197 198 void hda_cldma_set_data(struct hda_cldma *cl, void *data, unsigned int size) 199 { 200 /* setup runtime */ 201 cl->position = data; 202 cl->remaining = size; 203 } 204 205 static void cldma_setup_bdle(struct hda_cldma *cl, u32 bdle_size) 206 { 207 struct snd_dma_buffer *dmab = &cl->dmab_data; 208 __le32 *bdl = (__le32 *)cl->dmab_bdl.area; 209 int remaining = cl->buffer_size; 210 int offset = 0; 211 212 cl->num_periods = 0; 213 214 while (remaining > 0) { 215 phys_addr_t addr; 216 int chunk; 217 218 addr = snd_sgbuf_get_addr(dmab, offset); 219 bdl[0] = cpu_to_le32(lower_32_bits(addr)); 220 bdl[1] = cpu_to_le32(upper_32_bits(addr)); 221 chunk = snd_sgbuf_get_chunk_size(dmab, offset, bdle_size); 222 bdl[2] = cpu_to_le32(chunk); 223 224 remaining -= chunk; 225 /* set IOC only for the last entry */ 226 bdl[3] = (remaining > 0) ? 0 : cpu_to_le32(0x01); 227 228 bdl += 4; 229 offset += chunk; 230 cl->num_periods++; 231 } 232 } 233 234 void hda_cldma_setup(struct hda_cldma *cl) 235 { 236 dma_addr_t bdl_addr = cl->dmab_bdl.addr; 237 238 cldma_setup_bdle(cl, cl->buffer_size / 2); 239 240 snd_hdac_stream_writel(cl, SD_BDLPL, AZX_SD_BDLPL_BDLPLBA(lower_32_bits(bdl_addr))); 241 snd_hdac_stream_writel(cl, SD_BDLPU, upper_32_bits(bdl_addr)); 242 243 snd_hdac_stream_writel(cl, SD_CBL, cl->buffer_size); 244 snd_hdac_stream_writeb(cl, SD_LVI, cl->num_periods - 1); 245 246 snd_hdac_stream_updatel(cl, SD_CTL, AZX_SD_CTL_STRM_MASK, AZX_SD_CTL_STRM(cl)); 247 /* enable spib */ 248 snd_hdac_stream_writel(cl, CL_SPBFCTL, 1); 249 } 250 251 void hda_cldma_interrupt(struct hda_cldma *cl) 252 { 253 /* disable CLDMA interrupt */ 254 snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA, 0); 255 256 cl->sd_status = snd_hdac_stream_readb(cl, SD_STS); 257 dev_dbg(cl->dev, "%s sd_status: 0x%08x\n", __func__, cl->sd_status); 258 259 complete(&cl->completion); 260 } 261 262 int hda_cldma_init(struct hda_cldma *cl, struct hdac_bus *bus, void __iomem *dsp_ba, 263 unsigned int buffer_size) 264 { 265 int ret; 266 267 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV_SG, bus->dev, buffer_size, &cl->dmab_data); 268 if (ret < 0) 269 return ret; 270 271 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, bus->dev, BDL_SIZE, &cl->dmab_bdl); 272 if (ret < 0) { 273 snd_dma_free_pages(&cl->dmab_data); 274 return ret; 275 } 276 277 cl->dev = bus->dev; 278 cl->bus = bus; 279 cl->dsp_ba = dsp_ba; 280 cl->buffer_size = buffer_size; 281 cl->sd_addr = dsp_ba + AZX_CL_SD_BASE; 282 283 return 0; 284 } 285 286 void hda_cldma_free(struct hda_cldma *cl) 287 { 288 snd_dma_free_pages(&cl->dmab_data); 289 snd_dma_free_pages(&cl->dmab_bdl); 290 } 291