xref: /linux/sound/soc/intel/atom/sst-atom-controls.c (revision 0d3b051adbb72ed81956447d0d1e54d5943ee6f5)
1 // SPDX-License-Identifier: GPL-2.0-only
2  /*
3  *  sst-atom-controls.c - Intel MID Platform driver DPCM ALSA controls for Mrfld
4  *
5  *  Copyright (C) 2013-14 Intel Corp
6  *  Author: Omair Mohammed Abdullah <omair.m.abdullah@intel.com>
7  *	Vinod Koul <vinod.koul@intel.com>
8  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  *  In the dpcm driver modelling when a particular FE/BE/Mixer/Pipe is active
11  *  we forward the settings and parameters, rest we keep the values  in
12  *  driver and forward when DAPM enables them
13  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/slab.h>
18 #include <sound/soc.h>
19 #include <sound/tlv.h>
20 #include "sst-mfld-platform.h"
21 #include "sst-atom-controls.h"
22 
23 static int sst_fill_byte_control(struct sst_data *drv,
24 					 u8 ipc_msg, u8 block,
25 					 u8 task_id, u8 pipe_id,
26 					 u16 len, void *cmd_data)
27 {
28 	struct snd_sst_bytes_v2 *byte_data = drv->byte_stream;
29 
30 	byte_data->type = SST_CMD_BYTES_SET;
31 	byte_data->ipc_msg = ipc_msg;
32 	byte_data->block = block;
33 	byte_data->task_id = task_id;
34 	byte_data->pipe_id = pipe_id;
35 
36 	if (len > SST_MAX_BIN_BYTES - sizeof(*byte_data)) {
37 		dev_err(&drv->pdev->dev, "command length too big (%u)", len);
38 		return -EINVAL;
39 	}
40 	byte_data->len = len;
41 	memcpy(byte_data->bytes, cmd_data, len);
42 	print_hex_dump_bytes("writing to lpe: ", DUMP_PREFIX_OFFSET,
43 			     byte_data, len + sizeof(*byte_data));
44 	return 0;
45 }
46 
47 static int sst_fill_and_send_cmd_unlocked(struct sst_data *drv,
48 				 u8 ipc_msg, u8 block, u8 task_id, u8 pipe_id,
49 				 void *cmd_data, u16 len)
50 {
51 	int ret = 0;
52 
53 	WARN_ON(!mutex_is_locked(&drv->lock));
54 
55 	ret = sst_fill_byte_control(drv, ipc_msg,
56 				block, task_id, pipe_id, len, cmd_data);
57 	if (ret < 0)
58 		return ret;
59 	return sst->ops->send_byte_stream(sst->dev, drv->byte_stream);
60 }
61 
62 /**
63  * sst_fill_and_send_cmd - generate the IPC message and send it to the FW
64  * @drv: sst_data
65  * @ipc_msg: type of IPC (CMD, SET_PARAMS, GET_PARAMS)
66  * @block: block index
67  * @task_id: task index
68  * @pipe_id: pipe index
69  * @cmd_data: the IPC payload
70  * @len: length of data to be sent
71  */
72 static int sst_fill_and_send_cmd(struct sst_data *drv,
73 				 u8 ipc_msg, u8 block, u8 task_id, u8 pipe_id,
74 				 void *cmd_data, u16 len)
75 {
76 	int ret;
77 
78 	mutex_lock(&drv->lock);
79 	ret = sst_fill_and_send_cmd_unlocked(drv, ipc_msg, block,
80 					task_id, pipe_id, cmd_data, len);
81 	mutex_unlock(&drv->lock);
82 
83 	return ret;
84 }
85 
86 /*
87  * tx map value is a bitfield where each bit represents a FW channel
88  *
89  *			3 2 1 0		# 0 = codec0, 1 = codec1
90  *			RLRLRLRL	# 3, 4 = reserved
91  *
92  * e.g. slot 0 rx map =	00001100b -> data from slot 0 goes into codec_in1 L,R
93  */
94 static u8 sst_ssp_tx_map[SST_MAX_TDM_SLOTS] = {
95 	0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, /* default rx map */
96 };
97 
98 /*
99  * rx map value is a bitfield where each bit represents a slot
100  *
101  *			  76543210	# 0 = slot 0, 1 = slot 1
102  *
103  * e.g. codec1_0 tx map = 00000101b -> data from codec_out1_0 goes into slot 0, 2
104  */
105 static u8 sst_ssp_rx_map[SST_MAX_TDM_SLOTS] = {
106 	0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, /* default tx map */
107 };
108 
109 /*
110  * NOTE: this is invoked with lock held
111  */
112 static int sst_send_slot_map(struct sst_data *drv)
113 {
114 	struct sst_param_sba_ssp_slot_map cmd;
115 
116 	SST_FILL_DEFAULT_DESTINATION(cmd.header.dst);
117 	cmd.header.command_id = SBA_SET_SSP_SLOT_MAP;
118 	cmd.header.length = sizeof(struct sst_param_sba_ssp_slot_map)
119 				- sizeof(struct sst_dsp_header);
120 
121 	cmd.param_id = SBA_SET_SSP_SLOT_MAP;
122 	cmd.param_len = sizeof(cmd.rx_slot_map) + sizeof(cmd.tx_slot_map)
123 					+ sizeof(cmd.ssp_index);
124 	cmd.ssp_index = SSP_CODEC;
125 
126 	memcpy(cmd.rx_slot_map, &sst_ssp_tx_map[0], sizeof(cmd.rx_slot_map));
127 	memcpy(cmd.tx_slot_map, &sst_ssp_rx_map[0], sizeof(cmd.tx_slot_map));
128 
129 	return sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS,
130 			SST_FLAG_BLOCKED, SST_TASK_SBA, 0, &cmd,
131 			      sizeof(cmd.header) + cmd.header.length);
132 }
133 
134 static int sst_slot_enum_info(struct snd_kcontrol *kcontrol,
135 		       struct snd_ctl_elem_info *uinfo)
136 {
137 	struct sst_enum *e = (struct sst_enum *)kcontrol->private_value;
138 
139 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
140 	uinfo->count = 1;
141 	uinfo->value.enumerated.items = e->max;
142 
143 	if (uinfo->value.enumerated.item > e->max - 1)
144 		uinfo->value.enumerated.item = e->max - 1;
145 	strcpy(uinfo->value.enumerated.name,
146 		e->texts[uinfo->value.enumerated.item]);
147 
148 	return 0;
149 }
150 
151 /**
152  * sst_slot_get - get the status of the interleaver/deinterleaver control
153  * @kcontrol: control pointer
154  * @ucontrol: User data
155  * Searches the map where the control status is stored, and gets the
156  * channel/slot which is currently set for this enumerated control. Since it is
157  * an enumerated control, there is only one possible value.
158  */
159 static int sst_slot_get(struct snd_kcontrol *kcontrol,
160 			struct snd_ctl_elem_value *ucontrol)
161 {
162 	struct sst_enum *e = (void *)kcontrol->private_value;
163 	struct snd_soc_component *c = snd_kcontrol_chip(kcontrol);
164 	struct sst_data *drv = snd_soc_component_get_drvdata(c);
165 	unsigned int ctl_no = e->reg;
166 	unsigned int is_tx = e->tx;
167 	unsigned int val, mux;
168 	u8 *map = is_tx ? sst_ssp_rx_map : sst_ssp_tx_map;
169 
170 	mutex_lock(&drv->lock);
171 	val = 1 << ctl_no;
172 	/* search which slot/channel has this bit set - there should be only one */
173 	for (mux = e->max; mux > 0;  mux--)
174 		if (map[mux - 1] & val)
175 			break;
176 
177 	ucontrol->value.enumerated.item[0] = mux;
178 	mutex_unlock(&drv->lock);
179 
180 	dev_dbg(c->dev, "%s - %s map = %#x\n",
181 			is_tx ? "tx channel" : "rx slot",
182 			 e->texts[mux], mux ? map[mux - 1] : -1);
183 	return 0;
184 }
185 
186 /* sst_check_and_send_slot_map - helper for checking power state and sending
187  * slot map cmd
188  *
189  * called with lock held
190  */
191 static int sst_check_and_send_slot_map(struct sst_data *drv, struct snd_kcontrol *kcontrol)
192 {
193 	struct sst_enum *e = (void *)kcontrol->private_value;
194 	int ret = 0;
195 
196 	if (e->w && e->w->power)
197 		ret = sst_send_slot_map(drv);
198 	else if (!e->w)
199 		dev_err(&drv->pdev->dev, "Slot control: %s doesn't have DAPM widget!!!\n",
200 				kcontrol->id.name);
201 	return ret;
202 }
203 
204 /**
205  * sst_slot_put - set the status of interleaver/deinterleaver control
206  * @kcontrol: control pointer
207  * @ucontrol: User data
208  * (de)interleaver controls are defined in opposite sense to be user-friendly
209  *
210  * Instead of the enum value being the value written to the register, it is the
211  * register address; and the kcontrol number (register num) is the value written
212  * to the register. This is so that there can be only one value for each
213  * slot/channel since there is only one control for each slot/channel.
214  *
215  * This means that whenever an enum is set, we need to clear the bit
216  * for that kcontrol_no for all the interleaver OR deinterleaver registers
217  */
218 static int sst_slot_put(struct snd_kcontrol *kcontrol,
219 			struct snd_ctl_elem_value *ucontrol)
220 {
221 	struct snd_soc_component *c = snd_soc_kcontrol_component(kcontrol);
222 	struct sst_data *drv = snd_soc_component_get_drvdata(c);
223 	struct sst_enum *e = (void *)kcontrol->private_value;
224 	int i, ret = 0;
225 	unsigned int ctl_no = e->reg;
226 	unsigned int is_tx = e->tx;
227 	unsigned int slot_channel_no;
228 	unsigned int val, mux;
229 	u8 *map;
230 
231 	map = is_tx ? sst_ssp_rx_map : sst_ssp_tx_map;
232 
233 	val = 1 << ctl_no;
234 	mux = ucontrol->value.enumerated.item[0];
235 	if (mux > e->max - 1)
236 		return -EINVAL;
237 
238 	mutex_lock(&drv->lock);
239 	/* first clear all registers of this bit */
240 	for (i = 0; i < e->max; i++)
241 		map[i] &= ~val;
242 
243 	if (mux == 0) {
244 		/* kctl set to 'none' and we reset the bits so send IPC */
245 		ret = sst_check_and_send_slot_map(drv, kcontrol);
246 
247 		mutex_unlock(&drv->lock);
248 		return ret;
249 	}
250 
251 	/* offset by one to take "None" into account */
252 	slot_channel_no = mux - 1;
253 	map[slot_channel_no] |= val;
254 
255 	dev_dbg(c->dev, "%s %s map = %#x\n",
256 			is_tx ? "tx channel" : "rx slot",
257 			e->texts[mux], map[slot_channel_no]);
258 
259 	ret = sst_check_and_send_slot_map(drv, kcontrol);
260 
261 	mutex_unlock(&drv->lock);
262 	return ret;
263 }
264 
265 static int sst_send_algo_cmd(struct sst_data *drv,
266 			      struct sst_algo_control *bc)
267 {
268 	int len, ret = 0;
269 	struct sst_cmd_set_params *cmd;
270 
271 	/*bc->max includes sizeof algos + length field*/
272 	len = sizeof(cmd->dst) + sizeof(cmd->command_id) + bc->max;
273 
274 	cmd = kzalloc(len, GFP_KERNEL);
275 	if (cmd == NULL)
276 		return -ENOMEM;
277 
278 	SST_FILL_DESTINATION(2, cmd->dst, bc->pipe_id, bc->module_id);
279 	cmd->command_id = bc->cmd_id;
280 	memcpy(cmd->params, bc->params, bc->max);
281 
282 	ret = sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS,
283 				SST_FLAG_BLOCKED, bc->task_id, 0, cmd, len);
284 	kfree(cmd);
285 	return ret;
286 }
287 
288 /**
289  * sst_find_and_send_pipe_algo - send all the algo parameters for a pipe
290  * @drv: sst_data
291  * @pipe: string identifier
292  * @ids: list of algorithms
293  * The algos which are in each pipeline are sent to the firmware one by one
294  *
295  * Called with lock held
296  */
297 static int sst_find_and_send_pipe_algo(struct sst_data *drv,
298 					const char *pipe, struct sst_ids *ids)
299 {
300 	int ret = 0;
301 	struct sst_algo_control *bc;
302 	struct sst_module *algo;
303 
304 	dev_dbg(&drv->pdev->dev, "Enter: widget=%s\n", pipe);
305 
306 	list_for_each_entry(algo, &ids->algo_list, node) {
307 		bc = (void *)algo->kctl->private_value;
308 
309 		dev_dbg(&drv->pdev->dev, "Found algo control name=%s pipe=%s\n",
310 				algo->kctl->id.name, pipe);
311 		ret = sst_send_algo_cmd(drv, bc);
312 		if (ret)
313 			return ret;
314 	}
315 	return ret;
316 }
317 
318 static int sst_algo_bytes_ctl_info(struct snd_kcontrol *kcontrol,
319 			    struct snd_ctl_elem_info *uinfo)
320 {
321 	struct sst_algo_control *bc = (void *)kcontrol->private_value;
322 
323 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
324 	uinfo->count = bc->max;
325 
326 	return 0;
327 }
328 
329 static int sst_algo_control_get(struct snd_kcontrol *kcontrol,
330 				struct snd_ctl_elem_value *ucontrol)
331 {
332 	struct sst_algo_control *bc = (void *)kcontrol->private_value;
333 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
334 
335 	switch (bc->type) {
336 	case SST_ALGO_PARAMS:
337 		memcpy(ucontrol->value.bytes.data, bc->params, bc->max);
338 		break;
339 	default:
340 		dev_err(component->dev, "Invalid Input- algo type:%d\n",
341 				bc->type);
342 		return -EINVAL;
343 
344 	}
345 	return 0;
346 }
347 
348 static int sst_algo_control_set(struct snd_kcontrol *kcontrol,
349 				struct snd_ctl_elem_value *ucontrol)
350 {
351 	int ret = 0;
352 	struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol);
353 	struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt);
354 	struct sst_algo_control *bc = (void *)kcontrol->private_value;
355 
356 	dev_dbg(cmpnt->dev, "control_name=%s\n", kcontrol->id.name);
357 	mutex_lock(&drv->lock);
358 	switch (bc->type) {
359 	case SST_ALGO_PARAMS:
360 		memcpy(bc->params, ucontrol->value.bytes.data, bc->max);
361 		break;
362 	default:
363 		mutex_unlock(&drv->lock);
364 		dev_err(cmpnt->dev, "Invalid Input- algo type:%d\n",
365 				bc->type);
366 		return -EINVAL;
367 	}
368 	/*if pipe is enabled, need to send the algo params from here*/
369 	if (bc->w && bc->w->power)
370 		ret = sst_send_algo_cmd(drv, bc);
371 	mutex_unlock(&drv->lock);
372 
373 	return ret;
374 }
375 
376 static int sst_gain_ctl_info(struct snd_kcontrol *kcontrol,
377 	struct snd_ctl_elem_info *uinfo)
378 {
379 	struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value;
380 
381 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
382 	uinfo->count = mc->stereo ? 2 : 1;
383 	uinfo->value.integer.min = mc->min;
384 	uinfo->value.integer.max = mc->max;
385 
386 	return 0;
387 }
388 
389 /**
390  * sst_send_gain_cmd - send the gain algorithm IPC to the FW
391  * @drv: sst_data
392  * @gv:the stored value of gain (also contains rampduration)
393  * @task_id: task index
394  * @loc_id: location/position index
395  * @module_id: module index
396  * @mute: flag that indicates whether this was called from the
397  *  digital_mute callback or directly. If called from the
398  *  digital_mute callback, module will be muted/unmuted based on this
399  *  flag. The flag is always 0 if called directly.
400  *
401  * Called with sst_data.lock held
402  *
403  * The user-set gain value is sent only if the user-controllable 'mute' control
404  * is OFF (indicated by gv->mute). Otherwise, the mute value (MIN value) is
405  * sent.
406  */
407 static int sst_send_gain_cmd(struct sst_data *drv, struct sst_gain_value *gv,
408 			      u16 task_id, u16 loc_id, u16 module_id, int mute)
409 {
410 	struct sst_cmd_set_gain_dual cmd;
411 
412 	dev_dbg(&drv->pdev->dev, "Enter\n");
413 
414 	cmd.header.command_id = MMX_SET_GAIN;
415 	SST_FILL_DEFAULT_DESTINATION(cmd.header.dst);
416 	cmd.gain_cell_num = 1;
417 
418 	if (mute || gv->mute) {
419 		cmd.cell_gains[0].cell_gain_left = SST_GAIN_MIN_VALUE;
420 		cmd.cell_gains[0].cell_gain_right = SST_GAIN_MIN_VALUE;
421 	} else {
422 		cmd.cell_gains[0].cell_gain_left = gv->l_gain;
423 		cmd.cell_gains[0].cell_gain_right = gv->r_gain;
424 	}
425 
426 	SST_FILL_DESTINATION(2, cmd.cell_gains[0].dest,
427 			     loc_id, module_id);
428 	cmd.cell_gains[0].gain_time_constant = gv->ramp_duration;
429 
430 	cmd.header.length = sizeof(struct sst_cmd_set_gain_dual)
431 				- sizeof(struct sst_dsp_header);
432 
433 	/* we are with lock held, so call the unlocked api  to send */
434 	return sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS,
435 				SST_FLAG_BLOCKED, task_id, 0, &cmd,
436 			      sizeof(cmd.header) + cmd.header.length);
437 }
438 
439 static int sst_gain_get(struct snd_kcontrol *kcontrol,
440 			struct snd_ctl_elem_value *ucontrol)
441 {
442 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
443 	struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value;
444 	struct sst_gain_value *gv = mc->gain_val;
445 
446 	switch (mc->type) {
447 	case SST_GAIN_TLV:
448 		ucontrol->value.integer.value[0] = gv->l_gain;
449 		ucontrol->value.integer.value[1] = gv->r_gain;
450 		break;
451 
452 	case SST_GAIN_MUTE:
453 		ucontrol->value.integer.value[0] = gv->mute ? 0 : 1;
454 		break;
455 
456 	case SST_GAIN_RAMP_DURATION:
457 		ucontrol->value.integer.value[0] = gv->ramp_duration;
458 		break;
459 
460 	default:
461 		dev_err(component->dev, "Invalid Input- gain type:%d\n",
462 				mc->type);
463 		return -EINVAL;
464 	}
465 
466 	return 0;
467 }
468 
469 static int sst_gain_put(struct snd_kcontrol *kcontrol,
470 			struct snd_ctl_elem_value *ucontrol)
471 {
472 	int ret = 0;
473 	struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol);
474 	struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt);
475 	struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value;
476 	struct sst_gain_value *gv = mc->gain_val;
477 
478 	mutex_lock(&drv->lock);
479 
480 	switch (mc->type) {
481 	case SST_GAIN_TLV:
482 		gv->l_gain = ucontrol->value.integer.value[0];
483 		gv->r_gain = ucontrol->value.integer.value[1];
484 		dev_dbg(cmpnt->dev, "%s: Volume %d, %d\n",
485 				mc->pname, gv->l_gain, gv->r_gain);
486 		break;
487 
488 	case SST_GAIN_MUTE:
489 		gv->mute = !ucontrol->value.integer.value[0];
490 		dev_dbg(cmpnt->dev, "%s: Mute %d\n", mc->pname, gv->mute);
491 		break;
492 
493 	case SST_GAIN_RAMP_DURATION:
494 		gv->ramp_duration = ucontrol->value.integer.value[0];
495 		dev_dbg(cmpnt->dev, "%s: Ramp Delay%d\n",
496 					mc->pname, gv->ramp_duration);
497 		break;
498 
499 	default:
500 		mutex_unlock(&drv->lock);
501 		dev_err(cmpnt->dev, "Invalid Input- gain type:%d\n",
502 				mc->type);
503 		return -EINVAL;
504 	}
505 
506 	if (mc->w && mc->w->power)
507 		ret = sst_send_gain_cmd(drv, gv, mc->task_id,
508 			mc->pipe_id | mc->instance_id, mc->module_id, 0);
509 	mutex_unlock(&drv->lock);
510 
511 	return ret;
512 }
513 
514 static int sst_set_pipe_gain(struct sst_ids *ids,
515 				struct sst_data *drv, int mute);
516 
517 static int sst_send_pipe_module_params(struct snd_soc_dapm_widget *w,
518 		struct snd_kcontrol *kcontrol)
519 {
520 	struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm);
521 	struct sst_data *drv = snd_soc_component_get_drvdata(c);
522 	struct sst_ids *ids = w->priv;
523 
524 	mutex_lock(&drv->lock);
525 	sst_find_and_send_pipe_algo(drv, w->name, ids);
526 	sst_set_pipe_gain(ids, drv, 0);
527 	mutex_unlock(&drv->lock);
528 
529 	return 0;
530 }
531 
532 static int sst_generic_modules_event(struct snd_soc_dapm_widget *w,
533 				     struct snd_kcontrol *k, int event)
534 {
535 	if (SND_SOC_DAPM_EVENT_ON(event))
536 		return sst_send_pipe_module_params(w, k);
537 	return 0;
538 }
539 
540 static const DECLARE_TLV_DB_SCALE(sst_gain_tlv_common, SST_GAIN_MIN_VALUE * 10, 10, 0);
541 
542 /* Look up table to convert MIXER SW bit regs to SWM inputs */
543 static const uint swm_mixer_input_ids[SST_SWM_INPUT_COUNT] = {
544 	[SST_IP_MODEM]		= SST_SWM_IN_MODEM,
545 	[SST_IP_CODEC0]		= SST_SWM_IN_CODEC0,
546 	[SST_IP_CODEC1]		= SST_SWM_IN_CODEC1,
547 	[SST_IP_LOOP0]		= SST_SWM_IN_SPROT_LOOP,
548 	[SST_IP_LOOP1]		= SST_SWM_IN_MEDIA_LOOP1,
549 	[SST_IP_LOOP2]		= SST_SWM_IN_MEDIA_LOOP2,
550 	[SST_IP_PCM0]		= SST_SWM_IN_PCM0,
551 	[SST_IP_PCM1]		= SST_SWM_IN_PCM1,
552 	[SST_IP_MEDIA0]		= SST_SWM_IN_MEDIA0,
553 	[SST_IP_MEDIA1]		= SST_SWM_IN_MEDIA1,
554 	[SST_IP_MEDIA2]		= SST_SWM_IN_MEDIA2,
555 	[SST_IP_MEDIA3]		= SST_SWM_IN_MEDIA3,
556 };
557 
558 /**
559  * fill_swm_input - fill in the SWM input ids given the register
560  * @cmpnt: ASoC component
561  * @swm_input: array of swm_input_ids
562  * @reg: the register value is a bit-field inicated which mixer inputs are ON.
563  *
564  * Use the lookup table to get the input-id and fill it in the
565  * structure.
566  */
567 static int fill_swm_input(struct snd_soc_component *cmpnt,
568 		struct swm_input_ids *swm_input, unsigned int reg)
569 {
570 	uint i, is_set, nb_inputs = 0;
571 	u16 input_loc_id;
572 
573 	dev_dbg(cmpnt->dev, "reg: %#x\n", reg);
574 	for (i = 0; i < SST_SWM_INPUT_COUNT; i++) {
575 		is_set = reg & BIT(i);
576 		if (!is_set)
577 			continue;
578 
579 		input_loc_id = swm_mixer_input_ids[i];
580 		SST_FILL_DESTINATION(2, swm_input->input_id,
581 				     input_loc_id, SST_DEFAULT_MODULE_ID);
582 		nb_inputs++;
583 		swm_input++;
584 		dev_dbg(cmpnt->dev, "input id: %#x, nb_inputs: %d\n",
585 				input_loc_id, nb_inputs);
586 
587 		if (nb_inputs == SST_CMD_SWM_MAX_INPUTS) {
588 			dev_warn(cmpnt->dev, "SET_SWM cmd max inputs reached");
589 			break;
590 		}
591 	}
592 	return nb_inputs;
593 }
594 
595 
596 /*
597  * called with lock held
598  */
599 static int sst_set_pipe_gain(struct sst_ids *ids,
600 			struct sst_data *drv, int mute)
601 {
602 	int ret = 0;
603 	struct sst_gain_mixer_control *mc;
604 	struct sst_gain_value *gv;
605 	struct sst_module *gain;
606 
607 	list_for_each_entry(gain, &ids->gain_list, node) {
608 		struct snd_kcontrol *kctl = gain->kctl;
609 
610 		dev_dbg(&drv->pdev->dev, "control name=%s\n", kctl->id.name);
611 		mc = (void *)kctl->private_value;
612 		gv = mc->gain_val;
613 
614 		ret = sst_send_gain_cmd(drv, gv, mc->task_id,
615 			mc->pipe_id | mc->instance_id, mc->module_id, mute);
616 		if (ret)
617 			return ret;
618 	}
619 	return ret;
620 }
621 
622 static int sst_swm_mixer_event(struct snd_soc_dapm_widget *w,
623 			struct snd_kcontrol *k, int event)
624 {
625 	struct sst_cmd_set_swm cmd;
626 	struct snd_soc_component *cmpnt = snd_soc_dapm_to_component(w->dapm);
627 	struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt);
628 	struct sst_ids *ids = w->priv;
629 	bool set_mixer = false;
630 	struct soc_mixer_control *mc;
631 	int val = 0;
632 	int i = 0;
633 
634 	dev_dbg(cmpnt->dev, "widget = %s\n", w->name);
635 	/*
636 	 * Identify which mixer input is on and send the bitmap of the
637 	 * inputs as an IPC to the DSP.
638 	 */
639 	for (i = 0; i < w->num_kcontrols; i++) {
640 		if (dapm_kcontrol_get_value(w->kcontrols[i])) {
641 			mc = (struct soc_mixer_control *)(w->kcontrols[i])->private_value;
642 			val |= 1 << mc->shift;
643 		}
644 	}
645 	dev_dbg(cmpnt->dev, "val = %#x\n", val);
646 
647 	switch (event) {
648 	case SND_SOC_DAPM_PRE_PMU:
649 	case SND_SOC_DAPM_POST_PMD:
650 		set_mixer = true;
651 		break;
652 	case SND_SOC_DAPM_POST_REG:
653 		if (w->power)
654 			set_mixer = true;
655 		break;
656 	default:
657 		set_mixer = false;
658 	}
659 
660 	if (!set_mixer)
661 		return 0;
662 
663 	if (SND_SOC_DAPM_EVENT_ON(event) ||
664 	    event == SND_SOC_DAPM_POST_REG)
665 		cmd.switch_state = SST_SWM_ON;
666 	else
667 		cmd.switch_state = SST_SWM_OFF;
668 
669 	SST_FILL_DEFAULT_DESTINATION(cmd.header.dst);
670 	/* MMX_SET_SWM == SBA_SET_SWM */
671 	cmd.header.command_id = SBA_SET_SWM;
672 
673 	SST_FILL_DESTINATION(2, cmd.output_id,
674 			     ids->location_id, SST_DEFAULT_MODULE_ID);
675 	cmd.nb_inputs =	fill_swm_input(cmpnt, &cmd.input[0], val);
676 	cmd.header.length = offsetof(struct sst_cmd_set_swm, input)
677 				- sizeof(struct sst_dsp_header)
678 				+ (cmd.nb_inputs * sizeof(cmd.input[0]));
679 
680 	return sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED,
681 			      ids->task_id, 0, &cmd,
682 			      sizeof(cmd.header) + cmd.header.length);
683 }
684 
685 /* SBA mixers - 16 inputs */
686 #define SST_SBA_DECLARE_MIX_CONTROLS(kctl_name)							\
687 	static const struct snd_kcontrol_new kctl_name[] = {					\
688 		SOC_DAPM_SINGLE("modem_in Switch", SND_SOC_NOPM, SST_IP_MODEM, 1, 0),		\
689 		SOC_DAPM_SINGLE("codec_in0 Switch", SND_SOC_NOPM, SST_IP_CODEC0, 1, 0),		\
690 		SOC_DAPM_SINGLE("codec_in1 Switch", SND_SOC_NOPM, SST_IP_CODEC1, 1, 0),		\
691 		SOC_DAPM_SINGLE("sprot_loop_in Switch", SND_SOC_NOPM, SST_IP_LOOP0, 1, 0),	\
692 		SOC_DAPM_SINGLE("media_loop1_in Switch", SND_SOC_NOPM, SST_IP_LOOP1, 1, 0),	\
693 		SOC_DAPM_SINGLE("media_loop2_in Switch", SND_SOC_NOPM, SST_IP_LOOP2, 1, 0),	\
694 		SOC_DAPM_SINGLE("pcm0_in Switch", SND_SOC_NOPM, SST_IP_PCM0, 1, 0),		\
695 		SOC_DAPM_SINGLE("pcm1_in Switch", SND_SOC_NOPM, SST_IP_PCM1, 1, 0),		\
696 	}
697 
698 #define SST_SBA_MIXER_GRAPH_MAP(mix_name)			\
699 	{ mix_name, "modem_in Switch",	"modem_in" },		\
700 	{ mix_name, "codec_in0 Switch",	"codec_in0" },		\
701 	{ mix_name, "codec_in1 Switch",	"codec_in1" },		\
702 	{ mix_name, "sprot_loop_in Switch",	"sprot_loop_in" },	\
703 	{ mix_name, "media_loop1_in Switch",	"media_loop1_in" },	\
704 	{ mix_name, "media_loop2_in Switch",	"media_loop2_in" },	\
705 	{ mix_name, "pcm0_in Switch",		"pcm0_in" },		\
706 	{ mix_name, "pcm1_in Switch",		"pcm1_in" }
707 
708 #define SST_MMX_DECLARE_MIX_CONTROLS(kctl_name)						\
709 	static const struct snd_kcontrol_new kctl_name[] = {				\
710 		SOC_DAPM_SINGLE("media0_in Switch", SND_SOC_NOPM, SST_IP_MEDIA0, 1, 0),	\
711 		SOC_DAPM_SINGLE("media1_in Switch", SND_SOC_NOPM, SST_IP_MEDIA1, 1, 0),	\
712 		SOC_DAPM_SINGLE("media2_in Switch", SND_SOC_NOPM, SST_IP_MEDIA2, 1, 0),	\
713 		SOC_DAPM_SINGLE("media3_in Switch", SND_SOC_NOPM, SST_IP_MEDIA3, 1, 0),	\
714 	}
715 
716 SST_MMX_DECLARE_MIX_CONTROLS(sst_mix_media0_controls);
717 SST_MMX_DECLARE_MIX_CONTROLS(sst_mix_media1_controls);
718 
719 /* 18 SBA mixers */
720 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm0_controls);
721 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm1_controls);
722 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm2_controls);
723 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_sprot_l0_controls);
724 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_media_l1_controls);
725 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_media_l2_controls);
726 SST_SBA_DECLARE_MIX_CONTROLS(__maybe_unused sst_mix_voip_controls);
727 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_codec0_controls);
728 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_codec1_controls);
729 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_modem_controls);
730 
731 /*
732  * sst_handle_vb_timer - Start/Stop the DSP scheduler
733  *
734  * The DSP expects first cmd to be SBA_VB_START, so at first startup send
735  * that.
736  * DSP expects last cmd to be SBA_VB_IDLE, so at last shutdown send that.
737  *
738  * Do refcount internally so that we send command only at first start
739  * and last end. Since SST driver does its own ref count, invoke sst's
740  * power ops always!
741  */
742 int sst_handle_vb_timer(struct snd_soc_dai *dai, bool enable)
743 {
744 	int ret = 0;
745 	struct sst_cmd_generic cmd;
746 	struct sst_data *drv = snd_soc_dai_get_drvdata(dai);
747 	static int timer_usage;
748 
749 	if (enable)
750 		cmd.header.command_id = SBA_VB_START;
751 	else
752 		cmd.header.command_id = SBA_IDLE;
753 	dev_dbg(dai->dev, "enable=%u, usage=%d\n", enable, timer_usage);
754 
755 	SST_FILL_DEFAULT_DESTINATION(cmd.header.dst);
756 	cmd.header.length = 0;
757 
758 	if (enable) {
759 		ret = sst->ops->power(sst->dev, true);
760 		if (ret < 0)
761 			return ret;
762 	}
763 
764 	mutex_lock(&drv->lock);
765 	if (enable)
766 		timer_usage++;
767 	else
768 		timer_usage--;
769 
770 	/*
771 	 * Send the command only if this call is the first enable or last
772 	 * disable
773 	 */
774 	if ((enable && (timer_usage == 1)) ||
775 	    (!enable && (timer_usage == 0))) {
776 		ret = sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_CMD,
777 				SST_FLAG_BLOCKED, SST_TASK_SBA, 0, &cmd,
778 				sizeof(cmd.header) + cmd.header.length);
779 		if (ret && enable) {
780 			timer_usage--;
781 			enable  = false;
782 		}
783 	}
784 	mutex_unlock(&drv->lock);
785 
786 	if (!enable)
787 		sst->ops->power(sst->dev, false);
788 	return ret;
789 }
790 
791 int sst_fill_ssp_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
792 		unsigned int rx_mask, int slots, int slot_width)
793 {
794 	struct sst_data *ctx = snd_soc_dai_get_drvdata(dai);
795 
796 	ctx->ssp_cmd.nb_slots = slots;
797 	ctx->ssp_cmd.active_tx_slot_map = tx_mask;
798 	ctx->ssp_cmd.active_rx_slot_map = rx_mask;
799 	ctx->ssp_cmd.nb_bits_per_slots = slot_width;
800 
801 	return 0;
802 }
803 
804 static int sst_get_frame_sync_polarity(struct snd_soc_dai *dai,
805 		unsigned int fmt)
806 {
807 	int format;
808 
809 	format = fmt & SND_SOC_DAIFMT_INV_MASK;
810 	dev_dbg(dai->dev, "Enter:%s, format=%x\n", __func__, format);
811 
812 	switch (format) {
813 	case SND_SOC_DAIFMT_NB_NF:
814 	case SND_SOC_DAIFMT_IB_NF:
815 		return SSP_FS_ACTIVE_HIGH;
816 	case SND_SOC_DAIFMT_NB_IF:
817 	case SND_SOC_DAIFMT_IB_IF:
818 		return SSP_FS_ACTIVE_LOW;
819 	default:
820 		dev_err(dai->dev, "Invalid frame sync polarity %d\n", format);
821 	}
822 
823 	return -EINVAL;
824 }
825 
826 static int sst_get_ssp_mode(struct snd_soc_dai *dai, unsigned int fmt)
827 {
828 	int format;
829 
830 	format = (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK);
831 	dev_dbg(dai->dev, "Enter:%s, format=%x\n", __func__, format);
832 
833 	switch (format) {
834 	case SND_SOC_DAIFMT_CBC_CFC:
835 		return SSP_MODE_PROVIDER;
836 	case SND_SOC_DAIFMT_CBP_CFP:
837 		return SSP_MODE_CONSUMER;
838 	default:
839 		dev_err(dai->dev, "Invalid ssp protocol: %d\n", format);
840 	}
841 
842 	return -EINVAL;
843 }
844 
845 
846 int sst_fill_ssp_config(struct snd_soc_dai *dai, unsigned int fmt)
847 {
848 	unsigned int mode;
849 	int fs_polarity;
850 	struct sst_data *ctx = snd_soc_dai_get_drvdata(dai);
851 
852 	mode = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
853 
854 	switch (mode) {
855 	case SND_SOC_DAIFMT_DSP_B:
856 		ctx->ssp_cmd.ssp_protocol = SSP_MODE_PCM;
857 		ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NETWORK << 1);
858 		ctx->ssp_cmd.start_delay = 0;
859 		ctx->ssp_cmd.data_polarity = 1;
860 		ctx->ssp_cmd.frame_sync_width = 1;
861 		break;
862 
863 	case SND_SOC_DAIFMT_DSP_A:
864 		ctx->ssp_cmd.ssp_protocol = SSP_MODE_PCM;
865 		ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NETWORK << 1);
866 		ctx->ssp_cmd.start_delay = 1;
867 		ctx->ssp_cmd.data_polarity = 1;
868 		ctx->ssp_cmd.frame_sync_width = 1;
869 		break;
870 
871 	case SND_SOC_DAIFMT_I2S:
872 		ctx->ssp_cmd.ssp_protocol = SSP_MODE_I2S;
873 		ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NORMAL << 1);
874 		ctx->ssp_cmd.start_delay = 1;
875 		ctx->ssp_cmd.data_polarity = 0;
876 		ctx->ssp_cmd.frame_sync_width = ctx->ssp_cmd.nb_bits_per_slots;
877 		break;
878 
879 	case SND_SOC_DAIFMT_LEFT_J:
880 		ctx->ssp_cmd.ssp_protocol = SSP_MODE_I2S;
881 		ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NORMAL << 1);
882 		ctx->ssp_cmd.start_delay = 0;
883 		ctx->ssp_cmd.data_polarity = 0;
884 		ctx->ssp_cmd.frame_sync_width = ctx->ssp_cmd.nb_bits_per_slots;
885 		break;
886 
887 	default:
888 		dev_dbg(dai->dev, "using default ssp configs\n");
889 	}
890 
891 	fs_polarity = sst_get_frame_sync_polarity(dai, fmt);
892 	if (fs_polarity < 0)
893 		return fs_polarity;
894 
895 	ctx->ssp_cmd.frame_sync_polarity = fs_polarity;
896 
897 	return 0;
898 }
899 
900 /*
901  * sst_ssp_config - contains SSP configuration for media UC
902  * this can be overwritten by set_dai_xxx APIs
903  */
904 static const struct sst_ssp_config sst_ssp_configs = {
905 	.ssp_id = SSP_CODEC,
906 	.bits_per_slot = 24,
907 	.slots = 4,
908 	.ssp_mode = SSP_MODE_PROVIDER,
909 	.pcm_mode = SSP_PCM_MODE_NETWORK,
910 	.duplex = SSP_DUPLEX,
911 	.ssp_protocol = SSP_MODE_PCM,
912 	.fs_width = 1,
913 	.fs_frequency = SSP_FS_48_KHZ,
914 	.active_slot_map = 0xF,
915 	.start_delay = 0,
916 	.frame_sync_polarity = SSP_FS_ACTIVE_HIGH,
917 	.data_polarity = 1,
918 };
919 
920 void sst_fill_ssp_defaults(struct snd_soc_dai *dai)
921 {
922 	const struct sst_ssp_config *config;
923 	struct sst_data *ctx = snd_soc_dai_get_drvdata(dai);
924 
925 	config = &sst_ssp_configs;
926 
927 	ctx->ssp_cmd.selection = config->ssp_id;
928 	ctx->ssp_cmd.nb_bits_per_slots = config->bits_per_slot;
929 	ctx->ssp_cmd.nb_slots = config->slots;
930 	ctx->ssp_cmd.mode = config->ssp_mode | (config->pcm_mode << 1);
931 	ctx->ssp_cmd.duplex = config->duplex;
932 	ctx->ssp_cmd.active_tx_slot_map = config->active_slot_map;
933 	ctx->ssp_cmd.active_rx_slot_map = config->active_slot_map;
934 	ctx->ssp_cmd.frame_sync_frequency = config->fs_frequency;
935 	ctx->ssp_cmd.frame_sync_polarity = config->frame_sync_polarity;
936 	ctx->ssp_cmd.data_polarity = config->data_polarity;
937 	ctx->ssp_cmd.frame_sync_width = config->fs_width;
938 	ctx->ssp_cmd.ssp_protocol = config->ssp_protocol;
939 	ctx->ssp_cmd.start_delay = config->start_delay;
940 	ctx->ssp_cmd.reserved1 = ctx->ssp_cmd.reserved2 = 0xFF;
941 }
942 
943 int send_ssp_cmd(struct snd_soc_dai *dai, const char *id, bool enable)
944 {
945 	struct sst_data *drv = snd_soc_dai_get_drvdata(dai);
946 	int ssp_id;
947 
948 	dev_dbg(dai->dev, "Enter: enable=%d port_name=%s\n", enable, id);
949 
950 	if (strcmp(id, "ssp0-port") == 0)
951 		ssp_id = SSP_MODEM;
952 	else if (strcmp(id, "ssp2-port") == 0)
953 		ssp_id = SSP_CODEC;
954 	else {
955 		dev_dbg(dai->dev, "port %s is not supported\n", id);
956 		return -1;
957 	}
958 
959 	SST_FILL_DEFAULT_DESTINATION(drv->ssp_cmd.header.dst);
960 	drv->ssp_cmd.header.command_id = SBA_HW_SET_SSP;
961 	drv->ssp_cmd.header.length = sizeof(struct sst_cmd_sba_hw_set_ssp)
962 				- sizeof(struct sst_dsp_header);
963 
964 	drv->ssp_cmd.selection = ssp_id;
965 	dev_dbg(dai->dev, "ssp_id: %u\n", ssp_id);
966 
967 	if (enable)
968 		drv->ssp_cmd.switch_state = SST_SWITCH_ON;
969 	else
970 		drv->ssp_cmd.switch_state = SST_SWITCH_OFF;
971 
972 	return sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED,
973 				SST_TASK_SBA, 0, &drv->ssp_cmd,
974 				sizeof(drv->ssp_cmd.header) + drv->ssp_cmd.header.length);
975 }
976 
977 static int sst_set_be_modules(struct snd_soc_dapm_widget *w,
978 			 struct snd_kcontrol *k, int event)
979 {
980 	int ret = 0;
981 	struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm);
982 	struct sst_data *drv = snd_soc_component_get_drvdata(c);
983 
984 	dev_dbg(c->dev, "Enter: widget=%s\n", w->name);
985 
986 	if (SND_SOC_DAPM_EVENT_ON(event)) {
987 		mutex_lock(&drv->lock);
988 		ret = sst_send_slot_map(drv);
989 		mutex_unlock(&drv->lock);
990 		if (ret)
991 			return ret;
992 		ret = sst_send_pipe_module_params(w, k);
993 	}
994 	return ret;
995 }
996 
997 static int sst_set_media_path(struct snd_soc_dapm_widget *w,
998 			      struct snd_kcontrol *k, int event)
999 {
1000 	int ret = 0;
1001 	struct sst_cmd_set_media_path cmd;
1002 	struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm);
1003 	struct sst_data *drv = snd_soc_component_get_drvdata(c);
1004 	struct sst_ids *ids = w->priv;
1005 
1006 	dev_dbg(c->dev, "widget=%s\n", w->name);
1007 	dev_dbg(c->dev, "task=%u, location=%#x\n",
1008 				ids->task_id, ids->location_id);
1009 
1010 	if (SND_SOC_DAPM_EVENT_ON(event))
1011 		cmd.switch_state = SST_PATH_ON;
1012 	else
1013 		cmd.switch_state = SST_PATH_OFF;
1014 
1015 	SST_FILL_DESTINATION(2, cmd.header.dst,
1016 			     ids->location_id, SST_DEFAULT_MODULE_ID);
1017 
1018 	/* MMX_SET_MEDIA_PATH == SBA_SET_MEDIA_PATH */
1019 	cmd.header.command_id = MMX_SET_MEDIA_PATH;
1020 	cmd.header.length = sizeof(struct sst_cmd_set_media_path)
1021 				- sizeof(struct sst_dsp_header);
1022 
1023 	ret = sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED,
1024 			      ids->task_id, 0, &cmd,
1025 			      sizeof(cmd.header) + cmd.header.length);
1026 	if (ret)
1027 		return ret;
1028 
1029 	if (SND_SOC_DAPM_EVENT_ON(event))
1030 		ret = sst_send_pipe_module_params(w, k);
1031 	return ret;
1032 }
1033 
1034 static int sst_set_media_loop(struct snd_soc_dapm_widget *w,
1035 			struct snd_kcontrol *k, int event)
1036 {
1037 	int ret = 0;
1038 	struct sst_cmd_sba_set_media_loop_map cmd;
1039 	struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm);
1040 	struct sst_data *drv = snd_soc_component_get_drvdata(c);
1041 	struct sst_ids *ids = w->priv;
1042 
1043 	dev_dbg(c->dev, "Enter:widget=%s\n", w->name);
1044 	if (SND_SOC_DAPM_EVENT_ON(event))
1045 		cmd.switch_state = SST_SWITCH_ON;
1046 	else
1047 		cmd.switch_state = SST_SWITCH_OFF;
1048 
1049 	SST_FILL_DESTINATION(2, cmd.header.dst,
1050 			     ids->location_id, SST_DEFAULT_MODULE_ID);
1051 
1052 	cmd.header.command_id = SBA_SET_MEDIA_LOOP_MAP;
1053 	cmd.header.length = sizeof(struct sst_cmd_sba_set_media_loop_map)
1054 				 - sizeof(struct sst_dsp_header);
1055 	cmd.param.part.cfg.rate = 2; /* 48khz */
1056 
1057 	cmd.param.part.cfg.format = ids->format; /* stereo/Mono */
1058 	cmd.param.part.cfg.s_length = 1; /* 24bit left justified */
1059 	cmd.map = 0; /* Algo sequence: Gain - DRP - FIR - IIR */
1060 
1061 	ret = sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED,
1062 			      SST_TASK_SBA, 0, &cmd,
1063 			      sizeof(cmd.header) + cmd.header.length);
1064 	if (ret)
1065 		return ret;
1066 
1067 	if (SND_SOC_DAPM_EVENT_ON(event))
1068 		ret = sst_send_pipe_module_params(w, k);
1069 	return ret;
1070 }
1071 
1072 static const struct snd_soc_dapm_widget sst_dapm_widgets[] = {
1073 	SST_AIF_IN("modem_in", sst_set_be_modules),
1074 	SST_AIF_IN("codec_in0", sst_set_be_modules),
1075 	SST_AIF_IN("codec_in1", sst_set_be_modules),
1076 	SST_AIF_OUT("modem_out", sst_set_be_modules),
1077 	SST_AIF_OUT("codec_out0", sst_set_be_modules),
1078 	SST_AIF_OUT("codec_out1", sst_set_be_modules),
1079 
1080 	/* Media Paths */
1081 	/* MediaX IN paths are set via ALLOC, so no SET_MEDIA_PATH command */
1082 	SST_PATH_INPUT("media0_in", SST_TASK_MMX, SST_SWM_IN_MEDIA0, sst_generic_modules_event),
1083 	SST_PATH_INPUT("media1_in", SST_TASK_MMX, SST_SWM_IN_MEDIA1, NULL),
1084 	SST_PATH_INPUT("media2_in", SST_TASK_MMX, SST_SWM_IN_MEDIA2, sst_set_media_path),
1085 	SST_PATH_INPUT("media3_in", SST_TASK_MMX, SST_SWM_IN_MEDIA3, NULL),
1086 	SST_PATH_OUTPUT("media0_out", SST_TASK_MMX, SST_SWM_OUT_MEDIA0, sst_set_media_path),
1087 	SST_PATH_OUTPUT("media1_out", SST_TASK_MMX, SST_SWM_OUT_MEDIA1, sst_set_media_path),
1088 
1089 	/* SBA PCM Paths */
1090 	SST_PATH_INPUT("pcm0_in", SST_TASK_SBA, SST_SWM_IN_PCM0, sst_set_media_path),
1091 	SST_PATH_INPUT("pcm1_in", SST_TASK_SBA, SST_SWM_IN_PCM1, sst_set_media_path),
1092 	SST_PATH_OUTPUT("pcm0_out", SST_TASK_SBA, SST_SWM_OUT_PCM0, sst_set_media_path),
1093 	SST_PATH_OUTPUT("pcm1_out", SST_TASK_SBA, SST_SWM_OUT_PCM1, sst_set_media_path),
1094 	SST_PATH_OUTPUT("pcm2_out", SST_TASK_SBA, SST_SWM_OUT_PCM2, sst_set_media_path),
1095 
1096 	/* SBA Loops */
1097 	SST_PATH_INPUT("sprot_loop_in", SST_TASK_SBA, SST_SWM_IN_SPROT_LOOP, NULL),
1098 	SST_PATH_INPUT("media_loop1_in", SST_TASK_SBA, SST_SWM_IN_MEDIA_LOOP1, NULL),
1099 	SST_PATH_INPUT("media_loop2_in", SST_TASK_SBA, SST_SWM_IN_MEDIA_LOOP2, NULL),
1100 	SST_PATH_MEDIA_LOOP_OUTPUT("sprot_loop_out", SST_TASK_SBA, SST_SWM_OUT_SPROT_LOOP, SST_FMT_STEREO, sst_set_media_loop),
1101 	SST_PATH_MEDIA_LOOP_OUTPUT("media_loop1_out", SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP1, SST_FMT_STEREO, sst_set_media_loop),
1102 	SST_PATH_MEDIA_LOOP_OUTPUT("media_loop2_out", SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP2, SST_FMT_STEREO, sst_set_media_loop),
1103 
1104 	/* Media Mixers */
1105 	SST_SWM_MIXER("media0_out mix 0", SND_SOC_NOPM, SST_TASK_MMX, SST_SWM_OUT_MEDIA0,
1106 		      sst_mix_media0_controls, sst_swm_mixer_event),
1107 	SST_SWM_MIXER("media1_out mix 0", SND_SOC_NOPM, SST_TASK_MMX, SST_SWM_OUT_MEDIA1,
1108 		      sst_mix_media1_controls, sst_swm_mixer_event),
1109 
1110 	/* SBA PCM mixers */
1111 	SST_SWM_MIXER("pcm0_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM0,
1112 		      sst_mix_pcm0_controls, sst_swm_mixer_event),
1113 	SST_SWM_MIXER("pcm1_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM1,
1114 		      sst_mix_pcm1_controls, sst_swm_mixer_event),
1115 	SST_SWM_MIXER("pcm2_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM2,
1116 		      sst_mix_pcm2_controls, sst_swm_mixer_event),
1117 
1118 	/* SBA Loop mixers */
1119 	SST_SWM_MIXER("sprot_loop_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_SPROT_LOOP,
1120 		      sst_mix_sprot_l0_controls, sst_swm_mixer_event),
1121 	SST_SWM_MIXER("media_loop1_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP1,
1122 		      sst_mix_media_l1_controls, sst_swm_mixer_event),
1123 	SST_SWM_MIXER("media_loop2_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP2,
1124 		      sst_mix_media_l2_controls, sst_swm_mixer_event),
1125 
1126 	/* SBA Backend mixers */
1127 	SST_SWM_MIXER("codec_out0 mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_CODEC0,
1128 		      sst_mix_codec0_controls, sst_swm_mixer_event),
1129 	SST_SWM_MIXER("codec_out1 mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_CODEC1,
1130 		      sst_mix_codec1_controls, sst_swm_mixer_event),
1131 	SST_SWM_MIXER("modem_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_MODEM,
1132 		      sst_mix_modem_controls, sst_swm_mixer_event),
1133 
1134 };
1135 
1136 static const struct snd_soc_dapm_route intercon[] = {
1137 	{"media0_in", NULL, "Compress Playback"},
1138 	{"media1_in", NULL, "Headset Playback"},
1139 	{"media2_in", NULL, "pcm0_out"},
1140 	{"media3_in", NULL, "Deepbuffer Playback"},
1141 
1142 	{"media0_out mix 0", "media0_in Switch", "media0_in"},
1143 	{"media0_out mix 0", "media1_in Switch", "media1_in"},
1144 	{"media0_out mix 0", "media2_in Switch", "media2_in"},
1145 	{"media0_out mix 0", "media3_in Switch", "media3_in"},
1146 	{"media1_out mix 0", "media0_in Switch", "media0_in"},
1147 	{"media1_out mix 0", "media1_in Switch", "media1_in"},
1148 	{"media1_out mix 0", "media2_in Switch", "media2_in"},
1149 	{"media1_out mix 0", "media3_in Switch", "media3_in"},
1150 
1151 	{"media0_out", NULL, "media0_out mix 0"},
1152 	{"media1_out", NULL, "media1_out mix 0"},
1153 	{"pcm0_in", NULL, "media0_out"},
1154 	{"pcm1_in", NULL, "media1_out"},
1155 
1156 	{"Headset Capture", NULL, "pcm1_out"},
1157 	{"Headset Capture", NULL, "pcm2_out"},
1158 	{"pcm0_out", NULL, "pcm0_out mix 0"},
1159 	SST_SBA_MIXER_GRAPH_MAP("pcm0_out mix 0"),
1160 	{"pcm1_out", NULL, "pcm1_out mix 0"},
1161 	SST_SBA_MIXER_GRAPH_MAP("pcm1_out mix 0"),
1162 	{"pcm2_out", NULL, "pcm2_out mix 0"},
1163 	SST_SBA_MIXER_GRAPH_MAP("pcm2_out mix 0"),
1164 
1165 	{"media_loop1_in", NULL, "media_loop1_out"},
1166 	{"media_loop1_out", NULL, "media_loop1_out mix 0"},
1167 	SST_SBA_MIXER_GRAPH_MAP("media_loop1_out mix 0"),
1168 	{"media_loop2_in", NULL, "media_loop2_out"},
1169 	{"media_loop2_out", NULL, "media_loop2_out mix 0"},
1170 	SST_SBA_MIXER_GRAPH_MAP("media_loop2_out mix 0"),
1171 	{"sprot_loop_in", NULL, "sprot_loop_out"},
1172 	{"sprot_loop_out", NULL, "sprot_loop_out mix 0"},
1173 	SST_SBA_MIXER_GRAPH_MAP("sprot_loop_out mix 0"),
1174 
1175 	{"codec_out0", NULL, "codec_out0 mix 0"},
1176 	SST_SBA_MIXER_GRAPH_MAP("codec_out0 mix 0"),
1177 	{"codec_out1", NULL, "codec_out1 mix 0"},
1178 	SST_SBA_MIXER_GRAPH_MAP("codec_out1 mix 0"),
1179 	{"modem_out", NULL, "modem_out mix 0"},
1180 	SST_SBA_MIXER_GRAPH_MAP("modem_out mix 0"),
1181 
1182 
1183 };
1184 static const char * const slot_names[] = {
1185 	"none",
1186 	"slot 0", "slot 1", "slot 2", "slot 3",
1187 	"slot 4", "slot 5", "slot 6", "slot 7", /* not supported by FW */
1188 };
1189 
1190 static const char * const channel_names[] = {
1191 	"none",
1192 	"codec_out0_0", "codec_out0_1", "codec_out1_0", "codec_out1_1",
1193 	"codec_out2_0", "codec_out2_1", "codec_out3_0", "codec_out3_1", /* not supported by FW */
1194 };
1195 
1196 #define SST_INTERLEAVER(xpname, slot_name, slotno) \
1197 	SST_SSP_SLOT_CTL(xpname, "tx interleaver", slot_name, slotno, true, \
1198 			 channel_names, sst_slot_get, sst_slot_put)
1199 
1200 #define SST_DEINTERLEAVER(xpname, channel_name, channel_no) \
1201 	SST_SSP_SLOT_CTL(xpname, "rx deinterleaver", channel_name, channel_no, false, \
1202 			 slot_names, sst_slot_get, sst_slot_put)
1203 
1204 static const struct snd_kcontrol_new sst_slot_controls[] = {
1205 	SST_INTERLEAVER("codec_out", "slot 0", 0),
1206 	SST_INTERLEAVER("codec_out", "slot 1", 1),
1207 	SST_INTERLEAVER("codec_out", "slot 2", 2),
1208 	SST_INTERLEAVER("codec_out", "slot 3", 3),
1209 	SST_DEINTERLEAVER("codec_in", "codec_in0_0", 0),
1210 	SST_DEINTERLEAVER("codec_in", "codec_in0_1", 1),
1211 	SST_DEINTERLEAVER("codec_in", "codec_in1_0", 2),
1212 	SST_DEINTERLEAVER("codec_in", "codec_in1_1", 3),
1213 };
1214 
1215 /* Gain helper with min/max set */
1216 #define SST_GAIN(name, path_id, task_id, instance, gain_var)				\
1217 	SST_GAIN_KCONTROLS(name, "Gain", SST_GAIN_MIN_VALUE, SST_GAIN_MAX_VALUE,	\
1218 		SST_GAIN_TC_MIN, SST_GAIN_TC_MAX,					\
1219 		sst_gain_get, sst_gain_put,						\
1220 		SST_MODULE_ID_GAIN_CELL, path_id, instance, task_id,			\
1221 		sst_gain_tlv_common, gain_var)
1222 
1223 #define SST_VOLUME(name, path_id, task_id, instance, gain_var)				\
1224 	SST_GAIN_KCONTROLS(name, "Volume", SST_GAIN_MIN_VALUE, SST_GAIN_MAX_VALUE,	\
1225 		SST_GAIN_TC_MIN, SST_GAIN_TC_MAX,					\
1226 		sst_gain_get, sst_gain_put,						\
1227 		SST_MODULE_ID_VOLUME, path_id, instance, task_id,			\
1228 		sst_gain_tlv_common, gain_var)
1229 
1230 static struct sst_gain_value sst_gains[];
1231 
1232 static const struct snd_kcontrol_new sst_gain_controls[] = {
1233 	SST_GAIN("media0_in", SST_PATH_INDEX_MEDIA0_IN, SST_TASK_MMX, 0, &sst_gains[0]),
1234 	SST_GAIN("media1_in", SST_PATH_INDEX_MEDIA1_IN, SST_TASK_MMX, 0, &sst_gains[1]),
1235 	SST_GAIN("media2_in", SST_PATH_INDEX_MEDIA2_IN, SST_TASK_MMX, 0, &sst_gains[2]),
1236 	SST_GAIN("media3_in", SST_PATH_INDEX_MEDIA3_IN, SST_TASK_MMX, 0, &sst_gains[3]),
1237 
1238 	SST_GAIN("pcm0_in", SST_PATH_INDEX_PCM0_IN, SST_TASK_SBA, 0, &sst_gains[4]),
1239 	SST_GAIN("pcm1_in", SST_PATH_INDEX_PCM1_IN, SST_TASK_SBA, 0, &sst_gains[5]),
1240 	SST_GAIN("pcm1_out", SST_PATH_INDEX_PCM1_OUT, SST_TASK_SBA, 0, &sst_gains[6]),
1241 	SST_GAIN("pcm2_out", SST_PATH_INDEX_PCM2_OUT, SST_TASK_SBA, 0, &sst_gains[7]),
1242 
1243 	SST_GAIN("codec_in0", SST_PATH_INDEX_CODEC_IN0, SST_TASK_SBA, 0, &sst_gains[8]),
1244 	SST_GAIN("codec_in1", SST_PATH_INDEX_CODEC_IN1, SST_TASK_SBA, 0, &sst_gains[9]),
1245 	SST_GAIN("codec_out0", SST_PATH_INDEX_CODEC_OUT0, SST_TASK_SBA, 0, &sst_gains[10]),
1246 	SST_GAIN("codec_out1", SST_PATH_INDEX_CODEC_OUT1, SST_TASK_SBA, 0, &sst_gains[11]),
1247 	SST_GAIN("media_loop1_out", SST_PATH_INDEX_MEDIA_LOOP1_OUT, SST_TASK_SBA, 0, &sst_gains[12]),
1248 	SST_GAIN("media_loop2_out", SST_PATH_INDEX_MEDIA_LOOP2_OUT, SST_TASK_SBA, 0, &sst_gains[13]),
1249 	SST_GAIN("sprot_loop_out", SST_PATH_INDEX_SPROT_LOOP_OUT, SST_TASK_SBA, 0, &sst_gains[14]),
1250 	SST_VOLUME("media0_in", SST_PATH_INDEX_MEDIA0_IN, SST_TASK_MMX, 0, &sst_gains[15]),
1251 	SST_GAIN("modem_in", SST_PATH_INDEX_MODEM_IN, SST_TASK_SBA, 0, &sst_gains[16]),
1252 	SST_GAIN("modem_out", SST_PATH_INDEX_MODEM_OUT, SST_TASK_SBA, 0, &sst_gains[17]),
1253 
1254 };
1255 
1256 #define SST_GAIN_NUM_CONTROLS 3
1257 /* the SST_GAIN macro above will create three alsa controls for each
1258  * instance invoked, gain, mute and ramp duration, which use the same gain
1259  * cell sst_gain to keep track of data
1260  * To calculate number of gain cell instances we need to device by 3 in
1261  * below caulcation for gain cell memory.
1262  * This gets rid of static number and issues while adding new controls
1263  */
1264 static struct sst_gain_value sst_gains[ARRAY_SIZE(sst_gain_controls)/SST_GAIN_NUM_CONTROLS];
1265 
1266 static const struct snd_kcontrol_new sst_algo_controls[] = {
1267 	SST_ALGO_KCONTROL_BYTES("media_loop1_out", "fir", 272, SST_MODULE_ID_FIR_24,
1268 		 SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_VB_SET_FIR),
1269 	SST_ALGO_KCONTROL_BYTES("media_loop1_out", "iir", 300, SST_MODULE_ID_IIR_24,
1270 		SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_VB_SET_IIR),
1271 	SST_ALGO_KCONTROL_BYTES("media_loop1_out", "mdrp", 286, SST_MODULE_ID_MDRP,
1272 		SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_SET_MDRP),
1273 	SST_ALGO_KCONTROL_BYTES("media_loop2_out", "fir", 272, SST_MODULE_ID_FIR_24,
1274 		SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_VB_SET_FIR),
1275 	SST_ALGO_KCONTROL_BYTES("media_loop2_out", "iir", 300, SST_MODULE_ID_IIR_24,
1276 		SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_VB_SET_IIR),
1277 	SST_ALGO_KCONTROL_BYTES("media_loop2_out", "mdrp", 286, SST_MODULE_ID_MDRP,
1278 		SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_SET_MDRP),
1279 	SST_ALGO_KCONTROL_BYTES("sprot_loop_out", "lpro", 192, SST_MODULE_ID_SPROT,
1280 		SST_PATH_INDEX_SPROT_LOOP_OUT, 0, SST_TASK_SBA, SBA_VB_LPRO),
1281 	SST_ALGO_KCONTROL_BYTES("codec_in0", "dcr", 52, SST_MODULE_ID_FILT_DCR,
1282 		SST_PATH_INDEX_CODEC_IN0, 0, SST_TASK_SBA, SBA_VB_SET_IIR),
1283 	SST_ALGO_KCONTROL_BYTES("codec_in1", "dcr", 52, SST_MODULE_ID_FILT_DCR,
1284 		SST_PATH_INDEX_CODEC_IN1, 0, SST_TASK_SBA, SBA_VB_SET_IIR),
1285 
1286 };
1287 
1288 static int sst_algo_control_init(struct device *dev)
1289 {
1290 	int i = 0;
1291 	struct sst_algo_control *bc;
1292 	/*allocate space to cache the algo parameters in the driver*/
1293 	for (i = 0; i < ARRAY_SIZE(sst_algo_controls); i++) {
1294 		bc = (struct sst_algo_control *)sst_algo_controls[i].private_value;
1295 		bc->params = devm_kzalloc(dev, bc->max, GFP_KERNEL);
1296 		if (bc->params == NULL)
1297 			return -ENOMEM;
1298 	}
1299 	return 0;
1300 }
1301 
1302 static bool is_sst_dapm_widget(struct snd_soc_dapm_widget *w)
1303 {
1304 	switch (w->id) {
1305 	case snd_soc_dapm_pga:
1306 	case snd_soc_dapm_aif_in:
1307 	case snd_soc_dapm_aif_out:
1308 	case snd_soc_dapm_input:
1309 	case snd_soc_dapm_output:
1310 	case snd_soc_dapm_mixer:
1311 		return true;
1312 	default:
1313 		return false;
1314 	}
1315 }
1316 
1317 /**
1318  * sst_send_pipe_gains - send gains for the front-end DAIs
1319  * @dai: front-end dai
1320  * @stream: direction
1321  * @mute: boolean indicating mute status
1322  *
1323  * The gains in the pipes connected to the front-ends are muted/unmuted
1324  * automatically via the digital_mute() DAPM callback. This function sends the
1325  * gains for the front-end pipes.
1326  */
1327 int sst_send_pipe_gains(struct snd_soc_dai *dai, int stream, int mute)
1328 {
1329 	struct sst_data *drv = snd_soc_dai_get_drvdata(dai);
1330 	struct snd_soc_dapm_widget *w;
1331 	struct snd_soc_dapm_path *p = NULL;
1332 
1333 	dev_dbg(dai->dev, "enter, dai-name=%s dir=%d\n", dai->name, stream);
1334 
1335 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
1336 		dev_dbg(dai->dev, "Stream name=%s\n",
1337 				dai->playback_widget->name);
1338 		w = dai->playback_widget;
1339 		snd_soc_dapm_widget_for_each_sink_path(w, p) {
1340 			if (p->connected && !p->connected(w, p->sink))
1341 				continue;
1342 
1343 			if (p->connect && p->sink->power &&
1344 					is_sst_dapm_widget(p->sink)) {
1345 				struct sst_ids *ids = p->sink->priv;
1346 
1347 				dev_dbg(dai->dev, "send gains for widget=%s\n",
1348 						p->sink->name);
1349 				mutex_lock(&drv->lock);
1350 				sst_set_pipe_gain(ids, drv, mute);
1351 				mutex_unlock(&drv->lock);
1352 			}
1353 		}
1354 	} else {
1355 		dev_dbg(dai->dev, "Stream name=%s\n",
1356 				dai->capture_widget->name);
1357 		w = dai->capture_widget;
1358 		snd_soc_dapm_widget_for_each_source_path(w, p) {
1359 			if (p->connected && !p->connected(w, p->source))
1360 				continue;
1361 
1362 			if (p->connect &&  p->source->power &&
1363 					is_sst_dapm_widget(p->source)) {
1364 				struct sst_ids *ids = p->source->priv;
1365 
1366 				dev_dbg(dai->dev, "send gain for widget=%s\n",
1367 						p->source->name);
1368 				mutex_lock(&drv->lock);
1369 				sst_set_pipe_gain(ids, drv, mute);
1370 				mutex_unlock(&drv->lock);
1371 			}
1372 		}
1373 	}
1374 	return 0;
1375 }
1376 
1377 /**
1378  * sst_fill_module_list - populate the list of modules/gains for a pipe
1379  * @kctl: kcontrol pointer
1380  * @w: dapm widget
1381  * @type: widget type
1382  *
1383  * Fills the widget pointer in the kcontrol private data, and also fills the
1384  * kcontrol pointer in the widget private data.
1385  *
1386  * Widget pointer is used to send the algo/gain in the .put() handler if the
1387  * widget is powerd on.
1388  *
1389  * Kcontrol pointer is used to send the algo/gain in the widget power ON/OFF
1390  * event handler. Each widget (pipe) has multiple algos stored in the algo_list.
1391  */
1392 static int sst_fill_module_list(struct snd_kcontrol *kctl,
1393 	 struct snd_soc_dapm_widget *w, int type)
1394 {
1395 	struct sst_module *module = NULL;
1396 	struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm);
1397 	struct sst_ids *ids = w->priv;
1398 	int ret = 0;
1399 
1400 	module = devm_kzalloc(c->dev, sizeof(*module), GFP_KERNEL);
1401 	if (!module)
1402 		return -ENOMEM;
1403 
1404 	if (type == SST_MODULE_GAIN) {
1405 		struct sst_gain_mixer_control *mc = (void *)kctl->private_value;
1406 
1407 		mc->w = w;
1408 		module->kctl = kctl;
1409 		list_add_tail(&module->node, &ids->gain_list);
1410 	} else if (type == SST_MODULE_ALGO) {
1411 		struct sst_algo_control *bc = (void *)kctl->private_value;
1412 
1413 		bc->w = w;
1414 		module->kctl = kctl;
1415 		list_add_tail(&module->node, &ids->algo_list);
1416 	} else {
1417 		dev_err(c->dev, "invoked for unknown type %d module %s",
1418 				type, kctl->id.name);
1419 		ret = -EINVAL;
1420 	}
1421 
1422 	return ret;
1423 }
1424 
1425 /**
1426  * sst_fill_widget_module_info - fill list of gains/algos for the pipe
1427  * @w: pipe modeled as a DAPM widget
1428  * @component: ASoC component
1429  *
1430  * Fill the list of gains/algos for the widget by looking at all the card
1431  * controls and comparing the name of the widget with the first part of control
1432  * name. First part of control name contains the pipe name (widget name).
1433  */
1434 static int sst_fill_widget_module_info(struct snd_soc_dapm_widget *w,
1435 	struct snd_soc_component *component)
1436 {
1437 	struct snd_kcontrol *kctl;
1438 	int index, ret = 0;
1439 	struct snd_card *card = component->card->snd_card;
1440 	char *idx;
1441 
1442 	down_read(&card->controls_rwsem);
1443 
1444 	list_for_each_entry(kctl, &card->controls, list) {
1445 		idx = strchr(kctl->id.name, ' ');
1446 		if (idx == NULL)
1447 			continue;
1448 		index = idx - (char*)kctl->id.name;
1449 		if (strncmp(kctl->id.name, w->name, index))
1450 			continue;
1451 
1452 		if (strstr(kctl->id.name, "Volume"))
1453 			ret = sst_fill_module_list(kctl, w, SST_MODULE_GAIN);
1454 
1455 		else if (strstr(kctl->id.name, "params"))
1456 			ret = sst_fill_module_list(kctl, w, SST_MODULE_ALGO);
1457 
1458 		else if (strstr(kctl->id.name, "Switch") &&
1459 			 strstr(kctl->id.name, "Gain")) {
1460 			struct sst_gain_mixer_control *mc =
1461 						(void *)kctl->private_value;
1462 
1463 			mc->w = w;
1464 
1465 		} else if (strstr(kctl->id.name, "interleaver")) {
1466 			struct sst_enum *e = (void *)kctl->private_value;
1467 
1468 			e->w = w;
1469 
1470 		} else if (strstr(kctl->id.name, "deinterleaver")) {
1471 			struct sst_enum *e = (void *)kctl->private_value;
1472 
1473 			e->w = w;
1474 		}
1475 
1476 		if (ret < 0) {
1477 			up_read(&card->controls_rwsem);
1478 			return ret;
1479 		}
1480 	}
1481 
1482 	up_read(&card->controls_rwsem);
1483 	return 0;
1484 }
1485 
1486 /**
1487  * sst_fill_linked_widgets - fill the parent pointer for the linked widget
1488  * @component: ASoC component
1489  * @ids: sst_ids array
1490  */
1491 static void sst_fill_linked_widgets(struct snd_soc_component *component,
1492 						struct sst_ids *ids)
1493 {
1494 	struct snd_soc_dapm_widget *w;
1495 	unsigned int len = strlen(ids->parent_wname);
1496 
1497 	list_for_each_entry(w, &component->card->widgets, list) {
1498 		if (!strncmp(ids->parent_wname, w->name, len)) {
1499 			ids->parent_w = w;
1500 			break;
1501 		}
1502 	}
1503 }
1504 
1505 /**
1506  * sst_map_modules_to_pipe - fill algo/gains list for all pipes
1507  * @component: ASoC component
1508  */
1509 static int sst_map_modules_to_pipe(struct snd_soc_component *component)
1510 {
1511 	struct snd_soc_dapm_widget *w;
1512 	int ret = 0;
1513 
1514 	list_for_each_entry(w, &component->card->widgets, list) {
1515 		if (is_sst_dapm_widget(w) && (w->priv)) {
1516 			struct sst_ids *ids = w->priv;
1517 
1518 			dev_dbg(component->dev, "widget type=%d name=%s\n",
1519 					w->id, w->name);
1520 			INIT_LIST_HEAD(&ids->algo_list);
1521 			INIT_LIST_HEAD(&ids->gain_list);
1522 			ret = sst_fill_widget_module_info(w, component);
1523 
1524 			if (ret < 0)
1525 				return ret;
1526 
1527 			/* fill linked widgets */
1528 			if (ids->parent_wname !=  NULL)
1529 				sst_fill_linked_widgets(component, ids);
1530 		}
1531 	}
1532 	return 0;
1533 }
1534 
1535 int sst_dsp_init_v2_dpcm(struct snd_soc_component *component)
1536 {
1537 	int i, ret = 0;
1538 	struct snd_soc_dapm_context *dapm =
1539 			snd_soc_component_get_dapm(component);
1540 	struct sst_data *drv = snd_soc_component_get_drvdata(component);
1541 	unsigned int gains = ARRAY_SIZE(sst_gain_controls)/3;
1542 
1543 	drv->byte_stream = devm_kzalloc(component->dev,
1544 					SST_MAX_BIN_BYTES, GFP_KERNEL);
1545 	if (!drv->byte_stream)
1546 		return -ENOMEM;
1547 
1548 	snd_soc_dapm_new_controls(dapm, sst_dapm_widgets,
1549 			ARRAY_SIZE(sst_dapm_widgets));
1550 	snd_soc_dapm_add_routes(dapm, intercon,
1551 			ARRAY_SIZE(intercon));
1552 	snd_soc_dapm_new_widgets(dapm->card);
1553 
1554 	for (i = 0; i < gains; i++) {
1555 		sst_gains[i].mute = SST_GAIN_MUTE_DEFAULT;
1556 		sst_gains[i].l_gain = SST_GAIN_VOLUME_DEFAULT;
1557 		sst_gains[i].r_gain = SST_GAIN_VOLUME_DEFAULT;
1558 		sst_gains[i].ramp_duration = SST_GAIN_RAMP_DURATION_DEFAULT;
1559 	}
1560 
1561 	ret = snd_soc_add_component_controls(component, sst_gain_controls,
1562 			ARRAY_SIZE(sst_gain_controls));
1563 	if (ret)
1564 		return ret;
1565 
1566 	/* Initialize algo control params */
1567 	ret = sst_algo_control_init(component->dev);
1568 	if (ret)
1569 		return ret;
1570 	ret = snd_soc_add_component_controls(component, sst_algo_controls,
1571 			ARRAY_SIZE(sst_algo_controls));
1572 	if (ret)
1573 		return ret;
1574 
1575 	ret = snd_soc_add_component_controls(component, sst_slot_controls,
1576 			ARRAY_SIZE(sst_slot_controls));
1577 	if (ret)
1578 		return ret;
1579 
1580 	ret = sst_map_modules_to_pipe(component);
1581 
1582 	return ret;
1583 }
1584