xref: /linux/sound/soc/fsl/fsl_ssi.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  *
13  * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
14  *
15  * The i.MX SSI core has some nasty limitations in AC97 mode. While most
16  * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
17  * one FIFO which combines all valid receive slots. We cannot even select
18  * which slots we want to receive. The WM9712 with which this driver
19  * was developed with always sends GPIO status data in slot 12 which
20  * we receive in our (PCM-) data stream. The only chance we have is to
21  * manually skip this data in the FIQ handler. With sampling rates different
22  * from 48000Hz not every frame has valid receive data, so the ratio
23  * between pcm data and GPIO status data changes. Our FIQ handler is not
24  * able to handle this, hence this driver only works with 48000Hz sampling
25  * rate.
26  * Reading and writing AC97 registers is another challenge. The core
27  * provides us status bits when the read register is updated with *another*
28  * value. When we read the same register two times (and the register still
29  * contains the same value) these status bits are not set. We work
30  * around this by not polling these bits but only wait a fixed delay.
31  */
32 
33 #include <linux/init.h>
34 #include <linux/io.h>
35 #include <linux/module.h>
36 #include <linux/interrupt.h>
37 #include <linux/clk.h>
38 #include <linux/ctype.h>
39 #include <linux/device.h>
40 #include <linux/delay.h>
41 #include <linux/mutex.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/of.h>
45 #include <linux/of_address.h>
46 #include <linux/of_irq.h>
47 #include <linux/of_platform.h>
48 
49 #include <sound/core.h>
50 #include <sound/pcm.h>
51 #include <sound/pcm_params.h>
52 #include <sound/initval.h>
53 #include <sound/soc.h>
54 #include <sound/dmaengine_pcm.h>
55 
56 #include "fsl_ssi.h"
57 #include "imx-pcm.h"
58 
59 /**
60  * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
61  *
62  * The SSI has a limitation in that the samples must be in the same byte
63  * order as the host CPU.  This is because when multiple bytes are written
64  * to the STX register, the bytes and bits must be written in the same
65  * order.  The STX is a shift register, so all the bits need to be aligned
66  * (bit-endianness must match byte-endianness).  Processors typically write
67  * the bits within a byte in the same order that the bytes of a word are
68  * written in.  So if the host CPU is big-endian, then only big-endian
69  * samples will be written to STX properly.
70  */
71 #ifdef __BIG_ENDIAN
72 #define FSLSSI_I2S_FORMATS \
73 	(SNDRV_PCM_FMTBIT_S8 | \
74 	 SNDRV_PCM_FMTBIT_S16_BE | \
75 	 SNDRV_PCM_FMTBIT_S18_3BE | \
76 	 SNDRV_PCM_FMTBIT_S20_3BE | \
77 	 SNDRV_PCM_FMTBIT_S24_3BE | \
78 	 SNDRV_PCM_FMTBIT_S24_BE)
79 #else
80 #define FSLSSI_I2S_FORMATS \
81 	(SNDRV_PCM_FMTBIT_S8 | \
82 	 SNDRV_PCM_FMTBIT_S16_LE | \
83 	 SNDRV_PCM_FMTBIT_S18_3LE | \
84 	 SNDRV_PCM_FMTBIT_S20_3LE | \
85 	 SNDRV_PCM_FMTBIT_S24_3LE | \
86 	 SNDRV_PCM_FMTBIT_S24_LE)
87 #endif
88 
89 #define FSLSSI_SIER_DBG_RX_FLAGS \
90 	(SSI_SIER_RFF0_EN | \
91 	 SSI_SIER_RLS_EN | \
92 	 SSI_SIER_RFS_EN | \
93 	 SSI_SIER_ROE0_EN | \
94 	 SSI_SIER_RFRC_EN)
95 #define FSLSSI_SIER_DBG_TX_FLAGS \
96 	(SSI_SIER_TFE0_EN | \
97 	 SSI_SIER_TLS_EN | \
98 	 SSI_SIER_TFS_EN | \
99 	 SSI_SIER_TUE0_EN | \
100 	 SSI_SIER_TFRC_EN)
101 
102 enum fsl_ssi_type {
103 	FSL_SSI_MCP8610,
104 	FSL_SSI_MX21,
105 	FSL_SSI_MX35,
106 	FSL_SSI_MX51,
107 };
108 
109 struct fsl_ssi_regvals {
110 	u32 sier;
111 	u32 srcr;
112 	u32 stcr;
113 	u32 scr;
114 };
115 
116 static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
117 {
118 	switch (reg) {
119 	case REG_SSI_SACCEN:
120 	case REG_SSI_SACCDIS:
121 		return false;
122 	default:
123 		return true;
124 	}
125 }
126 
127 static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
128 {
129 	switch (reg) {
130 	case REG_SSI_STX0:
131 	case REG_SSI_STX1:
132 	case REG_SSI_SRX0:
133 	case REG_SSI_SRX1:
134 	case REG_SSI_SISR:
135 	case REG_SSI_SFCSR:
136 	case REG_SSI_SACNT:
137 	case REG_SSI_SACADD:
138 	case REG_SSI_SACDAT:
139 	case REG_SSI_SATAG:
140 	case REG_SSI_SACCST:
141 	case REG_SSI_SOR:
142 		return true;
143 	default:
144 		return false;
145 	}
146 }
147 
148 static bool fsl_ssi_precious_reg(struct device *dev, unsigned int reg)
149 {
150 	switch (reg) {
151 	case REG_SSI_SRX0:
152 	case REG_SSI_SRX1:
153 	case REG_SSI_SISR:
154 	case REG_SSI_SACADD:
155 	case REG_SSI_SACDAT:
156 	case REG_SSI_SATAG:
157 		return true;
158 	default:
159 		return false;
160 	}
161 }
162 
163 static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
164 {
165 	switch (reg) {
166 	case REG_SSI_SRX0:
167 	case REG_SSI_SRX1:
168 	case REG_SSI_SACCST:
169 		return false;
170 	default:
171 		return true;
172 	}
173 }
174 
175 static const struct regmap_config fsl_ssi_regconfig = {
176 	.max_register = REG_SSI_SACCDIS,
177 	.reg_bits = 32,
178 	.val_bits = 32,
179 	.reg_stride = 4,
180 	.val_format_endian = REGMAP_ENDIAN_NATIVE,
181 	.num_reg_defaults_raw = REG_SSI_SACCDIS / sizeof(uint32_t) + 1,
182 	.readable_reg = fsl_ssi_readable_reg,
183 	.volatile_reg = fsl_ssi_volatile_reg,
184 	.precious_reg = fsl_ssi_precious_reg,
185 	.writeable_reg = fsl_ssi_writeable_reg,
186 	.cache_type = REGCACHE_FLAT,
187 };
188 
189 struct fsl_ssi_soc_data {
190 	bool imx;
191 	bool imx21regs; /* imx21-class SSI - no SACC{ST,EN,DIS} regs */
192 	bool offline_config;
193 	u32 sisr_write_mask;
194 };
195 
196 /**
197  * fsl_ssi: per-SSI private data
198  *
199  * @regs: Pointer to the regmap registers
200  * @irq: IRQ of this SSI
201  * @cpu_dai_drv: CPU DAI driver for this device
202  *
203  * @dai_fmt: DAI configuration this device is currently used with
204  * @i2s_net: I2S and Network mode configurations of SCR register
205  * @use_dma: DMA is used or FIQ with stream filter
206  * @use_dual_fifo: DMA with support for dual FIFO mode
207  * @has_ipg_clk_name: If "ipg" is in the clock name list of device tree
208  * @fifo_depth: Depth of the SSI FIFOs
209  * @slot_width: Width of each DAI slot
210  * @slots: Number of slots
211  * @regvals: Specific RX/TX register settings
212  *
213  * @clk: Clock source to access register
214  * @baudclk: Clock source to generate bit and frame-sync clocks
215  * @baudclk_streams: Active streams that are using baudclk
216  *
217  * @regcache_sfcsr: Cache sfcsr register value during suspend and resume
218  * @regcache_sacnt: Cache sacnt register value during suspend and resume
219  *
220  * @dma_params_tx: DMA transmit parameters
221  * @dma_params_rx: DMA receive parameters
222  * @ssi_phys: physical address of the SSI registers
223  *
224  * @fiq_params: FIQ stream filtering parameters
225  *
226  * @pdev: Pointer to pdev when using fsl-ssi as sound card (ppc only)
227  *        TODO: Should be replaced with simple-sound-card
228  *
229  * @dbg_stats: Debugging statistics
230  *
231  * @soc: SoC specific data
232  * @dev: Pointer to &pdev->dev
233  *
234  * @fifo_watermark: The FIFO watermark setting. Notifies DMA when there are
235  *                  @fifo_watermark or fewer words in TX fifo or
236  *                  @fifo_watermark or more empty words in RX fifo.
237  * @dma_maxburst: Max number of words to transfer in one go. So far,
238  *                this is always the same as fifo_watermark.
239  *
240  * @ac97_reg_lock: Mutex lock to serialize AC97 register access operations
241  */
242 struct fsl_ssi {
243 	struct regmap *regs;
244 	int irq;
245 	struct snd_soc_dai_driver cpu_dai_drv;
246 
247 	unsigned int dai_fmt;
248 	u8 i2s_net;
249 	bool use_dma;
250 	bool use_dual_fifo;
251 	bool has_ipg_clk_name;
252 	unsigned int fifo_depth;
253 	unsigned int slot_width;
254 	unsigned int slots;
255 	struct fsl_ssi_regvals regvals[2];
256 
257 	struct clk *clk;
258 	struct clk *baudclk;
259 	unsigned int baudclk_streams;
260 
261 	u32 regcache_sfcsr;
262 	u32 regcache_sacnt;
263 
264 	struct snd_dmaengine_dai_dma_data dma_params_tx;
265 	struct snd_dmaengine_dai_dma_data dma_params_rx;
266 	dma_addr_t ssi_phys;
267 
268 	struct imx_pcm_fiq_params fiq_params;
269 
270 	struct platform_device *pdev;
271 
272 	struct fsl_ssi_dbg dbg_stats;
273 
274 	const struct fsl_ssi_soc_data *soc;
275 	struct device *dev;
276 
277 	u32 fifo_watermark;
278 	u32 dma_maxburst;
279 
280 	struct mutex ac97_reg_lock;
281 };
282 
283 /*
284  * SoC specific data
285  *
286  * Notes:
287  * 1) SSI in earlier SoCS has critical bits in control registers that
288  *    cannot be changed after SSI starts running -- a software reset
289  *    (set SSIEN to 0) is required to change their values. So adding
290  *    an offline_config flag for these SoCs.
291  * 2) SDMA is available since imx35. However, imx35 does not support
292  *    DMA bits changing when SSI is running, so set offline_config.
293  * 3) imx51 and later versions support register configurations when
294  *    SSI is running (SSIEN); For these versions, DMA needs to be
295  *    configured before SSI sends DMA request to avoid an undefined
296  *    DMA request on the SDMA side.
297  */
298 
299 static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
300 	.imx = false,
301 	.offline_config = true,
302 	.sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
303 			   SSI_SISR_ROE0 | SSI_SISR_ROE1 |
304 			   SSI_SISR_TUE0 | SSI_SISR_TUE1,
305 };
306 
307 static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
308 	.imx = true,
309 	.imx21regs = true,
310 	.offline_config = true,
311 	.sisr_write_mask = 0,
312 };
313 
314 static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
315 	.imx = true,
316 	.offline_config = true,
317 	.sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
318 			   SSI_SISR_ROE0 | SSI_SISR_ROE1 |
319 			   SSI_SISR_TUE0 | SSI_SISR_TUE1,
320 };
321 
322 static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
323 	.imx = true,
324 	.offline_config = false,
325 	.sisr_write_mask = SSI_SISR_ROE0 | SSI_SISR_ROE1 |
326 			   SSI_SISR_TUE0 | SSI_SISR_TUE1,
327 };
328 
329 static const struct of_device_id fsl_ssi_ids[] = {
330 	{ .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
331 	{ .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
332 	{ .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
333 	{ .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
334 	{}
335 };
336 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
337 
338 static bool fsl_ssi_is_ac97(struct fsl_ssi *ssi)
339 {
340 	return (ssi->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
341 		SND_SOC_DAIFMT_AC97;
342 }
343 
344 static bool fsl_ssi_is_i2s_master(struct fsl_ssi *ssi)
345 {
346 	return (ssi->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
347 		SND_SOC_DAIFMT_CBS_CFS;
348 }
349 
350 static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi *ssi)
351 {
352 	return (ssi->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
353 		SND_SOC_DAIFMT_CBM_CFS;
354 }
355 
356 /**
357  * Interrupt handler to gather states
358  */
359 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
360 {
361 	struct fsl_ssi *ssi = dev_id;
362 	struct regmap *regs = ssi->regs;
363 	__be32 sisr;
364 	__be32 sisr2;
365 
366 	regmap_read(regs, REG_SSI_SISR, &sisr);
367 
368 	sisr2 = sisr & ssi->soc->sisr_write_mask;
369 	/* Clear the bits that we set */
370 	if (sisr2)
371 		regmap_write(regs, REG_SSI_SISR, sisr2);
372 
373 	fsl_ssi_dbg_isr(&ssi->dbg_stats, sisr);
374 
375 	return IRQ_HANDLED;
376 }
377 
378 /**
379  * Enable or disable all rx/tx config flags at once
380  */
381 static void fsl_ssi_rxtx_config(struct fsl_ssi *ssi, bool enable)
382 {
383 	struct regmap *regs = ssi->regs;
384 	struct fsl_ssi_regvals *vals = ssi->regvals;
385 
386 	if (enable) {
387 		regmap_update_bits(regs, REG_SSI_SIER,
388 				   vals[RX].sier | vals[TX].sier,
389 				   vals[RX].sier | vals[TX].sier);
390 		regmap_update_bits(regs, REG_SSI_SRCR,
391 				   vals[RX].srcr | vals[TX].srcr,
392 				   vals[RX].srcr | vals[TX].srcr);
393 		regmap_update_bits(regs, REG_SSI_STCR,
394 				   vals[RX].stcr | vals[TX].stcr,
395 				   vals[RX].stcr | vals[TX].stcr);
396 	} else {
397 		regmap_update_bits(regs, REG_SSI_SRCR,
398 				   vals[RX].srcr | vals[TX].srcr, 0);
399 		regmap_update_bits(regs, REG_SSI_STCR,
400 				   vals[RX].stcr | vals[TX].stcr, 0);
401 		regmap_update_bits(regs, REG_SSI_SIER,
402 				   vals[RX].sier | vals[TX].sier, 0);
403 	}
404 }
405 
406 /**
407  * Clear remaining data in the FIFO to avoid dirty data or channel slipping
408  */
409 static void fsl_ssi_fifo_clear(struct fsl_ssi *ssi, bool is_rx)
410 {
411 	bool tx = !is_rx;
412 
413 	regmap_update_bits(ssi->regs, REG_SSI_SOR,
414 			   SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
415 }
416 
417 /**
418  * Calculate the bits that have to be disabled for the current stream that is
419  * getting disabled. This keeps the bits enabled that are necessary for the
420  * second stream to work if 'stream_active' is true.
421  *
422  * Detailed calculation:
423  * These are the values that need to be active after disabling. For non-active
424  * second stream, this is 0:
425  *	vals_stream * !!stream_active
426  *
427  * The following computes the overall differences between the setup for the
428  * to-disable stream and the active stream, a simple XOR:
429  *	vals_disable ^ (vals_stream * !!(stream_active))
430  *
431  * The full expression adds a mask on all values we care about
432  */
433 #define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
434 	((vals_disable) & \
435 	 ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))
436 
437 /**
438  * Enable or disable SSI configuration.
439  */
440 static void fsl_ssi_config(struct fsl_ssi *ssi, bool enable,
441 			   struct fsl_ssi_regvals *vals)
442 {
443 	struct regmap *regs = ssi->regs;
444 	struct fsl_ssi_regvals *avals;
445 	int nr_active_streams;
446 	u32 scr;
447 	int keep_active;
448 
449 	regmap_read(regs, REG_SSI_SCR, &scr);
450 
451 	nr_active_streams = !!(scr & SSI_SCR_TE) + !!(scr & SSI_SCR_RE);
452 
453 	if (nr_active_streams - 1 > 0)
454 		keep_active = 1;
455 	else
456 		keep_active = 0;
457 
458 	/* Get the opposite direction to keep its values untouched */
459 	if (&ssi->regvals[RX] == vals)
460 		avals = &ssi->regvals[TX];
461 	else
462 		avals = &ssi->regvals[RX];
463 
464 	if (!enable) {
465 		/*
466 		 * To keep the other stream safe, exclude shared bits between
467 		 * both streams, and get safe bits to disable current stream
468 		 */
469 		u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
470 					      keep_active);
471 		/* Safely disable SCR register for the stream */
472 		regmap_update_bits(regs, REG_SSI_SCR, scr, 0);
473 	}
474 
475 	/*
476 	 * For cases where online configuration is not supported,
477 	 * 1) Enable all necessary bits of both streams when 1st stream starts
478 	 *    even if the opposite stream will not start
479 	 * 2) Disable all remaining bits of both streams when last stream ends
480 	 */
481 	if (ssi->soc->offline_config) {
482 		if ((enable && !nr_active_streams) || (!enable && !keep_active))
483 			fsl_ssi_rxtx_config(ssi, enable);
484 
485 		goto config_done;
486 	}
487 
488 	/* Online configure single direction while SSI is running */
489 	if (enable) {
490 		fsl_ssi_fifo_clear(ssi, vals->scr & SSI_SCR_RE);
491 
492 		regmap_update_bits(regs, REG_SSI_SRCR, vals->srcr, vals->srcr);
493 		regmap_update_bits(regs, REG_SSI_STCR, vals->stcr, vals->stcr);
494 		regmap_update_bits(regs, REG_SSI_SIER, vals->sier, vals->sier);
495 	} else {
496 		u32 sier;
497 		u32 srcr;
498 		u32 stcr;
499 
500 		/*
501 		 * To keep the other stream safe, exclude shared bits between
502 		 * both streams, and get safe bits to disable current stream
503 		 */
504 		sier = fsl_ssi_disable_val(vals->sier, avals->sier,
505 					   keep_active);
506 		srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
507 					   keep_active);
508 		stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
509 					   keep_active);
510 
511 		/* Safely disable other control registers for the stream */
512 		regmap_update_bits(regs, REG_SSI_SRCR, srcr, 0);
513 		regmap_update_bits(regs, REG_SSI_STCR, stcr, 0);
514 		regmap_update_bits(regs, REG_SSI_SIER, sier, 0);
515 	}
516 
517 config_done:
518 	/* Enabling of subunits is done after configuration */
519 	if (enable) {
520 		/*
521 		 * Start DMA before setting TE to avoid FIFO underrun
522 		 * which may cause a channel slip or a channel swap
523 		 *
524 		 * TODO: FIQ cases might also need this upon testing
525 		 */
526 		if (ssi->use_dma && (vals->scr & SSI_SCR_TE)) {
527 			int i;
528 			int max_loop = 100;
529 
530 			/* Enable SSI first to send TX DMA request */
531 			regmap_update_bits(regs, REG_SSI_SCR,
532 					   SSI_SCR_SSIEN, SSI_SCR_SSIEN);
533 
534 			/* Busy wait until TX FIFO not empty -- DMA working */
535 			for (i = 0; i < max_loop; i++) {
536 				u32 sfcsr;
537 				regmap_read(regs, REG_SSI_SFCSR, &sfcsr);
538 				if (SSI_SFCSR_TFCNT0(sfcsr))
539 					break;
540 			}
541 			if (i == max_loop) {
542 				dev_err(ssi->dev,
543 					"Timeout waiting TX FIFO filling\n");
544 			}
545 		}
546 		/* Enable all remaining bits */
547 		regmap_update_bits(regs, REG_SSI_SCR, vals->scr, vals->scr);
548 	}
549 }
550 
551 static void fsl_ssi_rx_config(struct fsl_ssi *ssi, bool enable)
552 {
553 	fsl_ssi_config(ssi, enable, &ssi->regvals[RX]);
554 }
555 
556 static void fsl_ssi_tx_ac97_saccst_setup(struct fsl_ssi *ssi)
557 {
558 	struct regmap *regs = ssi->regs;
559 
560 	/* no SACC{ST,EN,DIS} regs on imx21-class SSI */
561 	if (!ssi->soc->imx21regs) {
562 		/* Disable all channel slots */
563 		regmap_write(regs, REG_SSI_SACCDIS, 0xff);
564 		/* Enable slots 3 & 4 -- PCM Playback Left & Right channels */
565 		regmap_write(regs, REG_SSI_SACCEN, 0x300);
566 	}
567 }
568 
569 static void fsl_ssi_tx_config(struct fsl_ssi *ssi, bool enable)
570 {
571 	/*
572 	 * SACCST might be modified via AC Link by a CODEC if it sends
573 	 * extra bits in their SLOTREQ requests, which'll accidentally
574 	 * send valid data to slots other than normal playback slots.
575 	 *
576 	 * To be safe, configure SACCST right before TX starts.
577 	 */
578 	if (enable && fsl_ssi_is_ac97(ssi))
579 		fsl_ssi_tx_ac97_saccst_setup(ssi);
580 
581 	fsl_ssi_config(ssi, enable, &ssi->regvals[TX]);
582 }
583 
584 /**
585  * Cache critical bits of SIER, SRCR, STCR and SCR to later set them safely
586  */
587 static void fsl_ssi_setup_regvals(struct fsl_ssi *ssi)
588 {
589 	struct fsl_ssi_regvals *vals = ssi->regvals;
590 
591 	vals[RX].sier = SSI_SIER_RFF0_EN;
592 	vals[RX].srcr = SSI_SRCR_RFEN0;
593 	vals[RX].scr = 0;
594 	vals[TX].sier = SSI_SIER_TFE0_EN;
595 	vals[TX].stcr = SSI_STCR_TFEN0;
596 	vals[TX].scr = 0;
597 
598 	/* AC97 has already enabled SSIEN, RE and TE, so ignore them */
599 	if (!fsl_ssi_is_ac97(ssi)) {
600 		vals[RX].scr = SSI_SCR_SSIEN | SSI_SCR_RE;
601 		vals[TX].scr = SSI_SCR_SSIEN | SSI_SCR_TE;
602 	}
603 
604 	if (ssi->use_dma) {
605 		vals[RX].sier |= SSI_SIER_RDMAE;
606 		vals[TX].sier |= SSI_SIER_TDMAE;
607 	} else {
608 		vals[RX].sier |= SSI_SIER_RIE;
609 		vals[TX].sier |= SSI_SIER_TIE;
610 	}
611 
612 	vals[RX].sier |= FSLSSI_SIER_DBG_RX_FLAGS;
613 	vals[TX].sier |= FSLSSI_SIER_DBG_TX_FLAGS;
614 }
615 
616 static void fsl_ssi_setup_ac97(struct fsl_ssi *ssi)
617 {
618 	struct regmap *regs = ssi->regs;
619 
620 	/* Setup the clock control register */
621 	regmap_write(regs, REG_SSI_STCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
622 	regmap_write(regs, REG_SSI_SRCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
623 
624 	/* Enable AC97 mode and startup the SSI */
625 	regmap_write(regs, REG_SSI_SACNT, SSI_SACNT_AC97EN | SSI_SACNT_FV);
626 
627 	/* AC97 has to communicate with codec before starting a stream */
628 	regmap_update_bits(regs, REG_SSI_SCR,
629 			   SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE,
630 			   SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE);
631 
632 	regmap_write(regs, REG_SSI_SOR, SSI_SOR_WAIT(3));
633 }
634 
635 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
636 			   struct snd_soc_dai *dai)
637 {
638 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
639 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
640 	int ret;
641 
642 	ret = clk_prepare_enable(ssi->clk);
643 	if (ret)
644 		return ret;
645 
646 	/*
647 	 * When using dual fifo mode, it is safer to ensure an even period
648 	 * size. If appearing to an odd number while DMA always starts its
649 	 * task from fifo0, fifo1 would be neglected at the end of each
650 	 * period. But SSI would still access fifo1 with an invalid data.
651 	 */
652 	if (ssi->use_dual_fifo)
653 		snd_pcm_hw_constraint_step(substream->runtime, 0,
654 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
655 
656 	return 0;
657 }
658 
659 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
660 			     struct snd_soc_dai *dai)
661 {
662 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
663 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
664 
665 	clk_disable_unprepare(ssi->clk);
666 }
667 
668 /**
669  * Configure Digital Audio Interface bit clock
670  *
671  * Note: This function can be only called when using SSI as DAI master
672  *
673  * Quick instruction for parameters:
674  * freq: Output BCLK frequency = samplerate * slots * slot_width
675  *       (In 2-channel I2S Master mode, slot_width is fixed 32)
676  */
677 static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
678 			    struct snd_soc_dai *dai,
679 			    struct snd_pcm_hw_params *hw_params)
680 {
681 	bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
682 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
683 	struct regmap *regs = ssi->regs;
684 	int synchronous = ssi->cpu_dai_drv.symmetric_rates, ret;
685 	u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
686 	unsigned long clkrate, baudrate, tmprate;
687 	unsigned int slots = params_channels(hw_params);
688 	unsigned int slot_width = 32;
689 	u64 sub, savesub = 100000;
690 	unsigned int freq;
691 	bool baudclk_is_used;
692 
693 	/* Override slots and slot_width if being specifically set... */
694 	if (ssi->slots)
695 		slots = ssi->slots;
696 	/* ...but keep 32 bits if slots is 2 -- I2S Master mode */
697 	if (ssi->slot_width && slots != 2)
698 		slot_width = ssi->slot_width;
699 
700 	/* Generate bit clock based on the slot number and slot width */
701 	freq = slots * slot_width * params_rate(hw_params);
702 
703 	/* Don't apply it to any non-baudclk circumstance */
704 	if (IS_ERR(ssi->baudclk))
705 		return -EINVAL;
706 
707 	/*
708 	 * Hardware limitation: The bclk rate must be
709 	 * never greater than 1/5 IPG clock rate
710 	 */
711 	if (freq * 5 > clk_get_rate(ssi->clk)) {
712 		dev_err(dai->dev, "bitclk > ipgclk / 5\n");
713 		return -EINVAL;
714 	}
715 
716 	baudclk_is_used = ssi->baudclk_streams & ~(BIT(substream->stream));
717 
718 	/* It should be already enough to divide clock by setting pm alone */
719 	psr = 0;
720 	div2 = 0;
721 
722 	factor = (div2 + 1) * (7 * psr + 1) * 2;
723 
724 	for (i = 0; i < 255; i++) {
725 		tmprate = freq * factor * (i + 1);
726 
727 		if (baudclk_is_used)
728 			clkrate = clk_get_rate(ssi->baudclk);
729 		else
730 			clkrate = clk_round_rate(ssi->baudclk, tmprate);
731 
732 		clkrate /= factor;
733 		afreq = clkrate / (i + 1);
734 
735 		if (freq == afreq)
736 			sub = 0;
737 		else if (freq / afreq == 1)
738 			sub = freq - afreq;
739 		else if (afreq / freq == 1)
740 			sub = afreq - freq;
741 		else
742 			continue;
743 
744 		/* Calculate the fraction */
745 		sub *= 100000;
746 		do_div(sub, freq);
747 
748 		if (sub < savesub && !(i == 0 && psr == 0 && div2 == 0)) {
749 			baudrate = tmprate;
750 			savesub = sub;
751 			pm = i;
752 		}
753 
754 		/* We are lucky */
755 		if (savesub == 0)
756 			break;
757 	}
758 
759 	/* No proper pm found if it is still remaining the initial value */
760 	if (pm == 999) {
761 		dev_err(dai->dev, "failed to handle the required sysclk\n");
762 		return -EINVAL;
763 	}
764 
765 	stccr = SSI_SxCCR_PM(pm + 1) | (div2 ? SSI_SxCCR_DIV2 : 0) |
766 		(psr ? SSI_SxCCR_PSR : 0);
767 	mask = SSI_SxCCR_PM_MASK | SSI_SxCCR_DIV2 | SSI_SxCCR_PSR;
768 
769 	/* STCCR is used for RX in synchronous mode */
770 	tx2 = tx || synchronous;
771 	regmap_update_bits(regs, REG_SSI_SxCCR(tx2), mask, stccr);
772 
773 	if (!baudclk_is_used) {
774 		ret = clk_set_rate(ssi->baudclk, baudrate);
775 		if (ret) {
776 			dev_err(dai->dev, "failed to set baudclk rate\n");
777 			return -EINVAL;
778 		}
779 	}
780 
781 	return 0;
782 }
783 
784 /**
785  * Configure SSI based on PCM hardware parameters
786  *
787  * Notes:
788  * 1) SxCCR.WL bits are critical bits that require SSI to be temporarily
789  *    disabled on offline_config SoCs. Even for online configurable SoCs
790  *    running in synchronous mode (both TX and RX use STCCR), it is not
791  *    safe to re-configure them when both two streams start running.
792  * 2) SxCCR.PM, SxCCR.DIV2 and SxCCR.PSR bits will be configured in the
793  *    fsl_ssi_set_bclk() if SSI is the DAI clock master.
794  */
795 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
796 			     struct snd_pcm_hw_params *hw_params,
797 			     struct snd_soc_dai *dai)
798 {
799 	bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
800 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
801 	struct regmap *regs = ssi->regs;
802 	unsigned int channels = params_channels(hw_params);
803 	unsigned int sample_size = params_width(hw_params);
804 	u32 wl = SSI_SxCCR_WL(sample_size);
805 	int ret;
806 	u32 scr;
807 	int enabled;
808 
809 	regmap_read(regs, REG_SSI_SCR, &scr);
810 	enabled = scr & SSI_SCR_SSIEN;
811 
812 	/*
813 	 * SSI is properly configured if it is enabled and running in
814 	 * the synchronous mode; Note that AC97 mode is an exception
815 	 * that should set separate configurations for STCCR and SRCCR
816 	 * despite running in the synchronous mode.
817 	 */
818 	if (enabled && ssi->cpu_dai_drv.symmetric_rates)
819 		return 0;
820 
821 	if (fsl_ssi_is_i2s_master(ssi)) {
822 		ret = fsl_ssi_set_bclk(substream, dai, hw_params);
823 		if (ret)
824 			return ret;
825 
826 		/* Do not enable the clock if it is already enabled */
827 		if (!(ssi->baudclk_streams & BIT(substream->stream))) {
828 			ret = clk_prepare_enable(ssi->baudclk);
829 			if (ret)
830 				return ret;
831 
832 			ssi->baudclk_streams |= BIT(substream->stream);
833 		}
834 	}
835 
836 	if (!fsl_ssi_is_ac97(ssi)) {
837 		u8 i2s_net;
838 		/* Normal + Network mode to send 16-bit data in 32-bit frames */
839 		if (fsl_ssi_is_i2s_cbm_cfs(ssi) && sample_size == 16)
840 			i2s_net = SSI_SCR_I2S_MODE_NORMAL | SSI_SCR_NET;
841 		else
842 			i2s_net = ssi->i2s_net;
843 
844 		regmap_update_bits(regs, REG_SSI_SCR,
845 				   SSI_SCR_I2S_NET_MASK,
846 				   channels == 1 ? 0 : i2s_net);
847 	}
848 
849 	/* In synchronous mode, the SSI uses STCCR for capture */
850 	tx2 = tx || ssi->cpu_dai_drv.symmetric_rates;
851 	regmap_update_bits(regs, REG_SSI_SxCCR(tx2), SSI_SxCCR_WL_MASK, wl);
852 
853 	return 0;
854 }
855 
856 static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
857 			   struct snd_soc_dai *dai)
858 {
859 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
860 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
861 
862 	if (fsl_ssi_is_i2s_master(ssi) &&
863 	    ssi->baudclk_streams & BIT(substream->stream)) {
864 		clk_disable_unprepare(ssi->baudclk);
865 		ssi->baudclk_streams &= ~BIT(substream->stream);
866 	}
867 
868 	return 0;
869 }
870 
871 static int _fsl_ssi_set_dai_fmt(struct device *dev,
872 				struct fsl_ssi *ssi, unsigned int fmt)
873 {
874 	struct regmap *regs = ssi->regs;
875 	u32 strcr = 0, stcr, srcr, scr, mask;
876 	u8 wm;
877 
878 	ssi->dai_fmt = fmt;
879 
880 	if (fsl_ssi_is_i2s_master(ssi) && IS_ERR(ssi->baudclk)) {
881 		dev_err(dev, "missing baudclk for master mode\n");
882 		return -EINVAL;
883 	}
884 
885 	fsl_ssi_setup_regvals(ssi);
886 
887 	regmap_read(regs, REG_SSI_SCR, &scr);
888 	scr &= ~(SSI_SCR_SYN | SSI_SCR_I2S_MODE_MASK);
889 	/* Synchronize frame sync clock for TE to avoid data slipping */
890 	scr |= SSI_SCR_SYNC_TX_FS;
891 
892 	mask = SSI_STCR_TXBIT0 | SSI_STCR_TFDIR | SSI_STCR_TXDIR |
893 	       SSI_STCR_TSCKP | SSI_STCR_TFSI | SSI_STCR_TFSL | SSI_STCR_TEFS;
894 	regmap_read(regs, REG_SSI_STCR, &stcr);
895 	regmap_read(regs, REG_SSI_SRCR, &srcr);
896 	stcr &= ~mask;
897 	srcr &= ~mask;
898 
899 	/* Use Network mode as default */
900 	ssi->i2s_net = SSI_SCR_NET;
901 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
902 	case SND_SOC_DAIFMT_I2S:
903 		regmap_update_bits(regs, REG_SSI_STCCR,
904 				   SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(2));
905 		regmap_update_bits(regs, REG_SSI_SRCCR,
906 				   SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(2));
907 		switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
908 		case SND_SOC_DAIFMT_CBM_CFS:
909 		case SND_SOC_DAIFMT_CBS_CFS:
910 			ssi->i2s_net |= SSI_SCR_I2S_MODE_MASTER;
911 			break;
912 		case SND_SOC_DAIFMT_CBM_CFM:
913 			ssi->i2s_net |= SSI_SCR_I2S_MODE_SLAVE;
914 			break;
915 		default:
916 			return -EINVAL;
917 		}
918 
919 		/* Data on rising edge of bclk, frame low, 1clk before data */
920 		strcr |= SSI_STCR_TFSI | SSI_STCR_TSCKP |
921 			 SSI_STCR_TXBIT0 | SSI_STCR_TEFS;
922 		break;
923 	case SND_SOC_DAIFMT_LEFT_J:
924 		/* Data on rising edge of bclk, frame high */
925 		strcr |= SSI_STCR_TXBIT0 | SSI_STCR_TSCKP;
926 		break;
927 	case SND_SOC_DAIFMT_DSP_A:
928 		/* Data on rising edge of bclk, frame high, 1clk before data */
929 		strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP |
930 			 SSI_STCR_TXBIT0 | SSI_STCR_TEFS;
931 		break;
932 	case SND_SOC_DAIFMT_DSP_B:
933 		/* Data on rising edge of bclk, frame high */
934 		strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP | SSI_STCR_TXBIT0;
935 		break;
936 	case SND_SOC_DAIFMT_AC97:
937 		/* Data on falling edge of bclk, frame high, 1clk before data */
938 		ssi->i2s_net |= SSI_SCR_I2S_MODE_NORMAL;
939 		break;
940 	default:
941 		return -EINVAL;
942 	}
943 	scr |= ssi->i2s_net;
944 
945 	/* DAI clock inversion */
946 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
947 	case SND_SOC_DAIFMT_NB_NF:
948 		/* Nothing to do for both normal cases */
949 		break;
950 	case SND_SOC_DAIFMT_IB_NF:
951 		/* Invert bit clock */
952 		strcr ^= SSI_STCR_TSCKP;
953 		break;
954 	case SND_SOC_DAIFMT_NB_IF:
955 		/* Invert frame clock */
956 		strcr ^= SSI_STCR_TFSI;
957 		break;
958 	case SND_SOC_DAIFMT_IB_IF:
959 		/* Invert both clocks */
960 		strcr ^= SSI_STCR_TSCKP;
961 		strcr ^= SSI_STCR_TFSI;
962 		break;
963 	default:
964 		return -EINVAL;
965 	}
966 
967 	/* DAI clock master masks */
968 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
969 	case SND_SOC_DAIFMT_CBS_CFS:
970 		/* Output bit and frame sync clocks */
971 		strcr |= SSI_STCR_TFDIR | SSI_STCR_TXDIR;
972 		scr |= SSI_SCR_SYS_CLK_EN;
973 		break;
974 	case SND_SOC_DAIFMT_CBM_CFM:
975 		/* Input bit or frame sync clocks */
976 		scr &= ~SSI_SCR_SYS_CLK_EN;
977 		break;
978 	case SND_SOC_DAIFMT_CBM_CFS:
979 		/* Input bit clock but output frame sync clock */
980 		strcr &= ~SSI_STCR_TXDIR;
981 		strcr |= SSI_STCR_TFDIR;
982 		scr &= ~SSI_SCR_SYS_CLK_EN;
983 		break;
984 	default:
985 		if (!fsl_ssi_is_ac97(ssi))
986 			return -EINVAL;
987 	}
988 
989 	stcr |= strcr;
990 	srcr |= strcr;
991 
992 	/* Set SYN mode and clear RXDIR bit when using SYN or AC97 mode */
993 	if (ssi->cpu_dai_drv.symmetric_rates || fsl_ssi_is_ac97(ssi)) {
994 		srcr &= ~SSI_SRCR_RXDIR;
995 		scr |= SSI_SCR_SYN;
996 	}
997 
998 	regmap_write(regs, REG_SSI_STCR, stcr);
999 	regmap_write(regs, REG_SSI_SRCR, srcr);
1000 	regmap_write(regs, REG_SSI_SCR, scr);
1001 
1002 	wm = ssi->fifo_watermark;
1003 
1004 	regmap_write(regs, REG_SSI_SFCSR,
1005 		     SSI_SFCSR_TFWM0(wm) | SSI_SFCSR_RFWM0(wm) |
1006 		     SSI_SFCSR_TFWM1(wm) | SSI_SFCSR_RFWM1(wm));
1007 
1008 	if (ssi->use_dual_fifo) {
1009 		regmap_update_bits(regs, REG_SSI_SRCR,
1010 				   SSI_SRCR_RFEN1, SSI_SRCR_RFEN1);
1011 		regmap_update_bits(regs, REG_SSI_STCR,
1012 				   SSI_STCR_TFEN1, SSI_STCR_TFEN1);
1013 		regmap_update_bits(regs, REG_SSI_SCR,
1014 				   SSI_SCR_TCH_EN, SSI_SCR_TCH_EN);
1015 	}
1016 
1017 	if ((fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_AC97)
1018 		fsl_ssi_setup_ac97(ssi);
1019 
1020 	return 0;
1021 }
1022 
1023 /**
1024  * Configure Digital Audio Interface (DAI) Format
1025  */
1026 static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
1027 {
1028 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1029 
1030 	/* AC97 configured DAIFMT earlier in the probe() */
1031 	if (fsl_ssi_is_ac97(ssi))
1032 		return 0;
1033 
1034 	return _fsl_ssi_set_dai_fmt(dai->dev, ssi, fmt);
1035 }
1036 
1037 /**
1038  * Set TDM slot number and slot width
1039  */
1040 static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask,
1041 				    u32 rx_mask, int slots, int slot_width)
1042 {
1043 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1044 	struct regmap *regs = ssi->regs;
1045 	u32 val;
1046 
1047 	/* The word length should be 8, 10, 12, 16, 18, 20, 22 or 24 */
1048 	if (slot_width & 1 || slot_width < 8 || slot_width > 24) {
1049 		dev_err(dai->dev, "invalid slot width: %d\n", slot_width);
1050 		return -EINVAL;
1051 	}
1052 
1053 	/* The slot number should be >= 2 if using Network mode or I2S mode */
1054 	regmap_read(regs, REG_SSI_SCR, &val);
1055 	val &= SSI_SCR_I2S_MODE_MASK | SSI_SCR_NET;
1056 	if (val && slots < 2) {
1057 		dev_err(dai->dev, "slot number should be >= 2 in I2S or NET\n");
1058 		return -EINVAL;
1059 	}
1060 
1061 	regmap_update_bits(regs, REG_SSI_STCCR,
1062 			   SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
1063 	regmap_update_bits(regs, REG_SSI_SRCCR,
1064 			   SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
1065 
1066 	/* Save SSIEN bit of the SCR register */
1067 	regmap_read(regs, REG_SSI_SCR, &val);
1068 	val &= SSI_SCR_SSIEN;
1069 	/* Temporarily enable SSI to allow SxMSKs to be configurable */
1070 	regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, SSI_SCR_SSIEN);
1071 
1072 	regmap_write(regs, REG_SSI_STMSK, ~tx_mask);
1073 	regmap_write(regs, REG_SSI_SRMSK, ~rx_mask);
1074 
1075 	/* Restore the value of SSIEN bit */
1076 	regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, val);
1077 
1078 	ssi->slot_width = slot_width;
1079 	ssi->slots = slots;
1080 
1081 	return 0;
1082 }
1083 
1084 /**
1085  * Start or stop SSI and corresponding DMA transaction.
1086  *
1087  * The DMA channel is in external master start and pause mode, which
1088  * means the SSI completely controls the flow of data.
1089  */
1090 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
1091 			   struct snd_soc_dai *dai)
1092 {
1093 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
1094 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
1095 	struct regmap *regs = ssi->regs;
1096 
1097 	switch (cmd) {
1098 	case SNDRV_PCM_TRIGGER_START:
1099 	case SNDRV_PCM_TRIGGER_RESUME:
1100 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1101 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1102 			fsl_ssi_tx_config(ssi, true);
1103 		else
1104 			fsl_ssi_rx_config(ssi, true);
1105 		break;
1106 
1107 	case SNDRV_PCM_TRIGGER_STOP:
1108 	case SNDRV_PCM_TRIGGER_SUSPEND:
1109 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1110 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1111 			fsl_ssi_tx_config(ssi, false);
1112 		else
1113 			fsl_ssi_rx_config(ssi, false);
1114 		break;
1115 
1116 	default:
1117 		return -EINVAL;
1118 	}
1119 
1120 	/* Clear corresponding FIFO */
1121 	if (fsl_ssi_is_ac97(ssi)) {
1122 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1123 			regmap_write(regs, REG_SSI_SOR, SSI_SOR_TX_CLR);
1124 		else
1125 			regmap_write(regs, REG_SSI_SOR, SSI_SOR_RX_CLR);
1126 	}
1127 
1128 	return 0;
1129 }
1130 
1131 static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1132 {
1133 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1134 
1135 	if (ssi->soc->imx && ssi->use_dma) {
1136 		dai->playback_dma_data = &ssi->dma_params_tx;
1137 		dai->capture_dma_data = &ssi->dma_params_rx;
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1144 	.startup = fsl_ssi_startup,
1145 	.shutdown = fsl_ssi_shutdown,
1146 	.hw_params = fsl_ssi_hw_params,
1147 	.hw_free = fsl_ssi_hw_free,
1148 	.set_fmt = fsl_ssi_set_dai_fmt,
1149 	.set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
1150 	.trigger = fsl_ssi_trigger,
1151 };
1152 
1153 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1154 	.probe = fsl_ssi_dai_probe,
1155 	.playback = {
1156 		.stream_name = "CPU-Playback",
1157 		.channels_min = 1,
1158 		.channels_max = 32,
1159 		.rates = SNDRV_PCM_RATE_CONTINUOUS,
1160 		.formats = FSLSSI_I2S_FORMATS,
1161 	},
1162 	.capture = {
1163 		.stream_name = "CPU-Capture",
1164 		.channels_min = 1,
1165 		.channels_max = 32,
1166 		.rates = SNDRV_PCM_RATE_CONTINUOUS,
1167 		.formats = FSLSSI_I2S_FORMATS,
1168 	},
1169 	.ops = &fsl_ssi_dai_ops,
1170 };
1171 
1172 static const struct snd_soc_component_driver fsl_ssi_component = {
1173 	.name = "fsl-ssi",
1174 };
1175 
1176 static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1177 	.bus_control = true,
1178 	.probe = fsl_ssi_dai_probe,
1179 	.playback = {
1180 		.stream_name = "AC97 Playback",
1181 		.channels_min = 2,
1182 		.channels_max = 2,
1183 		.rates = SNDRV_PCM_RATE_8000_48000,
1184 		.formats = SNDRV_PCM_FMTBIT_S16 | SNDRV_PCM_FMTBIT_S20,
1185 	},
1186 	.capture = {
1187 		.stream_name = "AC97 Capture",
1188 		.channels_min = 2,
1189 		.channels_max = 2,
1190 		.rates = SNDRV_PCM_RATE_48000,
1191 		/* 16-bit capture is broken (errata ERR003778) */
1192 		.formats = SNDRV_PCM_FMTBIT_S20,
1193 	},
1194 	.ops = &fsl_ssi_dai_ops,
1195 };
1196 
1197 static struct fsl_ssi *fsl_ac97_data;
1198 
1199 static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1200 			       unsigned short val)
1201 {
1202 	struct regmap *regs = fsl_ac97_data->regs;
1203 	unsigned int lreg;
1204 	unsigned int lval;
1205 	int ret;
1206 
1207 	if (reg > 0x7f)
1208 		return;
1209 
1210 	mutex_lock(&fsl_ac97_data->ac97_reg_lock);
1211 
1212 	ret = clk_prepare_enable(fsl_ac97_data->clk);
1213 	if (ret) {
1214 		pr_err("ac97 write clk_prepare_enable failed: %d\n",
1215 			ret);
1216 		goto ret_unlock;
1217 	}
1218 
1219 	lreg = reg <<  12;
1220 	regmap_write(regs, REG_SSI_SACADD, lreg);
1221 
1222 	lval = val << 4;
1223 	regmap_write(regs, REG_SSI_SACDAT, lval);
1224 
1225 	regmap_update_bits(regs, REG_SSI_SACNT,
1226 			   SSI_SACNT_RDWR_MASK, SSI_SACNT_WR);
1227 	udelay(100);
1228 
1229 	clk_disable_unprepare(fsl_ac97_data->clk);
1230 
1231 ret_unlock:
1232 	mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1233 }
1234 
1235 static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1236 					unsigned short reg)
1237 {
1238 	struct regmap *regs = fsl_ac97_data->regs;
1239 	unsigned short val = 0;
1240 	u32 reg_val;
1241 	unsigned int lreg;
1242 	int ret;
1243 
1244 	mutex_lock(&fsl_ac97_data->ac97_reg_lock);
1245 
1246 	ret = clk_prepare_enable(fsl_ac97_data->clk);
1247 	if (ret) {
1248 		pr_err("ac97 read clk_prepare_enable failed: %d\n", ret);
1249 		goto ret_unlock;
1250 	}
1251 
1252 	lreg = (reg & 0x7f) <<  12;
1253 	regmap_write(regs, REG_SSI_SACADD, lreg);
1254 	regmap_update_bits(regs, REG_SSI_SACNT,
1255 			   SSI_SACNT_RDWR_MASK, SSI_SACNT_RD);
1256 
1257 	udelay(100);
1258 
1259 	regmap_read(regs, REG_SSI_SACDAT, &reg_val);
1260 	val = (reg_val >> 4) & 0xffff;
1261 
1262 	clk_disable_unprepare(fsl_ac97_data->clk);
1263 
1264 ret_unlock:
1265 	mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1266 	return val;
1267 }
1268 
1269 static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1270 	.read = fsl_ssi_ac97_read,
1271 	.write = fsl_ssi_ac97_write,
1272 };
1273 
1274 /**
1275  * Make every character in a string lower-case
1276  */
1277 static void make_lowercase(char *s)
1278 {
1279 	if (!s)
1280 		return;
1281 	for (; *s; s++)
1282 		*s = tolower(*s);
1283 }
1284 
1285 static int fsl_ssi_imx_probe(struct platform_device *pdev,
1286 			     struct fsl_ssi *ssi, void __iomem *iomem)
1287 {
1288 	struct device_node *np = pdev->dev.of_node;
1289 	struct device *dev = &pdev->dev;
1290 	u32 dmas[4];
1291 	int ret;
1292 
1293 	/* Backward compatible for a DT without ipg clock name assigned */
1294 	if (ssi->has_ipg_clk_name)
1295 		ssi->clk = devm_clk_get(dev, "ipg");
1296 	else
1297 		ssi->clk = devm_clk_get(dev, NULL);
1298 	if (IS_ERR(ssi->clk)) {
1299 		ret = PTR_ERR(ssi->clk);
1300 		dev_err(dev, "failed to get clock: %d\n", ret);
1301 		return ret;
1302 	}
1303 
1304 	/* Enable the clock since regmap will not handle it in this case */
1305 	if (!ssi->has_ipg_clk_name) {
1306 		ret = clk_prepare_enable(ssi->clk);
1307 		if (ret) {
1308 			dev_err(dev, "clk_prepare_enable failed: %d\n", ret);
1309 			return ret;
1310 		}
1311 	}
1312 
1313 	/* Do not error out for slave cases that live without a baud clock */
1314 	ssi->baudclk = devm_clk_get(dev, "baud");
1315 	if (IS_ERR(ssi->baudclk))
1316 		dev_dbg(dev, "failed to get baud clock: %ld\n",
1317 			 PTR_ERR(ssi->baudclk));
1318 
1319 	ssi->dma_params_tx.maxburst = ssi->dma_maxburst;
1320 	ssi->dma_params_rx.maxburst = ssi->dma_maxburst;
1321 	ssi->dma_params_tx.addr = ssi->ssi_phys + REG_SSI_STX0;
1322 	ssi->dma_params_rx.addr = ssi->ssi_phys + REG_SSI_SRX0;
1323 
1324 	/* Set to dual FIFO mode according to the SDMA sciprt */
1325 	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1326 	if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
1327 		ssi->use_dual_fifo = true;
1328 		/*
1329 		 * Use even numbers to avoid channel swap due to SDMA
1330 		 * script design
1331 		 */
1332 		ssi->dma_params_tx.maxburst &= ~0x1;
1333 		ssi->dma_params_rx.maxburst &= ~0x1;
1334 	}
1335 
1336 	if (!ssi->use_dma) {
1337 		/*
1338 		 * Some boards use an incompatible codec. Use imx-fiq-pcm-audio
1339 		 * to get it working, as DMA is not possible in this situation.
1340 		 */
1341 		ssi->fiq_params.irq = ssi->irq;
1342 		ssi->fiq_params.base = iomem;
1343 		ssi->fiq_params.dma_params_rx = &ssi->dma_params_rx;
1344 		ssi->fiq_params.dma_params_tx = &ssi->dma_params_tx;
1345 
1346 		ret = imx_pcm_fiq_init(pdev, &ssi->fiq_params);
1347 		if (ret)
1348 			goto error_pcm;
1349 	} else {
1350 		ret = imx_pcm_dma_init(pdev, IMX_SSI_DMABUF_SIZE);
1351 		if (ret)
1352 			goto error_pcm;
1353 	}
1354 
1355 	return 0;
1356 
1357 error_pcm:
1358 	if (!ssi->has_ipg_clk_name)
1359 		clk_disable_unprepare(ssi->clk);
1360 
1361 	return ret;
1362 }
1363 
1364 static void fsl_ssi_imx_clean(struct platform_device *pdev, struct fsl_ssi *ssi)
1365 {
1366 	if (!ssi->use_dma)
1367 		imx_pcm_fiq_exit(pdev);
1368 	if (!ssi->has_ipg_clk_name)
1369 		clk_disable_unprepare(ssi->clk);
1370 }
1371 
1372 static int fsl_ssi_probe(struct platform_device *pdev)
1373 {
1374 	struct fsl_ssi *ssi;
1375 	int ret = 0;
1376 	struct device_node *np = pdev->dev.of_node;
1377 	struct device *dev = &pdev->dev;
1378 	const struct of_device_id *of_id;
1379 	const char *p, *sprop;
1380 	const uint32_t *iprop;
1381 	struct resource *res;
1382 	void __iomem *iomem;
1383 	char name[64];
1384 	struct regmap_config regconfig = fsl_ssi_regconfig;
1385 
1386 	of_id = of_match_device(fsl_ssi_ids, dev);
1387 	if (!of_id || !of_id->data)
1388 		return -EINVAL;
1389 
1390 	ssi = devm_kzalloc(dev, sizeof(*ssi), GFP_KERNEL);
1391 	if (!ssi)
1392 		return -ENOMEM;
1393 
1394 	ssi->soc = of_id->data;
1395 	ssi->dev = dev;
1396 
1397 	/* Check if being used in AC97 mode */
1398 	sprop = of_get_property(np, "fsl,mode", NULL);
1399 	if (sprop) {
1400 		if (!strcmp(sprop, "ac97-slave"))
1401 			ssi->dai_fmt = SND_SOC_DAIFMT_AC97;
1402 	}
1403 
1404 	/* Select DMA or FIQ */
1405 	ssi->use_dma = !of_property_read_bool(np, "fsl,fiq-stream-filter");
1406 
1407 	if (fsl_ssi_is_ac97(ssi)) {
1408 		memcpy(&ssi->cpu_dai_drv, &fsl_ssi_ac97_dai,
1409 		       sizeof(fsl_ssi_ac97_dai));
1410 		fsl_ac97_data = ssi;
1411 	} else {
1412 		memcpy(&ssi->cpu_dai_drv, &fsl_ssi_dai_template,
1413 		       sizeof(fsl_ssi_dai_template));
1414 	}
1415 	ssi->cpu_dai_drv.name = dev_name(dev);
1416 
1417 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1418 	iomem = devm_ioremap_resource(dev, res);
1419 	if (IS_ERR(iomem))
1420 		return PTR_ERR(iomem);
1421 	ssi->ssi_phys = res->start;
1422 
1423 	if (ssi->soc->imx21regs) {
1424 		/* No SACC{ST,EN,DIS} regs in imx21-class SSI */
1425 		regconfig.max_register = REG_SSI_SRMSK;
1426 		regconfig.num_reg_defaults_raw =
1427 			REG_SSI_SRMSK / sizeof(uint32_t) + 1;
1428 	}
1429 
1430 	ret = of_property_match_string(np, "clock-names", "ipg");
1431 	if (ret < 0) {
1432 		ssi->has_ipg_clk_name = false;
1433 		ssi->regs = devm_regmap_init_mmio(dev, iomem, &regconfig);
1434 	} else {
1435 		ssi->has_ipg_clk_name = true;
1436 		ssi->regs = devm_regmap_init_mmio_clk(dev, "ipg", iomem,
1437 						      &regconfig);
1438 	}
1439 	if (IS_ERR(ssi->regs)) {
1440 		dev_err(dev, "failed to init register map\n");
1441 		return PTR_ERR(ssi->regs);
1442 	}
1443 
1444 	ssi->irq = platform_get_irq(pdev, 0);
1445 	if (ssi->irq < 0) {
1446 		dev_err(dev, "no irq for node %s\n", pdev->name);
1447 		return ssi->irq;
1448 	}
1449 
1450 	/* Set software limitations for synchronous mode */
1451 	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1452 		if (!fsl_ssi_is_ac97(ssi)) {
1453 			ssi->cpu_dai_drv.symmetric_rates = 1;
1454 			ssi->cpu_dai_drv.symmetric_samplebits = 1;
1455 		}
1456 
1457 		ssi->cpu_dai_drv.symmetric_channels = 1;
1458 	}
1459 
1460 	/* Fetch FIFO depth; Set to 8 for older DT without this property */
1461 	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1462 	if (iprop)
1463 		ssi->fifo_depth = be32_to_cpup(iprop);
1464 	else
1465 		ssi->fifo_depth = 8;
1466 
1467 	/*
1468 	 * Configure TX and RX DMA watermarks -- when to send a DMA request
1469 	 *
1470 	 * Values should be tested to avoid FIFO under/over run. Set maxburst
1471 	 * to fifo_watermark to maxiumize DMA transaction to reduce overhead.
1472 	 */
1473 	switch (ssi->fifo_depth) {
1474 	case 15:
1475 		/*
1476 		 * Set to 8 as a balanced configuration -- When TX FIFO has 8
1477 		 * empty slots, send a DMA request to fill these 8 slots. The
1478 		 * remaining 7 slots should be able to allow DMA to finish the
1479 		 * transaction before TX FIFO underruns; Same applies to RX.
1480 		 *
1481 		 * Tested with cases running at 48kHz @ 16 bits x 16 channels
1482 		 */
1483 		ssi->fifo_watermark = 8;
1484 		ssi->dma_maxburst = 8;
1485 		break;
1486 	case 8:
1487 	default:
1488 		/* Safely use old watermark configurations for older chips */
1489 		ssi->fifo_watermark = ssi->fifo_depth - 2;
1490 		ssi->dma_maxburst = ssi->fifo_depth - 2;
1491 		break;
1492 	}
1493 
1494 	dev_set_drvdata(dev, ssi);
1495 
1496 	if (ssi->soc->imx) {
1497 		ret = fsl_ssi_imx_probe(pdev, ssi, iomem);
1498 		if (ret)
1499 			return ret;
1500 	}
1501 
1502 	if (fsl_ssi_is_ac97(ssi)) {
1503 		mutex_init(&ssi->ac97_reg_lock);
1504 		ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1505 		if (ret) {
1506 			dev_err(dev, "failed to set AC'97 ops\n");
1507 			goto error_ac97_ops;
1508 		}
1509 	}
1510 
1511 	ret = devm_snd_soc_register_component(dev, &fsl_ssi_component,
1512 					      &ssi->cpu_dai_drv, 1);
1513 	if (ret) {
1514 		dev_err(dev, "failed to register DAI: %d\n", ret);
1515 		goto error_asoc_register;
1516 	}
1517 
1518 	if (ssi->use_dma) {
1519 		ret = devm_request_irq(dev, ssi->irq, fsl_ssi_isr, 0,
1520 				       dev_name(dev), ssi);
1521 		if (ret < 0) {
1522 			dev_err(dev, "failed to claim irq %u\n", ssi->irq);
1523 			goto error_asoc_register;
1524 		}
1525 	}
1526 
1527 	ret = fsl_ssi_debugfs_create(&ssi->dbg_stats, dev);
1528 	if (ret)
1529 		goto error_asoc_register;
1530 
1531 	/* Bypass it if using newer DT bindings of ASoC machine drivers */
1532 	if (!of_get_property(np, "codec-handle", NULL))
1533 		goto done;
1534 
1535 	/*
1536 	 * Backward compatible for older bindings by manually triggering the
1537 	 * machine driver's probe(). Use /compatible property, including the
1538 	 * address of CPU DAI driver structure, as the name of machine driver.
1539 	 */
1540 	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
1541 	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1542 	p = strrchr(sprop, ',');
1543 	if (p)
1544 		sprop = p + 1;
1545 	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
1546 	make_lowercase(name);
1547 
1548 	ssi->pdev = platform_device_register_data(dev, name, 0, NULL, 0);
1549 	if (IS_ERR(ssi->pdev)) {
1550 		ret = PTR_ERR(ssi->pdev);
1551 		dev_err(dev, "failed to register platform: %d\n", ret);
1552 		goto error_sound_card;
1553 	}
1554 
1555 done:
1556 	if (ssi->dai_fmt)
1557 		_fsl_ssi_set_dai_fmt(dev, ssi, ssi->dai_fmt);
1558 
1559 	if (fsl_ssi_is_ac97(ssi)) {
1560 		u32 ssi_idx;
1561 
1562 		ret = of_property_read_u32(np, "cell-index", &ssi_idx);
1563 		if (ret) {
1564 			dev_err(dev, "failed to get SSI index property\n");
1565 			goto error_sound_card;
1566 		}
1567 
1568 		ssi->pdev = platform_device_register_data(NULL, "ac97-codec",
1569 							  ssi_idx, NULL, 0);
1570 		if (IS_ERR(ssi->pdev)) {
1571 			ret = PTR_ERR(ssi->pdev);
1572 			dev_err(dev,
1573 				"failed to register AC97 codec platform: %d\n",
1574 				ret);
1575 			goto error_sound_card;
1576 		}
1577 	}
1578 
1579 	return 0;
1580 
1581 error_sound_card:
1582 	fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1583 error_asoc_register:
1584 	if (fsl_ssi_is_ac97(ssi))
1585 		snd_soc_set_ac97_ops(NULL);
1586 error_ac97_ops:
1587 	if (fsl_ssi_is_ac97(ssi))
1588 		mutex_destroy(&ssi->ac97_reg_lock);
1589 
1590 	if (ssi->soc->imx)
1591 		fsl_ssi_imx_clean(pdev, ssi);
1592 
1593 	return ret;
1594 }
1595 
1596 static int fsl_ssi_remove(struct platform_device *pdev)
1597 {
1598 	struct fsl_ssi *ssi = dev_get_drvdata(&pdev->dev);
1599 
1600 	fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1601 
1602 	if (ssi->pdev)
1603 		platform_device_unregister(ssi->pdev);
1604 
1605 	if (ssi->soc->imx)
1606 		fsl_ssi_imx_clean(pdev, ssi);
1607 
1608 	if (fsl_ssi_is_ac97(ssi)) {
1609 		snd_soc_set_ac97_ops(NULL);
1610 		mutex_destroy(&ssi->ac97_reg_lock);
1611 	}
1612 
1613 	return 0;
1614 }
1615 
1616 #ifdef CONFIG_PM_SLEEP
1617 static int fsl_ssi_suspend(struct device *dev)
1618 {
1619 	struct fsl_ssi *ssi = dev_get_drvdata(dev);
1620 	struct regmap *regs = ssi->regs;
1621 
1622 	regmap_read(regs, REG_SSI_SFCSR, &ssi->regcache_sfcsr);
1623 	regmap_read(regs, REG_SSI_SACNT, &ssi->regcache_sacnt);
1624 
1625 	regcache_cache_only(regs, true);
1626 	regcache_mark_dirty(regs);
1627 
1628 	return 0;
1629 }
1630 
1631 static int fsl_ssi_resume(struct device *dev)
1632 {
1633 	struct fsl_ssi *ssi = dev_get_drvdata(dev);
1634 	struct regmap *regs = ssi->regs;
1635 
1636 	regcache_cache_only(regs, false);
1637 
1638 	regmap_update_bits(regs, REG_SSI_SFCSR,
1639 			   SSI_SFCSR_RFWM1_MASK | SSI_SFCSR_TFWM1_MASK |
1640 			   SSI_SFCSR_RFWM0_MASK | SSI_SFCSR_TFWM0_MASK,
1641 			   ssi->regcache_sfcsr);
1642 	regmap_write(regs, REG_SSI_SACNT, ssi->regcache_sacnt);
1643 
1644 	return regcache_sync(regs);
1645 }
1646 #endif /* CONFIG_PM_SLEEP */
1647 
1648 static const struct dev_pm_ops fsl_ssi_pm = {
1649 	SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
1650 };
1651 
1652 static struct platform_driver fsl_ssi_driver = {
1653 	.driver = {
1654 		.name = "fsl-ssi-dai",
1655 		.of_match_table = fsl_ssi_ids,
1656 		.pm = &fsl_ssi_pm,
1657 	},
1658 	.probe = fsl_ssi_probe,
1659 	.remove = fsl_ssi_remove,
1660 };
1661 
1662 module_platform_driver(fsl_ssi_driver);
1663 
1664 MODULE_ALIAS("platform:fsl-ssi-dai");
1665 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1666 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1667 MODULE_LICENSE("GPL v2");
1668