xref: /linux/sound/soc/fsl/fsl_ssi.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  *
13  * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
14  *
15  * The i.MX SSI core has some nasty limitations in AC97 mode. While most
16  * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
17  * one FIFO which combines all valid receive slots. We cannot even select
18  * which slots we want to receive. The WM9712 with which this driver
19  * was developed with always sends GPIO status data in slot 12 which
20  * we receive in our (PCM-) data stream. The only chance we have is to
21  * manually skip this data in the FIQ handler. With sampling rates different
22  * from 48000Hz not every frame has valid receive data, so the ratio
23  * between pcm data and GPIO status data changes. Our FIQ handler is not
24  * able to handle this, hence this driver only works with 48000Hz sampling
25  * rate.
26  * Reading and writing AC97 registers is another challenge. The core
27  * provides us status bits when the read register is updated with *another*
28  * value. When we read the same register two times (and the register still
29  * contains the same value) these status bits are not set. We work
30  * around this by not polling these bits but only wait a fixed delay.
31  */
32 
33 #include <linux/init.h>
34 #include <linux/io.h>
35 #include <linux/module.h>
36 #include <linux/interrupt.h>
37 #include <linux/clk.h>
38 #include <linux/device.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/of.h>
43 #include <linux/of_address.h>
44 #include <linux/of_irq.h>
45 #include <linux/of_platform.h>
46 
47 #include <sound/core.h>
48 #include <sound/pcm.h>
49 #include <sound/pcm_params.h>
50 #include <sound/initval.h>
51 #include <sound/soc.h>
52 #include <sound/dmaengine_pcm.h>
53 
54 #include "fsl_ssi.h"
55 #include "imx-pcm.h"
56 
57 /**
58  * FSLSSI_I2S_RATES: sample rates supported by the I2S
59  *
60  * This driver currently only supports the SSI running in I2S slave mode,
61  * which means the codec determines the sample rate.  Therefore, we tell
62  * ALSA that we support all rates and let the codec driver decide what rates
63  * are really supported.
64  */
65 #define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
66 
67 /**
68  * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
69  *
70  * The SSI has a limitation in that the samples must be in the same byte
71  * order as the host CPU.  This is because when multiple bytes are written
72  * to the STX register, the bytes and bits must be written in the same
73  * order.  The STX is a shift register, so all the bits need to be aligned
74  * (bit-endianness must match byte-endianness).  Processors typically write
75  * the bits within a byte in the same order that the bytes of a word are
76  * written in.  So if the host CPU is big-endian, then only big-endian
77  * samples will be written to STX properly.
78  */
79 #ifdef __BIG_ENDIAN
80 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
81 	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
82 	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
83 #else
84 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
85 	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
86 	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
87 #endif
88 
89 #define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
90 		CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
91 		CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
92 #define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
93 		CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
94 		CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
95 
96 enum fsl_ssi_type {
97 	FSL_SSI_MCP8610,
98 	FSL_SSI_MX21,
99 	FSL_SSI_MX35,
100 	FSL_SSI_MX51,
101 };
102 
103 struct fsl_ssi_reg_val {
104 	u32 sier;
105 	u32 srcr;
106 	u32 stcr;
107 	u32 scr;
108 };
109 
110 struct fsl_ssi_rxtx_reg_val {
111 	struct fsl_ssi_reg_val rx;
112 	struct fsl_ssi_reg_val tx;
113 };
114 
115 static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
116 {
117 	switch (reg) {
118 	case CCSR_SSI_SACCEN:
119 	case CCSR_SSI_SACCDIS:
120 		return false;
121 	default:
122 		return true;
123 	}
124 }
125 
126 static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
127 {
128 	switch (reg) {
129 	case CCSR_SSI_STX0:
130 	case CCSR_SSI_STX1:
131 	case CCSR_SSI_SRX0:
132 	case CCSR_SSI_SRX1:
133 	case CCSR_SSI_SISR:
134 	case CCSR_SSI_SFCSR:
135 	case CCSR_SSI_SACNT:
136 	case CCSR_SSI_SACADD:
137 	case CCSR_SSI_SACDAT:
138 	case CCSR_SSI_SATAG:
139 	case CCSR_SSI_SACCST:
140 	case CCSR_SSI_SOR:
141 		return true;
142 	default:
143 		return false;
144 	}
145 }
146 
147 static bool fsl_ssi_precious_reg(struct device *dev, unsigned int reg)
148 {
149 	switch (reg) {
150 	case CCSR_SSI_SRX0:
151 	case CCSR_SSI_SRX1:
152 	case CCSR_SSI_SISR:
153 	case CCSR_SSI_SACADD:
154 	case CCSR_SSI_SACDAT:
155 	case CCSR_SSI_SATAG:
156 		return true;
157 	default:
158 		return false;
159 	}
160 }
161 
162 static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
163 {
164 	switch (reg) {
165 	case CCSR_SSI_SRX0:
166 	case CCSR_SSI_SRX1:
167 	case CCSR_SSI_SACCST:
168 		return false;
169 	default:
170 		return true;
171 	}
172 }
173 
174 static const struct regmap_config fsl_ssi_regconfig = {
175 	.max_register = CCSR_SSI_SACCDIS,
176 	.reg_bits = 32,
177 	.val_bits = 32,
178 	.reg_stride = 4,
179 	.val_format_endian = REGMAP_ENDIAN_NATIVE,
180 	.num_reg_defaults_raw = CCSR_SSI_SACCDIS / sizeof(uint32_t) + 1,
181 	.readable_reg = fsl_ssi_readable_reg,
182 	.volatile_reg = fsl_ssi_volatile_reg,
183 	.precious_reg = fsl_ssi_precious_reg,
184 	.writeable_reg = fsl_ssi_writeable_reg,
185 	.cache_type = REGCACHE_FLAT,
186 };
187 
188 struct fsl_ssi_soc_data {
189 	bool imx;
190 	bool imx21regs; /* imx21-class SSI - no SACC{ST,EN,DIS} regs */
191 	bool offline_config;
192 	u32 sisr_write_mask;
193 };
194 
195 /**
196  * fsl_ssi_private: per-SSI private data
197  *
198  * @reg: Pointer to the regmap registers
199  * @irq: IRQ of this SSI
200  * @cpu_dai_drv: CPU DAI driver for this device
201  *
202  * @dai_fmt: DAI configuration this device is currently used with
203  * @i2s_mode: i2s and network mode configuration of the device. Is used to
204  * switch between normal and i2s/network mode
205  * mode depending on the number of channels
206  * @use_dma: DMA is used or FIQ with stream filter
207  * @use_dual_fifo: DMA with support for both FIFOs used
208  * @fifo_deph: Depth of the SSI FIFOs
209  * @rxtx_reg_val: Specific register settings for receive/transmit configuration
210  *
211  * @clk: SSI clock
212  * @baudclk: SSI baud clock for master mode
213  * @baudclk_streams: Active streams that are using baudclk
214  * @bitclk_freq: bitclock frequency set by .set_dai_sysclk
215  *
216  * @dma_params_tx: DMA transmit parameters
217  * @dma_params_rx: DMA receive parameters
218  * @ssi_phys: physical address of the SSI registers
219  *
220  * @fiq_params: FIQ stream filtering parameters
221  *
222  * @pdev: Pointer to pdev used for deprecated fsl-ssi sound card
223  *
224  * @dbg_stats: Debugging statistics
225  *
226  * @soc: SoC specific data
227  */
228 struct fsl_ssi_private {
229 	struct regmap *regs;
230 	int irq;
231 	struct snd_soc_dai_driver cpu_dai_drv;
232 
233 	unsigned int dai_fmt;
234 	u8 i2s_mode;
235 	bool use_dma;
236 	bool use_dual_fifo;
237 	bool has_ipg_clk_name;
238 	unsigned int fifo_depth;
239 	struct fsl_ssi_rxtx_reg_val rxtx_reg_val;
240 
241 	struct clk *clk;
242 	struct clk *baudclk;
243 	unsigned int baudclk_streams;
244 	unsigned int bitclk_freq;
245 
246 	/* regcache for volatile regs */
247 	u32 regcache_sfcsr;
248 	u32 regcache_sacnt;
249 
250 	/* DMA params */
251 	struct snd_dmaengine_dai_dma_data dma_params_tx;
252 	struct snd_dmaengine_dai_dma_data dma_params_rx;
253 	dma_addr_t ssi_phys;
254 
255 	/* params for non-dma FIQ stream filtered mode */
256 	struct imx_pcm_fiq_params fiq_params;
257 
258 	/* Used when using fsl-ssi as sound-card. This is only used by ppc and
259 	 * should be replaced with simple-sound-card. */
260 	struct platform_device *pdev;
261 
262 	struct fsl_ssi_dbg dbg_stats;
263 
264 	const struct fsl_ssi_soc_data *soc;
265 	struct device *dev;
266 };
267 
268 /*
269  * imx51 and later SoCs have a slightly different IP that allows the
270  * SSI configuration while the SSI unit is running.
271  *
272  * More important, it is necessary on those SoCs to configure the
273  * sperate TX/RX DMA bits just before starting the stream
274  * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
275  * sends any DMA requests to the SDMA unit, otherwise it is not defined
276  * how the SDMA unit handles the DMA request.
277  *
278  * SDMA units are present on devices starting at imx35 but the imx35
279  * reference manual states that the DMA bits should not be changed
280  * while the SSI unit is running (SSIEN). So we support the necessary
281  * online configuration of fsl-ssi starting at imx51.
282  */
283 
284 static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
285 	.imx = false,
286 	.offline_config = true,
287 	.sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
288 			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
289 			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
290 };
291 
292 static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
293 	.imx = true,
294 	.imx21regs = true,
295 	.offline_config = true,
296 	.sisr_write_mask = 0,
297 };
298 
299 static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
300 	.imx = true,
301 	.offline_config = true,
302 	.sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
303 			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
304 			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
305 };
306 
307 static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
308 	.imx = true,
309 	.offline_config = false,
310 	.sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
311 		CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
312 };
313 
314 static const struct of_device_id fsl_ssi_ids[] = {
315 	{ .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
316 	{ .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
317 	{ .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
318 	{ .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
319 	{}
320 };
321 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
322 
323 static bool fsl_ssi_is_ac97(struct fsl_ssi_private *ssi_private)
324 {
325 	return (ssi_private->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
326 		SND_SOC_DAIFMT_AC97;
327 }
328 
329 static bool fsl_ssi_is_i2s_master(struct fsl_ssi_private *ssi_private)
330 {
331 	return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
332 		SND_SOC_DAIFMT_CBS_CFS;
333 }
334 
335 static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi_private *ssi_private)
336 {
337 	return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
338 		SND_SOC_DAIFMT_CBM_CFS;
339 }
340 /**
341  * fsl_ssi_isr: SSI interrupt handler
342  *
343  * Although it's possible to use the interrupt handler to send and receive
344  * data to/from the SSI, we use the DMA instead.  Programming is more
345  * complicated, but the performance is much better.
346  *
347  * This interrupt handler is used only to gather statistics.
348  *
349  * @irq: IRQ of the SSI device
350  * @dev_id: pointer to the ssi_private structure for this SSI device
351  */
352 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
353 {
354 	struct fsl_ssi_private *ssi_private = dev_id;
355 	struct regmap *regs = ssi_private->regs;
356 	__be32 sisr;
357 	__be32 sisr2;
358 
359 	/* We got an interrupt, so read the status register to see what we
360 	   were interrupted for.  We mask it with the Interrupt Enable register
361 	   so that we only check for events that we're interested in.
362 	 */
363 	regmap_read(regs, CCSR_SSI_SISR, &sisr);
364 
365 	sisr2 = sisr & ssi_private->soc->sisr_write_mask;
366 	/* Clear the bits that we set */
367 	if (sisr2)
368 		regmap_write(regs, CCSR_SSI_SISR, sisr2);
369 
370 	fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr);
371 
372 	return IRQ_HANDLED;
373 }
374 
375 /*
376  * Enable/Disable all rx/tx config flags at once.
377  */
378 static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
379 		bool enable)
380 {
381 	struct regmap *regs = ssi_private->regs;
382 	struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;
383 
384 	if (enable) {
385 		regmap_update_bits(regs, CCSR_SSI_SIER,
386 				vals->rx.sier | vals->tx.sier,
387 				vals->rx.sier | vals->tx.sier);
388 		regmap_update_bits(regs, CCSR_SSI_SRCR,
389 				vals->rx.srcr | vals->tx.srcr,
390 				vals->rx.srcr | vals->tx.srcr);
391 		regmap_update_bits(regs, CCSR_SSI_STCR,
392 				vals->rx.stcr | vals->tx.stcr,
393 				vals->rx.stcr | vals->tx.stcr);
394 	} else {
395 		regmap_update_bits(regs, CCSR_SSI_SRCR,
396 				vals->rx.srcr | vals->tx.srcr, 0);
397 		regmap_update_bits(regs, CCSR_SSI_STCR,
398 				vals->rx.stcr | vals->tx.stcr, 0);
399 		regmap_update_bits(regs, CCSR_SSI_SIER,
400 				vals->rx.sier | vals->tx.sier, 0);
401 	}
402 }
403 
404 /*
405  * Clear RX or TX FIFO to remove samples from the previous
406  * stream session which may be still present in the FIFO and
407  * may introduce bad samples and/or channel slipping.
408  *
409  * Note: The SOR is not documented in recent IMX datasheet, but
410  * is described in IMX51 reference manual at section 56.3.3.15.
411  */
412 static void fsl_ssi_fifo_clear(struct fsl_ssi_private *ssi_private,
413 		bool is_rx)
414 {
415 	if (is_rx) {
416 		regmap_update_bits(ssi_private->regs, CCSR_SSI_SOR,
417 			CCSR_SSI_SOR_RX_CLR, CCSR_SSI_SOR_RX_CLR);
418 	} else {
419 		regmap_update_bits(ssi_private->regs, CCSR_SSI_SOR,
420 			CCSR_SSI_SOR_TX_CLR, CCSR_SSI_SOR_TX_CLR);
421 	}
422 }
423 
424 /*
425  * Calculate the bits that have to be disabled for the current stream that is
426  * getting disabled. This keeps the bits enabled that are necessary for the
427  * second stream to work if 'stream_active' is true.
428  *
429  * Detailed calculation:
430  * These are the values that need to be active after disabling. For non-active
431  * second stream, this is 0:
432  *	vals_stream * !!stream_active
433  *
434  * The following computes the overall differences between the setup for the
435  * to-disable stream and the active stream, a simple XOR:
436  *	vals_disable ^ (vals_stream * !!(stream_active))
437  *
438  * The full expression adds a mask on all values we care about
439  */
440 #define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
441 	((vals_disable) & \
442 	 ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))
443 
444 /*
445  * Enable/Disable a ssi configuration. You have to pass either
446  * ssi_private->rxtx_reg_val.rx or tx as vals parameter.
447  */
448 static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
449 		struct fsl_ssi_reg_val *vals)
450 {
451 	struct regmap *regs = ssi_private->regs;
452 	struct fsl_ssi_reg_val *avals;
453 	int nr_active_streams;
454 	u32 scr_val;
455 	int keep_active;
456 
457 	regmap_read(regs, CCSR_SSI_SCR, &scr_val);
458 
459 	nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
460 				!!(scr_val & CCSR_SSI_SCR_RE);
461 
462 	if (nr_active_streams - 1 > 0)
463 		keep_active = 1;
464 	else
465 		keep_active = 0;
466 
467 	/* Find the other direction values rx or tx which we do not want to
468 	 * modify */
469 	if (&ssi_private->rxtx_reg_val.rx == vals)
470 		avals = &ssi_private->rxtx_reg_val.tx;
471 	else
472 		avals = &ssi_private->rxtx_reg_val.rx;
473 
474 	/* If vals should be disabled, start with disabling the unit */
475 	if (!enable) {
476 		u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
477 				keep_active);
478 		regmap_update_bits(regs, CCSR_SSI_SCR, scr, 0);
479 	}
480 
481 	/*
482 	 * We are running on a SoC which does not support online SSI
483 	 * reconfiguration, so we have to enable all necessary flags at once
484 	 * even if we do not use them later (capture and playback configuration)
485 	 */
486 	if (ssi_private->soc->offline_config) {
487 		if ((enable && !nr_active_streams) ||
488 				(!enable && !keep_active))
489 			fsl_ssi_rxtx_config(ssi_private, enable);
490 
491 		goto config_done;
492 	}
493 
494 	/*
495 	 * Configure single direction units while the SSI unit is running
496 	 * (online configuration)
497 	 */
498 	if (enable) {
499 		fsl_ssi_fifo_clear(ssi_private, vals->scr & CCSR_SSI_SCR_RE);
500 
501 		regmap_update_bits(regs, CCSR_SSI_SRCR, vals->srcr, vals->srcr);
502 		regmap_update_bits(regs, CCSR_SSI_STCR, vals->stcr, vals->stcr);
503 		regmap_update_bits(regs, CCSR_SSI_SIER, vals->sier, vals->sier);
504 	} else {
505 		u32 sier;
506 		u32 srcr;
507 		u32 stcr;
508 
509 		/*
510 		 * Disabling the necessary flags for one of rx/tx while the
511 		 * other stream is active is a little bit more difficult. We
512 		 * have to disable only those flags that differ between both
513 		 * streams (rx XOR tx) and that are set in the stream that is
514 		 * disabled now. Otherwise we could alter flags of the other
515 		 * stream
516 		 */
517 
518 		/* These assignments are simply vals without bits set in avals*/
519 		sier = fsl_ssi_disable_val(vals->sier, avals->sier,
520 				keep_active);
521 		srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
522 				keep_active);
523 		stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
524 				keep_active);
525 
526 		regmap_update_bits(regs, CCSR_SSI_SRCR, srcr, 0);
527 		regmap_update_bits(regs, CCSR_SSI_STCR, stcr, 0);
528 		regmap_update_bits(regs, CCSR_SSI_SIER, sier, 0);
529 	}
530 
531 config_done:
532 	/* Enabling of subunits is done after configuration */
533 	if (enable) {
534 		if (ssi_private->use_dma && (vals->scr & CCSR_SSI_SCR_TE)) {
535 			/*
536 			 * Be sure the Tx FIFO is filled when TE is set.
537 			 * Otherwise, there are some chances to start the
538 			 * playback with some void samples inserted first,
539 			 * generating a channel slip.
540 			 *
541 			 * First, SSIEN must be set, to let the FIFO be filled.
542 			 *
543 			 * Notes:
544 			 * - Limit this fix to the DMA case until FIQ cases can
545 			 *   be tested.
546 			 * - Limit the length of the busy loop to not lock the
547 			 *   system too long, even if 1-2 loops are sufficient
548 			 *   in general.
549 			 */
550 			int i;
551 			int max_loop = 100;
552 			regmap_update_bits(regs, CCSR_SSI_SCR,
553 					CCSR_SSI_SCR_SSIEN, CCSR_SSI_SCR_SSIEN);
554 			for (i = 0; i < max_loop; i++) {
555 				u32 sfcsr;
556 				regmap_read(regs, CCSR_SSI_SFCSR, &sfcsr);
557 				if (CCSR_SSI_SFCSR_TFCNT0(sfcsr))
558 					break;
559 			}
560 			if (i == max_loop) {
561 				dev_err(ssi_private->dev,
562 					"Timeout waiting TX FIFO filling\n");
563 			}
564 		}
565 		regmap_update_bits(regs, CCSR_SSI_SCR, vals->scr, vals->scr);
566 	}
567 }
568 
569 
570 static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
571 {
572 	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
573 }
574 
575 static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
576 {
577 	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
578 }
579 
580 /*
581  * Setup rx/tx register values used to enable/disable the streams. These will
582  * be used later in fsl_ssi_config to setup the streams without the need to
583  * check for all different SSI modes.
584  */
585 static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
586 {
587 	struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;
588 
589 	reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
590 	reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
591 	reg->rx.scr = 0;
592 	reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
593 	reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
594 	reg->tx.scr = 0;
595 
596 	if (!fsl_ssi_is_ac97(ssi_private)) {
597 		reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
598 		reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN;
599 		reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
600 		reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN;
601 	}
602 
603 	if (ssi_private->use_dma) {
604 		reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
605 		reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
606 	} else {
607 		reg->rx.sier |= CCSR_SSI_SIER_RIE;
608 		reg->tx.sier |= CCSR_SSI_SIER_TIE;
609 	}
610 
611 	reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
612 	reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
613 }
614 
615 static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
616 {
617 	struct regmap *regs = ssi_private->regs;
618 
619 	/*
620 	 * Setup the clock control register
621 	 */
622 	regmap_write(regs, CCSR_SSI_STCCR,
623 			CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
624 	regmap_write(regs, CCSR_SSI_SRCCR,
625 			CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
626 
627 	/*
628 	 * Enable AC97 mode and startup the SSI
629 	 */
630 	regmap_write(regs, CCSR_SSI_SACNT,
631 			CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV);
632 
633 	/* no SACC{ST,EN,DIS} regs on imx21-class SSI */
634 	if (!ssi_private->soc->imx21regs) {
635 		regmap_write(regs, CCSR_SSI_SACCDIS, 0xff);
636 		regmap_write(regs, CCSR_SSI_SACCEN, 0x300);
637 	}
638 
639 	/*
640 	 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
641 	 * codec before a stream is started.
642 	 */
643 	regmap_update_bits(regs, CCSR_SSI_SCR,
644 			CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE,
645 			CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
646 
647 	regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_WAIT(3));
648 }
649 
650 /**
651  * fsl_ssi_startup: create a new substream
652  *
653  * This is the first function called when a stream is opened.
654  *
655  * If this is the first stream open, then grab the IRQ and program most of
656  * the SSI registers.
657  */
658 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
659 			   struct snd_soc_dai *dai)
660 {
661 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
662 	struct fsl_ssi_private *ssi_private =
663 		snd_soc_dai_get_drvdata(rtd->cpu_dai);
664 	int ret;
665 
666 	ret = clk_prepare_enable(ssi_private->clk);
667 	if (ret)
668 		return ret;
669 
670 	/* When using dual fifo mode, it is safer to ensure an even period
671 	 * size. If appearing to an odd number while DMA always starts its
672 	 * task from fifo0, fifo1 would be neglected at the end of each
673 	 * period. But SSI would still access fifo1 with an invalid data.
674 	 */
675 	if (ssi_private->use_dual_fifo)
676 		snd_pcm_hw_constraint_step(substream->runtime, 0,
677 				SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
678 
679 	return 0;
680 }
681 
682 /**
683  * fsl_ssi_shutdown: shutdown the SSI
684  *
685  */
686 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
687 				struct snd_soc_dai *dai)
688 {
689 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
690 	struct fsl_ssi_private *ssi_private =
691 		snd_soc_dai_get_drvdata(rtd->cpu_dai);
692 
693 	clk_disable_unprepare(ssi_private->clk);
694 
695 }
696 
697 /**
698  * fsl_ssi_set_bclk - configure Digital Audio Interface bit clock
699  *
700  * Note: This function can be only called when using SSI as DAI master
701  *
702  * Quick instruction for parameters:
703  * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
704  * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
705  */
706 static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
707 		struct snd_soc_dai *cpu_dai,
708 		struct snd_pcm_hw_params *hw_params)
709 {
710 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
711 	struct regmap *regs = ssi_private->regs;
712 	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
713 	u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
714 	unsigned long clkrate, baudrate, tmprate;
715 	u64 sub, savesub = 100000;
716 	unsigned int freq;
717 	bool baudclk_is_used;
718 
719 	/* Prefer the explicitly set bitclock frequency */
720 	if (ssi_private->bitclk_freq)
721 		freq = ssi_private->bitclk_freq;
722 	else
723 		freq = params_channels(hw_params) * 32 * params_rate(hw_params);
724 
725 	/* Don't apply it to any non-baudclk circumstance */
726 	if (IS_ERR(ssi_private->baudclk))
727 		return -EINVAL;
728 
729 	/*
730 	 * Hardware limitation: The bclk rate must be
731 	 * never greater than 1/5 IPG clock rate
732 	 */
733 	if (freq * 5 > clk_get_rate(ssi_private->clk)) {
734 		dev_err(cpu_dai->dev, "bitclk > ipgclk/5\n");
735 		return -EINVAL;
736 	}
737 
738 	baudclk_is_used = ssi_private->baudclk_streams & ~(BIT(substream->stream));
739 
740 	/* It should be already enough to divide clock by setting pm alone */
741 	psr = 0;
742 	div2 = 0;
743 
744 	factor = (div2 + 1) * (7 * psr + 1) * 2;
745 
746 	for (i = 0; i < 255; i++) {
747 		tmprate = freq * factor * (i + 1);
748 
749 		if (baudclk_is_used)
750 			clkrate = clk_get_rate(ssi_private->baudclk);
751 		else
752 			clkrate = clk_round_rate(ssi_private->baudclk, tmprate);
753 
754 		clkrate /= factor;
755 		afreq = clkrate / (i + 1);
756 
757 		if (freq == afreq)
758 			sub = 0;
759 		else if (freq / afreq == 1)
760 			sub = freq - afreq;
761 		else if (afreq / freq == 1)
762 			sub = afreq - freq;
763 		else
764 			continue;
765 
766 		/* Calculate the fraction */
767 		sub *= 100000;
768 		do_div(sub, freq);
769 
770 		if (sub < savesub && !(i == 0 && psr == 0 && div2 == 0)) {
771 			baudrate = tmprate;
772 			savesub = sub;
773 			pm = i;
774 		}
775 
776 		/* We are lucky */
777 		if (savesub == 0)
778 			break;
779 	}
780 
781 	/* No proper pm found if it is still remaining the initial value */
782 	if (pm == 999) {
783 		dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
784 		return -EINVAL;
785 	}
786 
787 	stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
788 		(psr ? CCSR_SSI_SxCCR_PSR : 0);
789 	mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 |
790 		CCSR_SSI_SxCCR_PSR;
791 
792 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || synchronous)
793 		regmap_update_bits(regs, CCSR_SSI_STCCR, mask, stccr);
794 	else
795 		regmap_update_bits(regs, CCSR_SSI_SRCCR, mask, stccr);
796 
797 	if (!baudclk_is_used) {
798 		ret = clk_set_rate(ssi_private->baudclk, baudrate);
799 		if (ret) {
800 			dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
801 			return -EINVAL;
802 		}
803 	}
804 
805 	return 0;
806 }
807 
808 static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
809 		int clk_id, unsigned int freq, int dir)
810 {
811 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
812 
813 	ssi_private->bitclk_freq = freq;
814 
815 	return 0;
816 }
817 
818 /**
819  * fsl_ssi_hw_params - program the sample size
820  *
821  * Most of the SSI registers have been programmed in the startup function,
822  * but the word length must be programmed here.  Unfortunately, programming
823  * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
824  * cause a problem with supporting simultaneous playback and capture.  If
825  * the SSI is already playing a stream, then that stream may be temporarily
826  * stopped when you start capture.
827  *
828  * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
829  * clock master.
830  */
831 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
832 	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
833 {
834 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
835 	struct regmap *regs = ssi_private->regs;
836 	unsigned int channels = params_channels(hw_params);
837 	unsigned int sample_size = params_width(hw_params);
838 	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
839 	int ret;
840 	u32 scr_val;
841 	int enabled;
842 
843 	regmap_read(regs, CCSR_SSI_SCR, &scr_val);
844 	enabled = scr_val & CCSR_SSI_SCR_SSIEN;
845 
846 	/*
847 	 * If we're in synchronous mode, and the SSI is already enabled,
848 	 * then STCCR is already set properly.
849 	 */
850 	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
851 		return 0;
852 
853 	if (fsl_ssi_is_i2s_master(ssi_private)) {
854 		ret = fsl_ssi_set_bclk(substream, cpu_dai, hw_params);
855 		if (ret)
856 			return ret;
857 
858 		/* Do not enable the clock if it is already enabled */
859 		if (!(ssi_private->baudclk_streams & BIT(substream->stream))) {
860 			ret = clk_prepare_enable(ssi_private->baudclk);
861 			if (ret)
862 				return ret;
863 
864 			ssi_private->baudclk_streams |= BIT(substream->stream);
865 		}
866 	}
867 
868 	if (!fsl_ssi_is_ac97(ssi_private)) {
869 		u8 i2smode;
870 		/*
871 		 * Switch to normal net mode in order to have a frame sync
872 		 * signal every 32 bits instead of 16 bits
873 		 */
874 		if (fsl_ssi_is_i2s_cbm_cfs(ssi_private) && sample_size == 16)
875 			i2smode = CCSR_SSI_SCR_I2S_MODE_NORMAL |
876 				CCSR_SSI_SCR_NET;
877 		else
878 			i2smode = ssi_private->i2s_mode;
879 
880 		regmap_update_bits(regs, CCSR_SSI_SCR,
881 				CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
882 				channels == 1 ? 0 : i2smode);
883 	}
884 
885 	/*
886 	 * FIXME: The documentation says that SxCCR[WL] should not be
887 	 * modified while the SSI is enabled.  The only time this can
888 	 * happen is if we're trying to do simultaneous playback and
889 	 * capture in asynchronous mode.  Unfortunately, I have been enable
890 	 * to get that to work at all on the P1022DS.  Therefore, we don't
891 	 * bother to disable/enable the SSI when setting SxCCR[WL], because
892 	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
893 	 */
894 
895 	/* In synchronous mode, the SSI uses STCCR for capture */
896 	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
897 	    ssi_private->cpu_dai_drv.symmetric_rates)
898 		regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_WL_MASK,
899 				wl);
900 	else
901 		regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_WL_MASK,
902 				wl);
903 
904 	return 0;
905 }
906 
907 static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
908 		struct snd_soc_dai *cpu_dai)
909 {
910 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
911 	struct fsl_ssi_private *ssi_private =
912 		snd_soc_dai_get_drvdata(rtd->cpu_dai);
913 
914 	if (fsl_ssi_is_i2s_master(ssi_private) &&
915 			ssi_private->baudclk_streams & BIT(substream->stream)) {
916 		clk_disable_unprepare(ssi_private->baudclk);
917 		ssi_private->baudclk_streams &= ~BIT(substream->stream);
918 	}
919 
920 	return 0;
921 }
922 
923 static int _fsl_ssi_set_dai_fmt(struct device *dev,
924 				struct fsl_ssi_private *ssi_private,
925 				unsigned int fmt)
926 {
927 	struct regmap *regs = ssi_private->regs;
928 	u32 strcr = 0, stcr, srcr, scr, mask;
929 	u8 wm;
930 
931 	ssi_private->dai_fmt = fmt;
932 
933 	if (fsl_ssi_is_i2s_master(ssi_private) && IS_ERR(ssi_private->baudclk)) {
934 		dev_err(dev, "baudclk is missing which is necessary for master mode\n");
935 		return -EINVAL;
936 	}
937 
938 	fsl_ssi_setup_reg_vals(ssi_private);
939 
940 	regmap_read(regs, CCSR_SSI_SCR, &scr);
941 	scr &= ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
942 	scr |= CCSR_SSI_SCR_SYNC_TX_FS;
943 
944 	mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
945 		CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
946 		CCSR_SSI_STCR_TEFS;
947 	regmap_read(regs, CCSR_SSI_STCR, &stcr);
948 	regmap_read(regs, CCSR_SSI_SRCR, &srcr);
949 	stcr &= ~mask;
950 	srcr &= ~mask;
951 
952 	ssi_private->i2s_mode = CCSR_SSI_SCR_NET;
953 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
954 	case SND_SOC_DAIFMT_I2S:
955 		regmap_update_bits(regs, CCSR_SSI_STCCR,
956 				   CCSR_SSI_SxCCR_DC_MASK,
957 				   CCSR_SSI_SxCCR_DC(2));
958 		regmap_update_bits(regs, CCSR_SSI_SRCCR,
959 				   CCSR_SSI_SxCCR_DC_MASK,
960 				   CCSR_SSI_SxCCR_DC(2));
961 		switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
962 		case SND_SOC_DAIFMT_CBM_CFS:
963 		case SND_SOC_DAIFMT_CBS_CFS:
964 			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
965 			break;
966 		case SND_SOC_DAIFMT_CBM_CFM:
967 			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
968 			break;
969 		default:
970 			return -EINVAL;
971 		}
972 
973 		/* Data on rising edge of bclk, frame low, 1clk before data */
974 		strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
975 			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
976 		break;
977 	case SND_SOC_DAIFMT_LEFT_J:
978 		/* Data on rising edge of bclk, frame high */
979 		strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
980 		break;
981 	case SND_SOC_DAIFMT_DSP_A:
982 		/* Data on rising edge of bclk, frame high, 1clk before data */
983 		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
984 			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
985 		break;
986 	case SND_SOC_DAIFMT_DSP_B:
987 		/* Data on rising edge of bclk, frame high */
988 		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
989 			CCSR_SSI_STCR_TXBIT0;
990 		break;
991 	case SND_SOC_DAIFMT_AC97:
992 		ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
993 		break;
994 	default:
995 		return -EINVAL;
996 	}
997 	scr |= ssi_private->i2s_mode;
998 
999 	/* DAI clock inversion */
1000 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1001 	case SND_SOC_DAIFMT_NB_NF:
1002 		/* Nothing to do for both normal cases */
1003 		break;
1004 	case SND_SOC_DAIFMT_IB_NF:
1005 		/* Invert bit clock */
1006 		strcr ^= CCSR_SSI_STCR_TSCKP;
1007 		break;
1008 	case SND_SOC_DAIFMT_NB_IF:
1009 		/* Invert frame clock */
1010 		strcr ^= CCSR_SSI_STCR_TFSI;
1011 		break;
1012 	case SND_SOC_DAIFMT_IB_IF:
1013 		/* Invert both clocks */
1014 		strcr ^= CCSR_SSI_STCR_TSCKP;
1015 		strcr ^= CCSR_SSI_STCR_TFSI;
1016 		break;
1017 	default:
1018 		return -EINVAL;
1019 	}
1020 
1021 	/* DAI clock master masks */
1022 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1023 	case SND_SOC_DAIFMT_CBS_CFS:
1024 		strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
1025 		scr |= CCSR_SSI_SCR_SYS_CLK_EN;
1026 		break;
1027 	case SND_SOC_DAIFMT_CBM_CFM:
1028 		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
1029 		break;
1030 	case SND_SOC_DAIFMT_CBM_CFS:
1031 		strcr &= ~CCSR_SSI_STCR_TXDIR;
1032 		strcr |= CCSR_SSI_STCR_TFDIR;
1033 		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
1034 		break;
1035 	default:
1036 		if (!fsl_ssi_is_ac97(ssi_private))
1037 			return -EINVAL;
1038 	}
1039 
1040 	stcr |= strcr;
1041 	srcr |= strcr;
1042 
1043 	if (ssi_private->cpu_dai_drv.symmetric_rates
1044 			|| fsl_ssi_is_ac97(ssi_private)) {
1045 		/* Need to clear RXDIR when using SYNC or AC97 mode */
1046 		srcr &= ~CCSR_SSI_SRCR_RXDIR;
1047 		scr |= CCSR_SSI_SCR_SYN;
1048 	}
1049 
1050 	regmap_write(regs, CCSR_SSI_STCR, stcr);
1051 	regmap_write(regs, CCSR_SSI_SRCR, srcr);
1052 	regmap_write(regs, CCSR_SSI_SCR, scr);
1053 
1054 	/*
1055 	 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
1056 	 * use FIFO 1. We program the transmit water to signal a DMA transfer
1057 	 * if there are only two (or fewer) elements left in the FIFO. Two
1058 	 * elements equals one frame (left channel, right channel). This value,
1059 	 * however, depends on the depth of the transmit buffer.
1060 	 *
1061 	 * We set the watermark on the same level as the DMA burstsize.  For
1062 	 * fiq it is probably better to use the biggest possible watermark
1063 	 * size.
1064 	 */
1065 	if (ssi_private->use_dma)
1066 		wm = ssi_private->fifo_depth - 2;
1067 	else
1068 		wm = ssi_private->fifo_depth;
1069 
1070 	regmap_write(regs, CCSR_SSI_SFCSR,
1071 			CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
1072 			CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm));
1073 
1074 	if (ssi_private->use_dual_fifo) {
1075 		regmap_update_bits(regs, CCSR_SSI_SRCR, CCSR_SSI_SRCR_RFEN1,
1076 				CCSR_SSI_SRCR_RFEN1);
1077 		regmap_update_bits(regs, CCSR_SSI_STCR, CCSR_SSI_STCR_TFEN1,
1078 				CCSR_SSI_STCR_TFEN1);
1079 		regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_TCH_EN,
1080 				CCSR_SSI_SCR_TCH_EN);
1081 	}
1082 
1083 	if ((fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_AC97)
1084 		fsl_ssi_setup_ac97(ssi_private);
1085 
1086 	return 0;
1087 
1088 }
1089 
1090 /**
1091  * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
1092  */
1093 static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
1094 {
1095 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
1096 
1097 	return _fsl_ssi_set_dai_fmt(cpu_dai->dev, ssi_private, fmt);
1098 }
1099 
1100 /**
1101  * fsl_ssi_set_dai_tdm_slot - set TDM slot number
1102  *
1103  * Note: This function can be only called when using SSI as DAI master
1104  */
1105 static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
1106 				u32 rx_mask, int slots, int slot_width)
1107 {
1108 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
1109 	struct regmap *regs = ssi_private->regs;
1110 	u32 val;
1111 
1112 	/* The slot number should be >= 2 if using Network mode or I2S mode */
1113 	regmap_read(regs, CCSR_SSI_SCR, &val);
1114 	val &= CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET;
1115 	if (val && slots < 2) {
1116 		dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
1117 		return -EINVAL;
1118 	}
1119 
1120 	regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_DC_MASK,
1121 			CCSR_SSI_SxCCR_DC(slots));
1122 	regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_DC_MASK,
1123 			CCSR_SSI_SxCCR_DC(slots));
1124 
1125 	/* The register SxMSKs needs SSI to provide essential clock due to
1126 	 * hardware design. So we here temporarily enable SSI to set them.
1127 	 */
1128 	regmap_read(regs, CCSR_SSI_SCR, &val);
1129 	val &= CCSR_SSI_SCR_SSIEN;
1130 	regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN,
1131 			CCSR_SSI_SCR_SSIEN);
1132 
1133 	regmap_write(regs, CCSR_SSI_STMSK, ~tx_mask);
1134 	regmap_write(regs, CCSR_SSI_SRMSK, ~rx_mask);
1135 
1136 	regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, val);
1137 
1138 	return 0;
1139 }
1140 
1141 /**
1142  * fsl_ssi_trigger: start and stop the DMA transfer.
1143  *
1144  * This function is called by ALSA to start, stop, pause, and resume the DMA
1145  * transfer of data.
1146  *
1147  * The DMA channel is in external master start and pause mode, which
1148  * means the SSI completely controls the flow of data.
1149  */
1150 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
1151 			   struct snd_soc_dai *dai)
1152 {
1153 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
1154 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
1155 	struct regmap *regs = ssi_private->regs;
1156 
1157 	switch (cmd) {
1158 	case SNDRV_PCM_TRIGGER_START:
1159 	case SNDRV_PCM_TRIGGER_RESUME:
1160 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1161 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1162 			fsl_ssi_tx_config(ssi_private, true);
1163 		else
1164 			fsl_ssi_rx_config(ssi_private, true);
1165 		break;
1166 
1167 	case SNDRV_PCM_TRIGGER_STOP:
1168 	case SNDRV_PCM_TRIGGER_SUSPEND:
1169 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1170 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1171 			fsl_ssi_tx_config(ssi_private, false);
1172 		else
1173 			fsl_ssi_rx_config(ssi_private, false);
1174 		break;
1175 
1176 	default:
1177 		return -EINVAL;
1178 	}
1179 
1180 	if (fsl_ssi_is_ac97(ssi_private)) {
1181 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1182 			regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_TX_CLR);
1183 		else
1184 			regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_RX_CLR);
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1191 {
1192 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
1193 
1194 	if (ssi_private->soc->imx && ssi_private->use_dma) {
1195 		dai->playback_dma_data = &ssi_private->dma_params_tx;
1196 		dai->capture_dma_data = &ssi_private->dma_params_rx;
1197 	}
1198 
1199 	return 0;
1200 }
1201 
1202 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1203 	.startup	= fsl_ssi_startup,
1204 	.shutdown       = fsl_ssi_shutdown,
1205 	.hw_params	= fsl_ssi_hw_params,
1206 	.hw_free	= fsl_ssi_hw_free,
1207 	.set_fmt	= fsl_ssi_set_dai_fmt,
1208 	.set_sysclk	= fsl_ssi_set_dai_sysclk,
1209 	.set_tdm_slot	= fsl_ssi_set_dai_tdm_slot,
1210 	.trigger	= fsl_ssi_trigger,
1211 };
1212 
1213 /* Template for the CPU dai driver structure */
1214 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1215 	.probe = fsl_ssi_dai_probe,
1216 	.playback = {
1217 		.stream_name = "CPU-Playback",
1218 		.channels_min = 1,
1219 		.channels_max = 32,
1220 		.rates = FSLSSI_I2S_RATES,
1221 		.formats = FSLSSI_I2S_FORMATS,
1222 	},
1223 	.capture = {
1224 		.stream_name = "CPU-Capture",
1225 		.channels_min = 1,
1226 		.channels_max = 32,
1227 		.rates = FSLSSI_I2S_RATES,
1228 		.formats = FSLSSI_I2S_FORMATS,
1229 	},
1230 	.ops = &fsl_ssi_dai_ops,
1231 };
1232 
1233 static const struct snd_soc_component_driver fsl_ssi_component = {
1234 	.name		= "fsl-ssi",
1235 };
1236 
1237 static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1238 	.bus_control = true,
1239 	.probe = fsl_ssi_dai_probe,
1240 	.playback = {
1241 		.stream_name = "AC97 Playback",
1242 		.channels_min = 2,
1243 		.channels_max = 2,
1244 		.rates = SNDRV_PCM_RATE_8000_48000,
1245 		.formats = SNDRV_PCM_FMTBIT_S16_LE,
1246 	},
1247 	.capture = {
1248 		.stream_name = "AC97 Capture",
1249 		.channels_min = 2,
1250 		.channels_max = 2,
1251 		.rates = SNDRV_PCM_RATE_48000,
1252 		.formats = SNDRV_PCM_FMTBIT_S16_LE,
1253 	},
1254 	.ops = &fsl_ssi_dai_ops,
1255 };
1256 
1257 
1258 static struct fsl_ssi_private *fsl_ac97_data;
1259 
1260 static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1261 		unsigned short val)
1262 {
1263 	struct regmap *regs = fsl_ac97_data->regs;
1264 	unsigned int lreg;
1265 	unsigned int lval;
1266 	int ret;
1267 
1268 	if (reg > 0x7f)
1269 		return;
1270 
1271 	ret = clk_prepare_enable(fsl_ac97_data->clk);
1272 	if (ret) {
1273 		pr_err("ac97 write clk_prepare_enable failed: %d\n",
1274 			ret);
1275 		return;
1276 	}
1277 
1278 	lreg = reg <<  12;
1279 	regmap_write(regs, CCSR_SSI_SACADD, lreg);
1280 
1281 	lval = val << 4;
1282 	regmap_write(regs, CCSR_SSI_SACDAT, lval);
1283 
1284 	regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1285 			CCSR_SSI_SACNT_WR);
1286 	udelay(100);
1287 
1288 	clk_disable_unprepare(fsl_ac97_data->clk);
1289 }
1290 
1291 static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1292 		unsigned short reg)
1293 {
1294 	struct regmap *regs = fsl_ac97_data->regs;
1295 
1296 	unsigned short val = -1;
1297 	u32 reg_val;
1298 	unsigned int lreg;
1299 	int ret;
1300 
1301 	ret = clk_prepare_enable(fsl_ac97_data->clk);
1302 	if (ret) {
1303 		pr_err("ac97 read clk_prepare_enable failed: %d\n",
1304 			ret);
1305 		return -1;
1306 	}
1307 
1308 	lreg = (reg & 0x7f) <<  12;
1309 	regmap_write(regs, CCSR_SSI_SACADD, lreg);
1310 	regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1311 			CCSR_SSI_SACNT_RD);
1312 
1313 	udelay(100);
1314 
1315 	regmap_read(regs, CCSR_SSI_SACDAT, &reg_val);
1316 	val = (reg_val >> 4) & 0xffff;
1317 
1318 	clk_disable_unprepare(fsl_ac97_data->clk);
1319 
1320 	return val;
1321 }
1322 
1323 static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1324 	.read		= fsl_ssi_ac97_read,
1325 	.write		= fsl_ssi_ac97_write,
1326 };
1327 
1328 /**
1329  * Make every character in a string lower-case
1330  */
1331 static void make_lowercase(char *s)
1332 {
1333 	char *p = s;
1334 	char c;
1335 
1336 	while ((c = *p)) {
1337 		if ((c >= 'A') && (c <= 'Z'))
1338 			*p = c + ('a' - 'A');
1339 		p++;
1340 	}
1341 }
1342 
1343 static int fsl_ssi_imx_probe(struct platform_device *pdev,
1344 		struct fsl_ssi_private *ssi_private, void __iomem *iomem)
1345 {
1346 	struct device_node *np = pdev->dev.of_node;
1347 	u32 dmas[4];
1348 	int ret;
1349 
1350 	if (ssi_private->has_ipg_clk_name)
1351 		ssi_private->clk = devm_clk_get(&pdev->dev, "ipg");
1352 	else
1353 		ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
1354 	if (IS_ERR(ssi_private->clk)) {
1355 		ret = PTR_ERR(ssi_private->clk);
1356 		dev_err(&pdev->dev, "could not get clock: %d\n", ret);
1357 		return ret;
1358 	}
1359 
1360 	if (!ssi_private->has_ipg_clk_name) {
1361 		ret = clk_prepare_enable(ssi_private->clk);
1362 		if (ret) {
1363 			dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1364 			return ret;
1365 		}
1366 	}
1367 
1368 	/* For those SLAVE implementations, we ignore non-baudclk cases
1369 	 * and, instead, abandon MASTER mode that needs baud clock.
1370 	 */
1371 	ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
1372 	if (IS_ERR(ssi_private->baudclk))
1373 		dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
1374 			 PTR_ERR(ssi_private->baudclk));
1375 
1376 	/*
1377 	 * We have burstsize be "fifo_depth - 2" to match the SSI
1378 	 * watermark setting in fsl_ssi_startup().
1379 	 */
1380 	ssi_private->dma_params_tx.maxburst = ssi_private->fifo_depth - 2;
1381 	ssi_private->dma_params_rx.maxburst = ssi_private->fifo_depth - 2;
1382 	ssi_private->dma_params_tx.addr = ssi_private->ssi_phys + CCSR_SSI_STX0;
1383 	ssi_private->dma_params_rx.addr = ssi_private->ssi_phys + CCSR_SSI_SRX0;
1384 
1385 	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1386 	if (ssi_private->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
1387 		ssi_private->use_dual_fifo = true;
1388 		/* When using dual fifo mode, we need to keep watermark
1389 		 * as even numbers due to dma script limitation.
1390 		 */
1391 		ssi_private->dma_params_tx.maxburst &= ~0x1;
1392 		ssi_private->dma_params_rx.maxburst &= ~0x1;
1393 	}
1394 
1395 	if (!ssi_private->use_dma) {
1396 
1397 		/*
1398 		 * Some boards use an incompatible codec. To get it
1399 		 * working, we are using imx-fiq-pcm-audio, that
1400 		 * can handle those codecs. DMA is not possible in this
1401 		 * situation.
1402 		 */
1403 
1404 		ssi_private->fiq_params.irq = ssi_private->irq;
1405 		ssi_private->fiq_params.base = iomem;
1406 		ssi_private->fiq_params.dma_params_rx =
1407 			&ssi_private->dma_params_rx;
1408 		ssi_private->fiq_params.dma_params_tx =
1409 			&ssi_private->dma_params_tx;
1410 
1411 		ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
1412 		if (ret)
1413 			goto error_pcm;
1414 	} else {
1415 		ret = imx_pcm_dma_init(pdev, IMX_SSI_DMABUF_SIZE);
1416 		if (ret)
1417 			goto error_pcm;
1418 	}
1419 
1420 	return 0;
1421 
1422 error_pcm:
1423 
1424 	if (!ssi_private->has_ipg_clk_name)
1425 		clk_disable_unprepare(ssi_private->clk);
1426 	return ret;
1427 }
1428 
1429 static void fsl_ssi_imx_clean(struct platform_device *pdev,
1430 		struct fsl_ssi_private *ssi_private)
1431 {
1432 	if (!ssi_private->use_dma)
1433 		imx_pcm_fiq_exit(pdev);
1434 	if (!ssi_private->has_ipg_clk_name)
1435 		clk_disable_unprepare(ssi_private->clk);
1436 }
1437 
1438 static int fsl_ssi_probe(struct platform_device *pdev)
1439 {
1440 	struct fsl_ssi_private *ssi_private;
1441 	int ret = 0;
1442 	struct device_node *np = pdev->dev.of_node;
1443 	const struct of_device_id *of_id;
1444 	const char *p, *sprop;
1445 	const uint32_t *iprop;
1446 	struct resource *res;
1447 	void __iomem *iomem;
1448 	char name[64];
1449 	struct regmap_config regconfig = fsl_ssi_regconfig;
1450 
1451 	of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
1452 	if (!of_id || !of_id->data)
1453 		return -EINVAL;
1454 
1455 	ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private),
1456 			GFP_KERNEL);
1457 	if (!ssi_private) {
1458 		dev_err(&pdev->dev, "could not allocate DAI object\n");
1459 		return -ENOMEM;
1460 	}
1461 
1462 	ssi_private->soc = of_id->data;
1463 	ssi_private->dev = &pdev->dev;
1464 
1465 	sprop = of_get_property(np, "fsl,mode", NULL);
1466 	if (sprop) {
1467 		if (!strcmp(sprop, "ac97-slave"))
1468 			ssi_private->dai_fmt = SND_SOC_DAIFMT_AC97;
1469 	}
1470 
1471 	ssi_private->use_dma = !of_property_read_bool(np,
1472 			"fsl,fiq-stream-filter");
1473 
1474 	if (fsl_ssi_is_ac97(ssi_private)) {
1475 		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
1476 				sizeof(fsl_ssi_ac97_dai));
1477 
1478 		fsl_ac97_data = ssi_private;
1479 
1480 		ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1481 		if (ret) {
1482 			dev_err(&pdev->dev, "could not set AC'97 ops\n");
1483 			return ret;
1484 		}
1485 	} else {
1486 		/* Initialize this copy of the CPU DAI driver structure */
1487 		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
1488 		       sizeof(fsl_ssi_dai_template));
1489 	}
1490 	ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev);
1491 
1492 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1493 	iomem = devm_ioremap_resource(&pdev->dev, res);
1494 	if (IS_ERR(iomem))
1495 		return PTR_ERR(iomem);
1496 	ssi_private->ssi_phys = res->start;
1497 
1498 	if (ssi_private->soc->imx21regs) {
1499 		/*
1500 		 * According to datasheet imx21-class SSI
1501 		 * don't have SACC{ST,EN,DIS} regs.
1502 		 */
1503 		regconfig.max_register = CCSR_SSI_SRMSK;
1504 		regconfig.num_reg_defaults_raw =
1505 			CCSR_SSI_SRMSK / sizeof(uint32_t) + 1;
1506 	}
1507 
1508 	ret = of_property_match_string(np, "clock-names", "ipg");
1509 	if (ret < 0) {
1510 		ssi_private->has_ipg_clk_name = false;
1511 		ssi_private->regs = devm_regmap_init_mmio(&pdev->dev, iomem,
1512 			&regconfig);
1513 	} else {
1514 		ssi_private->has_ipg_clk_name = true;
1515 		ssi_private->regs = devm_regmap_init_mmio_clk(&pdev->dev,
1516 			"ipg", iomem, &regconfig);
1517 	}
1518 	if (IS_ERR(ssi_private->regs)) {
1519 		dev_err(&pdev->dev, "Failed to init register map\n");
1520 		return PTR_ERR(ssi_private->regs);
1521 	}
1522 
1523 	ssi_private->irq = platform_get_irq(pdev, 0);
1524 	if (ssi_private->irq < 0) {
1525 		dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
1526 		return ssi_private->irq;
1527 	}
1528 
1529 	/* Are the RX and the TX clocks locked? */
1530 	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1531 		if (!fsl_ssi_is_ac97(ssi_private))
1532 			ssi_private->cpu_dai_drv.symmetric_rates = 1;
1533 
1534 		ssi_private->cpu_dai_drv.symmetric_channels = 1;
1535 		ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
1536 	}
1537 
1538 	/* Determine the FIFO depth. */
1539 	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1540 	if (iprop)
1541 		ssi_private->fifo_depth = be32_to_cpup(iprop);
1542 	else
1543                 /* Older 8610 DTs didn't have the fifo-depth property */
1544 		ssi_private->fifo_depth = 8;
1545 
1546 	dev_set_drvdata(&pdev->dev, ssi_private);
1547 
1548 	if (ssi_private->soc->imx) {
1549 		ret = fsl_ssi_imx_probe(pdev, ssi_private, iomem);
1550 		if (ret)
1551 			return ret;
1552 	}
1553 
1554 	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
1555 					      &ssi_private->cpu_dai_drv, 1);
1556 	if (ret) {
1557 		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1558 		goto error_asoc_register;
1559 	}
1560 
1561 	if (ssi_private->use_dma) {
1562 		ret = devm_request_irq(&pdev->dev, ssi_private->irq,
1563 					fsl_ssi_isr, 0, dev_name(&pdev->dev),
1564 					ssi_private);
1565 		if (ret < 0) {
1566 			dev_err(&pdev->dev, "could not claim irq %u\n",
1567 					ssi_private->irq);
1568 			goto error_asoc_register;
1569 		}
1570 	}
1571 
1572 	ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev);
1573 	if (ret)
1574 		goto error_asoc_register;
1575 
1576 	/*
1577 	 * If codec-handle property is missing from SSI node, we assume
1578 	 * that the machine driver uses new binding which does not require
1579 	 * SSI driver to trigger machine driver's probe.
1580 	 */
1581 	if (!of_get_property(np, "codec-handle", NULL))
1582 		goto done;
1583 
1584 	/* Trigger the machine driver's probe function.  The platform driver
1585 	 * name of the machine driver is taken from /compatible property of the
1586 	 * device tree.  We also pass the address of the CPU DAI driver
1587 	 * structure.
1588 	 */
1589 	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
1590 	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1591 	p = strrchr(sprop, ',');
1592 	if (p)
1593 		sprop = p + 1;
1594 	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
1595 	make_lowercase(name);
1596 
1597 	ssi_private->pdev =
1598 		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1599 	if (IS_ERR(ssi_private->pdev)) {
1600 		ret = PTR_ERR(ssi_private->pdev);
1601 		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1602 		goto error_sound_card;
1603 	}
1604 
1605 done:
1606 	if (ssi_private->dai_fmt)
1607 		_fsl_ssi_set_dai_fmt(&pdev->dev, ssi_private,
1608 				     ssi_private->dai_fmt);
1609 
1610 	if (fsl_ssi_is_ac97(ssi_private)) {
1611 		u32 ssi_idx;
1612 
1613 		ret = of_property_read_u32(np, "cell-index", &ssi_idx);
1614 		if (ret) {
1615 			dev_err(&pdev->dev, "cannot get SSI index property\n");
1616 			goto error_sound_card;
1617 		}
1618 
1619 		ssi_private->pdev =
1620 			platform_device_register_data(NULL,
1621 					"ac97-codec", ssi_idx, NULL, 0);
1622 		if (IS_ERR(ssi_private->pdev)) {
1623 			ret = PTR_ERR(ssi_private->pdev);
1624 			dev_err(&pdev->dev,
1625 				"failed to register AC97 codec platform: %d\n",
1626 				ret);
1627 			goto error_sound_card;
1628 		}
1629 	}
1630 
1631 	return 0;
1632 
1633 error_sound_card:
1634 	fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1635 
1636 error_asoc_register:
1637 	if (ssi_private->soc->imx)
1638 		fsl_ssi_imx_clean(pdev, ssi_private);
1639 
1640 	return ret;
1641 }
1642 
1643 static int fsl_ssi_remove(struct platform_device *pdev)
1644 {
1645 	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1646 
1647 	fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1648 
1649 	if (ssi_private->pdev)
1650 		platform_device_unregister(ssi_private->pdev);
1651 
1652 	if (ssi_private->soc->imx)
1653 		fsl_ssi_imx_clean(pdev, ssi_private);
1654 
1655 	if (fsl_ssi_is_ac97(ssi_private))
1656 		snd_soc_set_ac97_ops(NULL);
1657 
1658 	return 0;
1659 }
1660 
1661 #ifdef CONFIG_PM_SLEEP
1662 static int fsl_ssi_suspend(struct device *dev)
1663 {
1664 	struct fsl_ssi_private *ssi_private = dev_get_drvdata(dev);
1665 	struct regmap *regs = ssi_private->regs;
1666 
1667 	regmap_read(regs, CCSR_SSI_SFCSR,
1668 			&ssi_private->regcache_sfcsr);
1669 	regmap_read(regs, CCSR_SSI_SACNT,
1670 			&ssi_private->regcache_sacnt);
1671 
1672 	regcache_cache_only(regs, true);
1673 	regcache_mark_dirty(regs);
1674 
1675 	return 0;
1676 }
1677 
1678 static int fsl_ssi_resume(struct device *dev)
1679 {
1680 	struct fsl_ssi_private *ssi_private = dev_get_drvdata(dev);
1681 	struct regmap *regs = ssi_private->regs;
1682 
1683 	regcache_cache_only(regs, false);
1684 
1685 	regmap_update_bits(regs, CCSR_SSI_SFCSR,
1686 			CCSR_SSI_SFCSR_RFWM1_MASK | CCSR_SSI_SFCSR_TFWM1_MASK |
1687 			CCSR_SSI_SFCSR_RFWM0_MASK | CCSR_SSI_SFCSR_TFWM0_MASK,
1688 			ssi_private->regcache_sfcsr);
1689 	regmap_write(regs, CCSR_SSI_SACNT,
1690 			ssi_private->regcache_sacnt);
1691 
1692 	return regcache_sync(regs);
1693 }
1694 #endif /* CONFIG_PM_SLEEP */
1695 
1696 static const struct dev_pm_ops fsl_ssi_pm = {
1697 	SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
1698 };
1699 
1700 static struct platform_driver fsl_ssi_driver = {
1701 	.driver = {
1702 		.name = "fsl-ssi-dai",
1703 		.of_match_table = fsl_ssi_ids,
1704 		.pm = &fsl_ssi_pm,
1705 	},
1706 	.probe = fsl_ssi_probe,
1707 	.remove = fsl_ssi_remove,
1708 };
1709 
1710 module_platform_driver(fsl_ssi_driver);
1711 
1712 MODULE_ALIAS("platform:fsl-ssi-dai");
1713 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1714 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1715 MODULE_LICENSE("GPL v2");
1716