xref: /linux/sound/soc/fsl/fsl_ssi.c (revision 6fd44a30d0297c22406276ffb717f373170943ee)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
4 //
5 // Author: Timur Tabi <timur@freescale.com>
6 //
7 // Copyright 2007-2010 Freescale Semiconductor, Inc.
8 //
9 // Some notes why imx-pcm-fiq is used instead of DMA on some boards:
10 //
11 // The i.MX SSI core has some nasty limitations in AC97 mode. While most
12 // sane processor vendors have a FIFO per AC97 slot, the i.MX has only
13 // one FIFO which combines all valid receive slots. We cannot even select
14 // which slots we want to receive. The WM9712 with which this driver
15 // was developed with always sends GPIO status data in slot 12 which
16 // we receive in our (PCM-) data stream. The only chance we have is to
17 // manually skip this data in the FIQ handler. With sampling rates different
18 // from 48000Hz not every frame has valid receive data, so the ratio
19 // between pcm data and GPIO status data changes. Our FIQ handler is not
20 // able to handle this, hence this driver only works with 48000Hz sampling
21 // rate.
22 // Reading and writing AC97 registers is another challenge. The core
23 // provides us status bits when the read register is updated with *another*
24 // value. When we read the same register two times (and the register still
25 // contains the same value) these status bits are not set. We work
26 // around this by not polling these bits but only wait a fixed delay.
27 
28 #include <linux/init.h>
29 #include <linux/io.h>
30 #include <linux/module.h>
31 #include <linux/interrupt.h>
32 #include <linux/clk.h>
33 #include <linux/ctype.h>
34 #include <linux/device.h>
35 #include <linux/delay.h>
36 #include <linux/mutex.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/of.h>
40 #include <linux/of_address.h>
41 #include <linux/of_irq.h>
42 #include <linux/of_platform.h>
43 #include <linux/dma/imx-dma.h>
44 
45 #include <sound/core.h>
46 #include <sound/pcm.h>
47 #include <sound/pcm_params.h>
48 #include <sound/initval.h>
49 #include <sound/soc.h>
50 #include <sound/dmaengine_pcm.h>
51 
52 #include "fsl_ssi.h"
53 #include "imx-pcm.h"
54 
55 /* Define RX and TX to index ssi->regvals array; Can be 0 or 1 only */
56 #define RX 0
57 #define TX 1
58 
59 /**
60  * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
61  *
62  * The SSI has a limitation in that the samples must be in the same byte
63  * order as the host CPU.  This is because when multiple bytes are written
64  * to the STX register, the bytes and bits must be written in the same
65  * order.  The STX is a shift register, so all the bits need to be aligned
66  * (bit-endianness must match byte-endianness).  Processors typically write
67  * the bits within a byte in the same order that the bytes of a word are
68  * written in.  So if the host CPU is big-endian, then only big-endian
69  * samples will be written to STX properly.
70  */
71 #ifdef __BIG_ENDIAN
72 #define FSLSSI_I2S_FORMATS \
73 	(SNDRV_PCM_FMTBIT_S8 | \
74 	 SNDRV_PCM_FMTBIT_S16_BE | \
75 	 SNDRV_PCM_FMTBIT_S18_3BE | \
76 	 SNDRV_PCM_FMTBIT_S20_3BE | \
77 	 SNDRV_PCM_FMTBIT_S24_3BE | \
78 	 SNDRV_PCM_FMTBIT_S24_BE)
79 #else
80 #define FSLSSI_I2S_FORMATS \
81 	(SNDRV_PCM_FMTBIT_S8 | \
82 	 SNDRV_PCM_FMTBIT_S16_LE | \
83 	 SNDRV_PCM_FMTBIT_S18_3LE | \
84 	 SNDRV_PCM_FMTBIT_S20_3LE | \
85 	 SNDRV_PCM_FMTBIT_S24_3LE | \
86 	 SNDRV_PCM_FMTBIT_S24_LE)
87 #endif
88 
89 /*
90  * In AC97 mode, TXDIR bit is forced to 0 and TFDIR bit is forced to 1:
91  *  - SSI inputs external bit clock and outputs frame sync clock -- CBM_CFS
92  *  - Also have NB_NF to mark these two clocks will not be inverted
93  */
94 #define FSLSSI_AC97_DAIFMT \
95 	(SND_SOC_DAIFMT_AC97 | \
96 	 SND_SOC_DAIFMT_BC_FP | \
97 	 SND_SOC_DAIFMT_NB_NF)
98 
99 #define FSLSSI_SIER_DBG_RX_FLAGS \
100 	(SSI_SIER_RFF0_EN | \
101 	 SSI_SIER_RLS_EN | \
102 	 SSI_SIER_RFS_EN | \
103 	 SSI_SIER_ROE0_EN | \
104 	 SSI_SIER_RFRC_EN)
105 #define FSLSSI_SIER_DBG_TX_FLAGS \
106 	(SSI_SIER_TFE0_EN | \
107 	 SSI_SIER_TLS_EN | \
108 	 SSI_SIER_TFS_EN | \
109 	 SSI_SIER_TUE0_EN | \
110 	 SSI_SIER_TFRC_EN)
111 
112 enum fsl_ssi_type {
113 	FSL_SSI_MCP8610,
114 	FSL_SSI_MX21,
115 	FSL_SSI_MX35,
116 	FSL_SSI_MX51,
117 };
118 
119 struct fsl_ssi_regvals {
120 	u32 sier;
121 	u32 srcr;
122 	u32 stcr;
123 	u32 scr;
124 };
125 
126 static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
127 {
128 	switch (reg) {
129 	case REG_SSI_SACCEN:
130 	case REG_SSI_SACCDIS:
131 		return false;
132 	default:
133 		return true;
134 	}
135 }
136 
137 static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
138 {
139 	switch (reg) {
140 	case REG_SSI_STX0:
141 	case REG_SSI_STX1:
142 	case REG_SSI_SRX0:
143 	case REG_SSI_SRX1:
144 	case REG_SSI_SISR:
145 	case REG_SSI_SFCSR:
146 	case REG_SSI_SACNT:
147 	case REG_SSI_SACADD:
148 	case REG_SSI_SACDAT:
149 	case REG_SSI_SATAG:
150 	case REG_SSI_SACCST:
151 	case REG_SSI_SOR:
152 		return true;
153 	default:
154 		return false;
155 	}
156 }
157 
158 static bool fsl_ssi_precious_reg(struct device *dev, unsigned int reg)
159 {
160 	switch (reg) {
161 	case REG_SSI_SRX0:
162 	case REG_SSI_SRX1:
163 	case REG_SSI_SISR:
164 	case REG_SSI_SACADD:
165 	case REG_SSI_SACDAT:
166 	case REG_SSI_SATAG:
167 		return true;
168 	default:
169 		return false;
170 	}
171 }
172 
173 static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
174 {
175 	switch (reg) {
176 	case REG_SSI_SRX0:
177 	case REG_SSI_SRX1:
178 	case REG_SSI_SACCST:
179 		return false;
180 	default:
181 		return true;
182 	}
183 }
184 
185 static const struct regmap_config fsl_ssi_regconfig = {
186 	.max_register = REG_SSI_SACCDIS,
187 	.reg_bits = 32,
188 	.val_bits = 32,
189 	.reg_stride = 4,
190 	.val_format_endian = REGMAP_ENDIAN_NATIVE,
191 	.num_reg_defaults_raw = REG_SSI_SACCDIS / sizeof(uint32_t) + 1,
192 	.readable_reg = fsl_ssi_readable_reg,
193 	.volatile_reg = fsl_ssi_volatile_reg,
194 	.precious_reg = fsl_ssi_precious_reg,
195 	.writeable_reg = fsl_ssi_writeable_reg,
196 	.cache_type = REGCACHE_FLAT,
197 };
198 
199 struct fsl_ssi_soc_data {
200 	bool imx;
201 	bool imx21regs; /* imx21-class SSI - no SACC{ST,EN,DIS} regs */
202 	bool offline_config;
203 	u32 sisr_write_mask;
204 };
205 
206 /**
207  * struct fsl_ssi - per-SSI private data
208  * @regs: Pointer to the regmap registers
209  * @irq: IRQ of this SSI
210  * @cpu_dai_drv: CPU DAI driver for this device
211  * @dai_fmt: DAI configuration this device is currently used with
212  * @streams: Mask of current active streams: BIT(TX) and BIT(RX)
213  * @i2s_net: I2S and Network mode configurations of SCR register
214  *           (this is the initial settings based on the DAI format)
215  * @synchronous: Use synchronous mode - both of TX and RX use STCK and SFCK
216  * @use_dma: DMA is used or FIQ with stream filter
217  * @use_dual_fifo: DMA with support for dual FIFO mode
218  * @use_dyna_fifo: DMA with support for multi FIFO script
219  * @has_ipg_clk_name: If "ipg" is in the clock name list of device tree
220  * @fifo_depth: Depth of the SSI FIFOs
221  * @slot_width: Width of each DAI slot
222  * @slots: Number of slots
223  * @regvals: Specific RX/TX register settings
224  * @clk: Clock source to access register
225  * @baudclk: Clock source to generate bit and frame-sync clocks
226  * @baudclk_streams: Active streams that are using baudclk
227  * @regcache_sfcsr: Cache sfcsr register value during suspend and resume
228  * @regcache_sacnt: Cache sacnt register value during suspend and resume
229  * @dma_params_tx: DMA transmit parameters
230  * @dma_params_rx: DMA receive parameters
231  * @ssi_phys: physical address of the SSI registers
232  * @fiq_params: FIQ stream filtering parameters
233  * @card_pdev: Platform_device pointer to register a sound card for PowerPC or
234  *             to register a CODEC platform device for AC97
235  * @card_name: Platform_device name to register a sound card for PowerPC or
236  *             to register a CODEC platform device for AC97
237  * @card_idx: The index of SSI to register a sound card for PowerPC or
238  *            to register a CODEC platform device for AC97
239  * @dbg_stats: Debugging statistics
240  * @soc: SoC specific data
241  * @dev: Pointer to &pdev->dev
242  * @fifo_watermark: The FIFO watermark setting. Notifies DMA when there are
243  *                  @fifo_watermark or fewer words in TX fifo or
244  *                  @fifo_watermark or more empty words in RX fifo.
245  * @dma_maxburst: Max number of words to transfer in one go. So far,
246  *                this is always the same as fifo_watermark.
247  * @ac97_reg_lock: Mutex lock to serialize AC97 register access operations
248  * @audio_config: configure for dma multi fifo script
249  */
250 struct fsl_ssi {
251 	struct regmap *regs;
252 	int irq;
253 	struct snd_soc_dai_driver cpu_dai_drv;
254 
255 	unsigned int dai_fmt;
256 	u8 streams;
257 	u8 i2s_net;
258 	bool synchronous;
259 	bool use_dma;
260 	bool use_dual_fifo;
261 	bool use_dyna_fifo;
262 	bool has_ipg_clk_name;
263 	unsigned int fifo_depth;
264 	unsigned int slot_width;
265 	unsigned int slots;
266 	struct fsl_ssi_regvals regvals[2];
267 
268 	struct clk *clk;
269 	struct clk *baudclk;
270 	unsigned int baudclk_streams;
271 
272 	u32 regcache_sfcsr;
273 	u32 regcache_sacnt;
274 
275 	struct snd_dmaengine_dai_dma_data dma_params_tx;
276 	struct snd_dmaengine_dai_dma_data dma_params_rx;
277 	dma_addr_t ssi_phys;
278 
279 	struct imx_pcm_fiq_params fiq_params;
280 
281 	struct platform_device *card_pdev;
282 	char card_name[32];
283 	u32 card_idx;
284 
285 	struct fsl_ssi_dbg dbg_stats;
286 
287 	const struct fsl_ssi_soc_data *soc;
288 	struct device *dev;
289 
290 	u32 fifo_watermark;
291 	u32 dma_maxburst;
292 
293 	struct mutex ac97_reg_lock;
294 	struct sdma_peripheral_config audio_config[2];
295 };
296 
297 /*
298  * SoC specific data
299  *
300  * Notes:
301  * 1) SSI in earlier SoCS has critical bits in control registers that
302  *    cannot be changed after SSI starts running -- a software reset
303  *    (set SSIEN to 0) is required to change their values. So adding
304  *    an offline_config flag for these SoCs.
305  * 2) SDMA is available since imx35. However, imx35 does not support
306  *    DMA bits changing when SSI is running, so set offline_config.
307  * 3) imx51 and later versions support register configurations when
308  *    SSI is running (SSIEN); For these versions, DMA needs to be
309  *    configured before SSI sends DMA request to avoid an undefined
310  *    DMA request on the SDMA side.
311  */
312 
313 static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
314 	.imx = false,
315 	.offline_config = true,
316 	.sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
317 			   SSI_SISR_ROE0 | SSI_SISR_ROE1 |
318 			   SSI_SISR_TUE0 | SSI_SISR_TUE1,
319 };
320 
321 static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
322 	.imx = true,
323 	.imx21regs = true,
324 	.offline_config = true,
325 	.sisr_write_mask = 0,
326 };
327 
328 static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
329 	.imx = true,
330 	.offline_config = true,
331 	.sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
332 			   SSI_SISR_ROE0 | SSI_SISR_ROE1 |
333 			   SSI_SISR_TUE0 | SSI_SISR_TUE1,
334 };
335 
336 static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
337 	.imx = true,
338 	.offline_config = false,
339 	.sisr_write_mask = SSI_SISR_ROE0 | SSI_SISR_ROE1 |
340 			   SSI_SISR_TUE0 | SSI_SISR_TUE1,
341 };
342 
343 static const struct of_device_id fsl_ssi_ids[] = {
344 	{ .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
345 	{ .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
346 	{ .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
347 	{ .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
348 	{}
349 };
350 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
351 
352 static bool fsl_ssi_is_ac97(struct fsl_ssi *ssi)
353 {
354 	return (ssi->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
355 		SND_SOC_DAIFMT_AC97;
356 }
357 
358 static bool fsl_ssi_is_i2s_clock_provider(struct fsl_ssi *ssi)
359 {
360 	return (ssi->dai_fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) ==
361 		SND_SOC_DAIFMT_BP_FP;
362 }
363 
364 static bool fsl_ssi_is_i2s_bc_fp(struct fsl_ssi *ssi)
365 {
366 	return (ssi->dai_fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) ==
367 		SND_SOC_DAIFMT_BC_FP;
368 }
369 
370 /**
371  * fsl_ssi_isr - Interrupt handler to gather states
372  * @irq: irq number
373  * @dev_id: context
374  */
375 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
376 {
377 	struct fsl_ssi *ssi = dev_id;
378 	struct regmap *regs = ssi->regs;
379 	u32 sisr, sisr2;
380 
381 	regmap_read(regs, REG_SSI_SISR, &sisr);
382 
383 	sisr2 = sisr & ssi->soc->sisr_write_mask;
384 	/* Clear the bits that we set */
385 	if (sisr2)
386 		regmap_write(regs, REG_SSI_SISR, sisr2);
387 
388 	fsl_ssi_dbg_isr(&ssi->dbg_stats, sisr);
389 
390 	return IRQ_HANDLED;
391 }
392 
393 /**
394  * fsl_ssi_config_enable - Set SCR, SIER, STCR and SRCR registers with
395  * cached values in regvals
396  * @ssi: SSI context
397  * @tx: direction
398  *
399  * Notes:
400  * 1) For offline_config SoCs, enable all necessary bits of both streams
401  *    when 1st stream starts, even if the opposite stream will not start
402  * 2) It also clears FIFO before setting regvals; SOR is safe to set online
403  */
404 static void fsl_ssi_config_enable(struct fsl_ssi *ssi, bool tx)
405 {
406 	struct fsl_ssi_regvals *vals = ssi->regvals;
407 	int dir = tx ? TX : RX;
408 	u32 sier, srcr, stcr;
409 
410 	/* Clear dirty data in the FIFO; It also prevents channel slipping */
411 	regmap_update_bits(ssi->regs, REG_SSI_SOR,
412 			   SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
413 
414 	/*
415 	 * On offline_config SoCs, SxCR and SIER are already configured when
416 	 * the previous stream started. So skip all SxCR and SIER settings
417 	 * to prevent online reconfigurations, then jump to set SCR directly
418 	 */
419 	if (ssi->soc->offline_config && ssi->streams)
420 		goto enable_scr;
421 
422 	if (ssi->soc->offline_config) {
423 		/*
424 		 * Online reconfiguration not supported, so enable all bits for
425 		 * both streams at once to avoid necessity of reconfigurations
426 		 */
427 		srcr = vals[RX].srcr | vals[TX].srcr;
428 		stcr = vals[RX].stcr | vals[TX].stcr;
429 		sier = vals[RX].sier | vals[TX].sier;
430 	} else {
431 		/* Otherwise, only set bits for the current stream */
432 		srcr = vals[dir].srcr;
433 		stcr = vals[dir].stcr;
434 		sier = vals[dir].sier;
435 	}
436 
437 	/* Configure SRCR, STCR and SIER at once */
438 	regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, srcr);
439 	regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, stcr);
440 	regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, sier);
441 
442 enable_scr:
443 	/*
444 	 * Start DMA before setting TE to avoid FIFO underrun
445 	 * which may cause a channel slip or a channel swap
446 	 *
447 	 * TODO: FIQ cases might also need this upon testing
448 	 */
449 	if (ssi->use_dma && tx) {
450 		int try = 100;
451 		u32 sfcsr;
452 
453 		/* Enable SSI first to send TX DMA request */
454 		regmap_update_bits(ssi->regs, REG_SSI_SCR,
455 				   SSI_SCR_SSIEN, SSI_SCR_SSIEN);
456 
457 		/* Busy wait until TX FIFO not empty -- DMA working */
458 		do {
459 			regmap_read(ssi->regs, REG_SSI_SFCSR, &sfcsr);
460 			if (SSI_SFCSR_TFCNT0(sfcsr))
461 				break;
462 		} while (--try);
463 
464 		/* FIFO still empty -- something might be wrong */
465 		if (!SSI_SFCSR_TFCNT0(sfcsr))
466 			dev_warn(ssi->dev, "Timeout waiting TX FIFO filling\n");
467 	}
468 	/* Enable all remaining bits in SCR */
469 	regmap_update_bits(ssi->regs, REG_SSI_SCR,
470 			   vals[dir].scr, vals[dir].scr);
471 
472 	/* Log the enabled stream to the mask */
473 	ssi->streams |= BIT(dir);
474 }
475 
476 /*
477  * Exclude bits that are used by the opposite stream
478  *
479  * When both streams are active, disabling some bits for the current stream
480  * might break the other stream if these bits are used by it.
481  *
482  * @vals : regvals of the current stream
483  * @avals: regvals of the opposite stream
484  * @aactive: active state of the opposite stream
485  *
486  *  1) XOR vals and avals to get the differences if the other stream is active;
487  *     Otherwise, return current vals if the other stream is not active
488  *  2) AND the result of 1) with the current vals
489  */
490 #define _ssi_xor_shared_bits(vals, avals, aactive) \
491 	((vals) ^ ((avals) * (aactive)))
492 
493 #define ssi_excl_shared_bits(vals, avals, aactive) \
494 	((vals) & _ssi_xor_shared_bits(vals, avals, aactive))
495 
496 /**
497  * fsl_ssi_config_disable - Unset SCR, SIER, STCR and SRCR registers
498  * with cached values in regvals
499  * @ssi: SSI context
500  * @tx: direction
501  *
502  * Notes:
503  * 1) For offline_config SoCs, to avoid online reconfigurations, disable all
504  *    bits of both streams at once when the last stream is abort to end
505  * 2) It also clears FIFO after unsetting regvals; SOR is safe to set online
506  */
507 static void fsl_ssi_config_disable(struct fsl_ssi *ssi, bool tx)
508 {
509 	struct fsl_ssi_regvals *vals, *avals;
510 	u32 sier, srcr, stcr, scr;
511 	int adir = tx ? RX : TX;
512 	int dir = tx ? TX : RX;
513 	bool aactive;
514 
515 	/* Check if the opposite stream is active */
516 	aactive = ssi->streams & BIT(adir);
517 
518 	vals = &ssi->regvals[dir];
519 
520 	/* Get regvals of the opposite stream to keep opposite stream safe */
521 	avals = &ssi->regvals[adir];
522 
523 	/*
524 	 * To keep the other stream safe, exclude shared bits between
525 	 * both streams, and get safe bits to disable current stream
526 	 */
527 	scr = ssi_excl_shared_bits(vals->scr, avals->scr, aactive);
528 
529 	/* Disable safe bits of SCR register for the current stream */
530 	regmap_update_bits(ssi->regs, REG_SSI_SCR, scr, 0);
531 
532 	/* Log the disabled stream to the mask */
533 	ssi->streams &= ~BIT(dir);
534 
535 	/*
536 	 * On offline_config SoCs, if the other stream is active, skip
537 	 * SxCR and SIER settings to prevent online reconfigurations
538 	 */
539 	if (ssi->soc->offline_config && aactive)
540 		goto fifo_clear;
541 
542 	if (ssi->soc->offline_config) {
543 		/* Now there is only current stream active, disable all bits */
544 		srcr = vals->srcr | avals->srcr;
545 		stcr = vals->stcr | avals->stcr;
546 		sier = vals->sier | avals->sier;
547 	} else {
548 		/*
549 		 * To keep the other stream safe, exclude shared bits between
550 		 * both streams, and get safe bits to disable current stream
551 		 */
552 		sier = ssi_excl_shared_bits(vals->sier, avals->sier, aactive);
553 		srcr = ssi_excl_shared_bits(vals->srcr, avals->srcr, aactive);
554 		stcr = ssi_excl_shared_bits(vals->stcr, avals->stcr, aactive);
555 	}
556 
557 	/* Clear configurations of SRCR, STCR and SIER at once */
558 	regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, 0);
559 	regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, 0);
560 	regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, 0);
561 
562 fifo_clear:
563 	/* Clear remaining data in the FIFO */
564 	regmap_update_bits(ssi->regs, REG_SSI_SOR,
565 			   SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
566 }
567 
568 static void fsl_ssi_tx_ac97_saccst_setup(struct fsl_ssi *ssi)
569 {
570 	struct regmap *regs = ssi->regs;
571 
572 	/* no SACC{ST,EN,DIS} regs on imx21-class SSI */
573 	if (!ssi->soc->imx21regs) {
574 		/* Disable all channel slots */
575 		regmap_write(regs, REG_SSI_SACCDIS, 0xff);
576 		/* Enable slots 3 & 4 -- PCM Playback Left & Right channels */
577 		regmap_write(regs, REG_SSI_SACCEN, 0x300);
578 	}
579 }
580 
581 /**
582  * fsl_ssi_setup_regvals - Cache critical bits of SIER, SRCR, STCR and
583  * SCR to later set them safely
584  * @ssi: SSI context
585  */
586 static void fsl_ssi_setup_regvals(struct fsl_ssi *ssi)
587 {
588 	struct fsl_ssi_regvals *vals = ssi->regvals;
589 
590 	vals[RX].sier = SSI_SIER_RFF0_EN | FSLSSI_SIER_DBG_RX_FLAGS;
591 	vals[RX].srcr = SSI_SRCR_RFEN0;
592 	vals[RX].scr = SSI_SCR_SSIEN | SSI_SCR_RE;
593 	vals[TX].sier = SSI_SIER_TFE0_EN | FSLSSI_SIER_DBG_TX_FLAGS;
594 	vals[TX].stcr = SSI_STCR_TFEN0;
595 	vals[TX].scr = SSI_SCR_SSIEN | SSI_SCR_TE;
596 
597 	/* AC97 has already enabled SSIEN, RE and TE, so ignore them */
598 	if (fsl_ssi_is_ac97(ssi))
599 		vals[RX].scr = vals[TX].scr = 0;
600 
601 	if (ssi->use_dual_fifo) {
602 		vals[RX].srcr |= SSI_SRCR_RFEN1;
603 		vals[TX].stcr |= SSI_STCR_TFEN1;
604 	}
605 
606 	if (ssi->use_dma) {
607 		vals[RX].sier |= SSI_SIER_RDMAE;
608 		vals[TX].sier |= SSI_SIER_TDMAE;
609 	} else {
610 		vals[RX].sier |= SSI_SIER_RIE;
611 		vals[TX].sier |= SSI_SIER_TIE;
612 	}
613 }
614 
615 static void fsl_ssi_setup_ac97(struct fsl_ssi *ssi)
616 {
617 	struct regmap *regs = ssi->regs;
618 
619 	/* Setup the clock control register */
620 	regmap_write(regs, REG_SSI_STCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
621 	regmap_write(regs, REG_SSI_SRCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
622 
623 	/* Enable AC97 mode and startup the SSI */
624 	regmap_write(regs, REG_SSI_SACNT, SSI_SACNT_AC97EN | SSI_SACNT_FV);
625 
626 	/* AC97 has to communicate with codec before starting a stream */
627 	regmap_update_bits(regs, REG_SSI_SCR,
628 			   SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE,
629 			   SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE);
630 
631 	regmap_write(regs, REG_SSI_SOR, SSI_SOR_WAIT(3));
632 }
633 
634 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
635 			   struct snd_soc_dai *dai)
636 {
637 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
638 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
639 	int ret;
640 
641 	ret = clk_prepare_enable(ssi->clk);
642 	if (ret)
643 		return ret;
644 
645 	/*
646 	 * When using dual fifo mode, it is safer to ensure an even period
647 	 * size. If appearing to an odd number while DMA always starts its
648 	 * task from fifo0, fifo1 would be neglected at the end of each
649 	 * period. But SSI would still access fifo1 with an invalid data.
650 	 */
651 	if (ssi->use_dual_fifo || ssi->use_dyna_fifo)
652 		snd_pcm_hw_constraint_step(substream->runtime, 0,
653 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
654 
655 	return 0;
656 }
657 
658 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
659 			     struct snd_soc_dai *dai)
660 {
661 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
662 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
663 
664 	clk_disable_unprepare(ssi->clk);
665 }
666 
667 /**
668  * fsl_ssi_set_bclk - Configure Digital Audio Interface bit clock
669  * @substream: ASoC substream
670  * @dai: pointer to DAI
671  * @hw_params: pointers to hw_params
672  *
673  * Notes: This function can be only called when using SSI as DAI master
674  *
675  * Quick instruction for parameters:
676  * freq: Output BCLK frequency = samplerate * slots * slot_width
677  *       (In 2-channel I2S Master mode, slot_width is fixed 32)
678  */
679 static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
680 			    struct snd_soc_dai *dai,
681 			    struct snd_pcm_hw_params *hw_params)
682 {
683 	bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
684 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
685 	struct regmap *regs = ssi->regs;
686 	u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
687 	unsigned long clkrate, baudrate, tmprate;
688 	unsigned int channels = params_channels(hw_params);
689 	unsigned int slot_width = params_width(hw_params);
690 	unsigned int slots = 2;
691 	u64 sub, savesub = 100000;
692 	unsigned int freq;
693 	bool baudclk_is_used;
694 	int ret;
695 
696 	/* Override slots and slot_width if being specifically set... */
697 	if (ssi->slots)
698 		slots = ssi->slots;
699 	if (ssi->slot_width)
700 		slot_width = ssi->slot_width;
701 
702 	/* ...but force 32 bits for stereo audio using I2S Master Mode */
703 	if (channels == 2 &&
704 	    (ssi->i2s_net & SSI_SCR_I2S_MODE_MASK) == SSI_SCR_I2S_MODE_MASTER)
705 		slot_width = 32;
706 
707 	/* Generate bit clock based on the slot number and slot width */
708 	freq = slots * slot_width * params_rate(hw_params);
709 
710 	/* Don't apply it to any non-baudclk circumstance */
711 	if (IS_ERR(ssi->baudclk))
712 		return -EINVAL;
713 
714 	/*
715 	 * Hardware limitation: The bclk rate must be
716 	 * never greater than 1/5 IPG clock rate
717 	 */
718 	if (freq * 5 > clk_get_rate(ssi->clk)) {
719 		dev_err(dai->dev, "bitclk > ipgclk / 5\n");
720 		return -EINVAL;
721 	}
722 
723 	baudclk_is_used = ssi->baudclk_streams & ~(BIT(substream->stream));
724 
725 	/* It should be already enough to divide clock by setting pm alone */
726 	psr = 0;
727 	div2 = 0;
728 
729 	factor = (div2 + 1) * (7 * psr + 1) * 2;
730 
731 	for (i = 0; i < 255; i++) {
732 		tmprate = freq * factor * (i + 1);
733 
734 		if (baudclk_is_used)
735 			clkrate = clk_get_rate(ssi->baudclk);
736 		else
737 			clkrate = clk_round_rate(ssi->baudclk, tmprate);
738 
739 		clkrate /= factor;
740 		afreq = clkrate / (i + 1);
741 
742 		if (freq == afreq)
743 			sub = 0;
744 		else if (freq / afreq == 1)
745 			sub = freq - afreq;
746 		else if (afreq / freq == 1)
747 			sub = afreq - freq;
748 		else
749 			continue;
750 
751 		/* Calculate the fraction */
752 		sub *= 100000;
753 		do_div(sub, freq);
754 
755 		if (sub < savesub && !(i == 0)) {
756 			baudrate = tmprate;
757 			savesub = sub;
758 			pm = i;
759 		}
760 
761 		/* We are lucky */
762 		if (savesub == 0)
763 			break;
764 	}
765 
766 	/* No proper pm found if it is still remaining the initial value */
767 	if (pm == 999) {
768 		dev_err(dai->dev, "failed to handle the required sysclk\n");
769 		return -EINVAL;
770 	}
771 
772 	stccr = SSI_SxCCR_PM(pm + 1);
773 	mask = SSI_SxCCR_PM_MASK | SSI_SxCCR_DIV2 | SSI_SxCCR_PSR;
774 
775 	/* STCCR is used for RX in synchronous mode */
776 	tx2 = tx || ssi->synchronous;
777 	regmap_update_bits(regs, REG_SSI_SxCCR(tx2), mask, stccr);
778 
779 	if (!baudclk_is_used) {
780 		ret = clk_set_rate(ssi->baudclk, baudrate);
781 		if (ret) {
782 			dev_err(dai->dev, "failed to set baudclk rate\n");
783 			return -EINVAL;
784 		}
785 	}
786 
787 	return 0;
788 }
789 
790 /**
791  * fsl_ssi_hw_params - Configure SSI based on PCM hardware parameters
792  * @substream: ASoC substream
793  * @hw_params: pointers to hw_params
794  * @dai: pointer to DAI
795  *
796  * Notes:
797  * 1) SxCCR.WL bits are critical bits that require SSI to be temporarily
798  *    disabled on offline_config SoCs. Even for online configurable SoCs
799  *    running in synchronous mode (both TX and RX use STCCR), it is not
800  *    safe to re-configure them when both two streams start running.
801  * 2) SxCCR.PM, SxCCR.DIV2 and SxCCR.PSR bits will be configured in the
802  *    fsl_ssi_set_bclk() if SSI is the DAI clock master.
803  */
804 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
805 			     struct snd_pcm_hw_params *hw_params,
806 			     struct snd_soc_dai *dai)
807 {
808 	bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
809 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
810 	struct fsl_ssi_regvals *vals = ssi->regvals;
811 	struct regmap *regs = ssi->regs;
812 	unsigned int channels = params_channels(hw_params);
813 	unsigned int sample_size = params_width(hw_params);
814 	u32 wl = SSI_SxCCR_WL(sample_size);
815 	int ret;
816 
817 	if (fsl_ssi_is_i2s_clock_provider(ssi)) {
818 		ret = fsl_ssi_set_bclk(substream, dai, hw_params);
819 		if (ret)
820 			return ret;
821 
822 		/* Do not enable the clock if it is already enabled */
823 		if (!(ssi->baudclk_streams & BIT(substream->stream))) {
824 			ret = clk_prepare_enable(ssi->baudclk);
825 			if (ret)
826 				return ret;
827 
828 			ssi->baudclk_streams |= BIT(substream->stream);
829 		}
830 	}
831 
832 	/*
833 	 * SSI is properly configured if it is enabled and running in
834 	 * the synchronous mode; Note that AC97 mode is an exception
835 	 * that should set separate configurations for STCCR and SRCCR
836 	 * despite running in the synchronous mode.
837 	 */
838 	if (ssi->streams && ssi->synchronous)
839 		return 0;
840 
841 	if (!fsl_ssi_is_ac97(ssi)) {
842 		/*
843 		 * Keep the ssi->i2s_net intact while having a local variable
844 		 * to override settings for special use cases. Otherwise, the
845 		 * ssi->i2s_net will lose the settings for regular use cases.
846 		 */
847 		u8 i2s_net = ssi->i2s_net;
848 
849 		/* Normal + Network mode to send 16-bit data in 32-bit frames */
850 		if (fsl_ssi_is_i2s_bc_fp(ssi) && sample_size == 16)
851 			i2s_net = SSI_SCR_I2S_MODE_NORMAL | SSI_SCR_NET;
852 
853 		/* Use Normal mode to send mono data at 1st slot of 2 slots */
854 		if (channels == 1)
855 			i2s_net = SSI_SCR_I2S_MODE_NORMAL;
856 
857 		regmap_update_bits(regs, REG_SSI_SCR,
858 				   SSI_SCR_I2S_NET_MASK, i2s_net);
859 	}
860 
861 	/* In synchronous mode, the SSI uses STCCR for capture */
862 	tx2 = tx || ssi->synchronous;
863 	regmap_update_bits(regs, REG_SSI_SxCCR(tx2), SSI_SxCCR_WL_MASK, wl);
864 
865 	if (ssi->use_dyna_fifo) {
866 		if (channels == 1) {
867 			ssi->audio_config[0].n_fifos_dst = 1;
868 			ssi->audio_config[1].n_fifos_src = 1;
869 			vals[RX].srcr &= ~SSI_SRCR_RFEN1;
870 			vals[TX].stcr &= ~SSI_STCR_TFEN1;
871 			vals[RX].scr  &= ~SSI_SCR_TCH_EN;
872 			vals[TX].scr  &= ~SSI_SCR_TCH_EN;
873 		} else {
874 			ssi->audio_config[0].n_fifos_dst = 2;
875 			ssi->audio_config[1].n_fifos_src = 2;
876 			vals[RX].srcr |= SSI_SRCR_RFEN1;
877 			vals[TX].stcr |= SSI_STCR_TFEN1;
878 			vals[RX].scr  |= SSI_SCR_TCH_EN;
879 			vals[TX].scr  |= SSI_SCR_TCH_EN;
880 		}
881 		ssi->dma_params_tx.peripheral_config = &ssi->audio_config[0];
882 		ssi->dma_params_tx.peripheral_size = sizeof(ssi->audio_config[0]);
883 		ssi->dma_params_rx.peripheral_config = &ssi->audio_config[1];
884 		ssi->dma_params_rx.peripheral_size = sizeof(ssi->audio_config[1]);
885 	}
886 
887 	return 0;
888 }
889 
890 static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
891 			   struct snd_soc_dai *dai)
892 {
893 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
894 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
895 
896 	if (fsl_ssi_is_i2s_clock_provider(ssi) &&
897 	    ssi->baudclk_streams & BIT(substream->stream)) {
898 		clk_disable_unprepare(ssi->baudclk);
899 		ssi->baudclk_streams &= ~BIT(substream->stream);
900 	}
901 
902 	return 0;
903 }
904 
905 static int _fsl_ssi_set_dai_fmt(struct fsl_ssi *ssi, unsigned int fmt)
906 {
907 	u32 strcr = 0, scr = 0, stcr, srcr, mask;
908 	unsigned int slots;
909 
910 	ssi->dai_fmt = fmt;
911 
912 	/* Synchronize frame sync clock for TE to avoid data slipping */
913 	scr |= SSI_SCR_SYNC_TX_FS;
914 
915 	/* Set to default shifting settings: LSB_ALIGNED */
916 	strcr |= SSI_STCR_TXBIT0;
917 
918 	/* Use Network mode as default */
919 	ssi->i2s_net = SSI_SCR_NET;
920 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
921 	case SND_SOC_DAIFMT_I2S:
922 		switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
923 		case SND_SOC_DAIFMT_BP_FP:
924 			if (IS_ERR(ssi->baudclk)) {
925 				dev_err(ssi->dev,
926 					"missing baudclk for master mode\n");
927 				return -EINVAL;
928 			}
929 			fallthrough;
930 		case SND_SOC_DAIFMT_BC_FP:
931 			ssi->i2s_net |= SSI_SCR_I2S_MODE_MASTER;
932 			break;
933 		case SND_SOC_DAIFMT_BC_FC:
934 			ssi->i2s_net |= SSI_SCR_I2S_MODE_SLAVE;
935 			break;
936 		default:
937 			return -EINVAL;
938 		}
939 
940 		slots = ssi->slots ? : 2;
941 		regmap_update_bits(ssi->regs, REG_SSI_STCCR,
942 				   SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
943 		regmap_update_bits(ssi->regs, REG_SSI_SRCCR,
944 				   SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
945 
946 		/* Data on rising edge of bclk, frame low, 1clk before data */
947 		strcr |= SSI_STCR_TFSI | SSI_STCR_TSCKP | SSI_STCR_TEFS;
948 		break;
949 	case SND_SOC_DAIFMT_LEFT_J:
950 		/* Data on rising edge of bclk, frame high */
951 		strcr |= SSI_STCR_TSCKP;
952 		break;
953 	case SND_SOC_DAIFMT_DSP_A:
954 		/* Data on rising edge of bclk, frame high, 1clk before data */
955 		strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP | SSI_STCR_TEFS;
956 		break;
957 	case SND_SOC_DAIFMT_DSP_B:
958 		/* Data on rising edge of bclk, frame high */
959 		strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP;
960 		break;
961 	case SND_SOC_DAIFMT_AC97:
962 		/* Data on falling edge of bclk, frame high, 1clk before data */
963 		strcr |= SSI_STCR_TEFS;
964 		break;
965 	default:
966 		return -EINVAL;
967 	}
968 
969 	scr |= ssi->i2s_net;
970 
971 	/* DAI clock inversion */
972 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
973 	case SND_SOC_DAIFMT_NB_NF:
974 		/* Nothing to do for both normal cases */
975 		break;
976 	case SND_SOC_DAIFMT_IB_NF:
977 		/* Invert bit clock */
978 		strcr ^= SSI_STCR_TSCKP;
979 		break;
980 	case SND_SOC_DAIFMT_NB_IF:
981 		/* Invert frame clock */
982 		strcr ^= SSI_STCR_TFSI;
983 		break;
984 	case SND_SOC_DAIFMT_IB_IF:
985 		/* Invert both clocks */
986 		strcr ^= SSI_STCR_TSCKP;
987 		strcr ^= SSI_STCR_TFSI;
988 		break;
989 	default:
990 		return -EINVAL;
991 	}
992 
993 	/* DAI clock provider masks */
994 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
995 	case SND_SOC_DAIFMT_BP_FP:
996 		/* Output bit and frame sync clocks */
997 		strcr |= SSI_STCR_TFDIR | SSI_STCR_TXDIR;
998 		scr |= SSI_SCR_SYS_CLK_EN;
999 		break;
1000 	case SND_SOC_DAIFMT_BC_FC:
1001 		/* Input bit or frame sync clocks */
1002 		break;
1003 	case SND_SOC_DAIFMT_BC_FP:
1004 		/* Input bit clock but output frame sync clock */
1005 		strcr |= SSI_STCR_TFDIR;
1006 		break;
1007 	default:
1008 		return -EINVAL;
1009 	}
1010 
1011 	stcr = strcr;
1012 	srcr = strcr;
1013 
1014 	/* Set SYN mode and clear RXDIR bit when using SYN or AC97 mode */
1015 	if (ssi->synchronous || fsl_ssi_is_ac97(ssi)) {
1016 		srcr &= ~SSI_SRCR_RXDIR;
1017 		scr |= SSI_SCR_SYN;
1018 	}
1019 
1020 	mask = SSI_STCR_TFDIR | SSI_STCR_TXDIR | SSI_STCR_TSCKP |
1021 	       SSI_STCR_TFSL | SSI_STCR_TFSI | SSI_STCR_TEFS | SSI_STCR_TXBIT0;
1022 
1023 	regmap_update_bits(ssi->regs, REG_SSI_STCR, mask, stcr);
1024 	regmap_update_bits(ssi->regs, REG_SSI_SRCR, mask, srcr);
1025 
1026 	mask = SSI_SCR_SYNC_TX_FS | SSI_SCR_I2S_MODE_MASK |
1027 	       SSI_SCR_SYS_CLK_EN | SSI_SCR_SYN;
1028 	regmap_update_bits(ssi->regs, REG_SSI_SCR, mask, scr);
1029 
1030 	return 0;
1031 }
1032 
1033 /**
1034  * fsl_ssi_set_dai_fmt - Configure Digital Audio Interface (DAI) Format
1035  * @dai: pointer to DAI
1036  * @fmt: format mask
1037  */
1038 static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
1039 {
1040 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1041 
1042 	/* AC97 configured DAIFMT earlier in the probe() */
1043 	if (fsl_ssi_is_ac97(ssi))
1044 		return 0;
1045 
1046 	return _fsl_ssi_set_dai_fmt(ssi, fmt);
1047 }
1048 
1049 /**
1050  * fsl_ssi_set_dai_tdm_slot - Set TDM slot number and slot width
1051  * @dai: pointer to DAI
1052  * @tx_mask: mask for TX
1053  * @rx_mask: mask for RX
1054  * @slots: number of slots
1055  * @slot_width: number of bits per slot
1056  */
1057 static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask,
1058 				    u32 rx_mask, int slots, int slot_width)
1059 {
1060 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1061 	struct regmap *regs = ssi->regs;
1062 	u32 val;
1063 
1064 	/* The word length should be 8, 10, 12, 16, 18, 20, 22 or 24 */
1065 	if (slot_width & 1 || slot_width < 8 || slot_width > 24) {
1066 		dev_err(dai->dev, "invalid slot width: %d\n", slot_width);
1067 		return -EINVAL;
1068 	}
1069 
1070 	/* The slot number should be >= 2 if using Network mode or I2S mode */
1071 	if (ssi->i2s_net && slots < 2) {
1072 		dev_err(dai->dev, "slot number should be >= 2 in I2S or NET\n");
1073 		return -EINVAL;
1074 	}
1075 
1076 	regmap_update_bits(regs, REG_SSI_STCCR,
1077 			   SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
1078 	regmap_update_bits(regs, REG_SSI_SRCCR,
1079 			   SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
1080 
1081 	/* Save the SCR register value */
1082 	regmap_read(regs, REG_SSI_SCR, &val);
1083 	/* Temporarily enable SSI to allow SxMSKs to be configurable */
1084 	regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, SSI_SCR_SSIEN);
1085 
1086 	regmap_write(regs, REG_SSI_STMSK, ~tx_mask);
1087 	regmap_write(regs, REG_SSI_SRMSK, ~rx_mask);
1088 
1089 	/* Restore the value of SSIEN bit */
1090 	regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, val);
1091 
1092 	ssi->slot_width = slot_width;
1093 	ssi->slots = slots;
1094 
1095 	return 0;
1096 }
1097 
1098 /**
1099  * fsl_ssi_trigger - Start or stop SSI and corresponding DMA transaction.
1100  * @substream: ASoC substream
1101  * @cmd: trigger command
1102  * @dai: pointer to DAI
1103  *
1104  * The DMA channel is in external master start and pause mode, which
1105  * means the SSI completely controls the flow of data.
1106  */
1107 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
1108 			   struct snd_soc_dai *dai)
1109 {
1110 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
1111 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
1112 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1113 
1114 	switch (cmd) {
1115 	case SNDRV_PCM_TRIGGER_START:
1116 	case SNDRV_PCM_TRIGGER_RESUME:
1117 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1118 		/*
1119 		 * SACCST might be modified via AC Link by a CODEC if it sends
1120 		 * extra bits in their SLOTREQ requests, which'll accidentally
1121 		 * send valid data to slots other than normal playback slots.
1122 		 *
1123 		 * To be safe, configure SACCST right before TX starts.
1124 		 */
1125 		if (tx && fsl_ssi_is_ac97(ssi))
1126 			fsl_ssi_tx_ac97_saccst_setup(ssi);
1127 		fsl_ssi_config_enable(ssi, tx);
1128 		break;
1129 
1130 	case SNDRV_PCM_TRIGGER_STOP:
1131 	case SNDRV_PCM_TRIGGER_SUSPEND:
1132 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1133 		fsl_ssi_config_disable(ssi, tx);
1134 		break;
1135 
1136 	default:
1137 		return -EINVAL;
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1144 {
1145 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1146 
1147 	if (ssi->soc->imx && ssi->use_dma)
1148 		snd_soc_dai_init_dma_data(dai, &ssi->dma_params_tx,
1149 					  &ssi->dma_params_rx);
1150 
1151 	return 0;
1152 }
1153 
1154 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1155 	.startup = fsl_ssi_startup,
1156 	.shutdown = fsl_ssi_shutdown,
1157 	.hw_params = fsl_ssi_hw_params,
1158 	.hw_free = fsl_ssi_hw_free,
1159 	.set_fmt = fsl_ssi_set_dai_fmt,
1160 	.set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
1161 	.trigger = fsl_ssi_trigger,
1162 };
1163 
1164 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1165 	.probe = fsl_ssi_dai_probe,
1166 	.playback = {
1167 		.stream_name = "CPU-Playback",
1168 		.channels_min = 1,
1169 		.channels_max = 32,
1170 		.rates = SNDRV_PCM_RATE_CONTINUOUS,
1171 		.formats = FSLSSI_I2S_FORMATS,
1172 	},
1173 	.capture = {
1174 		.stream_name = "CPU-Capture",
1175 		.channels_min = 1,
1176 		.channels_max = 32,
1177 		.rates = SNDRV_PCM_RATE_CONTINUOUS,
1178 		.formats = FSLSSI_I2S_FORMATS,
1179 	},
1180 	.ops = &fsl_ssi_dai_ops,
1181 };
1182 
1183 static const struct snd_soc_component_driver fsl_ssi_component = {
1184 	.name = "fsl-ssi",
1185 	.legacy_dai_naming = 1,
1186 };
1187 
1188 static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1189 	.symmetric_channels = 1,
1190 	.probe = fsl_ssi_dai_probe,
1191 	.playback = {
1192 		.stream_name = "CPU AC97 Playback",
1193 		.channels_min = 2,
1194 		.channels_max = 2,
1195 		.rates = SNDRV_PCM_RATE_8000_48000,
1196 		.formats = SNDRV_PCM_FMTBIT_S16 | SNDRV_PCM_FMTBIT_S20,
1197 	},
1198 	.capture = {
1199 		.stream_name = "CPU AC97 Capture",
1200 		.channels_min = 2,
1201 		.channels_max = 2,
1202 		.rates = SNDRV_PCM_RATE_48000,
1203 		/* 16-bit capture is broken (errata ERR003778) */
1204 		.formats = SNDRV_PCM_FMTBIT_S20,
1205 	},
1206 	.ops = &fsl_ssi_dai_ops,
1207 };
1208 
1209 static struct fsl_ssi *fsl_ac97_data;
1210 
1211 static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1212 			       unsigned short val)
1213 {
1214 	struct regmap *regs = fsl_ac97_data->regs;
1215 	unsigned int lreg;
1216 	unsigned int lval;
1217 	int ret;
1218 
1219 	if (reg > 0x7f)
1220 		return;
1221 
1222 	mutex_lock(&fsl_ac97_data->ac97_reg_lock);
1223 
1224 	ret = clk_prepare_enable(fsl_ac97_data->clk);
1225 	if (ret) {
1226 		pr_err("ac97 write clk_prepare_enable failed: %d\n",
1227 			ret);
1228 		goto ret_unlock;
1229 	}
1230 
1231 	lreg = reg <<  12;
1232 	regmap_write(regs, REG_SSI_SACADD, lreg);
1233 
1234 	lval = val << 4;
1235 	regmap_write(regs, REG_SSI_SACDAT, lval);
1236 
1237 	regmap_update_bits(regs, REG_SSI_SACNT,
1238 			   SSI_SACNT_RDWR_MASK, SSI_SACNT_WR);
1239 	udelay(100);
1240 
1241 	clk_disable_unprepare(fsl_ac97_data->clk);
1242 
1243 ret_unlock:
1244 	mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1245 }
1246 
1247 static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1248 					unsigned short reg)
1249 {
1250 	struct regmap *regs = fsl_ac97_data->regs;
1251 	unsigned short val = 0;
1252 	u32 reg_val;
1253 	unsigned int lreg;
1254 	int ret;
1255 
1256 	mutex_lock(&fsl_ac97_data->ac97_reg_lock);
1257 
1258 	ret = clk_prepare_enable(fsl_ac97_data->clk);
1259 	if (ret) {
1260 		pr_err("ac97 read clk_prepare_enable failed: %d\n", ret);
1261 		goto ret_unlock;
1262 	}
1263 
1264 	lreg = (reg & 0x7f) <<  12;
1265 	regmap_write(regs, REG_SSI_SACADD, lreg);
1266 	regmap_update_bits(regs, REG_SSI_SACNT,
1267 			   SSI_SACNT_RDWR_MASK, SSI_SACNT_RD);
1268 
1269 	udelay(100);
1270 
1271 	regmap_read(regs, REG_SSI_SACDAT, &reg_val);
1272 	val = (reg_val >> 4) & 0xffff;
1273 
1274 	clk_disable_unprepare(fsl_ac97_data->clk);
1275 
1276 ret_unlock:
1277 	mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1278 	return val;
1279 }
1280 
1281 static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1282 	.read = fsl_ssi_ac97_read,
1283 	.write = fsl_ssi_ac97_write,
1284 };
1285 
1286 /**
1287  * fsl_ssi_hw_init - Initialize SSI registers
1288  * @ssi: SSI context
1289  */
1290 static int fsl_ssi_hw_init(struct fsl_ssi *ssi)
1291 {
1292 	u32 wm = ssi->fifo_watermark;
1293 
1294 	/* Initialize regvals */
1295 	fsl_ssi_setup_regvals(ssi);
1296 
1297 	/* Set watermarks */
1298 	regmap_write(ssi->regs, REG_SSI_SFCSR,
1299 		     SSI_SFCSR_TFWM0(wm) | SSI_SFCSR_RFWM0(wm) |
1300 		     SSI_SFCSR_TFWM1(wm) | SSI_SFCSR_RFWM1(wm));
1301 
1302 	/* Enable Dual FIFO mode */
1303 	if (ssi->use_dual_fifo)
1304 		regmap_update_bits(ssi->regs, REG_SSI_SCR,
1305 				   SSI_SCR_TCH_EN, SSI_SCR_TCH_EN);
1306 
1307 	/* AC97 should start earlier to communicate with CODECs */
1308 	if (fsl_ssi_is_ac97(ssi)) {
1309 		_fsl_ssi_set_dai_fmt(ssi, ssi->dai_fmt);
1310 		fsl_ssi_setup_ac97(ssi);
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 /**
1317  * fsl_ssi_hw_clean - Clear SSI registers
1318  * @ssi: SSI context
1319  */
1320 static void fsl_ssi_hw_clean(struct fsl_ssi *ssi)
1321 {
1322 	/* Disable registers for AC97 */
1323 	if (fsl_ssi_is_ac97(ssi)) {
1324 		/* Disable TE and RE bits first */
1325 		regmap_update_bits(ssi->regs, REG_SSI_SCR,
1326 				   SSI_SCR_TE | SSI_SCR_RE, 0);
1327 		/* Disable AC97 mode */
1328 		regmap_write(ssi->regs, REG_SSI_SACNT, 0);
1329 		/* Unset WAIT bits */
1330 		regmap_write(ssi->regs, REG_SSI_SOR, 0);
1331 		/* Disable SSI -- software reset */
1332 		regmap_update_bits(ssi->regs, REG_SSI_SCR, SSI_SCR_SSIEN, 0);
1333 	}
1334 }
1335 
1336 /*
1337  * Make every character in a string lower-case
1338  */
1339 static void make_lowercase(char *s)
1340 {
1341 	if (!s)
1342 		return;
1343 	for (; *s; s++)
1344 		*s = tolower(*s);
1345 }
1346 
1347 static int fsl_ssi_imx_probe(struct platform_device *pdev,
1348 			     struct fsl_ssi *ssi, void __iomem *iomem)
1349 {
1350 	struct device *dev = &pdev->dev;
1351 	int ret;
1352 
1353 	/* Backward compatible for a DT without ipg clock name assigned */
1354 	if (ssi->has_ipg_clk_name)
1355 		ssi->clk = devm_clk_get(dev, "ipg");
1356 	else
1357 		ssi->clk = devm_clk_get(dev, NULL);
1358 	if (IS_ERR(ssi->clk)) {
1359 		ret = PTR_ERR(ssi->clk);
1360 		dev_err(dev, "failed to get clock: %d\n", ret);
1361 		return ret;
1362 	}
1363 
1364 	/* Enable the clock since regmap will not handle it in this case */
1365 	if (!ssi->has_ipg_clk_name) {
1366 		ret = clk_prepare_enable(ssi->clk);
1367 		if (ret) {
1368 			dev_err(dev, "clk_prepare_enable failed: %d\n", ret);
1369 			return ret;
1370 		}
1371 	}
1372 
1373 	/* Do not error out for consumer cases that live without a baud clock */
1374 	ssi->baudclk = devm_clk_get(dev, "baud");
1375 	if (IS_ERR(ssi->baudclk))
1376 		dev_dbg(dev, "failed to get baud clock: %ld\n",
1377 			 PTR_ERR(ssi->baudclk));
1378 
1379 	ssi->dma_params_tx.maxburst = ssi->dma_maxburst;
1380 	ssi->dma_params_rx.maxburst = ssi->dma_maxburst;
1381 	ssi->dma_params_tx.addr = ssi->ssi_phys + REG_SSI_STX0;
1382 	ssi->dma_params_rx.addr = ssi->ssi_phys + REG_SSI_SRX0;
1383 
1384 	/* Use even numbers to avoid channel swap due to SDMA script design */
1385 	if (ssi->use_dual_fifo || ssi->use_dyna_fifo) {
1386 		ssi->dma_params_tx.maxburst &= ~0x1;
1387 		ssi->dma_params_rx.maxburst &= ~0x1;
1388 	}
1389 
1390 	if (!ssi->use_dma) {
1391 		/*
1392 		 * Some boards use an incompatible codec. Use imx-fiq-pcm-audio
1393 		 * to get it working, as DMA is not possible in this situation.
1394 		 */
1395 		ssi->fiq_params.irq = ssi->irq;
1396 		ssi->fiq_params.base = iomem;
1397 		ssi->fiq_params.dma_params_rx = &ssi->dma_params_rx;
1398 		ssi->fiq_params.dma_params_tx = &ssi->dma_params_tx;
1399 
1400 		ret = imx_pcm_fiq_init(pdev, &ssi->fiq_params);
1401 		if (ret)
1402 			goto error_pcm;
1403 	} else {
1404 		ret = imx_pcm_dma_init(pdev);
1405 		if (ret)
1406 			goto error_pcm;
1407 	}
1408 
1409 	return 0;
1410 
1411 error_pcm:
1412 	if (!ssi->has_ipg_clk_name)
1413 		clk_disable_unprepare(ssi->clk);
1414 
1415 	return ret;
1416 }
1417 
1418 static void fsl_ssi_imx_clean(struct platform_device *pdev, struct fsl_ssi *ssi)
1419 {
1420 	if (!ssi->use_dma)
1421 		imx_pcm_fiq_exit(pdev);
1422 	if (!ssi->has_ipg_clk_name)
1423 		clk_disable_unprepare(ssi->clk);
1424 }
1425 
1426 static int fsl_ssi_probe_from_dt(struct fsl_ssi *ssi)
1427 {
1428 	struct device *dev = ssi->dev;
1429 	struct device_node *np = dev->of_node;
1430 	const char *p, *sprop;
1431 	const __be32 *iprop;
1432 	u32 dmas[4];
1433 	int ret;
1434 
1435 	ret = of_property_match_string(np, "clock-names", "ipg");
1436 	/* Get error code if not found */
1437 	ssi->has_ipg_clk_name = ret >= 0;
1438 
1439 	/* Check if being used in AC97 mode */
1440 	sprop = of_get_property(np, "fsl,mode", NULL);
1441 	if (sprop && !strcmp(sprop, "ac97-slave")) {
1442 		ssi->dai_fmt = FSLSSI_AC97_DAIFMT;
1443 
1444 		ret = of_property_read_u32(np, "cell-index", &ssi->card_idx);
1445 		if (ret) {
1446 			dev_err(dev, "failed to get SSI index property\n");
1447 			return -EINVAL;
1448 		}
1449 		strcpy(ssi->card_name, "ac97-codec");
1450 	} else if (!of_property_read_bool(np, "fsl,ssi-asynchronous")) {
1451 		/*
1452 		 * In synchronous mode, STCK and STFS ports are used by RX
1453 		 * as well. So the software should limit the sample rates,
1454 		 * sample bits and channels to be symmetric.
1455 		 *
1456 		 * This is exclusive with FSLSSI_AC97_FORMATS as AC97 runs
1457 		 * in the SSI synchronous mode however it does not have to
1458 		 * limit symmetric sample rates and sample bits.
1459 		 */
1460 		ssi->synchronous = true;
1461 	}
1462 
1463 	/* Select DMA or FIQ */
1464 	ssi->use_dma = !of_property_read_bool(np, "fsl,fiq-stream-filter");
1465 
1466 	/* Fetch FIFO depth; Set to 8 for older DT without this property */
1467 	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1468 	if (iprop)
1469 		ssi->fifo_depth = be32_to_cpup(iprop);
1470 	else
1471 		ssi->fifo_depth = 8;
1472 
1473 	/* Use dual FIFO mode depending on the support from SDMA script */
1474 	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1475 	if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL)
1476 		ssi->use_dual_fifo = true;
1477 
1478 	if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI)
1479 		ssi->use_dyna_fifo = true;
1480 	/*
1481 	 * Backward compatible for older bindings by manually triggering the
1482 	 * machine driver's probe(). Use /compatible property, including the
1483 	 * address of CPU DAI driver structure, as the name of machine driver
1484 	 *
1485 	 * If card_name is set by AC97 earlier, bypass here since it uses a
1486 	 * different name to register the device.
1487 	 */
1488 	if (!ssi->card_name[0] && of_get_property(np, "codec-handle", NULL)) {
1489 		struct device_node *root = of_find_node_by_path("/");
1490 
1491 		sprop = of_get_property(root, "compatible", NULL);
1492 		of_node_put(root);
1493 		/* Strip "fsl," in the compatible name if applicable */
1494 		p = strrchr(sprop, ',');
1495 		if (p)
1496 			sprop = p + 1;
1497 		snprintf(ssi->card_name, sizeof(ssi->card_name),
1498 			 "snd-soc-%s", sprop);
1499 		make_lowercase(ssi->card_name);
1500 		ssi->card_idx = 0;
1501 	}
1502 
1503 	return 0;
1504 }
1505 
1506 static int fsl_ssi_probe(struct platform_device *pdev)
1507 {
1508 	struct regmap_config regconfig = fsl_ssi_regconfig;
1509 	struct device *dev = &pdev->dev;
1510 	struct fsl_ssi *ssi;
1511 	struct resource *res;
1512 	void __iomem *iomem;
1513 	int ret = 0;
1514 
1515 	ssi = devm_kzalloc(dev, sizeof(*ssi), GFP_KERNEL);
1516 	if (!ssi)
1517 		return -ENOMEM;
1518 
1519 	ssi->dev = dev;
1520 	ssi->soc = of_device_get_match_data(&pdev->dev);
1521 
1522 	/* Probe from DT */
1523 	ret = fsl_ssi_probe_from_dt(ssi);
1524 	if (ret)
1525 		return ret;
1526 
1527 	if (fsl_ssi_is_ac97(ssi)) {
1528 		memcpy(&ssi->cpu_dai_drv, &fsl_ssi_ac97_dai,
1529 		       sizeof(fsl_ssi_ac97_dai));
1530 		fsl_ac97_data = ssi;
1531 	} else {
1532 		memcpy(&ssi->cpu_dai_drv, &fsl_ssi_dai_template,
1533 		       sizeof(fsl_ssi_dai_template));
1534 	}
1535 	ssi->cpu_dai_drv.name = dev_name(dev);
1536 
1537 	iomem = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1538 	if (IS_ERR(iomem))
1539 		return PTR_ERR(iomem);
1540 	ssi->ssi_phys = res->start;
1541 
1542 	if (ssi->soc->imx21regs) {
1543 		/* No SACC{ST,EN,DIS} regs in imx21-class SSI */
1544 		regconfig.max_register = REG_SSI_SRMSK;
1545 		regconfig.num_reg_defaults_raw =
1546 			REG_SSI_SRMSK / sizeof(uint32_t) + 1;
1547 	}
1548 
1549 	if (ssi->has_ipg_clk_name)
1550 		ssi->regs = devm_regmap_init_mmio_clk(dev, "ipg", iomem,
1551 						      &regconfig);
1552 	else
1553 		ssi->regs = devm_regmap_init_mmio(dev, iomem, &regconfig);
1554 	if (IS_ERR(ssi->regs)) {
1555 		dev_err(dev, "failed to init register map\n");
1556 		return PTR_ERR(ssi->regs);
1557 	}
1558 
1559 	ssi->irq = platform_get_irq(pdev, 0);
1560 	if (ssi->irq < 0)
1561 		return ssi->irq;
1562 
1563 	/* Set software limitations for synchronous mode except AC97 */
1564 	if (ssi->synchronous && !fsl_ssi_is_ac97(ssi)) {
1565 		ssi->cpu_dai_drv.symmetric_rate = 1;
1566 		ssi->cpu_dai_drv.symmetric_channels = 1;
1567 		ssi->cpu_dai_drv.symmetric_sample_bits = 1;
1568 	}
1569 
1570 	/*
1571 	 * Configure TX and RX DMA watermarks -- when to send a DMA request
1572 	 *
1573 	 * Values should be tested to avoid FIFO under/over run. Set maxburst
1574 	 * to fifo_watermark to maxiumize DMA transaction to reduce overhead.
1575 	 */
1576 	switch (ssi->fifo_depth) {
1577 	case 15:
1578 		/*
1579 		 * Set to 8 as a balanced configuration -- When TX FIFO has 8
1580 		 * empty slots, send a DMA request to fill these 8 slots. The
1581 		 * remaining 7 slots should be able to allow DMA to finish the
1582 		 * transaction before TX FIFO underruns; Same applies to RX.
1583 		 *
1584 		 * Tested with cases running at 48kHz @ 16 bits x 16 channels
1585 		 */
1586 		ssi->fifo_watermark = 8;
1587 		ssi->dma_maxburst = 8;
1588 		break;
1589 	case 8:
1590 	default:
1591 		/* Safely use old watermark configurations for older chips */
1592 		ssi->fifo_watermark = ssi->fifo_depth - 2;
1593 		ssi->dma_maxburst = ssi->fifo_depth - 2;
1594 		break;
1595 	}
1596 
1597 	dev_set_drvdata(dev, ssi);
1598 
1599 	if (ssi->soc->imx) {
1600 		ret = fsl_ssi_imx_probe(pdev, ssi, iomem);
1601 		if (ret)
1602 			return ret;
1603 	}
1604 
1605 	if (fsl_ssi_is_ac97(ssi)) {
1606 		mutex_init(&ssi->ac97_reg_lock);
1607 		ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1608 		if (ret) {
1609 			dev_err(dev, "failed to set AC'97 ops\n");
1610 			goto error_ac97_ops;
1611 		}
1612 	}
1613 
1614 	ret = devm_snd_soc_register_component(dev, &fsl_ssi_component,
1615 					      &ssi->cpu_dai_drv, 1);
1616 	if (ret) {
1617 		dev_err(dev, "failed to register DAI: %d\n", ret);
1618 		goto error_asoc_register;
1619 	}
1620 
1621 	if (ssi->use_dma) {
1622 		ret = devm_request_irq(dev, ssi->irq, fsl_ssi_isr, 0,
1623 				       dev_name(dev), ssi);
1624 		if (ret < 0) {
1625 			dev_err(dev, "failed to claim irq %u\n", ssi->irq);
1626 			goto error_asoc_register;
1627 		}
1628 	}
1629 
1630 	fsl_ssi_debugfs_create(&ssi->dbg_stats, dev);
1631 
1632 	/* Initially configures SSI registers */
1633 	fsl_ssi_hw_init(ssi);
1634 
1635 	/* Register a platform device for older bindings or AC97 */
1636 	if (ssi->card_name[0]) {
1637 		struct device *parent = dev;
1638 		/*
1639 		 * Do not set SSI dev as the parent of AC97 CODEC device since
1640 		 * it does not have a DT node. Otherwise ASoC core will assume
1641 		 * CODEC has the same DT node as the SSI, so it may bypass the
1642 		 * dai_probe() of SSI and then cause NULL DMA data pointers.
1643 		 */
1644 		if (fsl_ssi_is_ac97(ssi))
1645 			parent = NULL;
1646 
1647 		ssi->card_pdev = platform_device_register_data(parent,
1648 				ssi->card_name, ssi->card_idx, NULL, 0);
1649 		if (IS_ERR(ssi->card_pdev)) {
1650 			ret = PTR_ERR(ssi->card_pdev);
1651 			dev_err(dev, "failed to register %s: %d\n",
1652 				ssi->card_name, ret);
1653 			goto error_sound_card;
1654 		}
1655 	}
1656 
1657 	return 0;
1658 
1659 error_sound_card:
1660 	fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1661 error_asoc_register:
1662 	if (fsl_ssi_is_ac97(ssi))
1663 		snd_soc_set_ac97_ops(NULL);
1664 error_ac97_ops:
1665 	if (fsl_ssi_is_ac97(ssi))
1666 		mutex_destroy(&ssi->ac97_reg_lock);
1667 
1668 	if (ssi->soc->imx)
1669 		fsl_ssi_imx_clean(pdev, ssi);
1670 
1671 	return ret;
1672 }
1673 
1674 static void fsl_ssi_remove(struct platform_device *pdev)
1675 {
1676 	struct fsl_ssi *ssi = dev_get_drvdata(&pdev->dev);
1677 
1678 	fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1679 
1680 	if (ssi->card_pdev)
1681 		platform_device_unregister(ssi->card_pdev);
1682 
1683 	/* Clean up SSI registers */
1684 	fsl_ssi_hw_clean(ssi);
1685 
1686 	if (ssi->soc->imx)
1687 		fsl_ssi_imx_clean(pdev, ssi);
1688 
1689 	if (fsl_ssi_is_ac97(ssi)) {
1690 		snd_soc_set_ac97_ops(NULL);
1691 		mutex_destroy(&ssi->ac97_reg_lock);
1692 	}
1693 }
1694 
1695 #ifdef CONFIG_PM_SLEEP
1696 static int fsl_ssi_suspend(struct device *dev)
1697 {
1698 	struct fsl_ssi *ssi = dev_get_drvdata(dev);
1699 	struct regmap *regs = ssi->regs;
1700 
1701 	regmap_read(regs, REG_SSI_SFCSR, &ssi->regcache_sfcsr);
1702 	regmap_read(regs, REG_SSI_SACNT, &ssi->regcache_sacnt);
1703 
1704 	regcache_cache_only(regs, true);
1705 	regcache_mark_dirty(regs);
1706 
1707 	return 0;
1708 }
1709 
1710 static int fsl_ssi_resume(struct device *dev)
1711 {
1712 	struct fsl_ssi *ssi = dev_get_drvdata(dev);
1713 	struct regmap *regs = ssi->regs;
1714 
1715 	regcache_cache_only(regs, false);
1716 
1717 	regmap_update_bits(regs, REG_SSI_SFCSR,
1718 			   SSI_SFCSR_RFWM1_MASK | SSI_SFCSR_TFWM1_MASK |
1719 			   SSI_SFCSR_RFWM0_MASK | SSI_SFCSR_TFWM0_MASK,
1720 			   ssi->regcache_sfcsr);
1721 	regmap_write(regs, REG_SSI_SACNT, ssi->regcache_sacnt);
1722 
1723 	return regcache_sync(regs);
1724 }
1725 #endif /* CONFIG_PM_SLEEP */
1726 
1727 static const struct dev_pm_ops fsl_ssi_pm = {
1728 	SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
1729 };
1730 
1731 static struct platform_driver fsl_ssi_driver = {
1732 	.driver = {
1733 		.name = "fsl-ssi-dai",
1734 		.of_match_table = fsl_ssi_ids,
1735 		.pm = &fsl_ssi_pm,
1736 	},
1737 	.probe = fsl_ssi_probe,
1738 	.remove_new = fsl_ssi_remove,
1739 };
1740 
1741 module_platform_driver(fsl_ssi_driver);
1742 
1743 MODULE_ALIAS("platform:fsl-ssi-dai");
1744 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1745 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1746 MODULE_LICENSE("GPL v2");
1747