xref: /linux/sound/soc/fsl/fsl_ssi.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2008 Freescale Semiconductor, Inc.  This file is licensed
7  * under the terms of the GNU General Public License version 2.  This
8  * program is licensed "as is" without any warranty of any kind, whether
9  * express or implied.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/device.h>
16 #include <linux/delay.h>
17 
18 #include <sound/core.h>
19 #include <sound/pcm.h>
20 #include <sound/pcm_params.h>
21 #include <sound/initval.h>
22 #include <sound/soc.h>
23 
24 #include <asm/immap_86xx.h>
25 
26 #include "fsl_ssi.h"
27 
28 /**
29  * FSLSSI_I2S_RATES: sample rates supported by the I2S
30  *
31  * This driver currently only supports the SSI running in I2S slave mode,
32  * which means the codec determines the sample rate.  Therefore, we tell
33  * ALSA that we support all rates and let the codec driver decide what rates
34  * are really supported.
35  */
36 #define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
37 			  SNDRV_PCM_RATE_CONTINUOUS)
38 
39 /**
40  * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
41  *
42  * This driver currently only supports the SSI running in I2S slave mode.
43  *
44  * The SSI has a limitation in that the samples must be in the same byte
45  * order as the host CPU.  This is because when multiple bytes are written
46  * to the STX register, the bytes and bits must be written in the same
47  * order.  The STX is a shift register, so all the bits need to be aligned
48  * (bit-endianness must match byte-endianness).  Processors typically write
49  * the bits within a byte in the same order that the bytes of a word are
50  * written in.  So if the host CPU is big-endian, then only big-endian
51  * samples will be written to STX properly.
52  */
53 #ifdef __BIG_ENDIAN
54 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
55 	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
56 	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
57 #else
58 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
59 	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
60 	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
61 #endif
62 
63 /**
64  * fsl_ssi_private: per-SSI private data
65  *
66  * @name: short name for this device ("SSI0", "SSI1", etc)
67  * @ssi: pointer to the SSI's registers
68  * @ssi_phys: physical address of the SSI registers
69  * @irq: IRQ of this SSI
70  * @first_stream: pointer to the stream that was opened first
71  * @second_stream: pointer to second stream
72  * @dev: struct device pointer
73  * @playback: the number of playback streams opened
74  * @capture: the number of capture streams opened
75  * @cpu_dai: the CPU DAI for this device
76  * @dev_attr: the sysfs device attribute structure
77  * @stats: SSI statistics
78  */
79 struct fsl_ssi_private {
80 	char name[8];
81 	struct ccsr_ssi __iomem *ssi;
82 	dma_addr_t ssi_phys;
83 	unsigned int irq;
84 	struct snd_pcm_substream *first_stream;
85 	struct snd_pcm_substream *second_stream;
86 	struct device *dev;
87 	unsigned int playback;
88 	unsigned int capture;
89 	struct snd_soc_dai cpu_dai;
90 	struct device_attribute dev_attr;
91 
92 	struct {
93 		unsigned int rfrc;
94 		unsigned int tfrc;
95 		unsigned int cmdau;
96 		unsigned int cmddu;
97 		unsigned int rxt;
98 		unsigned int rdr1;
99 		unsigned int rdr0;
100 		unsigned int tde1;
101 		unsigned int tde0;
102 		unsigned int roe1;
103 		unsigned int roe0;
104 		unsigned int tue1;
105 		unsigned int tue0;
106 		unsigned int tfs;
107 		unsigned int rfs;
108 		unsigned int tls;
109 		unsigned int rls;
110 		unsigned int rff1;
111 		unsigned int rff0;
112 		unsigned int tfe1;
113 		unsigned int tfe0;
114 	} stats;
115 };
116 
117 /**
118  * fsl_ssi_isr: SSI interrupt handler
119  *
120  * Although it's possible to use the interrupt handler to send and receive
121  * data to/from the SSI, we use the DMA instead.  Programming is more
122  * complicated, but the performance is much better.
123  *
124  * This interrupt handler is used only to gather statistics.
125  *
126  * @irq: IRQ of the SSI device
127  * @dev_id: pointer to the ssi_private structure for this SSI device
128  */
129 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
130 {
131 	struct fsl_ssi_private *ssi_private = dev_id;
132 	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
133 	irqreturn_t ret = IRQ_NONE;
134 	__be32 sisr;
135 	__be32 sisr2 = 0;
136 
137 	/* We got an interrupt, so read the status register to see what we
138 	   were interrupted for.  We mask it with the Interrupt Enable register
139 	   so that we only check for events that we're interested in.
140 	 */
141 	sisr = in_be32(&ssi->sisr) & in_be32(&ssi->sier);
142 
143 	if (sisr & CCSR_SSI_SISR_RFRC) {
144 		ssi_private->stats.rfrc++;
145 		sisr2 |= CCSR_SSI_SISR_RFRC;
146 		ret = IRQ_HANDLED;
147 	}
148 
149 	if (sisr & CCSR_SSI_SISR_TFRC) {
150 		ssi_private->stats.tfrc++;
151 		sisr2 |= CCSR_SSI_SISR_TFRC;
152 		ret = IRQ_HANDLED;
153 	}
154 
155 	if (sisr & CCSR_SSI_SISR_CMDAU) {
156 		ssi_private->stats.cmdau++;
157 		ret = IRQ_HANDLED;
158 	}
159 
160 	if (sisr & CCSR_SSI_SISR_CMDDU) {
161 		ssi_private->stats.cmddu++;
162 		ret = IRQ_HANDLED;
163 	}
164 
165 	if (sisr & CCSR_SSI_SISR_RXT) {
166 		ssi_private->stats.rxt++;
167 		ret = IRQ_HANDLED;
168 	}
169 
170 	if (sisr & CCSR_SSI_SISR_RDR1) {
171 		ssi_private->stats.rdr1++;
172 		ret = IRQ_HANDLED;
173 	}
174 
175 	if (sisr & CCSR_SSI_SISR_RDR0) {
176 		ssi_private->stats.rdr0++;
177 		ret = IRQ_HANDLED;
178 	}
179 
180 	if (sisr & CCSR_SSI_SISR_TDE1) {
181 		ssi_private->stats.tde1++;
182 		ret = IRQ_HANDLED;
183 	}
184 
185 	if (sisr & CCSR_SSI_SISR_TDE0) {
186 		ssi_private->stats.tde0++;
187 		ret = IRQ_HANDLED;
188 	}
189 
190 	if (sisr & CCSR_SSI_SISR_ROE1) {
191 		ssi_private->stats.roe1++;
192 		sisr2 |= CCSR_SSI_SISR_ROE1;
193 		ret = IRQ_HANDLED;
194 	}
195 
196 	if (sisr & CCSR_SSI_SISR_ROE0) {
197 		ssi_private->stats.roe0++;
198 		sisr2 |= CCSR_SSI_SISR_ROE0;
199 		ret = IRQ_HANDLED;
200 	}
201 
202 	if (sisr & CCSR_SSI_SISR_TUE1) {
203 		ssi_private->stats.tue1++;
204 		sisr2 |= CCSR_SSI_SISR_TUE1;
205 		ret = IRQ_HANDLED;
206 	}
207 
208 	if (sisr & CCSR_SSI_SISR_TUE0) {
209 		ssi_private->stats.tue0++;
210 		sisr2 |= CCSR_SSI_SISR_TUE0;
211 		ret = IRQ_HANDLED;
212 	}
213 
214 	if (sisr & CCSR_SSI_SISR_TFS) {
215 		ssi_private->stats.tfs++;
216 		ret = IRQ_HANDLED;
217 	}
218 
219 	if (sisr & CCSR_SSI_SISR_RFS) {
220 		ssi_private->stats.rfs++;
221 		ret = IRQ_HANDLED;
222 	}
223 
224 	if (sisr & CCSR_SSI_SISR_TLS) {
225 		ssi_private->stats.tls++;
226 		ret = IRQ_HANDLED;
227 	}
228 
229 	if (sisr & CCSR_SSI_SISR_RLS) {
230 		ssi_private->stats.rls++;
231 		ret = IRQ_HANDLED;
232 	}
233 
234 	if (sisr & CCSR_SSI_SISR_RFF1) {
235 		ssi_private->stats.rff1++;
236 		ret = IRQ_HANDLED;
237 	}
238 
239 	if (sisr & CCSR_SSI_SISR_RFF0) {
240 		ssi_private->stats.rff0++;
241 		ret = IRQ_HANDLED;
242 	}
243 
244 	if (sisr & CCSR_SSI_SISR_TFE1) {
245 		ssi_private->stats.tfe1++;
246 		ret = IRQ_HANDLED;
247 	}
248 
249 	if (sisr & CCSR_SSI_SISR_TFE0) {
250 		ssi_private->stats.tfe0++;
251 		ret = IRQ_HANDLED;
252 	}
253 
254 	/* Clear the bits that we set */
255 	if (sisr2)
256 		out_be32(&ssi->sisr, sisr2);
257 
258 	return ret;
259 }
260 
261 /**
262  * fsl_ssi_startup: create a new substream
263  *
264  * This is the first function called when a stream is opened.
265  *
266  * If this is the first stream open, then grab the IRQ and program most of
267  * the SSI registers.
268  */
269 static int fsl_ssi_startup(struct snd_pcm_substream *substream)
270 {
271 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
272 	struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
273 
274 	/*
275 	 * If this is the first stream opened, then request the IRQ
276 	 * and initialize the SSI registers.
277 	 */
278 	if (!ssi_private->playback && !ssi_private->capture) {
279 		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
280 		int ret;
281 
282 		ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0,
283 				  ssi_private->name, ssi_private);
284 		if (ret < 0) {
285 			dev_err(substream->pcm->card->dev,
286 				"could not claim irq %u\n", ssi_private->irq);
287 			return ret;
288 		}
289 
290 		/*
291 		 * Section 16.5 of the MPC8610 reference manual says that the
292 		 * SSI needs to be disabled before updating the registers we set
293 		 * here.
294 		 */
295 		clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
296 
297 		/*
298 		 * Program the SSI into I2S Slave Non-Network Synchronous mode.
299 		 * Also enable the transmit and receive FIFO.
300 		 *
301 		 * FIXME: Little-endian samples require a different shift dir
302 		 */
303 		clrsetbits_be32(&ssi->scr, CCSR_SSI_SCR_I2S_MODE_MASK,
304 			CCSR_SSI_SCR_TFR_CLK_DIS |
305 			CCSR_SSI_SCR_I2S_MODE_SLAVE | CCSR_SSI_SCR_SYN);
306 
307 		out_be32(&ssi->stcr,
308 			 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
309 			 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
310 			 CCSR_SSI_STCR_TSCKP);
311 
312 		out_be32(&ssi->srcr,
313 			 CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
314 			 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
315 			 CCSR_SSI_SRCR_RSCKP);
316 
317 		/*
318 		 * The DC and PM bits are only used if the SSI is the clock
319 		 * master.
320 		 */
321 
322 		/* 4. Enable the interrupts and DMA requests */
323 		out_be32(&ssi->sier,
324 			 CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE |
325 			 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN |
326 			 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN |
327 			 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE |
328 			 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN);
329 
330 		/*
331 		 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
332 		 * don't use FIFO 1.  Since the SSI only supports stereo, the
333 		 * watermark should never be an odd number.
334 		 */
335 		out_be32(&ssi->sfcsr,
336 			 CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2));
337 
338 		/*
339 		 * We keep the SSI disabled because if we enable it, then the
340 		 * DMA controller will start.  It's not supposed to start until
341 		 * the SCR.TE (or SCR.RE) bit is set, but it does anyway.  The
342 		 * DMA controller will transfer one "BWC" of data (i.e. the
343 		 * amount of data that the MR.BWC bits are set to).  The reason
344 		 * this is bad is because at this point, the PCM driver has not
345 		 * finished initializing the DMA controller.
346 		 */
347 	}
348 
349 	if (!ssi_private->first_stream)
350 		ssi_private->first_stream = substream;
351 	else {
352 		/* This is the second stream open, so we need to impose sample
353 		 * rate and maybe sample size constraints.  Note that this can
354 		 * cause a race condition if the second stream is opened before
355 		 * the first stream is fully initialized.
356 		 *
357 		 * We provide some protection by checking to make sure the first
358 		 * stream is initialized, but it's not perfect.  ALSA sometimes
359 		 * re-initializes the driver with a different sample rate or
360 		 * size.  If the second stream is opened before the first stream
361 		 * has received its final parameters, then the second stream may
362 		 * be constrained to the wrong sample rate or size.
363 		 *
364 		 * FIXME: This code does not handle opening and closing streams
365 		 * repeatedly.  If you open two streams and then close the first
366 		 * one, you may not be able to open another stream until you
367 		 * close the second one as well.
368 		 */
369 		struct snd_pcm_runtime *first_runtime =
370 			ssi_private->first_stream->runtime;
371 
372 		if (!first_runtime->rate || !first_runtime->sample_bits) {
373 			dev_err(substream->pcm->card->dev,
374 				"set sample rate and size in %s stream first\n",
375 				substream->stream == SNDRV_PCM_STREAM_PLAYBACK
376 				? "capture" : "playback");
377 			return -EAGAIN;
378 		}
379 
380 		snd_pcm_hw_constraint_minmax(substream->runtime,
381 			SNDRV_PCM_HW_PARAM_RATE,
382 			first_runtime->rate, first_runtime->rate);
383 
384 		snd_pcm_hw_constraint_minmax(substream->runtime,
385 			SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
386 			first_runtime->sample_bits,
387 			first_runtime->sample_bits);
388 
389 		ssi_private->second_stream = substream;
390 	}
391 
392 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
393 		ssi_private->playback++;
394 
395 	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
396 		ssi_private->capture++;
397 
398 	return 0;
399 }
400 
401 /**
402  * fsl_ssi_prepare: prepare the SSI.
403  *
404  * Most of the SSI registers have been programmed in the startup function,
405  * but the word length must be programmed here.  Unfortunately, programming
406  * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
407  * cause a problem with supporting simultaneous playback and capture.  If
408  * the SSI is already playing a stream, then that stream may be temporarily
409  * stopped when you start capture.
410  *
411  * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
412  * clock master.
413  */
414 static int fsl_ssi_prepare(struct snd_pcm_substream *substream)
415 {
416 	struct snd_pcm_runtime *runtime = substream->runtime;
417 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
418 	struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
419 
420 	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
421 
422 	if (substream == ssi_private->first_stream) {
423 		u32 wl;
424 
425 		/* The SSI should always be disabled at this points (SSIEN=0) */
426 		wl = CCSR_SSI_SxCCR_WL(snd_pcm_format_width(runtime->format));
427 
428 		/* In synchronous mode, the SSI uses STCCR for capture */
429 		clrsetbits_be32(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
430 	}
431 
432 	return 0;
433 }
434 
435 /**
436  * fsl_ssi_trigger: start and stop the DMA transfer.
437  *
438  * This function is called by ALSA to start, stop, pause, and resume the DMA
439  * transfer of data.
440  *
441  * The DMA channel is in external master start and pause mode, which
442  * means the SSI completely controls the flow of data.
443  */
444 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd)
445 {
446 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
447 	struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
448 	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
449 
450 	switch (cmd) {
451 	case SNDRV_PCM_TRIGGER_START:
452 	case SNDRV_PCM_TRIGGER_RESUME:
453 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
454 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
455 			clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
456 			setbits32(&ssi->scr,
457 				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
458 		} else {
459 			clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
460 			setbits32(&ssi->scr,
461 				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
462 
463 			/*
464 			 * I think we need this delay to allow time for the SSI
465 			 * to put data into its FIFO.  Without it, ALSA starts
466 			 * to complain about overruns.
467 			 */
468 			mdelay(1);
469 		}
470 		break;
471 
472 	case SNDRV_PCM_TRIGGER_STOP:
473 	case SNDRV_PCM_TRIGGER_SUSPEND:
474 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
475 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
476 			clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
477 		else
478 			clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
479 		break;
480 
481 	default:
482 		return -EINVAL;
483 	}
484 
485 	return 0;
486 }
487 
488 /**
489  * fsl_ssi_shutdown: shutdown the SSI
490  *
491  * Shutdown the SSI if there are no other substreams open.
492  */
493 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream)
494 {
495 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
496 	struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
497 
498 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
499 		ssi_private->playback--;
500 
501 	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
502 		ssi_private->capture--;
503 
504 	if (ssi_private->first_stream == substream)
505 		ssi_private->first_stream = ssi_private->second_stream;
506 
507 	ssi_private->second_stream = NULL;
508 
509 	/*
510 	 * If this is the last active substream, disable the SSI and release
511 	 * the IRQ.
512 	 */
513 	if (!ssi_private->playback && !ssi_private->capture) {
514 		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
515 
516 		clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
517 
518 		free_irq(ssi_private->irq, ssi_private);
519 	}
520 }
521 
522 /**
523  * fsl_ssi_set_sysclk: set the clock frequency and direction
524  *
525  * This function is called by the machine driver to tell us what the clock
526  * frequency and direction are.
527  *
528  * Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN),
529  * and we don't care about the frequency.  Return an error if the direction
530  * is not SND_SOC_CLOCK_IN.
531  *
532  * @clk_id: reserved, should be zero
533  * @freq: the frequency of the given clock ID, currently ignored
534  * @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master)
535  */
536 static int fsl_ssi_set_sysclk(struct snd_soc_dai *cpu_dai,
537 			      int clk_id, unsigned int freq, int dir)
538 {
539 
540 	return (dir == SND_SOC_CLOCK_IN) ? 0 : -EINVAL;
541 }
542 
543 /**
544  * fsl_ssi_set_fmt: set the serial format.
545  *
546  * This function is called by the machine driver to tell us what serial
547  * format to use.
548  *
549  * Currently, we only support I2S mode.  Return an error if the format is
550  * not SND_SOC_DAIFMT_I2S.
551  *
552  * @format: one of SND_SOC_DAIFMT_xxx
553  */
554 static int fsl_ssi_set_fmt(struct snd_soc_dai *cpu_dai, unsigned int format)
555 {
556 	return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL;
557 }
558 
559 /**
560  * fsl_ssi_dai_template: template CPU DAI for the SSI
561  */
562 static struct snd_soc_dai fsl_ssi_dai_template = {
563 	.playback = {
564 		/* The SSI does not support monaural audio. */
565 		.channels_min = 2,
566 		.channels_max = 2,
567 		.rates = FSLSSI_I2S_RATES,
568 		.formats = FSLSSI_I2S_FORMATS,
569 	},
570 	.capture = {
571 		.channels_min = 2,
572 		.channels_max = 2,
573 		.rates = FSLSSI_I2S_RATES,
574 		.formats = FSLSSI_I2S_FORMATS,
575 	},
576 	.ops = {
577 		.startup = fsl_ssi_startup,
578 		.prepare = fsl_ssi_prepare,
579 		.shutdown = fsl_ssi_shutdown,
580 		.trigger = fsl_ssi_trigger,
581 	},
582 	.dai_ops = {
583 		.set_sysclk = fsl_ssi_set_sysclk,
584 		.set_fmt = fsl_ssi_set_fmt,
585 	},
586 };
587 
588 /**
589  * fsl_sysfs_ssi_show: display SSI statistics
590  *
591  * Display the statistics for the current SSI device.
592  */
593 static ssize_t fsl_sysfs_ssi_show(struct device *dev,
594 	struct device_attribute *attr, char *buf)
595 {
596 	struct fsl_ssi_private *ssi_private =
597 	container_of(attr, struct fsl_ssi_private, dev_attr);
598 	ssize_t length;
599 
600 	length = sprintf(buf, "rfrc=%u", ssi_private->stats.rfrc);
601 	length += sprintf(buf + length, "\ttfrc=%u", ssi_private->stats.tfrc);
602 	length += sprintf(buf + length, "\tcmdau=%u", ssi_private->stats.cmdau);
603 	length += sprintf(buf + length, "\tcmddu=%u", ssi_private->stats.cmddu);
604 	length += sprintf(buf + length, "\trxt=%u", ssi_private->stats.rxt);
605 	length += sprintf(buf + length, "\trdr1=%u", ssi_private->stats.rdr1);
606 	length += sprintf(buf + length, "\trdr0=%u", ssi_private->stats.rdr0);
607 	length += sprintf(buf + length, "\ttde1=%u", ssi_private->stats.tde1);
608 	length += sprintf(buf + length, "\ttde0=%u", ssi_private->stats.tde0);
609 	length += sprintf(buf + length, "\troe1=%u", ssi_private->stats.roe1);
610 	length += sprintf(buf + length, "\troe0=%u", ssi_private->stats.roe0);
611 	length += sprintf(buf + length, "\ttue1=%u", ssi_private->stats.tue1);
612 	length += sprintf(buf + length, "\ttue0=%u", ssi_private->stats.tue0);
613 	length += sprintf(buf + length, "\ttfs=%u", ssi_private->stats.tfs);
614 	length += sprintf(buf + length, "\trfs=%u", ssi_private->stats.rfs);
615 	length += sprintf(buf + length, "\ttls=%u", ssi_private->stats.tls);
616 	length += sprintf(buf + length, "\trls=%u", ssi_private->stats.rls);
617 	length += sprintf(buf + length, "\trff1=%u", ssi_private->stats.rff1);
618 	length += sprintf(buf + length, "\trff0=%u", ssi_private->stats.rff0);
619 	length += sprintf(buf + length, "\ttfe1=%u", ssi_private->stats.tfe1);
620 	length += sprintf(buf + length, "\ttfe0=%u\n", ssi_private->stats.tfe0);
621 
622 	return length;
623 }
624 
625 /**
626  * fsl_ssi_create_dai: create a snd_soc_dai structure
627  *
628  * This function is called by the machine driver to create a snd_soc_dai
629  * structure.  The function creates an ssi_private object, which contains
630  * the snd_soc_dai.  It also creates the sysfs statistics device.
631  */
632 struct snd_soc_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info)
633 {
634 	struct snd_soc_dai *fsl_ssi_dai;
635 	struct fsl_ssi_private *ssi_private;
636 	int ret = 0;
637 	struct device_attribute *dev_attr;
638 
639 	ssi_private = kzalloc(sizeof(struct fsl_ssi_private), GFP_KERNEL);
640 	if (!ssi_private) {
641 		dev_err(ssi_info->dev, "could not allocate DAI object\n");
642 		return NULL;
643 	}
644 	memcpy(&ssi_private->cpu_dai, &fsl_ssi_dai_template,
645 	       sizeof(struct snd_soc_dai));
646 
647 	fsl_ssi_dai = &ssi_private->cpu_dai;
648 	dev_attr = &ssi_private->dev_attr;
649 
650 	sprintf(ssi_private->name, "ssi%u", (u8) ssi_info->id);
651 	ssi_private->ssi = ssi_info->ssi;
652 	ssi_private->ssi_phys = ssi_info->ssi_phys;
653 	ssi_private->irq = ssi_info->irq;
654 	ssi_private->dev = ssi_info->dev;
655 
656 	ssi_private->dev->driver_data = fsl_ssi_dai;
657 
658 	/* Initialize the the device_attribute structure */
659 	dev_attr->attr.name = "ssi-stats";
660 	dev_attr->attr.mode = S_IRUGO;
661 	dev_attr->show = fsl_sysfs_ssi_show;
662 
663 	ret = device_create_file(ssi_private->dev, dev_attr);
664 	if (ret) {
665 		dev_err(ssi_info->dev, "could not create sysfs %s file\n",
666 			ssi_private->dev_attr.attr.name);
667 		kfree(fsl_ssi_dai);
668 		return NULL;
669 	}
670 
671 	fsl_ssi_dai->private_data = ssi_private;
672 	fsl_ssi_dai->name = ssi_private->name;
673 	fsl_ssi_dai->id = ssi_info->id;
674 
675 	return fsl_ssi_dai;
676 }
677 EXPORT_SYMBOL_GPL(fsl_ssi_create_dai);
678 
679 /**
680  * fsl_ssi_destroy_dai: destroy the snd_soc_dai object
681  *
682  * This function undoes the operations of fsl_ssi_create_dai()
683  */
684 void fsl_ssi_destroy_dai(struct snd_soc_dai *fsl_ssi_dai)
685 {
686 	struct fsl_ssi_private *ssi_private =
687 	container_of(fsl_ssi_dai, struct fsl_ssi_private, cpu_dai);
688 
689 	device_remove_file(ssi_private->dev, &ssi_private->dev_attr);
690 
691 	kfree(ssi_private);
692 }
693 EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai);
694 
695 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
696 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
697 MODULE_LICENSE("GPL");
698