1 /* 2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver 3 * 4 * Author: Timur Tabi <timur@freescale.com> 5 * 6 * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed 7 * under the terms of the GNU General Public License version 2. This 8 * program is licensed "as is" without any warranty of any kind, whether 9 * express or implied. 10 */ 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/interrupt.h> 15 #include <linux/device.h> 16 #include <linux/delay.h> 17 18 #include <sound/core.h> 19 #include <sound/pcm.h> 20 #include <sound/pcm_params.h> 21 #include <sound/initval.h> 22 #include <sound/soc.h> 23 24 #include <asm/immap_86xx.h> 25 26 #include "fsl_ssi.h" 27 28 /** 29 * FSLSSI_I2S_RATES: sample rates supported by the I2S 30 * 31 * This driver currently only supports the SSI running in I2S slave mode, 32 * which means the codec determines the sample rate. Therefore, we tell 33 * ALSA that we support all rates and let the codec driver decide what rates 34 * are really supported. 35 */ 36 #define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \ 37 SNDRV_PCM_RATE_CONTINUOUS) 38 39 /** 40 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI 41 * 42 * This driver currently only supports the SSI running in I2S slave mode. 43 * 44 * The SSI has a limitation in that the samples must be in the same byte 45 * order as the host CPU. This is because when multiple bytes are written 46 * to the STX register, the bytes and bits must be written in the same 47 * order. The STX is a shift register, so all the bits need to be aligned 48 * (bit-endianness must match byte-endianness). Processors typically write 49 * the bits within a byte in the same order that the bytes of a word are 50 * written in. So if the host CPU is big-endian, then only big-endian 51 * samples will be written to STX properly. 52 */ 53 #ifdef __BIG_ENDIAN 54 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \ 55 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \ 56 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE) 57 #else 58 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \ 59 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \ 60 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE) 61 #endif 62 63 /** 64 * fsl_ssi_private: per-SSI private data 65 * 66 * @name: short name for this device ("SSI0", "SSI1", etc) 67 * @ssi: pointer to the SSI's registers 68 * @ssi_phys: physical address of the SSI registers 69 * @irq: IRQ of this SSI 70 * @first_stream: pointer to the stream that was opened first 71 * @second_stream: pointer to second stream 72 * @dev: struct device pointer 73 * @playback: the number of playback streams opened 74 * @capture: the number of capture streams opened 75 * @cpu_dai: the CPU DAI for this device 76 * @dev_attr: the sysfs device attribute structure 77 * @stats: SSI statistics 78 */ 79 struct fsl_ssi_private { 80 char name[8]; 81 struct ccsr_ssi __iomem *ssi; 82 dma_addr_t ssi_phys; 83 unsigned int irq; 84 struct snd_pcm_substream *first_stream; 85 struct snd_pcm_substream *second_stream; 86 struct device *dev; 87 unsigned int playback; 88 unsigned int capture; 89 struct snd_soc_dai cpu_dai; 90 struct device_attribute dev_attr; 91 92 struct { 93 unsigned int rfrc; 94 unsigned int tfrc; 95 unsigned int cmdau; 96 unsigned int cmddu; 97 unsigned int rxt; 98 unsigned int rdr1; 99 unsigned int rdr0; 100 unsigned int tde1; 101 unsigned int tde0; 102 unsigned int roe1; 103 unsigned int roe0; 104 unsigned int tue1; 105 unsigned int tue0; 106 unsigned int tfs; 107 unsigned int rfs; 108 unsigned int tls; 109 unsigned int rls; 110 unsigned int rff1; 111 unsigned int rff0; 112 unsigned int tfe1; 113 unsigned int tfe0; 114 } stats; 115 }; 116 117 /** 118 * fsl_ssi_isr: SSI interrupt handler 119 * 120 * Although it's possible to use the interrupt handler to send and receive 121 * data to/from the SSI, we use the DMA instead. Programming is more 122 * complicated, but the performance is much better. 123 * 124 * This interrupt handler is used only to gather statistics. 125 * 126 * @irq: IRQ of the SSI device 127 * @dev_id: pointer to the ssi_private structure for this SSI device 128 */ 129 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id) 130 { 131 struct fsl_ssi_private *ssi_private = dev_id; 132 struct ccsr_ssi __iomem *ssi = ssi_private->ssi; 133 irqreturn_t ret = IRQ_NONE; 134 __be32 sisr; 135 __be32 sisr2 = 0; 136 137 /* We got an interrupt, so read the status register to see what we 138 were interrupted for. We mask it with the Interrupt Enable register 139 so that we only check for events that we're interested in. 140 */ 141 sisr = in_be32(&ssi->sisr) & in_be32(&ssi->sier); 142 143 if (sisr & CCSR_SSI_SISR_RFRC) { 144 ssi_private->stats.rfrc++; 145 sisr2 |= CCSR_SSI_SISR_RFRC; 146 ret = IRQ_HANDLED; 147 } 148 149 if (sisr & CCSR_SSI_SISR_TFRC) { 150 ssi_private->stats.tfrc++; 151 sisr2 |= CCSR_SSI_SISR_TFRC; 152 ret = IRQ_HANDLED; 153 } 154 155 if (sisr & CCSR_SSI_SISR_CMDAU) { 156 ssi_private->stats.cmdau++; 157 ret = IRQ_HANDLED; 158 } 159 160 if (sisr & CCSR_SSI_SISR_CMDDU) { 161 ssi_private->stats.cmddu++; 162 ret = IRQ_HANDLED; 163 } 164 165 if (sisr & CCSR_SSI_SISR_RXT) { 166 ssi_private->stats.rxt++; 167 ret = IRQ_HANDLED; 168 } 169 170 if (sisr & CCSR_SSI_SISR_RDR1) { 171 ssi_private->stats.rdr1++; 172 ret = IRQ_HANDLED; 173 } 174 175 if (sisr & CCSR_SSI_SISR_RDR0) { 176 ssi_private->stats.rdr0++; 177 ret = IRQ_HANDLED; 178 } 179 180 if (sisr & CCSR_SSI_SISR_TDE1) { 181 ssi_private->stats.tde1++; 182 ret = IRQ_HANDLED; 183 } 184 185 if (sisr & CCSR_SSI_SISR_TDE0) { 186 ssi_private->stats.tde0++; 187 ret = IRQ_HANDLED; 188 } 189 190 if (sisr & CCSR_SSI_SISR_ROE1) { 191 ssi_private->stats.roe1++; 192 sisr2 |= CCSR_SSI_SISR_ROE1; 193 ret = IRQ_HANDLED; 194 } 195 196 if (sisr & CCSR_SSI_SISR_ROE0) { 197 ssi_private->stats.roe0++; 198 sisr2 |= CCSR_SSI_SISR_ROE0; 199 ret = IRQ_HANDLED; 200 } 201 202 if (sisr & CCSR_SSI_SISR_TUE1) { 203 ssi_private->stats.tue1++; 204 sisr2 |= CCSR_SSI_SISR_TUE1; 205 ret = IRQ_HANDLED; 206 } 207 208 if (sisr & CCSR_SSI_SISR_TUE0) { 209 ssi_private->stats.tue0++; 210 sisr2 |= CCSR_SSI_SISR_TUE0; 211 ret = IRQ_HANDLED; 212 } 213 214 if (sisr & CCSR_SSI_SISR_TFS) { 215 ssi_private->stats.tfs++; 216 ret = IRQ_HANDLED; 217 } 218 219 if (sisr & CCSR_SSI_SISR_RFS) { 220 ssi_private->stats.rfs++; 221 ret = IRQ_HANDLED; 222 } 223 224 if (sisr & CCSR_SSI_SISR_TLS) { 225 ssi_private->stats.tls++; 226 ret = IRQ_HANDLED; 227 } 228 229 if (sisr & CCSR_SSI_SISR_RLS) { 230 ssi_private->stats.rls++; 231 ret = IRQ_HANDLED; 232 } 233 234 if (sisr & CCSR_SSI_SISR_RFF1) { 235 ssi_private->stats.rff1++; 236 ret = IRQ_HANDLED; 237 } 238 239 if (sisr & CCSR_SSI_SISR_RFF0) { 240 ssi_private->stats.rff0++; 241 ret = IRQ_HANDLED; 242 } 243 244 if (sisr & CCSR_SSI_SISR_TFE1) { 245 ssi_private->stats.tfe1++; 246 ret = IRQ_HANDLED; 247 } 248 249 if (sisr & CCSR_SSI_SISR_TFE0) { 250 ssi_private->stats.tfe0++; 251 ret = IRQ_HANDLED; 252 } 253 254 /* Clear the bits that we set */ 255 if (sisr2) 256 out_be32(&ssi->sisr, sisr2); 257 258 return ret; 259 } 260 261 /** 262 * fsl_ssi_startup: create a new substream 263 * 264 * This is the first function called when a stream is opened. 265 * 266 * If this is the first stream open, then grab the IRQ and program most of 267 * the SSI registers. 268 */ 269 static int fsl_ssi_startup(struct snd_pcm_substream *substream) 270 { 271 struct snd_soc_pcm_runtime *rtd = substream->private_data; 272 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; 273 274 /* 275 * If this is the first stream opened, then request the IRQ 276 * and initialize the SSI registers. 277 */ 278 if (!ssi_private->playback && !ssi_private->capture) { 279 struct ccsr_ssi __iomem *ssi = ssi_private->ssi; 280 int ret; 281 282 ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, 283 ssi_private->name, ssi_private); 284 if (ret < 0) { 285 dev_err(substream->pcm->card->dev, 286 "could not claim irq %u\n", ssi_private->irq); 287 return ret; 288 } 289 290 /* 291 * Section 16.5 of the MPC8610 reference manual says that the 292 * SSI needs to be disabled before updating the registers we set 293 * here. 294 */ 295 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); 296 297 /* 298 * Program the SSI into I2S Slave Non-Network Synchronous mode. 299 * Also enable the transmit and receive FIFO. 300 * 301 * FIXME: Little-endian samples require a different shift dir 302 */ 303 clrsetbits_be32(&ssi->scr, CCSR_SSI_SCR_I2S_MODE_MASK, 304 CCSR_SSI_SCR_TFR_CLK_DIS | 305 CCSR_SSI_SCR_I2S_MODE_SLAVE | CCSR_SSI_SCR_SYN); 306 307 out_be32(&ssi->stcr, 308 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 | 309 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS | 310 CCSR_SSI_STCR_TSCKP); 311 312 out_be32(&ssi->srcr, 313 CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 | 314 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS | 315 CCSR_SSI_SRCR_RSCKP); 316 317 /* 318 * The DC and PM bits are only used if the SSI is the clock 319 * master. 320 */ 321 322 /* 4. Enable the interrupts and DMA requests */ 323 out_be32(&ssi->sier, 324 CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | 325 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | 326 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | 327 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | 328 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN); 329 330 /* 331 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We 332 * don't use FIFO 1. Since the SSI only supports stereo, the 333 * watermark should never be an odd number. 334 */ 335 out_be32(&ssi->sfcsr, 336 CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2)); 337 338 /* 339 * We keep the SSI disabled because if we enable it, then the 340 * DMA controller will start. It's not supposed to start until 341 * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The 342 * DMA controller will transfer one "BWC" of data (i.e. the 343 * amount of data that the MR.BWC bits are set to). The reason 344 * this is bad is because at this point, the PCM driver has not 345 * finished initializing the DMA controller. 346 */ 347 } 348 349 if (!ssi_private->first_stream) 350 ssi_private->first_stream = substream; 351 else { 352 /* This is the second stream open, so we need to impose sample 353 * rate and maybe sample size constraints. Note that this can 354 * cause a race condition if the second stream is opened before 355 * the first stream is fully initialized. 356 * 357 * We provide some protection by checking to make sure the first 358 * stream is initialized, but it's not perfect. ALSA sometimes 359 * re-initializes the driver with a different sample rate or 360 * size. If the second stream is opened before the first stream 361 * has received its final parameters, then the second stream may 362 * be constrained to the wrong sample rate or size. 363 * 364 * FIXME: This code does not handle opening and closing streams 365 * repeatedly. If you open two streams and then close the first 366 * one, you may not be able to open another stream until you 367 * close the second one as well. 368 */ 369 struct snd_pcm_runtime *first_runtime = 370 ssi_private->first_stream->runtime; 371 372 if (!first_runtime->rate || !first_runtime->sample_bits) { 373 dev_err(substream->pcm->card->dev, 374 "set sample rate and size in %s stream first\n", 375 substream->stream == SNDRV_PCM_STREAM_PLAYBACK 376 ? "capture" : "playback"); 377 return -EAGAIN; 378 } 379 380 snd_pcm_hw_constraint_minmax(substream->runtime, 381 SNDRV_PCM_HW_PARAM_RATE, 382 first_runtime->rate, first_runtime->rate); 383 384 snd_pcm_hw_constraint_minmax(substream->runtime, 385 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, 386 first_runtime->sample_bits, 387 first_runtime->sample_bits); 388 389 ssi_private->second_stream = substream; 390 } 391 392 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 393 ssi_private->playback++; 394 395 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 396 ssi_private->capture++; 397 398 return 0; 399 } 400 401 /** 402 * fsl_ssi_prepare: prepare the SSI. 403 * 404 * Most of the SSI registers have been programmed in the startup function, 405 * but the word length must be programmed here. Unfortunately, programming 406 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can 407 * cause a problem with supporting simultaneous playback and capture. If 408 * the SSI is already playing a stream, then that stream may be temporarily 409 * stopped when you start capture. 410 * 411 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the 412 * clock master. 413 */ 414 static int fsl_ssi_prepare(struct snd_pcm_substream *substream) 415 { 416 struct snd_pcm_runtime *runtime = substream->runtime; 417 struct snd_soc_pcm_runtime *rtd = substream->private_data; 418 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; 419 420 struct ccsr_ssi __iomem *ssi = ssi_private->ssi; 421 422 if (substream == ssi_private->first_stream) { 423 u32 wl; 424 425 /* The SSI should always be disabled at this points (SSIEN=0) */ 426 wl = CCSR_SSI_SxCCR_WL(snd_pcm_format_width(runtime->format)); 427 428 /* In synchronous mode, the SSI uses STCCR for capture */ 429 clrsetbits_be32(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl); 430 } 431 432 return 0; 433 } 434 435 /** 436 * fsl_ssi_trigger: start and stop the DMA transfer. 437 * 438 * This function is called by ALSA to start, stop, pause, and resume the DMA 439 * transfer of data. 440 * 441 * The DMA channel is in external master start and pause mode, which 442 * means the SSI completely controls the flow of data. 443 */ 444 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd) 445 { 446 struct snd_soc_pcm_runtime *rtd = substream->private_data; 447 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; 448 struct ccsr_ssi __iomem *ssi = ssi_private->ssi; 449 450 switch (cmd) { 451 case SNDRV_PCM_TRIGGER_START: 452 case SNDRV_PCM_TRIGGER_RESUME: 453 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 454 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 455 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); 456 setbits32(&ssi->scr, 457 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE); 458 } else { 459 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); 460 setbits32(&ssi->scr, 461 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE); 462 463 /* 464 * I think we need this delay to allow time for the SSI 465 * to put data into its FIFO. Without it, ALSA starts 466 * to complain about overruns. 467 */ 468 mdelay(1); 469 } 470 break; 471 472 case SNDRV_PCM_TRIGGER_STOP: 473 case SNDRV_PCM_TRIGGER_SUSPEND: 474 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 475 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 476 clrbits32(&ssi->scr, CCSR_SSI_SCR_TE); 477 else 478 clrbits32(&ssi->scr, CCSR_SSI_SCR_RE); 479 break; 480 481 default: 482 return -EINVAL; 483 } 484 485 return 0; 486 } 487 488 /** 489 * fsl_ssi_shutdown: shutdown the SSI 490 * 491 * Shutdown the SSI if there are no other substreams open. 492 */ 493 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream) 494 { 495 struct snd_soc_pcm_runtime *rtd = substream->private_data; 496 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; 497 498 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 499 ssi_private->playback--; 500 501 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 502 ssi_private->capture--; 503 504 if (ssi_private->first_stream == substream) 505 ssi_private->first_stream = ssi_private->second_stream; 506 507 ssi_private->second_stream = NULL; 508 509 /* 510 * If this is the last active substream, disable the SSI and release 511 * the IRQ. 512 */ 513 if (!ssi_private->playback && !ssi_private->capture) { 514 struct ccsr_ssi __iomem *ssi = ssi_private->ssi; 515 516 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); 517 518 free_irq(ssi_private->irq, ssi_private); 519 } 520 } 521 522 /** 523 * fsl_ssi_set_sysclk: set the clock frequency and direction 524 * 525 * This function is called by the machine driver to tell us what the clock 526 * frequency and direction are. 527 * 528 * Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN), 529 * and we don't care about the frequency. Return an error if the direction 530 * is not SND_SOC_CLOCK_IN. 531 * 532 * @clk_id: reserved, should be zero 533 * @freq: the frequency of the given clock ID, currently ignored 534 * @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master) 535 */ 536 static int fsl_ssi_set_sysclk(struct snd_soc_dai *cpu_dai, 537 int clk_id, unsigned int freq, int dir) 538 { 539 540 return (dir == SND_SOC_CLOCK_IN) ? 0 : -EINVAL; 541 } 542 543 /** 544 * fsl_ssi_set_fmt: set the serial format. 545 * 546 * This function is called by the machine driver to tell us what serial 547 * format to use. 548 * 549 * Currently, we only support I2S mode. Return an error if the format is 550 * not SND_SOC_DAIFMT_I2S. 551 * 552 * @format: one of SND_SOC_DAIFMT_xxx 553 */ 554 static int fsl_ssi_set_fmt(struct snd_soc_dai *cpu_dai, unsigned int format) 555 { 556 return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL; 557 } 558 559 /** 560 * fsl_ssi_dai_template: template CPU DAI for the SSI 561 */ 562 static struct snd_soc_dai fsl_ssi_dai_template = { 563 .playback = { 564 /* The SSI does not support monaural audio. */ 565 .channels_min = 2, 566 .channels_max = 2, 567 .rates = FSLSSI_I2S_RATES, 568 .formats = FSLSSI_I2S_FORMATS, 569 }, 570 .capture = { 571 .channels_min = 2, 572 .channels_max = 2, 573 .rates = FSLSSI_I2S_RATES, 574 .formats = FSLSSI_I2S_FORMATS, 575 }, 576 .ops = { 577 .startup = fsl_ssi_startup, 578 .prepare = fsl_ssi_prepare, 579 .shutdown = fsl_ssi_shutdown, 580 .trigger = fsl_ssi_trigger, 581 }, 582 .dai_ops = { 583 .set_sysclk = fsl_ssi_set_sysclk, 584 .set_fmt = fsl_ssi_set_fmt, 585 }, 586 }; 587 588 /** 589 * fsl_sysfs_ssi_show: display SSI statistics 590 * 591 * Display the statistics for the current SSI device. 592 */ 593 static ssize_t fsl_sysfs_ssi_show(struct device *dev, 594 struct device_attribute *attr, char *buf) 595 { 596 struct fsl_ssi_private *ssi_private = 597 container_of(attr, struct fsl_ssi_private, dev_attr); 598 ssize_t length; 599 600 length = sprintf(buf, "rfrc=%u", ssi_private->stats.rfrc); 601 length += sprintf(buf + length, "\ttfrc=%u", ssi_private->stats.tfrc); 602 length += sprintf(buf + length, "\tcmdau=%u", ssi_private->stats.cmdau); 603 length += sprintf(buf + length, "\tcmddu=%u", ssi_private->stats.cmddu); 604 length += sprintf(buf + length, "\trxt=%u", ssi_private->stats.rxt); 605 length += sprintf(buf + length, "\trdr1=%u", ssi_private->stats.rdr1); 606 length += sprintf(buf + length, "\trdr0=%u", ssi_private->stats.rdr0); 607 length += sprintf(buf + length, "\ttde1=%u", ssi_private->stats.tde1); 608 length += sprintf(buf + length, "\ttde0=%u", ssi_private->stats.tde0); 609 length += sprintf(buf + length, "\troe1=%u", ssi_private->stats.roe1); 610 length += sprintf(buf + length, "\troe0=%u", ssi_private->stats.roe0); 611 length += sprintf(buf + length, "\ttue1=%u", ssi_private->stats.tue1); 612 length += sprintf(buf + length, "\ttue0=%u", ssi_private->stats.tue0); 613 length += sprintf(buf + length, "\ttfs=%u", ssi_private->stats.tfs); 614 length += sprintf(buf + length, "\trfs=%u", ssi_private->stats.rfs); 615 length += sprintf(buf + length, "\ttls=%u", ssi_private->stats.tls); 616 length += sprintf(buf + length, "\trls=%u", ssi_private->stats.rls); 617 length += sprintf(buf + length, "\trff1=%u", ssi_private->stats.rff1); 618 length += sprintf(buf + length, "\trff0=%u", ssi_private->stats.rff0); 619 length += sprintf(buf + length, "\ttfe1=%u", ssi_private->stats.tfe1); 620 length += sprintf(buf + length, "\ttfe0=%u\n", ssi_private->stats.tfe0); 621 622 return length; 623 } 624 625 /** 626 * fsl_ssi_create_dai: create a snd_soc_dai structure 627 * 628 * This function is called by the machine driver to create a snd_soc_dai 629 * structure. The function creates an ssi_private object, which contains 630 * the snd_soc_dai. It also creates the sysfs statistics device. 631 */ 632 struct snd_soc_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info) 633 { 634 struct snd_soc_dai *fsl_ssi_dai; 635 struct fsl_ssi_private *ssi_private; 636 int ret = 0; 637 struct device_attribute *dev_attr; 638 639 ssi_private = kzalloc(sizeof(struct fsl_ssi_private), GFP_KERNEL); 640 if (!ssi_private) { 641 dev_err(ssi_info->dev, "could not allocate DAI object\n"); 642 return NULL; 643 } 644 memcpy(&ssi_private->cpu_dai, &fsl_ssi_dai_template, 645 sizeof(struct snd_soc_dai)); 646 647 fsl_ssi_dai = &ssi_private->cpu_dai; 648 dev_attr = &ssi_private->dev_attr; 649 650 sprintf(ssi_private->name, "ssi%u", (u8) ssi_info->id); 651 ssi_private->ssi = ssi_info->ssi; 652 ssi_private->ssi_phys = ssi_info->ssi_phys; 653 ssi_private->irq = ssi_info->irq; 654 ssi_private->dev = ssi_info->dev; 655 656 ssi_private->dev->driver_data = fsl_ssi_dai; 657 658 /* Initialize the the device_attribute structure */ 659 dev_attr->attr.name = "ssi-stats"; 660 dev_attr->attr.mode = S_IRUGO; 661 dev_attr->show = fsl_sysfs_ssi_show; 662 663 ret = device_create_file(ssi_private->dev, dev_attr); 664 if (ret) { 665 dev_err(ssi_info->dev, "could not create sysfs %s file\n", 666 ssi_private->dev_attr.attr.name); 667 kfree(fsl_ssi_dai); 668 return NULL; 669 } 670 671 fsl_ssi_dai->private_data = ssi_private; 672 fsl_ssi_dai->name = ssi_private->name; 673 fsl_ssi_dai->id = ssi_info->id; 674 675 return fsl_ssi_dai; 676 } 677 EXPORT_SYMBOL_GPL(fsl_ssi_create_dai); 678 679 /** 680 * fsl_ssi_destroy_dai: destroy the snd_soc_dai object 681 * 682 * This function undoes the operations of fsl_ssi_create_dai() 683 */ 684 void fsl_ssi_destroy_dai(struct snd_soc_dai *fsl_ssi_dai) 685 { 686 struct fsl_ssi_private *ssi_private = 687 container_of(fsl_ssi_dai, struct fsl_ssi_private, cpu_dai); 688 689 device_remove_file(ssi_private->dev, &ssi_private->dev_attr); 690 691 kfree(ssi_private); 692 } 693 EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai); 694 695 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 696 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver"); 697 MODULE_LICENSE("GPL"); 698