1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver 4 // 5 // Copyright (C) 2013 Freescale Semiconductor, Inc. 6 // 7 // Based on stmp3xxx_spdif_dai.c 8 // Vladimir Barinov <vbarinov@embeddedalley.com> 9 // Copyright 2008 SigmaTel, Inc 10 // Copyright 2008 Embedded Alley Solutions, Inc 11 12 #include <linux/bitrev.h> 13 #include <linux/clk.h> 14 #include <linux/module.h> 15 #include <linux/of_address.h> 16 #include <linux/of_device.h> 17 #include <linux/of_irq.h> 18 #include <linux/regmap.h> 19 20 #include <sound/asoundef.h> 21 #include <sound/dmaengine_pcm.h> 22 #include <sound/soc.h> 23 24 #include "fsl_spdif.h" 25 #include "imx-pcm.h" 26 27 #define FSL_SPDIF_TXFIFO_WML 0x8 28 #define FSL_SPDIF_RXFIFO_WML 0x8 29 30 #define INTR_FOR_PLAYBACK (INT_TXFIFO_RESYNC) 31 #define INTR_FOR_CAPTURE (INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL |\ 32 INT_URX_OV | INT_QRX_FUL | INT_QRX_OV |\ 33 INT_UQ_SYNC | INT_UQ_ERR | INT_RXFIFO_RESYNC |\ 34 INT_LOSS_LOCK | INT_DPLL_LOCKED) 35 36 #define SIE_INTR_FOR(tx) (tx ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE) 37 38 /* Index list for the values that has if (DPLL Locked) condition */ 39 static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb }; 40 #define SRPC_NODPLL_START1 0x5 41 #define SRPC_NODPLL_START2 0xc 42 43 #define DEFAULT_RXCLK_SRC 1 44 45 /* 46 * SPDIF control structure 47 * Defines channel status, subcode and Q sub 48 */ 49 struct spdif_mixer_control { 50 /* spinlock to access control data */ 51 spinlock_t ctl_lock; 52 53 /* IEC958 channel tx status bit */ 54 unsigned char ch_status[4]; 55 56 /* User bits */ 57 unsigned char subcode[2 * SPDIF_UBITS_SIZE]; 58 59 /* Q subcode part of user bits */ 60 unsigned char qsub[2 * SPDIF_QSUB_SIZE]; 61 62 /* Buffer offset for U/Q */ 63 u32 upos; 64 u32 qpos; 65 66 /* Ready buffer index of the two buffers */ 67 u32 ready_buf; 68 }; 69 70 /** 71 * fsl_spdif_priv: Freescale SPDIF private data 72 * 73 * @fsl_spdif_control: SPDIF control data 74 * @cpu_dai_drv: cpu dai driver 75 * @pdev: platform device pointer 76 * @regmap: regmap handler 77 * @dpll_locked: dpll lock flag 78 * @txrate: the best rates for playback 79 * @txclk_df: STC_TXCLK_DF dividers value for playback 80 * @sysclk_df: STC_SYSCLK_DF dividers value for playback 81 * @txclk_src: STC_TXCLK_SRC values for playback 82 * @rxclk_src: SRPC_CLKSRC_SEL values for capture 83 * @txclk: tx clock sources for playback 84 * @rxclk: rx clock sources for capture 85 * @coreclk: core clock for register access via DMA 86 * @sysclk: system clock for rx clock rate measurement 87 * @spbaclk: SPBA clock (optional, depending on SoC design) 88 * @dma_params_tx: DMA parameters for transmit channel 89 * @dma_params_rx: DMA parameters for receive channel 90 */ 91 struct fsl_spdif_priv { 92 struct spdif_mixer_control fsl_spdif_control; 93 struct snd_soc_dai_driver cpu_dai_drv; 94 struct platform_device *pdev; 95 struct regmap *regmap; 96 bool dpll_locked; 97 u32 txrate[SPDIF_TXRATE_MAX]; 98 u8 txclk_df[SPDIF_TXRATE_MAX]; 99 u16 sysclk_df[SPDIF_TXRATE_MAX]; 100 u8 txclk_src[SPDIF_TXRATE_MAX]; 101 u8 rxclk_src; 102 struct clk *txclk[SPDIF_TXRATE_MAX]; 103 struct clk *rxclk; 104 struct clk *coreclk; 105 struct clk *sysclk; 106 struct clk *spbaclk; 107 struct snd_dmaengine_dai_dma_data dma_params_tx; 108 struct snd_dmaengine_dai_dma_data dma_params_rx; 109 /* regcache for SRPC */ 110 u32 regcache_srpc; 111 }; 112 113 /* DPLL locked and lock loss interrupt handler */ 114 static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv) 115 { 116 struct regmap *regmap = spdif_priv->regmap; 117 struct platform_device *pdev = spdif_priv->pdev; 118 u32 locked; 119 120 regmap_read(regmap, REG_SPDIF_SRPC, &locked); 121 locked &= SRPC_DPLL_LOCKED; 122 123 dev_dbg(&pdev->dev, "isr: Rx dpll %s \n", 124 locked ? "locked" : "loss lock"); 125 126 spdif_priv->dpll_locked = locked ? true : false; 127 } 128 129 /* Receiver found illegal symbol interrupt handler */ 130 static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv) 131 { 132 struct regmap *regmap = spdif_priv->regmap; 133 struct platform_device *pdev = spdif_priv->pdev; 134 135 dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n"); 136 137 /* Clear illegal symbol if DPLL unlocked since no audio stream */ 138 if (!spdif_priv->dpll_locked) 139 regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0); 140 } 141 142 /* U/Q Channel receive register full */ 143 static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name) 144 { 145 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 146 struct regmap *regmap = spdif_priv->regmap; 147 struct platform_device *pdev = spdif_priv->pdev; 148 u32 *pos, size, val, reg; 149 150 switch (name) { 151 case 'U': 152 pos = &ctrl->upos; 153 size = SPDIF_UBITS_SIZE; 154 reg = REG_SPDIF_SRU; 155 break; 156 case 'Q': 157 pos = &ctrl->qpos; 158 size = SPDIF_QSUB_SIZE; 159 reg = REG_SPDIF_SRQ; 160 break; 161 default: 162 dev_err(&pdev->dev, "unsupported channel name\n"); 163 return; 164 } 165 166 dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name); 167 168 if (*pos >= size * 2) { 169 *pos = 0; 170 } else if (unlikely((*pos % size) + 3 > size)) { 171 dev_err(&pdev->dev, "User bit receive buffer overflow\n"); 172 return; 173 } 174 175 regmap_read(regmap, reg, &val); 176 ctrl->subcode[*pos++] = val >> 16; 177 ctrl->subcode[*pos++] = val >> 8; 178 ctrl->subcode[*pos++] = val; 179 } 180 181 /* U/Q Channel sync found */ 182 static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv) 183 { 184 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 185 struct platform_device *pdev = spdif_priv->pdev; 186 187 dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n"); 188 189 /* U/Q buffer reset */ 190 if (ctrl->qpos == 0) 191 return; 192 193 /* Set ready to this buffer */ 194 ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1; 195 } 196 197 /* U/Q Channel framing error */ 198 static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv) 199 { 200 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 201 struct regmap *regmap = spdif_priv->regmap; 202 struct platform_device *pdev = spdif_priv->pdev; 203 u32 val; 204 205 dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n"); 206 207 /* Read U/Q data to clear the irq and do buffer reset */ 208 regmap_read(regmap, REG_SPDIF_SRU, &val); 209 regmap_read(regmap, REG_SPDIF_SRQ, &val); 210 211 /* Drop this U/Q buffer */ 212 ctrl->ready_buf = 0; 213 ctrl->upos = 0; 214 ctrl->qpos = 0; 215 } 216 217 /* Get spdif interrupt status and clear the interrupt */ 218 static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv) 219 { 220 struct regmap *regmap = spdif_priv->regmap; 221 u32 val, val2; 222 223 regmap_read(regmap, REG_SPDIF_SIS, &val); 224 regmap_read(regmap, REG_SPDIF_SIE, &val2); 225 226 regmap_write(regmap, REG_SPDIF_SIC, val & val2); 227 228 return val; 229 } 230 231 static irqreturn_t spdif_isr(int irq, void *devid) 232 { 233 struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid; 234 struct platform_device *pdev = spdif_priv->pdev; 235 u32 sis; 236 237 sis = spdif_intr_status_clear(spdif_priv); 238 239 if (sis & INT_DPLL_LOCKED) 240 spdif_irq_dpll_lock(spdif_priv); 241 242 if (sis & INT_TXFIFO_UNOV) 243 dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n"); 244 245 if (sis & INT_TXFIFO_RESYNC) 246 dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n"); 247 248 if (sis & INT_CNEW) 249 dev_dbg(&pdev->dev, "isr: cstatus new\n"); 250 251 if (sis & INT_VAL_NOGOOD) 252 dev_dbg(&pdev->dev, "isr: validity flag no good\n"); 253 254 if (sis & INT_SYM_ERR) 255 spdif_irq_sym_error(spdif_priv); 256 257 if (sis & INT_BIT_ERR) 258 dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n"); 259 260 if (sis & INT_URX_FUL) 261 spdif_irq_uqrx_full(spdif_priv, 'U'); 262 263 if (sis & INT_URX_OV) 264 dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n"); 265 266 if (sis & INT_QRX_FUL) 267 spdif_irq_uqrx_full(spdif_priv, 'Q'); 268 269 if (sis & INT_QRX_OV) 270 dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n"); 271 272 if (sis & INT_UQ_SYNC) 273 spdif_irq_uq_sync(spdif_priv); 274 275 if (sis & INT_UQ_ERR) 276 spdif_irq_uq_err(spdif_priv); 277 278 if (sis & INT_RXFIFO_UNOV) 279 dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n"); 280 281 if (sis & INT_RXFIFO_RESYNC) 282 dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n"); 283 284 if (sis & INT_LOSS_LOCK) 285 spdif_irq_dpll_lock(spdif_priv); 286 287 /* FIXME: Write Tx FIFO to clear TxEm */ 288 if (sis & INT_TX_EM) 289 dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n"); 290 291 /* FIXME: Read Rx FIFO to clear RxFIFOFul */ 292 if (sis & INT_RXFIFO_FUL) 293 dev_dbg(&pdev->dev, "isr: Rx FIFO full\n"); 294 295 return IRQ_HANDLED; 296 } 297 298 static int spdif_softreset(struct fsl_spdif_priv *spdif_priv) 299 { 300 struct regmap *regmap = spdif_priv->regmap; 301 u32 val, cycle = 1000; 302 303 regcache_cache_bypass(regmap, true); 304 305 regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET); 306 307 /* 308 * RESET bit would be cleared after finishing its reset procedure, 309 * which typically lasts 8 cycles. 1000 cycles will keep it safe. 310 */ 311 do { 312 regmap_read(regmap, REG_SPDIF_SCR, &val); 313 } while ((val & SCR_SOFT_RESET) && cycle--); 314 315 regcache_cache_bypass(regmap, false); 316 regcache_mark_dirty(regmap); 317 regcache_sync(regmap); 318 319 if (cycle) 320 return 0; 321 else 322 return -EBUSY; 323 } 324 325 static void spdif_set_cstatus(struct spdif_mixer_control *ctrl, 326 u8 mask, u8 cstatus) 327 { 328 ctrl->ch_status[3] &= ~mask; 329 ctrl->ch_status[3] |= cstatus & mask; 330 } 331 332 static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv) 333 { 334 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 335 struct regmap *regmap = spdif_priv->regmap; 336 struct platform_device *pdev = spdif_priv->pdev; 337 u32 ch_status; 338 339 ch_status = (bitrev8(ctrl->ch_status[0]) << 16) | 340 (bitrev8(ctrl->ch_status[1]) << 8) | 341 bitrev8(ctrl->ch_status[2]); 342 regmap_write(regmap, REG_SPDIF_STCSCH, ch_status); 343 344 dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status); 345 346 ch_status = bitrev8(ctrl->ch_status[3]) << 16; 347 regmap_write(regmap, REG_SPDIF_STCSCL, ch_status); 348 349 dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status); 350 } 351 352 /* Set SPDIF PhaseConfig register for rx clock */ 353 static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv, 354 enum spdif_gainsel gainsel, int dpll_locked) 355 { 356 struct regmap *regmap = spdif_priv->regmap; 357 u8 clksrc = spdif_priv->rxclk_src; 358 359 if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX) 360 return -EINVAL; 361 362 regmap_update_bits(regmap, REG_SPDIF_SRPC, 363 SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK, 364 SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel)); 365 366 return 0; 367 } 368 369 static int spdif_set_sample_rate(struct snd_pcm_substream *substream, 370 int sample_rate) 371 { 372 struct snd_soc_pcm_runtime *rtd = substream->private_data; 373 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai); 374 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 375 struct regmap *regmap = spdif_priv->regmap; 376 struct platform_device *pdev = spdif_priv->pdev; 377 unsigned long csfs = 0; 378 u32 stc, mask, rate; 379 u16 sysclk_df; 380 u8 clk, txclk_df; 381 int ret; 382 383 switch (sample_rate) { 384 case 32000: 385 rate = SPDIF_TXRATE_32000; 386 csfs = IEC958_AES3_CON_FS_32000; 387 break; 388 case 44100: 389 rate = SPDIF_TXRATE_44100; 390 csfs = IEC958_AES3_CON_FS_44100; 391 break; 392 case 48000: 393 rate = SPDIF_TXRATE_48000; 394 csfs = IEC958_AES3_CON_FS_48000; 395 break; 396 case 96000: 397 rate = SPDIF_TXRATE_96000; 398 csfs = IEC958_AES3_CON_FS_96000; 399 break; 400 case 192000: 401 rate = SPDIF_TXRATE_192000; 402 csfs = IEC958_AES3_CON_FS_192000; 403 break; 404 default: 405 dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate); 406 return -EINVAL; 407 } 408 409 clk = spdif_priv->txclk_src[rate]; 410 if (clk >= STC_TXCLK_SRC_MAX) { 411 dev_err(&pdev->dev, "tx clock source is out of range\n"); 412 return -EINVAL; 413 } 414 415 txclk_df = spdif_priv->txclk_df[rate]; 416 if (txclk_df == 0) { 417 dev_err(&pdev->dev, "the txclk_df can't be zero\n"); 418 return -EINVAL; 419 } 420 421 sysclk_df = spdif_priv->sysclk_df[rate]; 422 423 /* Don't mess up the clocks from other modules */ 424 if (clk != STC_TXCLK_SPDIF_ROOT) 425 goto clk_set_bypass; 426 427 /* The S/PDIF block needs a clock of 64 * fs * txclk_df */ 428 ret = clk_set_rate(spdif_priv->txclk[rate], 429 64 * sample_rate * txclk_df); 430 if (ret) { 431 dev_err(&pdev->dev, "failed to set tx clock rate\n"); 432 return ret; 433 } 434 435 clk_set_bypass: 436 dev_dbg(&pdev->dev, "expected clock rate = %d\n", 437 (64 * sample_rate * txclk_df * sysclk_df)); 438 dev_dbg(&pdev->dev, "actual clock rate = %ld\n", 439 clk_get_rate(spdif_priv->txclk[rate])); 440 441 /* set fs field in consumer channel status */ 442 spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs); 443 444 /* select clock source and divisor */ 445 stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) | 446 STC_TXCLK_DF(txclk_df) | STC_SYSCLK_DF(sysclk_df); 447 mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK | 448 STC_TXCLK_DF_MASK | STC_SYSCLK_DF_MASK; 449 regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc); 450 451 dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n", 452 spdif_priv->txrate[rate], sample_rate); 453 454 return 0; 455 } 456 457 static int fsl_spdif_startup(struct snd_pcm_substream *substream, 458 struct snd_soc_dai *cpu_dai) 459 { 460 struct snd_soc_pcm_runtime *rtd = substream->private_data; 461 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai); 462 struct platform_device *pdev = spdif_priv->pdev; 463 struct regmap *regmap = spdif_priv->regmap; 464 u32 scr, mask; 465 int i; 466 int ret; 467 468 /* Reset module and interrupts only for first initialization */ 469 if (!cpu_dai->active) { 470 ret = clk_prepare_enable(spdif_priv->coreclk); 471 if (ret) { 472 dev_err(&pdev->dev, "failed to enable core clock\n"); 473 return ret; 474 } 475 476 if (!IS_ERR(spdif_priv->spbaclk)) { 477 ret = clk_prepare_enable(spdif_priv->spbaclk); 478 if (ret) { 479 dev_err(&pdev->dev, "failed to enable spba clock\n"); 480 goto err_spbaclk; 481 } 482 } 483 484 ret = spdif_softreset(spdif_priv); 485 if (ret) { 486 dev_err(&pdev->dev, "failed to soft reset\n"); 487 goto err; 488 } 489 490 /* Disable all the interrupts */ 491 regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0); 492 } 493 494 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 495 scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL | 496 SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP | 497 SCR_TXFIFO_FSEL_IF8; 498 mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK | 499 SCR_TXSEL_MASK | SCR_USRC_SEL_MASK | 500 SCR_TXFIFO_FSEL_MASK; 501 for (i = 0; i < SPDIF_TXRATE_MAX; i++) { 502 ret = clk_prepare_enable(spdif_priv->txclk[i]); 503 if (ret) 504 goto disable_txclk; 505 } 506 } else { 507 scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC; 508 mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK| 509 SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK; 510 ret = clk_prepare_enable(spdif_priv->rxclk); 511 if (ret) 512 goto err; 513 } 514 regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr); 515 516 /* Power up SPDIF module */ 517 regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0); 518 519 return 0; 520 521 disable_txclk: 522 for (i--; i >= 0; i--) 523 clk_disable_unprepare(spdif_priv->txclk[i]); 524 err: 525 if (!IS_ERR(spdif_priv->spbaclk)) 526 clk_disable_unprepare(spdif_priv->spbaclk); 527 err_spbaclk: 528 clk_disable_unprepare(spdif_priv->coreclk); 529 530 return ret; 531 } 532 533 static void fsl_spdif_shutdown(struct snd_pcm_substream *substream, 534 struct snd_soc_dai *cpu_dai) 535 { 536 struct snd_soc_pcm_runtime *rtd = substream->private_data; 537 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai); 538 struct regmap *regmap = spdif_priv->regmap; 539 u32 scr, mask, i; 540 541 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 542 scr = 0; 543 mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK | 544 SCR_TXSEL_MASK | SCR_USRC_SEL_MASK | 545 SCR_TXFIFO_FSEL_MASK; 546 for (i = 0; i < SPDIF_TXRATE_MAX; i++) 547 clk_disable_unprepare(spdif_priv->txclk[i]); 548 } else { 549 scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO; 550 mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK| 551 SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK; 552 clk_disable_unprepare(spdif_priv->rxclk); 553 } 554 regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr); 555 556 /* Power down SPDIF module only if tx&rx are both inactive */ 557 if (!cpu_dai->active) { 558 spdif_intr_status_clear(spdif_priv); 559 regmap_update_bits(regmap, REG_SPDIF_SCR, 560 SCR_LOW_POWER, SCR_LOW_POWER); 561 if (!IS_ERR(spdif_priv->spbaclk)) 562 clk_disable_unprepare(spdif_priv->spbaclk); 563 clk_disable_unprepare(spdif_priv->coreclk); 564 } 565 } 566 567 static int fsl_spdif_hw_params(struct snd_pcm_substream *substream, 568 struct snd_pcm_hw_params *params, 569 struct snd_soc_dai *dai) 570 { 571 struct snd_soc_pcm_runtime *rtd = substream->private_data; 572 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai); 573 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 574 struct platform_device *pdev = spdif_priv->pdev; 575 u32 sample_rate = params_rate(params); 576 int ret = 0; 577 578 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 579 ret = spdif_set_sample_rate(substream, sample_rate); 580 if (ret) { 581 dev_err(&pdev->dev, "%s: set sample rate failed: %d\n", 582 __func__, sample_rate); 583 return ret; 584 } 585 spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK, 586 IEC958_AES3_CON_CLOCK_1000PPM); 587 spdif_write_channel_status(spdif_priv); 588 } else { 589 /* Setup rx clock source */ 590 ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1); 591 } 592 593 return ret; 594 } 595 596 static int fsl_spdif_trigger(struct snd_pcm_substream *substream, 597 int cmd, struct snd_soc_dai *dai) 598 { 599 struct snd_soc_pcm_runtime *rtd = substream->private_data; 600 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai); 601 struct regmap *regmap = spdif_priv->regmap; 602 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 603 u32 intr = SIE_INTR_FOR(tx); 604 u32 dmaen = SCR_DMA_xX_EN(tx); 605 606 switch (cmd) { 607 case SNDRV_PCM_TRIGGER_START: 608 case SNDRV_PCM_TRIGGER_RESUME: 609 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 610 regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr); 611 regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen); 612 break; 613 case SNDRV_PCM_TRIGGER_STOP: 614 case SNDRV_PCM_TRIGGER_SUSPEND: 615 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 616 regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0); 617 regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0); 618 break; 619 default: 620 return -EINVAL; 621 } 622 623 return 0; 624 } 625 626 static const struct snd_soc_dai_ops fsl_spdif_dai_ops = { 627 .startup = fsl_spdif_startup, 628 .hw_params = fsl_spdif_hw_params, 629 .trigger = fsl_spdif_trigger, 630 .shutdown = fsl_spdif_shutdown, 631 }; 632 633 634 /* 635 * FSL SPDIF IEC958 controller(mixer) functions 636 * 637 * Channel status get/put control 638 * User bit value get/put control 639 * Valid bit value get control 640 * DPLL lock status get control 641 * User bit sync mode selection control 642 */ 643 644 static int fsl_spdif_info(struct snd_kcontrol *kcontrol, 645 struct snd_ctl_elem_info *uinfo) 646 { 647 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 648 uinfo->count = 1; 649 650 return 0; 651 } 652 653 static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol, 654 struct snd_ctl_elem_value *uvalue) 655 { 656 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 657 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 658 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 659 660 uvalue->value.iec958.status[0] = ctrl->ch_status[0]; 661 uvalue->value.iec958.status[1] = ctrl->ch_status[1]; 662 uvalue->value.iec958.status[2] = ctrl->ch_status[2]; 663 uvalue->value.iec958.status[3] = ctrl->ch_status[3]; 664 665 return 0; 666 } 667 668 static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol, 669 struct snd_ctl_elem_value *uvalue) 670 { 671 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 672 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 673 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 674 675 ctrl->ch_status[0] = uvalue->value.iec958.status[0]; 676 ctrl->ch_status[1] = uvalue->value.iec958.status[1]; 677 ctrl->ch_status[2] = uvalue->value.iec958.status[2]; 678 ctrl->ch_status[3] = uvalue->value.iec958.status[3]; 679 680 spdif_write_channel_status(spdif_priv); 681 682 return 0; 683 } 684 685 /* Get channel status from SPDIF_RX_CCHAN register */ 686 static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol, 687 struct snd_ctl_elem_value *ucontrol) 688 { 689 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 690 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 691 struct regmap *regmap = spdif_priv->regmap; 692 u32 cstatus, val; 693 694 regmap_read(regmap, REG_SPDIF_SIS, &val); 695 if (!(val & INT_CNEW)) 696 return -EAGAIN; 697 698 regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus); 699 ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF; 700 ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF; 701 ucontrol->value.iec958.status[2] = cstatus & 0xFF; 702 703 regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus); 704 ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF; 705 ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF; 706 ucontrol->value.iec958.status[5] = cstatus & 0xFF; 707 708 /* Clear intr */ 709 regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW); 710 711 return 0; 712 } 713 714 /* 715 * Get User bits (subcode) from chip value which readed out 716 * in UChannel register. 717 */ 718 static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol, 719 struct snd_ctl_elem_value *ucontrol) 720 { 721 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 722 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 723 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 724 unsigned long flags; 725 int ret = -EAGAIN; 726 727 spin_lock_irqsave(&ctrl->ctl_lock, flags); 728 if (ctrl->ready_buf) { 729 int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE; 730 memcpy(&ucontrol->value.iec958.subcode[0], 731 &ctrl->subcode[idx], SPDIF_UBITS_SIZE); 732 ret = 0; 733 } 734 spin_unlock_irqrestore(&ctrl->ctl_lock, flags); 735 736 return ret; 737 } 738 739 /* Q-subcode information. The byte size is SPDIF_UBITS_SIZE/8 */ 740 static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol, 741 struct snd_ctl_elem_info *uinfo) 742 { 743 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; 744 uinfo->count = SPDIF_QSUB_SIZE; 745 746 return 0; 747 } 748 749 /* Get Q subcode from chip value which readed out in QChannel register */ 750 static int fsl_spdif_qget(struct snd_kcontrol *kcontrol, 751 struct snd_ctl_elem_value *ucontrol) 752 { 753 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 754 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 755 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 756 unsigned long flags; 757 int ret = -EAGAIN; 758 759 spin_lock_irqsave(&ctrl->ctl_lock, flags); 760 if (ctrl->ready_buf) { 761 int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE; 762 memcpy(&ucontrol->value.bytes.data[0], 763 &ctrl->qsub[idx], SPDIF_QSUB_SIZE); 764 ret = 0; 765 } 766 spin_unlock_irqrestore(&ctrl->ctl_lock, flags); 767 768 return ret; 769 } 770 771 /* Valid bit information */ 772 static int fsl_spdif_vbit_info(struct snd_kcontrol *kcontrol, 773 struct snd_ctl_elem_info *uinfo) 774 { 775 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 776 uinfo->count = 1; 777 uinfo->value.integer.min = 0; 778 uinfo->value.integer.max = 1; 779 780 return 0; 781 } 782 783 /* Get valid good bit from interrupt status register */ 784 static int fsl_spdif_vbit_get(struct snd_kcontrol *kcontrol, 785 struct snd_ctl_elem_value *ucontrol) 786 { 787 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 788 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 789 struct regmap *regmap = spdif_priv->regmap; 790 u32 val; 791 792 regmap_read(regmap, REG_SPDIF_SIS, &val); 793 ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0; 794 regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD); 795 796 return 0; 797 } 798 799 /* DPLL lock information */ 800 static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol, 801 struct snd_ctl_elem_info *uinfo) 802 { 803 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 804 uinfo->count = 1; 805 uinfo->value.integer.min = 16000; 806 uinfo->value.integer.max = 96000; 807 808 return 0; 809 } 810 811 static u32 gainsel_multi[GAINSEL_MULTI_MAX] = { 812 24, 16, 12, 8, 6, 4, 3, 813 }; 814 815 /* Get RX data clock rate given the SPDIF bus_clk */ 816 static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv, 817 enum spdif_gainsel gainsel) 818 { 819 struct regmap *regmap = spdif_priv->regmap; 820 struct platform_device *pdev = spdif_priv->pdev; 821 u64 tmpval64, busclk_freq = 0; 822 u32 freqmeas, phaseconf; 823 u8 clksrc; 824 825 regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas); 826 regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf); 827 828 clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf; 829 830 /* Get bus clock from system */ 831 if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED)) 832 busclk_freq = clk_get_rate(spdif_priv->sysclk); 833 834 /* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */ 835 tmpval64 = (u64) busclk_freq * freqmeas; 836 do_div(tmpval64, gainsel_multi[gainsel] * 1024); 837 do_div(tmpval64, 128 * 1024); 838 839 dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas); 840 dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq); 841 dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64); 842 843 return (int)tmpval64; 844 } 845 846 /* 847 * Get DPLL lock or not info from stable interrupt status register. 848 * User application must use this control to get locked, 849 * then can do next PCM operation 850 */ 851 static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol, 852 struct snd_ctl_elem_value *ucontrol) 853 { 854 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 855 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 856 int rate = 0; 857 858 if (spdif_priv->dpll_locked) 859 rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL); 860 861 ucontrol->value.integer.value[0] = rate; 862 863 return 0; 864 } 865 866 /* User bit sync mode info */ 867 static int fsl_spdif_usync_info(struct snd_kcontrol *kcontrol, 868 struct snd_ctl_elem_info *uinfo) 869 { 870 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 871 uinfo->count = 1; 872 uinfo->value.integer.min = 0; 873 uinfo->value.integer.max = 1; 874 875 return 0; 876 } 877 878 /* 879 * User bit sync mode: 880 * 1 CD User channel subcode 881 * 0 Non-CD data 882 */ 883 static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol, 884 struct snd_ctl_elem_value *ucontrol) 885 { 886 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 887 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 888 struct regmap *regmap = spdif_priv->regmap; 889 u32 val; 890 891 regmap_read(regmap, REG_SPDIF_SRCD, &val); 892 ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0; 893 894 return 0; 895 } 896 897 /* 898 * User bit sync mode: 899 * 1 CD User channel subcode 900 * 0 Non-CD data 901 */ 902 static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol, 903 struct snd_ctl_elem_value *ucontrol) 904 { 905 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 906 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 907 struct regmap *regmap = spdif_priv->regmap; 908 u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET; 909 910 regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val); 911 912 return 0; 913 } 914 915 /* FSL SPDIF IEC958 controller defines */ 916 static struct snd_kcontrol_new fsl_spdif_ctrls[] = { 917 /* Status cchanel controller */ 918 { 919 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 920 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), 921 .access = SNDRV_CTL_ELEM_ACCESS_READ | 922 SNDRV_CTL_ELEM_ACCESS_WRITE | 923 SNDRV_CTL_ELEM_ACCESS_VOLATILE, 924 .info = fsl_spdif_info, 925 .get = fsl_spdif_pb_get, 926 .put = fsl_spdif_pb_put, 927 }, 928 { 929 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 930 .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT), 931 .access = SNDRV_CTL_ELEM_ACCESS_READ | 932 SNDRV_CTL_ELEM_ACCESS_VOLATILE, 933 .info = fsl_spdif_info, 934 .get = fsl_spdif_capture_get, 935 }, 936 /* User bits controller */ 937 { 938 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 939 .name = "IEC958 Subcode Capture Default", 940 .access = SNDRV_CTL_ELEM_ACCESS_READ | 941 SNDRV_CTL_ELEM_ACCESS_VOLATILE, 942 .info = fsl_spdif_info, 943 .get = fsl_spdif_subcode_get, 944 }, 945 { 946 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 947 .name = "IEC958 Q-subcode Capture Default", 948 .access = SNDRV_CTL_ELEM_ACCESS_READ | 949 SNDRV_CTL_ELEM_ACCESS_VOLATILE, 950 .info = fsl_spdif_qinfo, 951 .get = fsl_spdif_qget, 952 }, 953 /* Valid bit error controller */ 954 { 955 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 956 .name = "IEC958 V-Bit Errors", 957 .access = SNDRV_CTL_ELEM_ACCESS_READ | 958 SNDRV_CTL_ELEM_ACCESS_VOLATILE, 959 .info = fsl_spdif_vbit_info, 960 .get = fsl_spdif_vbit_get, 961 }, 962 /* DPLL lock info get controller */ 963 { 964 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 965 .name = "RX Sample Rate", 966 .access = SNDRV_CTL_ELEM_ACCESS_READ | 967 SNDRV_CTL_ELEM_ACCESS_VOLATILE, 968 .info = fsl_spdif_rxrate_info, 969 .get = fsl_spdif_rxrate_get, 970 }, 971 /* User bit sync mode set/get controller */ 972 { 973 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 974 .name = "IEC958 USyncMode CDText", 975 .access = SNDRV_CTL_ELEM_ACCESS_READ | 976 SNDRV_CTL_ELEM_ACCESS_WRITE | 977 SNDRV_CTL_ELEM_ACCESS_VOLATILE, 978 .info = fsl_spdif_usync_info, 979 .get = fsl_spdif_usync_get, 980 .put = fsl_spdif_usync_put, 981 }, 982 }; 983 984 static int fsl_spdif_dai_probe(struct snd_soc_dai *dai) 985 { 986 struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai); 987 988 snd_soc_dai_init_dma_data(dai, &spdif_private->dma_params_tx, 989 &spdif_private->dma_params_rx); 990 991 snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls)); 992 993 return 0; 994 } 995 996 static struct snd_soc_dai_driver fsl_spdif_dai = { 997 .probe = &fsl_spdif_dai_probe, 998 .playback = { 999 .stream_name = "CPU-Playback", 1000 .channels_min = 2, 1001 .channels_max = 2, 1002 .rates = FSL_SPDIF_RATES_PLAYBACK, 1003 .formats = FSL_SPDIF_FORMATS_PLAYBACK, 1004 }, 1005 .capture = { 1006 .stream_name = "CPU-Capture", 1007 .channels_min = 2, 1008 .channels_max = 2, 1009 .rates = FSL_SPDIF_RATES_CAPTURE, 1010 .formats = FSL_SPDIF_FORMATS_CAPTURE, 1011 }, 1012 .ops = &fsl_spdif_dai_ops, 1013 }; 1014 1015 static const struct snd_soc_component_driver fsl_spdif_component = { 1016 .name = "fsl-spdif", 1017 }; 1018 1019 /* FSL SPDIF REGMAP */ 1020 static const struct reg_default fsl_spdif_reg_defaults[] = { 1021 {REG_SPDIF_SCR, 0x00000400}, 1022 {REG_SPDIF_SRCD, 0x00000000}, 1023 {REG_SPDIF_SIE, 0x00000000}, 1024 {REG_SPDIF_STL, 0x00000000}, 1025 {REG_SPDIF_STR, 0x00000000}, 1026 {REG_SPDIF_STCSCH, 0x00000000}, 1027 {REG_SPDIF_STCSCL, 0x00000000}, 1028 {REG_SPDIF_STC, 0x00020f00}, 1029 }; 1030 1031 static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg) 1032 { 1033 switch (reg) { 1034 case REG_SPDIF_SCR: 1035 case REG_SPDIF_SRCD: 1036 case REG_SPDIF_SRPC: 1037 case REG_SPDIF_SIE: 1038 case REG_SPDIF_SIS: 1039 case REG_SPDIF_SRL: 1040 case REG_SPDIF_SRR: 1041 case REG_SPDIF_SRCSH: 1042 case REG_SPDIF_SRCSL: 1043 case REG_SPDIF_SRU: 1044 case REG_SPDIF_SRQ: 1045 case REG_SPDIF_STCSCH: 1046 case REG_SPDIF_STCSCL: 1047 case REG_SPDIF_SRFM: 1048 case REG_SPDIF_STC: 1049 return true; 1050 default: 1051 return false; 1052 } 1053 } 1054 1055 static bool fsl_spdif_volatile_reg(struct device *dev, unsigned int reg) 1056 { 1057 switch (reg) { 1058 case REG_SPDIF_SRPC: 1059 case REG_SPDIF_SIS: 1060 case REG_SPDIF_SRL: 1061 case REG_SPDIF_SRR: 1062 case REG_SPDIF_SRCSH: 1063 case REG_SPDIF_SRCSL: 1064 case REG_SPDIF_SRU: 1065 case REG_SPDIF_SRQ: 1066 case REG_SPDIF_SRFM: 1067 return true; 1068 default: 1069 return false; 1070 } 1071 } 1072 1073 static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg) 1074 { 1075 switch (reg) { 1076 case REG_SPDIF_SCR: 1077 case REG_SPDIF_SRCD: 1078 case REG_SPDIF_SRPC: 1079 case REG_SPDIF_SIE: 1080 case REG_SPDIF_SIC: 1081 case REG_SPDIF_STL: 1082 case REG_SPDIF_STR: 1083 case REG_SPDIF_STCSCH: 1084 case REG_SPDIF_STCSCL: 1085 case REG_SPDIF_STC: 1086 return true; 1087 default: 1088 return false; 1089 } 1090 } 1091 1092 static const struct regmap_config fsl_spdif_regmap_config = { 1093 .reg_bits = 32, 1094 .reg_stride = 4, 1095 .val_bits = 32, 1096 1097 .max_register = REG_SPDIF_STC, 1098 .reg_defaults = fsl_spdif_reg_defaults, 1099 .num_reg_defaults = ARRAY_SIZE(fsl_spdif_reg_defaults), 1100 .readable_reg = fsl_spdif_readable_reg, 1101 .volatile_reg = fsl_spdif_volatile_reg, 1102 .writeable_reg = fsl_spdif_writeable_reg, 1103 .cache_type = REGCACHE_FLAT, 1104 }; 1105 1106 static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv, 1107 struct clk *clk, u64 savesub, 1108 enum spdif_txrate index, bool round) 1109 { 1110 static const u32 rate[] = { 32000, 44100, 48000, 96000, 192000 }; 1111 bool is_sysclk = clk_is_match(clk, spdif_priv->sysclk); 1112 u64 rate_ideal, rate_actual, sub; 1113 u32 arate; 1114 u16 sysclk_dfmin, sysclk_dfmax, sysclk_df; 1115 u8 txclk_df; 1116 1117 /* The sysclk has an extra divisor [2, 512] */ 1118 sysclk_dfmin = is_sysclk ? 2 : 1; 1119 sysclk_dfmax = is_sysclk ? 512 : 1; 1120 1121 for (sysclk_df = sysclk_dfmin; sysclk_df <= sysclk_dfmax; sysclk_df++) { 1122 for (txclk_df = 1; txclk_df <= 128; txclk_df++) { 1123 rate_ideal = rate[index] * txclk_df * 64ULL; 1124 if (round) 1125 rate_actual = clk_round_rate(clk, rate_ideal); 1126 else 1127 rate_actual = clk_get_rate(clk); 1128 1129 arate = rate_actual / 64; 1130 arate /= txclk_df * sysclk_df; 1131 1132 if (arate == rate[index]) { 1133 /* We are lucky */ 1134 savesub = 0; 1135 spdif_priv->txclk_df[index] = txclk_df; 1136 spdif_priv->sysclk_df[index] = sysclk_df; 1137 spdif_priv->txrate[index] = arate; 1138 goto out; 1139 } else if (arate / rate[index] == 1) { 1140 /* A little bigger than expect */ 1141 sub = (u64)(arate - rate[index]) * 100000; 1142 do_div(sub, rate[index]); 1143 if (sub >= savesub) 1144 continue; 1145 savesub = sub; 1146 spdif_priv->txclk_df[index] = txclk_df; 1147 spdif_priv->sysclk_df[index] = sysclk_df; 1148 spdif_priv->txrate[index] = arate; 1149 } else if (rate[index] / arate == 1) { 1150 /* A little smaller than expect */ 1151 sub = (u64)(rate[index] - arate) * 100000; 1152 do_div(sub, rate[index]); 1153 if (sub >= savesub) 1154 continue; 1155 savesub = sub; 1156 spdif_priv->txclk_df[index] = txclk_df; 1157 spdif_priv->sysclk_df[index] = sysclk_df; 1158 spdif_priv->txrate[index] = arate; 1159 } 1160 } 1161 } 1162 1163 out: 1164 return savesub; 1165 } 1166 1167 static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv, 1168 enum spdif_txrate index) 1169 { 1170 static const u32 rate[] = { 32000, 44100, 48000, 96000, 192000 }; 1171 struct platform_device *pdev = spdif_priv->pdev; 1172 struct device *dev = &pdev->dev; 1173 u64 savesub = 100000, ret; 1174 struct clk *clk; 1175 char tmp[16]; 1176 int i; 1177 1178 for (i = 0; i < STC_TXCLK_SRC_MAX; i++) { 1179 sprintf(tmp, "rxtx%d", i); 1180 clk = devm_clk_get(&pdev->dev, tmp); 1181 if (IS_ERR(clk)) { 1182 dev_err(dev, "no rxtx%d clock in devicetree\n", i); 1183 return PTR_ERR(clk); 1184 } 1185 if (!clk_get_rate(clk)) 1186 continue; 1187 1188 ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index, 1189 i == STC_TXCLK_SPDIF_ROOT); 1190 if (savesub == ret) 1191 continue; 1192 1193 savesub = ret; 1194 spdif_priv->txclk[index] = clk; 1195 spdif_priv->txclk_src[index] = i; 1196 1197 /* To quick catch a divisor, we allow a 0.1% deviation */ 1198 if (savesub < 100) 1199 break; 1200 } 1201 1202 dev_dbg(&pdev->dev, "use rxtx%d as tx clock source for %dHz sample rate\n", 1203 spdif_priv->txclk_src[index], rate[index]); 1204 dev_dbg(&pdev->dev, "use txclk df %d for %dHz sample rate\n", 1205 spdif_priv->txclk_df[index], rate[index]); 1206 if (clk_is_match(spdif_priv->txclk[index], spdif_priv->sysclk)) 1207 dev_dbg(&pdev->dev, "use sysclk df %d for %dHz sample rate\n", 1208 spdif_priv->sysclk_df[index], rate[index]); 1209 dev_dbg(&pdev->dev, "the best rate for %dHz sample rate is %dHz\n", 1210 rate[index], spdif_priv->txrate[index]); 1211 1212 return 0; 1213 } 1214 1215 static int fsl_spdif_probe(struct platform_device *pdev) 1216 { 1217 struct device_node *np = pdev->dev.of_node; 1218 struct fsl_spdif_priv *spdif_priv; 1219 struct spdif_mixer_control *ctrl; 1220 struct resource *res; 1221 void __iomem *regs; 1222 int irq, ret, i; 1223 1224 if (!np) 1225 return -ENODEV; 1226 1227 spdif_priv = devm_kzalloc(&pdev->dev, sizeof(*spdif_priv), GFP_KERNEL); 1228 if (!spdif_priv) 1229 return -ENOMEM; 1230 1231 spdif_priv->pdev = pdev; 1232 1233 /* Initialize this copy of the CPU DAI driver structure */ 1234 memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai)); 1235 spdif_priv->cpu_dai_drv.name = dev_name(&pdev->dev); 1236 1237 /* Get the addresses and IRQ */ 1238 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1239 regs = devm_ioremap_resource(&pdev->dev, res); 1240 if (IS_ERR(regs)) 1241 return PTR_ERR(regs); 1242 1243 spdif_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev, 1244 "core", regs, &fsl_spdif_regmap_config); 1245 if (IS_ERR(spdif_priv->regmap)) { 1246 dev_err(&pdev->dev, "regmap init failed\n"); 1247 return PTR_ERR(spdif_priv->regmap); 1248 } 1249 1250 irq = platform_get_irq(pdev, 0); 1251 if (irq < 0) { 1252 dev_err(&pdev->dev, "no irq for node %s\n", pdev->name); 1253 return irq; 1254 } 1255 1256 ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0, 1257 dev_name(&pdev->dev), spdif_priv); 1258 if (ret) { 1259 dev_err(&pdev->dev, "could not claim irq %u\n", irq); 1260 return ret; 1261 } 1262 1263 /* Get system clock for rx clock rate calculation */ 1264 spdif_priv->sysclk = devm_clk_get(&pdev->dev, "rxtx5"); 1265 if (IS_ERR(spdif_priv->sysclk)) { 1266 dev_err(&pdev->dev, "no sys clock (rxtx5) in devicetree\n"); 1267 return PTR_ERR(spdif_priv->sysclk); 1268 } 1269 1270 /* Get core clock for data register access via DMA */ 1271 spdif_priv->coreclk = devm_clk_get(&pdev->dev, "core"); 1272 if (IS_ERR(spdif_priv->coreclk)) { 1273 dev_err(&pdev->dev, "no core clock in devicetree\n"); 1274 return PTR_ERR(spdif_priv->coreclk); 1275 } 1276 1277 spdif_priv->spbaclk = devm_clk_get(&pdev->dev, "spba"); 1278 if (IS_ERR(spdif_priv->spbaclk)) 1279 dev_warn(&pdev->dev, "no spba clock in devicetree\n"); 1280 1281 /* Select clock source for rx/tx clock */ 1282 spdif_priv->rxclk = devm_clk_get(&pdev->dev, "rxtx1"); 1283 if (IS_ERR(spdif_priv->rxclk)) { 1284 dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n"); 1285 return PTR_ERR(spdif_priv->rxclk); 1286 } 1287 spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC; 1288 1289 for (i = 0; i < SPDIF_TXRATE_MAX; i++) { 1290 ret = fsl_spdif_probe_txclk(spdif_priv, i); 1291 if (ret) 1292 return ret; 1293 } 1294 1295 /* Initial spinlock for control data */ 1296 ctrl = &spdif_priv->fsl_spdif_control; 1297 spin_lock_init(&ctrl->ctl_lock); 1298 1299 /* Init tx channel status default value */ 1300 ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT | 1301 IEC958_AES0_CON_EMPHASIS_5015; 1302 ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID; 1303 ctrl->ch_status[2] = 0x00; 1304 ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 | 1305 IEC958_AES3_CON_CLOCK_1000PPM; 1306 1307 spdif_priv->dpll_locked = false; 1308 1309 spdif_priv->dma_params_tx.maxburst = FSL_SPDIF_TXFIFO_WML; 1310 spdif_priv->dma_params_rx.maxburst = FSL_SPDIF_RXFIFO_WML; 1311 spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL; 1312 spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL; 1313 1314 /* Register with ASoC */ 1315 dev_set_drvdata(&pdev->dev, spdif_priv); 1316 1317 ret = devm_snd_soc_register_component(&pdev->dev, &fsl_spdif_component, 1318 &spdif_priv->cpu_dai_drv, 1); 1319 if (ret) { 1320 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret); 1321 return ret; 1322 } 1323 1324 ret = imx_pcm_dma_init(pdev, IMX_SPDIF_DMABUF_SIZE); 1325 if (ret && ret != -EPROBE_DEFER) 1326 dev_err(&pdev->dev, "imx_pcm_dma_init failed: %d\n", ret); 1327 1328 return ret; 1329 } 1330 1331 #ifdef CONFIG_PM_SLEEP 1332 static int fsl_spdif_suspend(struct device *dev) 1333 { 1334 struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev); 1335 1336 regmap_read(spdif_priv->regmap, REG_SPDIF_SRPC, 1337 &spdif_priv->regcache_srpc); 1338 1339 regcache_cache_only(spdif_priv->regmap, true); 1340 regcache_mark_dirty(spdif_priv->regmap); 1341 1342 return 0; 1343 } 1344 1345 static int fsl_spdif_resume(struct device *dev) 1346 { 1347 struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev); 1348 1349 regcache_cache_only(spdif_priv->regmap, false); 1350 1351 regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SRPC, 1352 SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK, 1353 spdif_priv->regcache_srpc); 1354 1355 return regcache_sync(spdif_priv->regmap); 1356 } 1357 #endif /* CONFIG_PM_SLEEP */ 1358 1359 static const struct dev_pm_ops fsl_spdif_pm = { 1360 SET_SYSTEM_SLEEP_PM_OPS(fsl_spdif_suspend, fsl_spdif_resume) 1361 }; 1362 1363 static const struct of_device_id fsl_spdif_dt_ids[] = { 1364 { .compatible = "fsl,imx35-spdif", }, 1365 { .compatible = "fsl,vf610-spdif", }, 1366 {} 1367 }; 1368 MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids); 1369 1370 static struct platform_driver fsl_spdif_driver = { 1371 .driver = { 1372 .name = "fsl-spdif-dai", 1373 .of_match_table = fsl_spdif_dt_ids, 1374 .pm = &fsl_spdif_pm, 1375 }, 1376 .probe = fsl_spdif_probe, 1377 }; 1378 1379 module_platform_driver(fsl_spdif_driver); 1380 1381 MODULE_AUTHOR("Freescale Semiconductor, Inc."); 1382 MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver"); 1383 MODULE_LICENSE("GPL v2"); 1384 MODULE_ALIAS("platform:fsl-spdif-dai"); 1385