xref: /linux/sound/soc/fsl/fsl_spdif.c (revision b7019ac550eb3916f34d79db583e9b7ea2524afa)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver
4 //
5 // Copyright (C) 2013 Freescale Semiconductor, Inc.
6 //
7 // Based on stmp3xxx_spdif_dai.c
8 // Vladimir Barinov <vbarinov@embeddedalley.com>
9 // Copyright 2008 SigmaTel, Inc
10 // Copyright 2008 Embedded Alley Solutions, Inc
11 
12 #include <linux/bitrev.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/of_address.h>
16 #include <linux/of_device.h>
17 #include <linux/of_irq.h>
18 #include <linux/regmap.h>
19 
20 #include <sound/asoundef.h>
21 #include <sound/dmaengine_pcm.h>
22 #include <sound/soc.h>
23 
24 #include "fsl_spdif.h"
25 #include "imx-pcm.h"
26 
27 #define FSL_SPDIF_TXFIFO_WML	0x8
28 #define FSL_SPDIF_RXFIFO_WML	0x8
29 
30 #define INTR_FOR_PLAYBACK	(INT_TXFIFO_RESYNC)
31 #define INTR_FOR_CAPTURE	(INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL |\
32 				INT_URX_OV | INT_QRX_FUL | INT_QRX_OV |\
33 				INT_UQ_SYNC | INT_UQ_ERR | INT_RXFIFO_RESYNC |\
34 				INT_LOSS_LOCK | INT_DPLL_LOCKED)
35 
36 #define SIE_INTR_FOR(tx)	(tx ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE)
37 
38 /* Index list for the values that has if (DPLL Locked) condition */
39 static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb };
40 #define SRPC_NODPLL_START1	0x5
41 #define SRPC_NODPLL_START2	0xc
42 
43 #define DEFAULT_RXCLK_SRC	1
44 
45 /*
46  * SPDIF control structure
47  * Defines channel status, subcode and Q sub
48  */
49 struct spdif_mixer_control {
50 	/* spinlock to access control data */
51 	spinlock_t ctl_lock;
52 
53 	/* IEC958 channel tx status bit */
54 	unsigned char ch_status[4];
55 
56 	/* User bits */
57 	unsigned char subcode[2 * SPDIF_UBITS_SIZE];
58 
59 	/* Q subcode part of user bits */
60 	unsigned char qsub[2 * SPDIF_QSUB_SIZE];
61 
62 	/* Buffer offset for U/Q */
63 	u32 upos;
64 	u32 qpos;
65 
66 	/* Ready buffer index of the two buffers */
67 	u32 ready_buf;
68 };
69 
70 /**
71  * fsl_spdif_priv: Freescale SPDIF private data
72  *
73  * @fsl_spdif_control: SPDIF control data
74  * @cpu_dai_drv: cpu dai driver
75  * @pdev: platform device pointer
76  * @regmap: regmap handler
77  * @dpll_locked: dpll lock flag
78  * @txrate: the best rates for playback
79  * @txclk_df: STC_TXCLK_DF dividers value for playback
80  * @sysclk_df: STC_SYSCLK_DF dividers value for playback
81  * @txclk_src: STC_TXCLK_SRC values for playback
82  * @rxclk_src: SRPC_CLKSRC_SEL values for capture
83  * @txclk: tx clock sources for playback
84  * @rxclk: rx clock sources for capture
85  * @coreclk: core clock for register access via DMA
86  * @sysclk: system clock for rx clock rate measurement
87  * @spbaclk: SPBA clock (optional, depending on SoC design)
88  * @dma_params_tx: DMA parameters for transmit channel
89  * @dma_params_rx: DMA parameters for receive channel
90  */
91 struct fsl_spdif_priv {
92 	struct spdif_mixer_control fsl_spdif_control;
93 	struct snd_soc_dai_driver cpu_dai_drv;
94 	struct platform_device *pdev;
95 	struct regmap *regmap;
96 	bool dpll_locked;
97 	u32 txrate[SPDIF_TXRATE_MAX];
98 	u8 txclk_df[SPDIF_TXRATE_MAX];
99 	u16 sysclk_df[SPDIF_TXRATE_MAX];
100 	u8 txclk_src[SPDIF_TXRATE_MAX];
101 	u8 rxclk_src;
102 	struct clk *txclk[SPDIF_TXRATE_MAX];
103 	struct clk *rxclk;
104 	struct clk *coreclk;
105 	struct clk *sysclk;
106 	struct clk *spbaclk;
107 	struct snd_dmaengine_dai_dma_data dma_params_tx;
108 	struct snd_dmaengine_dai_dma_data dma_params_rx;
109 	/* regcache for SRPC */
110 	u32 regcache_srpc;
111 };
112 
113 /* DPLL locked and lock loss interrupt handler */
114 static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv)
115 {
116 	struct regmap *regmap = spdif_priv->regmap;
117 	struct platform_device *pdev = spdif_priv->pdev;
118 	u32 locked;
119 
120 	regmap_read(regmap, REG_SPDIF_SRPC, &locked);
121 	locked &= SRPC_DPLL_LOCKED;
122 
123 	dev_dbg(&pdev->dev, "isr: Rx dpll %s \n",
124 			locked ? "locked" : "loss lock");
125 
126 	spdif_priv->dpll_locked = locked ? true : false;
127 }
128 
129 /* Receiver found illegal symbol interrupt handler */
130 static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv)
131 {
132 	struct regmap *regmap = spdif_priv->regmap;
133 	struct platform_device *pdev = spdif_priv->pdev;
134 
135 	dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n");
136 
137 	/* Clear illegal symbol if DPLL unlocked since no audio stream */
138 	if (!spdif_priv->dpll_locked)
139 		regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0);
140 }
141 
142 /* U/Q Channel receive register full */
143 static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name)
144 {
145 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
146 	struct regmap *regmap = spdif_priv->regmap;
147 	struct platform_device *pdev = spdif_priv->pdev;
148 	u32 *pos, size, val, reg;
149 
150 	switch (name) {
151 	case 'U':
152 		pos = &ctrl->upos;
153 		size = SPDIF_UBITS_SIZE;
154 		reg = REG_SPDIF_SRU;
155 		break;
156 	case 'Q':
157 		pos = &ctrl->qpos;
158 		size = SPDIF_QSUB_SIZE;
159 		reg = REG_SPDIF_SRQ;
160 		break;
161 	default:
162 		dev_err(&pdev->dev, "unsupported channel name\n");
163 		return;
164 	}
165 
166 	dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name);
167 
168 	if (*pos >= size * 2) {
169 		*pos = 0;
170 	} else if (unlikely((*pos % size) + 3 > size)) {
171 		dev_err(&pdev->dev, "User bit receive buffer overflow\n");
172 		return;
173 	}
174 
175 	regmap_read(regmap, reg, &val);
176 	ctrl->subcode[*pos++] = val >> 16;
177 	ctrl->subcode[*pos++] = val >> 8;
178 	ctrl->subcode[*pos++] = val;
179 }
180 
181 /* U/Q Channel sync found */
182 static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv)
183 {
184 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
185 	struct platform_device *pdev = spdif_priv->pdev;
186 
187 	dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n");
188 
189 	/* U/Q buffer reset */
190 	if (ctrl->qpos == 0)
191 		return;
192 
193 	/* Set ready to this buffer */
194 	ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1;
195 }
196 
197 /* U/Q Channel framing error */
198 static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv)
199 {
200 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
201 	struct regmap *regmap = spdif_priv->regmap;
202 	struct platform_device *pdev = spdif_priv->pdev;
203 	u32 val;
204 
205 	dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n");
206 
207 	/* Read U/Q data to clear the irq and do buffer reset */
208 	regmap_read(regmap, REG_SPDIF_SRU, &val);
209 	regmap_read(regmap, REG_SPDIF_SRQ, &val);
210 
211 	/* Drop this U/Q buffer */
212 	ctrl->ready_buf = 0;
213 	ctrl->upos = 0;
214 	ctrl->qpos = 0;
215 }
216 
217 /* Get spdif interrupt status and clear the interrupt */
218 static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv)
219 {
220 	struct regmap *regmap = spdif_priv->regmap;
221 	u32 val, val2;
222 
223 	regmap_read(regmap, REG_SPDIF_SIS, &val);
224 	regmap_read(regmap, REG_SPDIF_SIE, &val2);
225 
226 	regmap_write(regmap, REG_SPDIF_SIC, val & val2);
227 
228 	return val;
229 }
230 
231 static irqreturn_t spdif_isr(int irq, void *devid)
232 {
233 	struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid;
234 	struct platform_device *pdev = spdif_priv->pdev;
235 	u32 sis;
236 
237 	sis = spdif_intr_status_clear(spdif_priv);
238 
239 	if (sis & INT_DPLL_LOCKED)
240 		spdif_irq_dpll_lock(spdif_priv);
241 
242 	if (sis & INT_TXFIFO_UNOV)
243 		dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n");
244 
245 	if (sis & INT_TXFIFO_RESYNC)
246 		dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n");
247 
248 	if (sis & INT_CNEW)
249 		dev_dbg(&pdev->dev, "isr: cstatus new\n");
250 
251 	if (sis & INT_VAL_NOGOOD)
252 		dev_dbg(&pdev->dev, "isr: validity flag no good\n");
253 
254 	if (sis & INT_SYM_ERR)
255 		spdif_irq_sym_error(spdif_priv);
256 
257 	if (sis & INT_BIT_ERR)
258 		dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n");
259 
260 	if (sis & INT_URX_FUL)
261 		spdif_irq_uqrx_full(spdif_priv, 'U');
262 
263 	if (sis & INT_URX_OV)
264 		dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n");
265 
266 	if (sis & INT_QRX_FUL)
267 		spdif_irq_uqrx_full(spdif_priv, 'Q');
268 
269 	if (sis & INT_QRX_OV)
270 		dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n");
271 
272 	if (sis & INT_UQ_SYNC)
273 		spdif_irq_uq_sync(spdif_priv);
274 
275 	if (sis & INT_UQ_ERR)
276 		spdif_irq_uq_err(spdif_priv);
277 
278 	if (sis & INT_RXFIFO_UNOV)
279 		dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n");
280 
281 	if (sis & INT_RXFIFO_RESYNC)
282 		dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n");
283 
284 	if (sis & INT_LOSS_LOCK)
285 		spdif_irq_dpll_lock(spdif_priv);
286 
287 	/* FIXME: Write Tx FIFO to clear TxEm */
288 	if (sis & INT_TX_EM)
289 		dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n");
290 
291 	/* FIXME: Read Rx FIFO to clear RxFIFOFul */
292 	if (sis & INT_RXFIFO_FUL)
293 		dev_dbg(&pdev->dev, "isr: Rx FIFO full\n");
294 
295 	return IRQ_HANDLED;
296 }
297 
298 static int spdif_softreset(struct fsl_spdif_priv *spdif_priv)
299 {
300 	struct regmap *regmap = spdif_priv->regmap;
301 	u32 val, cycle = 1000;
302 
303 	regcache_cache_bypass(regmap, true);
304 
305 	regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET);
306 
307 	/*
308 	 * RESET bit would be cleared after finishing its reset procedure,
309 	 * which typically lasts 8 cycles. 1000 cycles will keep it safe.
310 	 */
311 	do {
312 		regmap_read(regmap, REG_SPDIF_SCR, &val);
313 	} while ((val & SCR_SOFT_RESET) && cycle--);
314 
315 	regcache_cache_bypass(regmap, false);
316 	regcache_mark_dirty(regmap);
317 	regcache_sync(regmap);
318 
319 	if (cycle)
320 		return 0;
321 	else
322 		return -EBUSY;
323 }
324 
325 static void spdif_set_cstatus(struct spdif_mixer_control *ctrl,
326 				u8 mask, u8 cstatus)
327 {
328 	ctrl->ch_status[3] &= ~mask;
329 	ctrl->ch_status[3] |= cstatus & mask;
330 }
331 
332 static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv)
333 {
334 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
335 	struct regmap *regmap = spdif_priv->regmap;
336 	struct platform_device *pdev = spdif_priv->pdev;
337 	u32 ch_status;
338 
339 	ch_status = (bitrev8(ctrl->ch_status[0]) << 16) |
340 		    (bitrev8(ctrl->ch_status[1]) << 8) |
341 		    bitrev8(ctrl->ch_status[2]);
342 	regmap_write(regmap, REG_SPDIF_STCSCH, ch_status);
343 
344 	dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status);
345 
346 	ch_status = bitrev8(ctrl->ch_status[3]) << 16;
347 	regmap_write(regmap, REG_SPDIF_STCSCL, ch_status);
348 
349 	dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status);
350 }
351 
352 /* Set SPDIF PhaseConfig register for rx clock */
353 static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv,
354 				enum spdif_gainsel gainsel, int dpll_locked)
355 {
356 	struct regmap *regmap = spdif_priv->regmap;
357 	u8 clksrc = spdif_priv->rxclk_src;
358 
359 	if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX)
360 		return -EINVAL;
361 
362 	regmap_update_bits(regmap, REG_SPDIF_SRPC,
363 			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
364 			SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel));
365 
366 	return 0;
367 }
368 
369 static int spdif_set_sample_rate(struct snd_pcm_substream *substream,
370 				int sample_rate)
371 {
372 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
373 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
374 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
375 	struct regmap *regmap = spdif_priv->regmap;
376 	struct platform_device *pdev = spdif_priv->pdev;
377 	unsigned long csfs = 0;
378 	u32 stc, mask, rate;
379 	u16 sysclk_df;
380 	u8 clk, txclk_df;
381 	int ret;
382 
383 	switch (sample_rate) {
384 	case 32000:
385 		rate = SPDIF_TXRATE_32000;
386 		csfs = IEC958_AES3_CON_FS_32000;
387 		break;
388 	case 44100:
389 		rate = SPDIF_TXRATE_44100;
390 		csfs = IEC958_AES3_CON_FS_44100;
391 		break;
392 	case 48000:
393 		rate = SPDIF_TXRATE_48000;
394 		csfs = IEC958_AES3_CON_FS_48000;
395 		break;
396 	case 96000:
397 		rate = SPDIF_TXRATE_96000;
398 		csfs = IEC958_AES3_CON_FS_96000;
399 		break;
400 	case 192000:
401 		rate = SPDIF_TXRATE_192000;
402 		csfs = IEC958_AES3_CON_FS_192000;
403 		break;
404 	default:
405 		dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate);
406 		return -EINVAL;
407 	}
408 
409 	clk = spdif_priv->txclk_src[rate];
410 	if (clk >= STC_TXCLK_SRC_MAX) {
411 		dev_err(&pdev->dev, "tx clock source is out of range\n");
412 		return -EINVAL;
413 	}
414 
415 	txclk_df = spdif_priv->txclk_df[rate];
416 	if (txclk_df == 0) {
417 		dev_err(&pdev->dev, "the txclk_df can't be zero\n");
418 		return -EINVAL;
419 	}
420 
421 	sysclk_df = spdif_priv->sysclk_df[rate];
422 
423 	/* Don't mess up the clocks from other modules */
424 	if (clk != STC_TXCLK_SPDIF_ROOT)
425 		goto clk_set_bypass;
426 
427 	/* The S/PDIF block needs a clock of 64 * fs * txclk_df */
428 	ret = clk_set_rate(spdif_priv->txclk[rate],
429 			   64 * sample_rate * txclk_df);
430 	if (ret) {
431 		dev_err(&pdev->dev, "failed to set tx clock rate\n");
432 		return ret;
433 	}
434 
435 clk_set_bypass:
436 	dev_dbg(&pdev->dev, "expected clock rate = %d\n",
437 			(64 * sample_rate * txclk_df * sysclk_df));
438 	dev_dbg(&pdev->dev, "actual clock rate = %ld\n",
439 			clk_get_rate(spdif_priv->txclk[rate]));
440 
441 	/* set fs field in consumer channel status */
442 	spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs);
443 
444 	/* select clock source and divisor */
445 	stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) |
446 	      STC_TXCLK_DF(txclk_df) | STC_SYSCLK_DF(sysclk_df);
447 	mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK |
448 	       STC_TXCLK_DF_MASK | STC_SYSCLK_DF_MASK;
449 	regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc);
450 
451 	dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n",
452 			spdif_priv->txrate[rate], sample_rate);
453 
454 	return 0;
455 }
456 
457 static int fsl_spdif_startup(struct snd_pcm_substream *substream,
458 			     struct snd_soc_dai *cpu_dai)
459 {
460 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
461 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
462 	struct platform_device *pdev = spdif_priv->pdev;
463 	struct regmap *regmap = spdif_priv->regmap;
464 	u32 scr, mask;
465 	int i;
466 	int ret;
467 
468 	/* Reset module and interrupts only for first initialization */
469 	if (!cpu_dai->active) {
470 		ret = clk_prepare_enable(spdif_priv->coreclk);
471 		if (ret) {
472 			dev_err(&pdev->dev, "failed to enable core clock\n");
473 			return ret;
474 		}
475 
476 		if (!IS_ERR(spdif_priv->spbaclk)) {
477 			ret = clk_prepare_enable(spdif_priv->spbaclk);
478 			if (ret) {
479 				dev_err(&pdev->dev, "failed to enable spba clock\n");
480 				goto err_spbaclk;
481 			}
482 		}
483 
484 		ret = spdif_softreset(spdif_priv);
485 		if (ret) {
486 			dev_err(&pdev->dev, "failed to soft reset\n");
487 			goto err;
488 		}
489 
490 		/* Disable all the interrupts */
491 		regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
492 	}
493 
494 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
495 		scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL |
496 			SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP |
497 			SCR_TXFIFO_FSEL_IF8;
498 		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
499 			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
500 			SCR_TXFIFO_FSEL_MASK;
501 		for (i = 0; i < SPDIF_TXRATE_MAX; i++) {
502 			ret = clk_prepare_enable(spdif_priv->txclk[i]);
503 			if (ret)
504 				goto disable_txclk;
505 		}
506 	} else {
507 		scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC;
508 		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
509 			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
510 		ret = clk_prepare_enable(spdif_priv->rxclk);
511 		if (ret)
512 			goto err;
513 	}
514 	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
515 
516 	/* Power up SPDIF module */
517 	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0);
518 
519 	return 0;
520 
521 disable_txclk:
522 	for (i--; i >= 0; i--)
523 		clk_disable_unprepare(spdif_priv->txclk[i]);
524 err:
525 	if (!IS_ERR(spdif_priv->spbaclk))
526 		clk_disable_unprepare(spdif_priv->spbaclk);
527 err_spbaclk:
528 	clk_disable_unprepare(spdif_priv->coreclk);
529 
530 	return ret;
531 }
532 
533 static void fsl_spdif_shutdown(struct snd_pcm_substream *substream,
534 				struct snd_soc_dai *cpu_dai)
535 {
536 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
537 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
538 	struct regmap *regmap = spdif_priv->regmap;
539 	u32 scr, mask, i;
540 
541 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
542 		scr = 0;
543 		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
544 			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
545 			SCR_TXFIFO_FSEL_MASK;
546 		for (i = 0; i < SPDIF_TXRATE_MAX; i++)
547 			clk_disable_unprepare(spdif_priv->txclk[i]);
548 	} else {
549 		scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO;
550 		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
551 			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
552 		clk_disable_unprepare(spdif_priv->rxclk);
553 	}
554 	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
555 
556 	/* Power down SPDIF module only if tx&rx are both inactive */
557 	if (!cpu_dai->active) {
558 		spdif_intr_status_clear(spdif_priv);
559 		regmap_update_bits(regmap, REG_SPDIF_SCR,
560 				SCR_LOW_POWER, SCR_LOW_POWER);
561 		if (!IS_ERR(spdif_priv->spbaclk))
562 			clk_disable_unprepare(spdif_priv->spbaclk);
563 		clk_disable_unprepare(spdif_priv->coreclk);
564 	}
565 }
566 
567 static int fsl_spdif_hw_params(struct snd_pcm_substream *substream,
568 				struct snd_pcm_hw_params *params,
569 				struct snd_soc_dai *dai)
570 {
571 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
572 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
573 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
574 	struct platform_device *pdev = spdif_priv->pdev;
575 	u32 sample_rate = params_rate(params);
576 	int ret = 0;
577 
578 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
579 		ret  = spdif_set_sample_rate(substream, sample_rate);
580 		if (ret) {
581 			dev_err(&pdev->dev, "%s: set sample rate failed: %d\n",
582 					__func__, sample_rate);
583 			return ret;
584 		}
585 		spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK,
586 				  IEC958_AES3_CON_CLOCK_1000PPM);
587 		spdif_write_channel_status(spdif_priv);
588 	} else {
589 		/* Setup rx clock source */
590 		ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1);
591 	}
592 
593 	return ret;
594 }
595 
596 static int fsl_spdif_trigger(struct snd_pcm_substream *substream,
597 				int cmd, struct snd_soc_dai *dai)
598 {
599 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
600 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
601 	struct regmap *regmap = spdif_priv->regmap;
602 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
603 	u32 intr = SIE_INTR_FOR(tx);
604 	u32 dmaen = SCR_DMA_xX_EN(tx);
605 
606 	switch (cmd) {
607 	case SNDRV_PCM_TRIGGER_START:
608 	case SNDRV_PCM_TRIGGER_RESUME:
609 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
610 		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr);
611 		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen);
612 		break;
613 	case SNDRV_PCM_TRIGGER_STOP:
614 	case SNDRV_PCM_TRIGGER_SUSPEND:
615 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
616 		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0);
617 		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0);
618 		break;
619 	default:
620 		return -EINVAL;
621 	}
622 
623 	return 0;
624 }
625 
626 static const struct snd_soc_dai_ops fsl_spdif_dai_ops = {
627 	.startup = fsl_spdif_startup,
628 	.hw_params = fsl_spdif_hw_params,
629 	.trigger = fsl_spdif_trigger,
630 	.shutdown = fsl_spdif_shutdown,
631 };
632 
633 
634 /*
635  * FSL SPDIF IEC958 controller(mixer) functions
636  *
637  *	Channel status get/put control
638  *	User bit value get/put control
639  *	Valid bit value get control
640  *	DPLL lock status get control
641  *	User bit sync mode selection control
642  */
643 
644 static int fsl_spdif_info(struct snd_kcontrol *kcontrol,
645 				struct snd_ctl_elem_info *uinfo)
646 {
647 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
648 	uinfo->count = 1;
649 
650 	return 0;
651 }
652 
653 static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol,
654 				struct snd_ctl_elem_value *uvalue)
655 {
656 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
657 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
658 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
659 
660 	uvalue->value.iec958.status[0] = ctrl->ch_status[0];
661 	uvalue->value.iec958.status[1] = ctrl->ch_status[1];
662 	uvalue->value.iec958.status[2] = ctrl->ch_status[2];
663 	uvalue->value.iec958.status[3] = ctrl->ch_status[3];
664 
665 	return 0;
666 }
667 
668 static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol,
669 				struct snd_ctl_elem_value *uvalue)
670 {
671 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
672 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
673 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
674 
675 	ctrl->ch_status[0] = uvalue->value.iec958.status[0];
676 	ctrl->ch_status[1] = uvalue->value.iec958.status[1];
677 	ctrl->ch_status[2] = uvalue->value.iec958.status[2];
678 	ctrl->ch_status[3] = uvalue->value.iec958.status[3];
679 
680 	spdif_write_channel_status(spdif_priv);
681 
682 	return 0;
683 }
684 
685 /* Get channel status from SPDIF_RX_CCHAN register */
686 static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol,
687 				struct snd_ctl_elem_value *ucontrol)
688 {
689 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
690 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
691 	struct regmap *regmap = spdif_priv->regmap;
692 	u32 cstatus, val;
693 
694 	regmap_read(regmap, REG_SPDIF_SIS, &val);
695 	if (!(val & INT_CNEW))
696 		return -EAGAIN;
697 
698 	regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus);
699 	ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF;
700 	ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF;
701 	ucontrol->value.iec958.status[2] = cstatus & 0xFF;
702 
703 	regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus);
704 	ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF;
705 	ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF;
706 	ucontrol->value.iec958.status[5] = cstatus & 0xFF;
707 
708 	/* Clear intr */
709 	regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW);
710 
711 	return 0;
712 }
713 
714 /*
715  * Get User bits (subcode) from chip value which readed out
716  * in UChannel register.
717  */
718 static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol,
719 				struct snd_ctl_elem_value *ucontrol)
720 {
721 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
722 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
723 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
724 	unsigned long flags;
725 	int ret = -EAGAIN;
726 
727 	spin_lock_irqsave(&ctrl->ctl_lock, flags);
728 	if (ctrl->ready_buf) {
729 		int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE;
730 		memcpy(&ucontrol->value.iec958.subcode[0],
731 				&ctrl->subcode[idx], SPDIF_UBITS_SIZE);
732 		ret = 0;
733 	}
734 	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
735 
736 	return ret;
737 }
738 
739 /* Q-subcode information. The byte size is SPDIF_UBITS_SIZE/8 */
740 static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol,
741 				struct snd_ctl_elem_info *uinfo)
742 {
743 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
744 	uinfo->count = SPDIF_QSUB_SIZE;
745 
746 	return 0;
747 }
748 
749 /* Get Q subcode from chip value which readed out in QChannel register */
750 static int fsl_spdif_qget(struct snd_kcontrol *kcontrol,
751 				struct snd_ctl_elem_value *ucontrol)
752 {
753 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
754 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
755 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
756 	unsigned long flags;
757 	int ret = -EAGAIN;
758 
759 	spin_lock_irqsave(&ctrl->ctl_lock, flags);
760 	if (ctrl->ready_buf) {
761 		int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE;
762 		memcpy(&ucontrol->value.bytes.data[0],
763 				&ctrl->qsub[idx], SPDIF_QSUB_SIZE);
764 		ret = 0;
765 	}
766 	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
767 
768 	return ret;
769 }
770 
771 /* Valid bit information */
772 static int fsl_spdif_vbit_info(struct snd_kcontrol *kcontrol,
773 				struct snd_ctl_elem_info *uinfo)
774 {
775 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
776 	uinfo->count = 1;
777 	uinfo->value.integer.min = 0;
778 	uinfo->value.integer.max = 1;
779 
780 	return 0;
781 }
782 
783 /* Get valid good bit from interrupt status register */
784 static int fsl_spdif_vbit_get(struct snd_kcontrol *kcontrol,
785 				struct snd_ctl_elem_value *ucontrol)
786 {
787 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
788 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
789 	struct regmap *regmap = spdif_priv->regmap;
790 	u32 val;
791 
792 	regmap_read(regmap, REG_SPDIF_SIS, &val);
793 	ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0;
794 	regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD);
795 
796 	return 0;
797 }
798 
799 /* DPLL lock information */
800 static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol,
801 				struct snd_ctl_elem_info *uinfo)
802 {
803 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
804 	uinfo->count = 1;
805 	uinfo->value.integer.min = 16000;
806 	uinfo->value.integer.max = 96000;
807 
808 	return 0;
809 }
810 
811 static u32 gainsel_multi[GAINSEL_MULTI_MAX] = {
812 	24, 16, 12, 8, 6, 4, 3,
813 };
814 
815 /* Get RX data clock rate given the SPDIF bus_clk */
816 static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv,
817 				enum spdif_gainsel gainsel)
818 {
819 	struct regmap *regmap = spdif_priv->regmap;
820 	struct platform_device *pdev = spdif_priv->pdev;
821 	u64 tmpval64, busclk_freq = 0;
822 	u32 freqmeas, phaseconf;
823 	u8 clksrc;
824 
825 	regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas);
826 	regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf);
827 
828 	clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf;
829 
830 	/* Get bus clock from system */
831 	if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED))
832 		busclk_freq = clk_get_rate(spdif_priv->sysclk);
833 
834 	/* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */
835 	tmpval64 = (u64) busclk_freq * freqmeas;
836 	do_div(tmpval64, gainsel_multi[gainsel] * 1024);
837 	do_div(tmpval64, 128 * 1024);
838 
839 	dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas);
840 	dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq);
841 	dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64);
842 
843 	return (int)tmpval64;
844 }
845 
846 /*
847  * Get DPLL lock or not info from stable interrupt status register.
848  * User application must use this control to get locked,
849  * then can do next PCM operation
850  */
851 static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol,
852 				struct snd_ctl_elem_value *ucontrol)
853 {
854 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
855 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
856 	int rate = 0;
857 
858 	if (spdif_priv->dpll_locked)
859 		rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL);
860 
861 	ucontrol->value.integer.value[0] = rate;
862 
863 	return 0;
864 }
865 
866 /* User bit sync mode info */
867 static int fsl_spdif_usync_info(struct snd_kcontrol *kcontrol,
868 				struct snd_ctl_elem_info *uinfo)
869 {
870 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
871 	uinfo->count = 1;
872 	uinfo->value.integer.min = 0;
873 	uinfo->value.integer.max = 1;
874 
875 	return 0;
876 }
877 
878 /*
879  * User bit sync mode:
880  * 1 CD User channel subcode
881  * 0 Non-CD data
882  */
883 static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol,
884 			       struct snd_ctl_elem_value *ucontrol)
885 {
886 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
887 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
888 	struct regmap *regmap = spdif_priv->regmap;
889 	u32 val;
890 
891 	regmap_read(regmap, REG_SPDIF_SRCD, &val);
892 	ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0;
893 
894 	return 0;
895 }
896 
897 /*
898  * User bit sync mode:
899  * 1 CD User channel subcode
900  * 0 Non-CD data
901  */
902 static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol,
903 				struct snd_ctl_elem_value *ucontrol)
904 {
905 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
906 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
907 	struct regmap *regmap = spdif_priv->regmap;
908 	u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET;
909 
910 	regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val);
911 
912 	return 0;
913 }
914 
915 /* FSL SPDIF IEC958 controller defines */
916 static struct snd_kcontrol_new fsl_spdif_ctrls[] = {
917 	/* Status cchanel controller */
918 	{
919 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
920 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
921 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
922 			SNDRV_CTL_ELEM_ACCESS_WRITE |
923 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
924 		.info = fsl_spdif_info,
925 		.get = fsl_spdif_pb_get,
926 		.put = fsl_spdif_pb_put,
927 	},
928 	{
929 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
930 		.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
931 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
932 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
933 		.info = fsl_spdif_info,
934 		.get = fsl_spdif_capture_get,
935 	},
936 	/* User bits controller */
937 	{
938 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
939 		.name = "IEC958 Subcode Capture Default",
940 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
941 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
942 		.info = fsl_spdif_info,
943 		.get = fsl_spdif_subcode_get,
944 	},
945 	{
946 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
947 		.name = "IEC958 Q-subcode Capture Default",
948 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
949 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
950 		.info = fsl_spdif_qinfo,
951 		.get = fsl_spdif_qget,
952 	},
953 	/* Valid bit error controller */
954 	{
955 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
956 		.name = "IEC958 V-Bit Errors",
957 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
958 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
959 		.info = fsl_spdif_vbit_info,
960 		.get = fsl_spdif_vbit_get,
961 	},
962 	/* DPLL lock info get controller */
963 	{
964 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
965 		.name = "RX Sample Rate",
966 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
967 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
968 		.info = fsl_spdif_rxrate_info,
969 		.get = fsl_spdif_rxrate_get,
970 	},
971 	/* User bit sync mode set/get controller */
972 	{
973 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
974 		.name = "IEC958 USyncMode CDText",
975 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
976 			SNDRV_CTL_ELEM_ACCESS_WRITE |
977 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
978 		.info = fsl_spdif_usync_info,
979 		.get = fsl_spdif_usync_get,
980 		.put = fsl_spdif_usync_put,
981 	},
982 };
983 
984 static int fsl_spdif_dai_probe(struct snd_soc_dai *dai)
985 {
986 	struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai);
987 
988 	snd_soc_dai_init_dma_data(dai, &spdif_private->dma_params_tx,
989 				  &spdif_private->dma_params_rx);
990 
991 	snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls));
992 
993 	return 0;
994 }
995 
996 static struct snd_soc_dai_driver fsl_spdif_dai = {
997 	.probe = &fsl_spdif_dai_probe,
998 	.playback = {
999 		.stream_name = "CPU-Playback",
1000 		.channels_min = 2,
1001 		.channels_max = 2,
1002 		.rates = FSL_SPDIF_RATES_PLAYBACK,
1003 		.formats = FSL_SPDIF_FORMATS_PLAYBACK,
1004 	},
1005 	.capture = {
1006 		.stream_name = "CPU-Capture",
1007 		.channels_min = 2,
1008 		.channels_max = 2,
1009 		.rates = FSL_SPDIF_RATES_CAPTURE,
1010 		.formats = FSL_SPDIF_FORMATS_CAPTURE,
1011 	},
1012 	.ops = &fsl_spdif_dai_ops,
1013 };
1014 
1015 static const struct snd_soc_component_driver fsl_spdif_component = {
1016 	.name		= "fsl-spdif",
1017 };
1018 
1019 /* FSL SPDIF REGMAP */
1020 static const struct reg_default fsl_spdif_reg_defaults[] = {
1021 	{REG_SPDIF_SCR,    0x00000400},
1022 	{REG_SPDIF_SRCD,   0x00000000},
1023 	{REG_SPDIF_SIE,	   0x00000000},
1024 	{REG_SPDIF_STL,	   0x00000000},
1025 	{REG_SPDIF_STR,	   0x00000000},
1026 	{REG_SPDIF_STCSCH, 0x00000000},
1027 	{REG_SPDIF_STCSCL, 0x00000000},
1028 	{REG_SPDIF_STC,	   0x00020f00},
1029 };
1030 
1031 static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg)
1032 {
1033 	switch (reg) {
1034 	case REG_SPDIF_SCR:
1035 	case REG_SPDIF_SRCD:
1036 	case REG_SPDIF_SRPC:
1037 	case REG_SPDIF_SIE:
1038 	case REG_SPDIF_SIS:
1039 	case REG_SPDIF_SRL:
1040 	case REG_SPDIF_SRR:
1041 	case REG_SPDIF_SRCSH:
1042 	case REG_SPDIF_SRCSL:
1043 	case REG_SPDIF_SRU:
1044 	case REG_SPDIF_SRQ:
1045 	case REG_SPDIF_STCSCH:
1046 	case REG_SPDIF_STCSCL:
1047 	case REG_SPDIF_SRFM:
1048 	case REG_SPDIF_STC:
1049 		return true;
1050 	default:
1051 		return false;
1052 	}
1053 }
1054 
1055 static bool fsl_spdif_volatile_reg(struct device *dev, unsigned int reg)
1056 {
1057 	switch (reg) {
1058 	case REG_SPDIF_SRPC:
1059 	case REG_SPDIF_SIS:
1060 	case REG_SPDIF_SRL:
1061 	case REG_SPDIF_SRR:
1062 	case REG_SPDIF_SRCSH:
1063 	case REG_SPDIF_SRCSL:
1064 	case REG_SPDIF_SRU:
1065 	case REG_SPDIF_SRQ:
1066 	case REG_SPDIF_SRFM:
1067 		return true;
1068 	default:
1069 		return false;
1070 	}
1071 }
1072 
1073 static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg)
1074 {
1075 	switch (reg) {
1076 	case REG_SPDIF_SCR:
1077 	case REG_SPDIF_SRCD:
1078 	case REG_SPDIF_SRPC:
1079 	case REG_SPDIF_SIE:
1080 	case REG_SPDIF_SIC:
1081 	case REG_SPDIF_STL:
1082 	case REG_SPDIF_STR:
1083 	case REG_SPDIF_STCSCH:
1084 	case REG_SPDIF_STCSCL:
1085 	case REG_SPDIF_STC:
1086 		return true;
1087 	default:
1088 		return false;
1089 	}
1090 }
1091 
1092 static const struct regmap_config fsl_spdif_regmap_config = {
1093 	.reg_bits = 32,
1094 	.reg_stride = 4,
1095 	.val_bits = 32,
1096 
1097 	.max_register = REG_SPDIF_STC,
1098 	.reg_defaults = fsl_spdif_reg_defaults,
1099 	.num_reg_defaults = ARRAY_SIZE(fsl_spdif_reg_defaults),
1100 	.readable_reg = fsl_spdif_readable_reg,
1101 	.volatile_reg = fsl_spdif_volatile_reg,
1102 	.writeable_reg = fsl_spdif_writeable_reg,
1103 	.cache_type = REGCACHE_FLAT,
1104 };
1105 
1106 static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv,
1107 				struct clk *clk, u64 savesub,
1108 				enum spdif_txrate index, bool round)
1109 {
1110 	static const u32 rate[] = { 32000, 44100, 48000, 96000, 192000 };
1111 	bool is_sysclk = clk_is_match(clk, spdif_priv->sysclk);
1112 	u64 rate_ideal, rate_actual, sub;
1113 	u32 arate;
1114 	u16 sysclk_dfmin, sysclk_dfmax, sysclk_df;
1115 	u8 txclk_df;
1116 
1117 	/* The sysclk has an extra divisor [2, 512] */
1118 	sysclk_dfmin = is_sysclk ? 2 : 1;
1119 	sysclk_dfmax = is_sysclk ? 512 : 1;
1120 
1121 	for (sysclk_df = sysclk_dfmin; sysclk_df <= sysclk_dfmax; sysclk_df++) {
1122 		for (txclk_df = 1; txclk_df <= 128; txclk_df++) {
1123 			rate_ideal = rate[index] * txclk_df * 64ULL;
1124 			if (round)
1125 				rate_actual = clk_round_rate(clk, rate_ideal);
1126 			else
1127 				rate_actual = clk_get_rate(clk);
1128 
1129 			arate = rate_actual / 64;
1130 			arate /= txclk_df * sysclk_df;
1131 
1132 			if (arate == rate[index]) {
1133 				/* We are lucky */
1134 				savesub = 0;
1135 				spdif_priv->txclk_df[index] = txclk_df;
1136 				spdif_priv->sysclk_df[index] = sysclk_df;
1137 				spdif_priv->txrate[index] = arate;
1138 				goto out;
1139 			} else if (arate / rate[index] == 1) {
1140 				/* A little bigger than expect */
1141 				sub = (u64)(arate - rate[index]) * 100000;
1142 				do_div(sub, rate[index]);
1143 				if (sub >= savesub)
1144 					continue;
1145 				savesub = sub;
1146 				spdif_priv->txclk_df[index] = txclk_df;
1147 				spdif_priv->sysclk_df[index] = sysclk_df;
1148 				spdif_priv->txrate[index] = arate;
1149 			} else if (rate[index] / arate == 1) {
1150 				/* A little smaller than expect */
1151 				sub = (u64)(rate[index] - arate) * 100000;
1152 				do_div(sub, rate[index]);
1153 				if (sub >= savesub)
1154 					continue;
1155 				savesub = sub;
1156 				spdif_priv->txclk_df[index] = txclk_df;
1157 				spdif_priv->sysclk_df[index] = sysclk_df;
1158 				spdif_priv->txrate[index] = arate;
1159 			}
1160 		}
1161 	}
1162 
1163 out:
1164 	return savesub;
1165 }
1166 
1167 static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv,
1168 				enum spdif_txrate index)
1169 {
1170 	static const u32 rate[] = { 32000, 44100, 48000, 96000, 192000 };
1171 	struct platform_device *pdev = spdif_priv->pdev;
1172 	struct device *dev = &pdev->dev;
1173 	u64 savesub = 100000, ret;
1174 	struct clk *clk;
1175 	char tmp[16];
1176 	int i;
1177 
1178 	for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1179 		sprintf(tmp, "rxtx%d", i);
1180 		clk = devm_clk_get(&pdev->dev, tmp);
1181 		if (IS_ERR(clk)) {
1182 			dev_err(dev, "no rxtx%d clock in devicetree\n", i);
1183 			return PTR_ERR(clk);
1184 		}
1185 		if (!clk_get_rate(clk))
1186 			continue;
1187 
1188 		ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index,
1189 					     i == STC_TXCLK_SPDIF_ROOT);
1190 		if (savesub == ret)
1191 			continue;
1192 
1193 		savesub = ret;
1194 		spdif_priv->txclk[index] = clk;
1195 		spdif_priv->txclk_src[index] = i;
1196 
1197 		/* To quick catch a divisor, we allow a 0.1% deviation */
1198 		if (savesub < 100)
1199 			break;
1200 	}
1201 
1202 	dev_dbg(&pdev->dev, "use rxtx%d as tx clock source for %dHz sample rate\n",
1203 			spdif_priv->txclk_src[index], rate[index]);
1204 	dev_dbg(&pdev->dev, "use txclk df %d for %dHz sample rate\n",
1205 			spdif_priv->txclk_df[index], rate[index]);
1206 	if (clk_is_match(spdif_priv->txclk[index], spdif_priv->sysclk))
1207 		dev_dbg(&pdev->dev, "use sysclk df %d for %dHz sample rate\n",
1208 				spdif_priv->sysclk_df[index], rate[index]);
1209 	dev_dbg(&pdev->dev, "the best rate for %dHz sample rate is %dHz\n",
1210 			rate[index], spdif_priv->txrate[index]);
1211 
1212 	return 0;
1213 }
1214 
1215 static int fsl_spdif_probe(struct platform_device *pdev)
1216 {
1217 	struct device_node *np = pdev->dev.of_node;
1218 	struct fsl_spdif_priv *spdif_priv;
1219 	struct spdif_mixer_control *ctrl;
1220 	struct resource *res;
1221 	void __iomem *regs;
1222 	int irq, ret, i;
1223 
1224 	if (!np)
1225 		return -ENODEV;
1226 
1227 	spdif_priv = devm_kzalloc(&pdev->dev, sizeof(*spdif_priv), GFP_KERNEL);
1228 	if (!spdif_priv)
1229 		return -ENOMEM;
1230 
1231 	spdif_priv->pdev = pdev;
1232 
1233 	/* Initialize this copy of the CPU DAI driver structure */
1234 	memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai));
1235 	spdif_priv->cpu_dai_drv.name = dev_name(&pdev->dev);
1236 
1237 	/* Get the addresses and IRQ */
1238 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1239 	regs = devm_ioremap_resource(&pdev->dev, res);
1240 	if (IS_ERR(regs))
1241 		return PTR_ERR(regs);
1242 
1243 	spdif_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
1244 			"core", regs, &fsl_spdif_regmap_config);
1245 	if (IS_ERR(spdif_priv->regmap)) {
1246 		dev_err(&pdev->dev, "regmap init failed\n");
1247 		return PTR_ERR(spdif_priv->regmap);
1248 	}
1249 
1250 	irq = platform_get_irq(pdev, 0);
1251 	if (irq < 0) {
1252 		dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
1253 		return irq;
1254 	}
1255 
1256 	ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0,
1257 			       dev_name(&pdev->dev), spdif_priv);
1258 	if (ret) {
1259 		dev_err(&pdev->dev, "could not claim irq %u\n", irq);
1260 		return ret;
1261 	}
1262 
1263 	/* Get system clock for rx clock rate calculation */
1264 	spdif_priv->sysclk = devm_clk_get(&pdev->dev, "rxtx5");
1265 	if (IS_ERR(spdif_priv->sysclk)) {
1266 		dev_err(&pdev->dev, "no sys clock (rxtx5) in devicetree\n");
1267 		return PTR_ERR(spdif_priv->sysclk);
1268 	}
1269 
1270 	/* Get core clock for data register access via DMA */
1271 	spdif_priv->coreclk = devm_clk_get(&pdev->dev, "core");
1272 	if (IS_ERR(spdif_priv->coreclk)) {
1273 		dev_err(&pdev->dev, "no core clock in devicetree\n");
1274 		return PTR_ERR(spdif_priv->coreclk);
1275 	}
1276 
1277 	spdif_priv->spbaclk = devm_clk_get(&pdev->dev, "spba");
1278 	if (IS_ERR(spdif_priv->spbaclk))
1279 		dev_warn(&pdev->dev, "no spba clock in devicetree\n");
1280 
1281 	/* Select clock source for rx/tx clock */
1282 	spdif_priv->rxclk = devm_clk_get(&pdev->dev, "rxtx1");
1283 	if (IS_ERR(spdif_priv->rxclk)) {
1284 		dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n");
1285 		return PTR_ERR(spdif_priv->rxclk);
1286 	}
1287 	spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC;
1288 
1289 	for (i = 0; i < SPDIF_TXRATE_MAX; i++) {
1290 		ret = fsl_spdif_probe_txclk(spdif_priv, i);
1291 		if (ret)
1292 			return ret;
1293 	}
1294 
1295 	/* Initial spinlock for control data */
1296 	ctrl = &spdif_priv->fsl_spdif_control;
1297 	spin_lock_init(&ctrl->ctl_lock);
1298 
1299 	/* Init tx channel status default value */
1300 	ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT |
1301 			     IEC958_AES0_CON_EMPHASIS_5015;
1302 	ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID;
1303 	ctrl->ch_status[2] = 0x00;
1304 	ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 |
1305 			     IEC958_AES3_CON_CLOCK_1000PPM;
1306 
1307 	spdif_priv->dpll_locked = false;
1308 
1309 	spdif_priv->dma_params_tx.maxburst = FSL_SPDIF_TXFIFO_WML;
1310 	spdif_priv->dma_params_rx.maxburst = FSL_SPDIF_RXFIFO_WML;
1311 	spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL;
1312 	spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL;
1313 
1314 	/* Register with ASoC */
1315 	dev_set_drvdata(&pdev->dev, spdif_priv);
1316 
1317 	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_spdif_component,
1318 					      &spdif_priv->cpu_dai_drv, 1);
1319 	if (ret) {
1320 		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1321 		return ret;
1322 	}
1323 
1324 	ret = imx_pcm_dma_init(pdev, IMX_SPDIF_DMABUF_SIZE);
1325 	if (ret && ret != -EPROBE_DEFER)
1326 		dev_err(&pdev->dev, "imx_pcm_dma_init failed: %d\n", ret);
1327 
1328 	return ret;
1329 }
1330 
1331 #ifdef CONFIG_PM_SLEEP
1332 static int fsl_spdif_suspend(struct device *dev)
1333 {
1334 	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1335 
1336 	regmap_read(spdif_priv->regmap, REG_SPDIF_SRPC,
1337 			&spdif_priv->regcache_srpc);
1338 
1339 	regcache_cache_only(spdif_priv->regmap, true);
1340 	regcache_mark_dirty(spdif_priv->regmap);
1341 
1342 	return 0;
1343 }
1344 
1345 static int fsl_spdif_resume(struct device *dev)
1346 {
1347 	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1348 
1349 	regcache_cache_only(spdif_priv->regmap, false);
1350 
1351 	regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SRPC,
1352 			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
1353 			spdif_priv->regcache_srpc);
1354 
1355 	return regcache_sync(spdif_priv->regmap);
1356 }
1357 #endif /* CONFIG_PM_SLEEP */
1358 
1359 static const struct dev_pm_ops fsl_spdif_pm = {
1360 	SET_SYSTEM_SLEEP_PM_OPS(fsl_spdif_suspend, fsl_spdif_resume)
1361 };
1362 
1363 static const struct of_device_id fsl_spdif_dt_ids[] = {
1364 	{ .compatible = "fsl,imx35-spdif", },
1365 	{ .compatible = "fsl,vf610-spdif", },
1366 	{}
1367 };
1368 MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids);
1369 
1370 static struct platform_driver fsl_spdif_driver = {
1371 	.driver = {
1372 		.name = "fsl-spdif-dai",
1373 		.of_match_table = fsl_spdif_dt_ids,
1374 		.pm = &fsl_spdif_pm,
1375 	},
1376 	.probe = fsl_spdif_probe,
1377 };
1378 
1379 module_platform_driver(fsl_spdif_driver);
1380 
1381 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1382 MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver");
1383 MODULE_LICENSE("GPL v2");
1384 MODULE_ALIAS("platform:fsl-spdif-dai");
1385