xref: /linux/sound/soc/fsl/fsl_sai.c (revision de73b5a97bba1538f065e1e90d8eeac399db7510)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Freescale ALSA SoC Digital Audio Interface (SAI) driver.
4 //
5 // Copyright 2012-2015 Freescale Semiconductor, Inc.
6 
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/of_address.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/regmap.h>
15 #include <linux/slab.h>
16 #include <linux/time.h>
17 #include <sound/core.h>
18 #include <sound/dmaengine_pcm.h>
19 #include <sound/pcm_params.h>
20 #include <linux/mfd/syscon.h>
21 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
22 
23 #include "fsl_sai.h"
24 #include "imx-pcm.h"
25 
26 #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
27 		       FSL_SAI_CSR_FEIE)
28 
29 static const unsigned int fsl_sai_rates[] = {
30 	8000, 11025, 12000, 16000, 22050,
31 	24000, 32000, 44100, 48000, 64000,
32 	88200, 96000, 176400, 192000
33 };
34 
35 static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
36 	.count = ARRAY_SIZE(fsl_sai_rates),
37 	.list = fsl_sai_rates,
38 };
39 
40 /**
41  * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
42  *
43  * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
44  * or Receiver's for both streams. This function is used to check if clocks of
45  * the stream's are synced by the opposite stream.
46  *
47  * @sai: SAI context
48  * @dir: stream direction
49  */
50 static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
51 {
52 	int adir = (dir == TX) ? RX : TX;
53 
54 	/* current dir in async mode while opposite dir in sync mode */
55 	return !sai->synchronous[dir] && sai->synchronous[adir];
56 }
57 
58 static irqreturn_t fsl_sai_isr(int irq, void *devid)
59 {
60 	struct fsl_sai *sai = (struct fsl_sai *)devid;
61 	unsigned int ofs = sai->soc_data->reg_offset;
62 	struct device *dev = &sai->pdev->dev;
63 	u32 flags, xcsr, mask;
64 	bool irq_none = true;
65 
66 	/*
67 	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
68 	 * different shifts. And we here create a mask only for those
69 	 * IRQs that we activated.
70 	 */
71 	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
72 
73 	/* Tx IRQ */
74 	regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
75 	flags = xcsr & mask;
76 
77 	if (flags)
78 		irq_none = false;
79 	else
80 		goto irq_rx;
81 
82 	if (flags & FSL_SAI_CSR_WSF)
83 		dev_dbg(dev, "isr: Start of Tx word detected\n");
84 
85 	if (flags & FSL_SAI_CSR_SEF)
86 		dev_dbg(dev, "isr: Tx Frame sync error detected\n");
87 
88 	if (flags & FSL_SAI_CSR_FEF) {
89 		dev_dbg(dev, "isr: Transmit underrun detected\n");
90 		/* FIFO reset for safety */
91 		xcsr |= FSL_SAI_CSR_FR;
92 	}
93 
94 	if (flags & FSL_SAI_CSR_FWF)
95 		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
96 
97 	if (flags & FSL_SAI_CSR_FRF)
98 		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
99 
100 	flags &= FSL_SAI_CSR_xF_W_MASK;
101 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
102 
103 	if (flags)
104 		regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
105 
106 irq_rx:
107 	/* Rx IRQ */
108 	regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
109 	flags = xcsr & mask;
110 
111 	if (flags)
112 		irq_none = false;
113 	else
114 		goto out;
115 
116 	if (flags & FSL_SAI_CSR_WSF)
117 		dev_dbg(dev, "isr: Start of Rx word detected\n");
118 
119 	if (flags & FSL_SAI_CSR_SEF)
120 		dev_dbg(dev, "isr: Rx Frame sync error detected\n");
121 
122 	if (flags & FSL_SAI_CSR_FEF) {
123 		dev_dbg(dev, "isr: Receive overflow detected\n");
124 		/* FIFO reset for safety */
125 		xcsr |= FSL_SAI_CSR_FR;
126 	}
127 
128 	if (flags & FSL_SAI_CSR_FWF)
129 		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
130 
131 	if (flags & FSL_SAI_CSR_FRF)
132 		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
133 
134 	flags &= FSL_SAI_CSR_xF_W_MASK;
135 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
136 
137 	if (flags)
138 		regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
139 
140 out:
141 	if (irq_none)
142 		return IRQ_NONE;
143 	else
144 		return IRQ_HANDLED;
145 }
146 
147 static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
148 				u32 rx_mask, int slots, int slot_width)
149 {
150 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
151 
152 	sai->slots = slots;
153 	sai->slot_width = slot_width;
154 
155 	return 0;
156 }
157 
158 static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
159 				      unsigned int ratio)
160 {
161 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
162 
163 	sai->bclk_ratio = ratio;
164 
165 	return 0;
166 }
167 
168 static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
169 		int clk_id, unsigned int freq, int fsl_dir)
170 {
171 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
172 	unsigned int ofs = sai->soc_data->reg_offset;
173 	bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
174 	u32 val_cr2 = 0;
175 
176 	switch (clk_id) {
177 	case FSL_SAI_CLK_BUS:
178 		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
179 		break;
180 	case FSL_SAI_CLK_MAST1:
181 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
182 		break;
183 	case FSL_SAI_CLK_MAST2:
184 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
185 		break;
186 	case FSL_SAI_CLK_MAST3:
187 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
188 		break;
189 	default:
190 		return -EINVAL;
191 	}
192 
193 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
194 			   FSL_SAI_CR2_MSEL_MASK, val_cr2);
195 
196 	return 0;
197 }
198 
199 static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
200 		int clk_id, unsigned int freq, int dir)
201 {
202 	int ret;
203 
204 	if (dir == SND_SOC_CLOCK_IN)
205 		return 0;
206 
207 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
208 					FSL_FMT_TRANSMITTER);
209 	if (ret) {
210 		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
211 		return ret;
212 	}
213 
214 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
215 					FSL_FMT_RECEIVER);
216 	if (ret)
217 		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
218 
219 	return ret;
220 }
221 
222 static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
223 				unsigned int fmt, int fsl_dir)
224 {
225 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
226 	unsigned int ofs = sai->soc_data->reg_offset;
227 	bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
228 	u32 val_cr2 = 0, val_cr4 = 0;
229 
230 	if (!sai->is_lsb_first)
231 		val_cr4 |= FSL_SAI_CR4_MF;
232 
233 	/* DAI mode */
234 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
235 	case SND_SOC_DAIFMT_I2S:
236 		/*
237 		 * Frame low, 1clk before data, one word length for frame sync,
238 		 * frame sync starts one serial clock cycle earlier,
239 		 * that is, together with the last bit of the previous
240 		 * data word.
241 		 */
242 		val_cr2 |= FSL_SAI_CR2_BCP;
243 		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
244 		break;
245 	case SND_SOC_DAIFMT_LEFT_J:
246 		/*
247 		 * Frame high, one word length for frame sync,
248 		 * frame sync asserts with the first bit of the frame.
249 		 */
250 		val_cr2 |= FSL_SAI_CR2_BCP;
251 		break;
252 	case SND_SOC_DAIFMT_DSP_A:
253 		/*
254 		 * Frame high, 1clk before data, one bit for frame sync,
255 		 * frame sync starts one serial clock cycle earlier,
256 		 * that is, together with the last bit of the previous
257 		 * data word.
258 		 */
259 		val_cr2 |= FSL_SAI_CR2_BCP;
260 		val_cr4 |= FSL_SAI_CR4_FSE;
261 		sai->is_dsp_mode = true;
262 		break;
263 	case SND_SOC_DAIFMT_DSP_B:
264 		/*
265 		 * Frame high, one bit for frame sync,
266 		 * frame sync asserts with the first bit of the frame.
267 		 */
268 		val_cr2 |= FSL_SAI_CR2_BCP;
269 		sai->is_dsp_mode = true;
270 		break;
271 	case SND_SOC_DAIFMT_RIGHT_J:
272 		/* To be done */
273 	default:
274 		return -EINVAL;
275 	}
276 
277 	/* DAI clock inversion */
278 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
279 	case SND_SOC_DAIFMT_IB_IF:
280 		/* Invert both clocks */
281 		val_cr2 ^= FSL_SAI_CR2_BCP;
282 		val_cr4 ^= FSL_SAI_CR4_FSP;
283 		break;
284 	case SND_SOC_DAIFMT_IB_NF:
285 		/* Invert bit clock */
286 		val_cr2 ^= FSL_SAI_CR2_BCP;
287 		break;
288 	case SND_SOC_DAIFMT_NB_IF:
289 		/* Invert frame clock */
290 		val_cr4 ^= FSL_SAI_CR4_FSP;
291 		break;
292 	case SND_SOC_DAIFMT_NB_NF:
293 		/* Nothing to do for both normal cases */
294 		break;
295 	default:
296 		return -EINVAL;
297 	}
298 
299 	/* DAI clock master masks */
300 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
301 	case SND_SOC_DAIFMT_CBS_CFS:
302 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
303 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
304 		sai->is_slave_mode = false;
305 		break;
306 	case SND_SOC_DAIFMT_CBM_CFM:
307 		sai->is_slave_mode = true;
308 		break;
309 	case SND_SOC_DAIFMT_CBS_CFM:
310 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
311 		sai->is_slave_mode = false;
312 		break;
313 	case SND_SOC_DAIFMT_CBM_CFS:
314 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
315 		sai->is_slave_mode = true;
316 		break;
317 	default:
318 		return -EINVAL;
319 	}
320 
321 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
322 			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
323 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
324 			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
325 			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
326 
327 	return 0;
328 }
329 
330 static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
331 {
332 	int ret;
333 
334 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_TRANSMITTER);
335 	if (ret) {
336 		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
337 		return ret;
338 	}
339 
340 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_RECEIVER);
341 	if (ret)
342 		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
343 
344 	return ret;
345 }
346 
347 static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
348 {
349 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
350 	unsigned int ofs = sai->soc_data->reg_offset;
351 	unsigned long clk_rate;
352 	u32 savediv = 0, ratio, savesub = freq;
353 	int adir = tx ? RX : TX;
354 	int dir = tx ? TX : RX;
355 	u32 id;
356 	int ret = 0;
357 
358 	/* Don't apply to slave mode */
359 	if (sai->is_slave_mode)
360 		return 0;
361 
362 	/*
363 	 * There is no point in polling MCLK0 if it is identical to MCLK1.
364 	 * And given that MQS use case has to use MCLK1 though two clocks
365 	 * are the same, we simply skip MCLK0 and start to find from MCLK1.
366 	 */
367 	id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;
368 
369 	for (; id < FSL_SAI_MCLK_MAX; id++) {
370 		clk_rate = clk_get_rate(sai->mclk_clk[id]);
371 		if (!clk_rate)
372 			continue;
373 
374 		ratio = clk_rate / freq;
375 
376 		ret = clk_rate - ratio * freq;
377 
378 		/*
379 		 * Drop the source that can not be
380 		 * divided into the required rate.
381 		 */
382 		if (ret != 0 && clk_rate / ret < 1000)
383 			continue;
384 
385 		dev_dbg(dai->dev,
386 			"ratio %d for freq %dHz based on clock %ldHz\n",
387 			ratio, freq, clk_rate);
388 
389 		if (ratio % 2 == 0 && ratio >= 2 && ratio <= 512)
390 			ratio /= 2;
391 		else
392 			continue;
393 
394 		if (ret < savesub) {
395 			savediv = ratio;
396 			sai->mclk_id[tx] = id;
397 			savesub = ret;
398 		}
399 
400 		if (ret == 0)
401 			break;
402 	}
403 
404 	if (savediv == 0) {
405 		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
406 				tx ? 'T' : 'R', freq);
407 		return -EINVAL;
408 	}
409 
410 	/*
411 	 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
412 	 *    set TCR2 register for playback.
413 	 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
414 	 *    and capture.
415 	 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
416 	 *    and capture.
417 	 * 4) For Tx and Rx are both Synchronous with another SAI, we just
418 	 *    ignore it.
419 	 */
420 	if (fsl_sai_dir_is_synced(sai, adir)) {
421 		regmap_update_bits(sai->regmap, FSL_SAI_xCR2(!tx, ofs),
422 				   FSL_SAI_CR2_MSEL_MASK,
423 				   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
424 		regmap_update_bits(sai->regmap, FSL_SAI_xCR2(!tx, ofs),
425 				   FSL_SAI_CR2_DIV_MASK, savediv - 1);
426 	} else if (!sai->synchronous[dir]) {
427 		regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
428 				   FSL_SAI_CR2_MSEL_MASK,
429 				   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
430 		regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
431 				   FSL_SAI_CR2_DIV_MASK, savediv - 1);
432 	}
433 
434 	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
435 			sai->mclk_id[tx], savediv, savesub);
436 
437 	return 0;
438 }
439 
440 static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
441 		struct snd_pcm_hw_params *params,
442 		struct snd_soc_dai *cpu_dai)
443 {
444 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
445 	unsigned int ofs = sai->soc_data->reg_offset;
446 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
447 	unsigned int channels = params_channels(params);
448 	u32 word_width = params_width(params);
449 	u32 val_cr4 = 0, val_cr5 = 0;
450 	u32 slots = (channels == 1) ? 2 : channels;
451 	u32 slot_width = word_width;
452 	int adir = tx ? RX : TX;
453 	u32 pins;
454 	int ret;
455 
456 	if (sai->slots)
457 		slots = sai->slots;
458 
459 	if (sai->slot_width)
460 		slot_width = sai->slot_width;
461 
462 	pins = DIV_ROUND_UP(channels, slots);
463 
464 	if (!sai->is_slave_mode) {
465 		if (sai->bclk_ratio)
466 			ret = fsl_sai_set_bclk(cpu_dai, tx,
467 					       sai->bclk_ratio *
468 					       params_rate(params));
469 		else
470 			ret = fsl_sai_set_bclk(cpu_dai, tx,
471 					       slots * slot_width *
472 					       params_rate(params));
473 		if (ret)
474 			return ret;
475 
476 		/* Do not enable the clock if it is already enabled */
477 		if (!(sai->mclk_streams & BIT(substream->stream))) {
478 			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
479 			if (ret)
480 				return ret;
481 
482 			sai->mclk_streams |= BIT(substream->stream);
483 		}
484 	}
485 
486 	if (!sai->is_dsp_mode)
487 		val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
488 
489 	val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
490 	val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
491 
492 	if (sai->is_lsb_first)
493 		val_cr5 |= FSL_SAI_CR5_FBT(0);
494 	else
495 		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
496 
497 	val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
498 
499 	/* Set to output mode to avoid tri-stated data pins */
500 	if (tx)
501 		val_cr4 |= FSL_SAI_CR4_CHMOD;
502 
503 	/*
504 	 * For SAI master mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
505 	 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
506 	 * RCR5(TCR5) for playback(capture), or there will be sync error.
507 	 */
508 
509 	if (!sai->is_slave_mode && fsl_sai_dir_is_synced(sai, adir)) {
510 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
511 				   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
512 				   FSL_SAI_CR4_CHMOD_MASK,
513 				   val_cr4);
514 		regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
515 				   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
516 				   FSL_SAI_CR5_FBT_MASK, val_cr5);
517 	}
518 
519 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
520 			   FSL_SAI_CR3_TRCE_MASK,
521 			   FSL_SAI_CR3_TRCE((1 << pins) - 1));
522 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
523 			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
524 			   FSL_SAI_CR4_CHMOD_MASK,
525 			   val_cr4);
526 	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
527 			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
528 			   FSL_SAI_CR5_FBT_MASK, val_cr5);
529 	regmap_write(sai->regmap, FSL_SAI_xMR(tx),
530 		     ~0UL - ((1 << min(channels, slots)) - 1));
531 
532 	return 0;
533 }
534 
535 static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
536 		struct snd_soc_dai *cpu_dai)
537 {
538 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
539 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
540 	unsigned int ofs = sai->soc_data->reg_offset;
541 
542 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
543 			   FSL_SAI_CR3_TRCE_MASK, 0);
544 
545 	if (!sai->is_slave_mode &&
546 			sai->mclk_streams & BIT(substream->stream)) {
547 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
548 		sai->mclk_streams &= ~BIT(substream->stream);
549 	}
550 
551 	return 0;
552 }
553 
554 static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
555 {
556 	unsigned int ofs = sai->soc_data->reg_offset;
557 	bool tx = dir == TX;
558 	u32 xcsr, count = 100;
559 
560 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
561 			   FSL_SAI_CSR_TERE, 0);
562 
563 	/* TERE will remain set till the end of current frame */
564 	do {
565 		udelay(10);
566 		regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
567 	} while (--count && xcsr & FSL_SAI_CSR_TERE);
568 
569 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
570 			   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
571 
572 	/*
573 	 * For sai master mode, after several open/close sai,
574 	 * there will be no frame clock, and can't recover
575 	 * anymore. Add software reset to fix this issue.
576 	 * This is a hardware bug, and will be fix in the
577 	 * next sai version.
578 	 */
579 	if (!sai->is_slave_mode) {
580 		/* Software Reset */
581 		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR);
582 		/* Clear SR bit to finish the reset */
583 		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0);
584 	}
585 }
586 
587 static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
588 		struct snd_soc_dai *cpu_dai)
589 {
590 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
591 	unsigned int ofs = sai->soc_data->reg_offset;
592 
593 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
594 	int adir = tx ? RX : TX;
595 	int dir = tx ? TX : RX;
596 	u32 xcsr;
597 
598 	/*
599 	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
600 	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
601 	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
602 	 */
603 	regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
604 			   sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
605 	regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
606 			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
607 
608 	/*
609 	 * It is recommended that the transmitter is the last enabled
610 	 * and the first disabled.
611 	 */
612 	switch (cmd) {
613 	case SNDRV_PCM_TRIGGER_START:
614 	case SNDRV_PCM_TRIGGER_RESUME:
615 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
616 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
617 				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
618 
619 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
620 				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
621 		/*
622 		 * Enable the opposite direction for synchronous mode
623 		 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
624 		 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
625 		 *
626 		 * RM recommends to enable RE after TE for case 1 and to enable
627 		 * TE after RE for case 2, but we here may not always guarantee
628 		 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
629 		 * TE after RE, which is against what RM recommends but should
630 		 * be safe to do, judging by years of testing results.
631 		 */
632 		if (fsl_sai_dir_is_synced(sai, adir))
633 			regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
634 					   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
635 
636 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
637 				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
638 		break;
639 	case SNDRV_PCM_TRIGGER_STOP:
640 	case SNDRV_PCM_TRIGGER_SUSPEND:
641 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
642 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
643 				   FSL_SAI_CSR_FRDE, 0);
644 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
645 				   FSL_SAI_CSR_xIE_MASK, 0);
646 
647 		/* Check if the opposite FRDE is also disabled */
648 		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
649 
650 		/*
651 		 * If opposite stream provides clocks for synchronous mode and
652 		 * it is inactive, disable it before disabling the current one
653 		 */
654 		if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
655 			fsl_sai_config_disable(sai, adir);
656 
657 		/*
658 		 * Disable current stream if either of:
659 		 * 1. current stream doesn't provide clocks for synchronous mode
660 		 * 2. current stream provides clocks for synchronous mode but no
661 		 *    more stream is active.
662 		 */
663 		if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
664 			fsl_sai_config_disable(sai, dir);
665 
666 		break;
667 	default:
668 		return -EINVAL;
669 	}
670 
671 	return 0;
672 }
673 
674 static int fsl_sai_startup(struct snd_pcm_substream *substream,
675 		struct snd_soc_dai *cpu_dai)
676 {
677 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
678 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
679 	int ret;
680 
681 	/*
682 	 * EDMA controller needs period size to be a multiple of
683 	 * tx/rx maxburst
684 	 */
685 	if (sai->soc_data->use_edma)
686 		snd_pcm_hw_constraint_step(substream->runtime, 0,
687 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
688 					   tx ? sai->dma_params_tx.maxburst :
689 					   sai->dma_params_rx.maxburst);
690 
691 	ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
692 			SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);
693 
694 	return ret;
695 }
696 
697 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
698 	.set_bclk_ratio	= fsl_sai_set_dai_bclk_ratio,
699 	.set_sysclk	= fsl_sai_set_dai_sysclk,
700 	.set_fmt	= fsl_sai_set_dai_fmt,
701 	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot,
702 	.hw_params	= fsl_sai_hw_params,
703 	.hw_free	= fsl_sai_hw_free,
704 	.trigger	= fsl_sai_trigger,
705 	.startup	= fsl_sai_startup,
706 };
707 
708 static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
709 {
710 	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
711 	unsigned int ofs = sai->soc_data->reg_offset;
712 
713 	/* Software Reset for both Tx and Rx */
714 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
715 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
716 	/* Clear SR bit to finish the reset */
717 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
718 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
719 
720 	regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
721 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
722 			   sai->soc_data->fifo_depth - FSL_SAI_MAXBURST_TX);
723 	regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
724 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
725 			   FSL_SAI_MAXBURST_RX - 1);
726 
727 	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
728 				&sai->dma_params_rx);
729 
730 	snd_soc_dai_set_drvdata(cpu_dai, sai);
731 
732 	return 0;
733 }
734 
735 static struct snd_soc_dai_driver fsl_sai_dai_template = {
736 	.probe = fsl_sai_dai_probe,
737 	.playback = {
738 		.stream_name = "CPU-Playback",
739 		.channels_min = 1,
740 		.channels_max = 32,
741 		.rate_min = 8000,
742 		.rate_max = 192000,
743 		.rates = SNDRV_PCM_RATE_KNOT,
744 		.formats = FSL_SAI_FORMATS,
745 	},
746 	.capture = {
747 		.stream_name = "CPU-Capture",
748 		.channels_min = 1,
749 		.channels_max = 32,
750 		.rate_min = 8000,
751 		.rate_max = 192000,
752 		.rates = SNDRV_PCM_RATE_KNOT,
753 		.formats = FSL_SAI_FORMATS,
754 	},
755 	.ops = &fsl_sai_pcm_dai_ops,
756 };
757 
758 static const struct snd_soc_component_driver fsl_component = {
759 	.name           = "fsl-sai",
760 };
761 
762 static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
763 	{FSL_SAI_TCR1(0), 0},
764 	{FSL_SAI_TCR2(0), 0},
765 	{FSL_SAI_TCR3(0), 0},
766 	{FSL_SAI_TCR4(0), 0},
767 	{FSL_SAI_TCR5(0), 0},
768 	{FSL_SAI_TDR0, 0},
769 	{FSL_SAI_TDR1, 0},
770 	{FSL_SAI_TDR2, 0},
771 	{FSL_SAI_TDR3, 0},
772 	{FSL_SAI_TDR4, 0},
773 	{FSL_SAI_TDR5, 0},
774 	{FSL_SAI_TDR6, 0},
775 	{FSL_SAI_TDR7, 0},
776 	{FSL_SAI_TMR, 0},
777 	{FSL_SAI_RCR1(0), 0},
778 	{FSL_SAI_RCR2(0), 0},
779 	{FSL_SAI_RCR3(0), 0},
780 	{FSL_SAI_RCR4(0), 0},
781 	{FSL_SAI_RCR5(0), 0},
782 	{FSL_SAI_RMR, 0},
783 };
784 
785 static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
786 	{FSL_SAI_TCR1(8), 0},
787 	{FSL_SAI_TCR2(8), 0},
788 	{FSL_SAI_TCR3(8), 0},
789 	{FSL_SAI_TCR4(8), 0},
790 	{FSL_SAI_TCR5(8), 0},
791 	{FSL_SAI_TDR0, 0},
792 	{FSL_SAI_TDR1, 0},
793 	{FSL_SAI_TDR2, 0},
794 	{FSL_SAI_TDR3, 0},
795 	{FSL_SAI_TDR4, 0},
796 	{FSL_SAI_TDR5, 0},
797 	{FSL_SAI_TDR6, 0},
798 	{FSL_SAI_TDR7, 0},
799 	{FSL_SAI_TMR, 0},
800 	{FSL_SAI_RCR1(8), 0},
801 	{FSL_SAI_RCR2(8), 0},
802 	{FSL_SAI_RCR3(8), 0},
803 	{FSL_SAI_RCR4(8), 0},
804 	{FSL_SAI_RCR5(8), 0},
805 	{FSL_SAI_RMR, 0},
806 	{FSL_SAI_MCTL, 0},
807 	{FSL_SAI_MDIV, 0},
808 };
809 
810 static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
811 {
812 	struct fsl_sai *sai = dev_get_drvdata(dev);
813 	unsigned int ofs = sai->soc_data->reg_offset;
814 
815 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
816 		return true;
817 
818 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
819 		return true;
820 
821 	switch (reg) {
822 	case FSL_SAI_TFR0:
823 	case FSL_SAI_TFR1:
824 	case FSL_SAI_TFR2:
825 	case FSL_SAI_TFR3:
826 	case FSL_SAI_TFR4:
827 	case FSL_SAI_TFR5:
828 	case FSL_SAI_TFR6:
829 	case FSL_SAI_TFR7:
830 	case FSL_SAI_TMR:
831 	case FSL_SAI_RDR0:
832 	case FSL_SAI_RDR1:
833 	case FSL_SAI_RDR2:
834 	case FSL_SAI_RDR3:
835 	case FSL_SAI_RDR4:
836 	case FSL_SAI_RDR5:
837 	case FSL_SAI_RDR6:
838 	case FSL_SAI_RDR7:
839 	case FSL_SAI_RFR0:
840 	case FSL_SAI_RFR1:
841 	case FSL_SAI_RFR2:
842 	case FSL_SAI_RFR3:
843 	case FSL_SAI_RFR4:
844 	case FSL_SAI_RFR5:
845 	case FSL_SAI_RFR6:
846 	case FSL_SAI_RFR7:
847 	case FSL_SAI_RMR:
848 	case FSL_SAI_MCTL:
849 	case FSL_SAI_MDIV:
850 	case FSL_SAI_VERID:
851 	case FSL_SAI_PARAM:
852 	case FSL_SAI_TTCTN:
853 	case FSL_SAI_RTCTN:
854 	case FSL_SAI_TTCTL:
855 	case FSL_SAI_TBCTN:
856 	case FSL_SAI_TTCAP:
857 	case FSL_SAI_RTCTL:
858 	case FSL_SAI_RBCTN:
859 	case FSL_SAI_RTCAP:
860 		return true;
861 	default:
862 		return false;
863 	}
864 }
865 
866 static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
867 {
868 	struct fsl_sai *sai = dev_get_drvdata(dev);
869 	unsigned int ofs = sai->soc_data->reg_offset;
870 
871 	if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
872 		return true;
873 
874 	/* Set VERID and PARAM be volatile for reading value in probe */
875 	if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
876 		return true;
877 
878 	switch (reg) {
879 	case FSL_SAI_TFR0:
880 	case FSL_SAI_TFR1:
881 	case FSL_SAI_TFR2:
882 	case FSL_SAI_TFR3:
883 	case FSL_SAI_TFR4:
884 	case FSL_SAI_TFR5:
885 	case FSL_SAI_TFR6:
886 	case FSL_SAI_TFR7:
887 	case FSL_SAI_RFR0:
888 	case FSL_SAI_RFR1:
889 	case FSL_SAI_RFR2:
890 	case FSL_SAI_RFR3:
891 	case FSL_SAI_RFR4:
892 	case FSL_SAI_RFR5:
893 	case FSL_SAI_RFR6:
894 	case FSL_SAI_RFR7:
895 	case FSL_SAI_RDR0:
896 	case FSL_SAI_RDR1:
897 	case FSL_SAI_RDR2:
898 	case FSL_SAI_RDR3:
899 	case FSL_SAI_RDR4:
900 	case FSL_SAI_RDR5:
901 	case FSL_SAI_RDR6:
902 	case FSL_SAI_RDR7:
903 		return true;
904 	default:
905 		return false;
906 	}
907 }
908 
909 static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
910 {
911 	struct fsl_sai *sai = dev_get_drvdata(dev);
912 	unsigned int ofs = sai->soc_data->reg_offset;
913 
914 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
915 		return true;
916 
917 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
918 		return true;
919 
920 	switch (reg) {
921 	case FSL_SAI_TDR0:
922 	case FSL_SAI_TDR1:
923 	case FSL_SAI_TDR2:
924 	case FSL_SAI_TDR3:
925 	case FSL_SAI_TDR4:
926 	case FSL_SAI_TDR5:
927 	case FSL_SAI_TDR6:
928 	case FSL_SAI_TDR7:
929 	case FSL_SAI_TMR:
930 	case FSL_SAI_RMR:
931 	case FSL_SAI_MCTL:
932 	case FSL_SAI_MDIV:
933 	case FSL_SAI_TTCTL:
934 	case FSL_SAI_RTCTL:
935 		return true;
936 	default:
937 		return false;
938 	}
939 }
940 
941 static struct regmap_config fsl_sai_regmap_config = {
942 	.reg_bits = 32,
943 	.reg_stride = 4,
944 	.val_bits = 32,
945 	.fast_io = true,
946 
947 	.max_register = FSL_SAI_RMR,
948 	.reg_defaults = fsl_sai_reg_defaults_ofs0,
949 	.num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
950 	.readable_reg = fsl_sai_readable_reg,
951 	.volatile_reg = fsl_sai_volatile_reg,
952 	.writeable_reg = fsl_sai_writeable_reg,
953 	.cache_type = REGCACHE_FLAT,
954 };
955 
956 static int fsl_sai_check_version(struct device *dev)
957 {
958 	struct fsl_sai *sai = dev_get_drvdata(dev);
959 	unsigned char ofs = sai->soc_data->reg_offset;
960 	unsigned int val;
961 	int ret;
962 
963 	if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
964 		return 0;
965 
966 	ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
967 	if (ret < 0)
968 		return ret;
969 
970 	dev_dbg(dev, "VERID: 0x%016X\n", val);
971 
972 	sai->verid.major = (val & FSL_SAI_VERID_MAJOR_MASK) >>
973 			   FSL_SAI_VERID_MAJOR_SHIFT;
974 	sai->verid.minor = (val & FSL_SAI_VERID_MINOR_MASK) >>
975 			   FSL_SAI_VERID_MINOR_SHIFT;
976 	sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
977 
978 	ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
979 	if (ret < 0)
980 		return ret;
981 
982 	dev_dbg(dev, "PARAM: 0x%016X\n", val);
983 
984 	/* Max slots per frame, power of 2 */
985 	sai->param.slot_num = 1 <<
986 		((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
987 
988 	/* Words per fifo, power of 2 */
989 	sai->param.fifo_depth = 1 <<
990 		((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
991 
992 	/* Number of datalines implemented */
993 	sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
994 
995 	return 0;
996 }
997 
998 static int fsl_sai_probe(struct platform_device *pdev)
999 {
1000 	struct device_node *np = pdev->dev.of_node;
1001 	struct fsl_sai *sai;
1002 	struct regmap *gpr;
1003 	struct resource *res;
1004 	void __iomem *base;
1005 	char tmp[8];
1006 	int irq, ret, i;
1007 	int index;
1008 
1009 	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1010 	if (!sai)
1011 		return -ENOMEM;
1012 
1013 	sai->pdev = pdev;
1014 	sai->soc_data = of_device_get_match_data(&pdev->dev);
1015 
1016 	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1017 
1018 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1019 	base = devm_ioremap_resource(&pdev->dev, res);
1020 	if (IS_ERR(base))
1021 		return PTR_ERR(base);
1022 
1023 	if (sai->soc_data->reg_offset == 8) {
1024 		fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1025 		fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1026 		fsl_sai_regmap_config.num_reg_defaults =
1027 			ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
1028 	}
1029 
1030 	sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
1031 			"bus", base, &fsl_sai_regmap_config);
1032 
1033 	/* Compatible with old DTB cases */
1034 	if (IS_ERR(sai->regmap) && PTR_ERR(sai->regmap) != -EPROBE_DEFER)
1035 		sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
1036 				"sai", base, &fsl_sai_regmap_config);
1037 	if (IS_ERR(sai->regmap)) {
1038 		dev_err(&pdev->dev, "regmap init failed\n");
1039 		return PTR_ERR(sai->regmap);
1040 	}
1041 
1042 	/* No error out for old DTB cases but only mark the clock NULL */
1043 	sai->bus_clk = devm_clk_get(&pdev->dev, "bus");
1044 	if (IS_ERR(sai->bus_clk)) {
1045 		dev_err(&pdev->dev, "failed to get bus clock: %ld\n",
1046 				PTR_ERR(sai->bus_clk));
1047 		sai->bus_clk = NULL;
1048 	}
1049 
1050 	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
1051 		sprintf(tmp, "mclk%d", i);
1052 		sai->mclk_clk[i] = devm_clk_get(&pdev->dev, tmp);
1053 		if (IS_ERR(sai->mclk_clk[i])) {
1054 			dev_err(&pdev->dev, "failed to get mclk%d clock: %ld\n",
1055 					i + 1, PTR_ERR(sai->mclk_clk[i]));
1056 			sai->mclk_clk[i] = NULL;
1057 		}
1058 	}
1059 
1060 	if (sai->soc_data->mclk0_is_mclk1)
1061 		sai->mclk_clk[0] = sai->mclk_clk[1];
1062 	else
1063 		sai->mclk_clk[0] = sai->bus_clk;
1064 
1065 	irq = platform_get_irq(pdev, 0);
1066 	if (irq < 0)
1067 		return irq;
1068 
1069 	ret = devm_request_irq(&pdev->dev, irq, fsl_sai_isr, IRQF_SHARED,
1070 			       np->name, sai);
1071 	if (ret) {
1072 		dev_err(&pdev->dev, "failed to claim irq %u\n", irq);
1073 		return ret;
1074 	}
1075 
1076 	memcpy(&sai->cpu_dai_drv, &fsl_sai_dai_template,
1077 	       sizeof(fsl_sai_dai_template));
1078 
1079 	/* Sync Tx with Rx as default by following old DT binding */
1080 	sai->synchronous[RX] = true;
1081 	sai->synchronous[TX] = false;
1082 	sai->cpu_dai_drv.symmetric_rate = 1;
1083 	sai->cpu_dai_drv.symmetric_channels = 1;
1084 	sai->cpu_dai_drv.symmetric_sample_bits = 1;
1085 
1086 	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL) &&
1087 	    of_find_property(np, "fsl,sai-asynchronous", NULL)) {
1088 		/* error out if both synchronous and asynchronous are present */
1089 		dev_err(&pdev->dev, "invalid binding for synchronous mode\n");
1090 		return -EINVAL;
1091 	}
1092 
1093 	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL)) {
1094 		/* Sync Rx with Tx */
1095 		sai->synchronous[RX] = false;
1096 		sai->synchronous[TX] = true;
1097 	} else if (of_find_property(np, "fsl,sai-asynchronous", NULL)) {
1098 		/* Discard all settings for asynchronous mode */
1099 		sai->synchronous[RX] = false;
1100 		sai->synchronous[TX] = false;
1101 		sai->cpu_dai_drv.symmetric_rate = 0;
1102 		sai->cpu_dai_drv.symmetric_channels = 0;
1103 		sai->cpu_dai_drv.symmetric_sample_bits = 0;
1104 	}
1105 
1106 	if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
1107 	    of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1108 		gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
1109 		if (IS_ERR(gpr)) {
1110 			dev_err(&pdev->dev, "cannot find iomuxc registers\n");
1111 			return PTR_ERR(gpr);
1112 		}
1113 
1114 		index = of_alias_get_id(np, "sai");
1115 		if (index < 0)
1116 			return index;
1117 
1118 		regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
1119 				   MCLK_DIR(index));
1120 	}
1121 
1122 	sai->dma_params_rx.addr = res->start + FSL_SAI_RDR0;
1123 	sai->dma_params_tx.addr = res->start + FSL_SAI_TDR0;
1124 	sai->dma_params_rx.maxburst = FSL_SAI_MAXBURST_RX;
1125 	sai->dma_params_tx.maxburst = FSL_SAI_MAXBURST_TX;
1126 
1127 	platform_set_drvdata(pdev, sai);
1128 
1129 	/* Get sai version */
1130 	ret = fsl_sai_check_version(&pdev->dev);
1131 	if (ret < 0)
1132 		dev_warn(&pdev->dev, "Error reading SAI version: %d\n", ret);
1133 
1134 	/* Select MCLK direction */
1135 	if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
1136 	    sai->verid.major >= 3 && sai->verid.minor >= 1) {
1137 		regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
1138 				   FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
1139 	}
1140 
1141 	pm_runtime_enable(&pdev->dev);
1142 	regcache_cache_only(sai->regmap, true);
1143 
1144 	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_component,
1145 					      &sai->cpu_dai_drv, 1);
1146 	if (ret)
1147 		goto err_pm_disable;
1148 
1149 	if (sai->soc_data->use_imx_pcm) {
1150 		ret = imx_pcm_dma_init(pdev, IMX_SAI_DMABUF_SIZE);
1151 		if (ret)
1152 			goto err_pm_disable;
1153 	} else {
1154 		ret = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
1155 		if (ret)
1156 			goto err_pm_disable;
1157 	}
1158 
1159 	return ret;
1160 
1161 err_pm_disable:
1162 	pm_runtime_disable(&pdev->dev);
1163 
1164 	return ret;
1165 }
1166 
1167 static int fsl_sai_remove(struct platform_device *pdev)
1168 {
1169 	pm_runtime_disable(&pdev->dev);
1170 
1171 	return 0;
1172 }
1173 
1174 static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
1175 	.use_imx_pcm = false,
1176 	.use_edma = false,
1177 	.fifo_depth = 32,
1178 	.reg_offset = 0,
1179 	.mclk0_is_mclk1 = false,
1180 };
1181 
1182 static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
1183 	.use_imx_pcm = true,
1184 	.use_edma = false,
1185 	.fifo_depth = 32,
1186 	.reg_offset = 0,
1187 	.mclk0_is_mclk1 = true,
1188 };
1189 
1190 static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
1191 	.use_imx_pcm = true,
1192 	.use_edma = false,
1193 	.fifo_depth = 16,
1194 	.reg_offset = 8,
1195 	.mclk0_is_mclk1 = false,
1196 };
1197 
1198 static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
1199 	.use_imx_pcm = true,
1200 	.use_edma = false,
1201 	.fifo_depth = 128,
1202 	.reg_offset = 8,
1203 	.mclk0_is_mclk1 = false,
1204 };
1205 
1206 static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
1207 	.use_imx_pcm = true,
1208 	.use_edma = true,
1209 	.fifo_depth = 64,
1210 	.reg_offset = 0,
1211 	.mclk0_is_mclk1 = false,
1212 };
1213 
1214 static const struct of_device_id fsl_sai_ids[] = {
1215 	{ .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
1216 	{ .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
1217 	{ .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1218 	{ .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
1219 	{ .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1220 	{ .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1221 	{ /* sentinel */ }
1222 };
1223 MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1224 
1225 #ifdef CONFIG_PM
1226 static int fsl_sai_runtime_suspend(struct device *dev)
1227 {
1228 	struct fsl_sai *sai = dev_get_drvdata(dev);
1229 
1230 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1231 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1232 
1233 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1234 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1235 
1236 	clk_disable_unprepare(sai->bus_clk);
1237 
1238 	regcache_cache_only(sai->regmap, true);
1239 
1240 	return 0;
1241 }
1242 
1243 static int fsl_sai_runtime_resume(struct device *dev)
1244 {
1245 	struct fsl_sai *sai = dev_get_drvdata(dev);
1246 	unsigned int ofs = sai->soc_data->reg_offset;
1247 	int ret;
1248 
1249 	ret = clk_prepare_enable(sai->bus_clk);
1250 	if (ret) {
1251 		dev_err(dev, "failed to enable bus clock: %d\n", ret);
1252 		return ret;
1253 	}
1254 
1255 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
1256 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
1257 		if (ret)
1258 			goto disable_bus_clk;
1259 	}
1260 
1261 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
1262 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
1263 		if (ret)
1264 			goto disable_tx_clk;
1265 	}
1266 
1267 	regcache_cache_only(sai->regmap, false);
1268 	regcache_mark_dirty(sai->regmap);
1269 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
1270 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
1271 	usleep_range(1000, 2000);
1272 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
1273 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
1274 
1275 	ret = regcache_sync(sai->regmap);
1276 	if (ret)
1277 		goto disable_rx_clk;
1278 
1279 	return 0;
1280 
1281 disable_rx_clk:
1282 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1283 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1284 disable_tx_clk:
1285 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1286 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1287 disable_bus_clk:
1288 	clk_disable_unprepare(sai->bus_clk);
1289 
1290 	return ret;
1291 }
1292 #endif /* CONFIG_PM */
1293 
1294 static const struct dev_pm_ops fsl_sai_pm_ops = {
1295 	SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend,
1296 			   fsl_sai_runtime_resume, NULL)
1297 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1298 				pm_runtime_force_resume)
1299 };
1300 
1301 static struct platform_driver fsl_sai_driver = {
1302 	.probe = fsl_sai_probe,
1303 	.remove = fsl_sai_remove,
1304 	.driver = {
1305 		.name = "fsl-sai",
1306 		.pm = &fsl_sai_pm_ops,
1307 		.of_match_table = fsl_sai_ids,
1308 	},
1309 };
1310 module_platform_driver(fsl_sai_driver);
1311 
1312 MODULE_DESCRIPTION("Freescale Soc SAI Interface");
1313 MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
1314 MODULE_ALIAS("platform:fsl-sai");
1315 MODULE_LICENSE("GPL");
1316