xref: /linux/sound/soc/fsl/fsl_sai.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Freescale ALSA SoC Digital Audio Interface (SAI) driver.
4 //
5 // Copyright 2012-2015 Freescale Semiconductor, Inc.
6 
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/of_address.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_qos.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <linux/time.h>
18 #include <sound/core.h>
19 #include <sound/dmaengine_pcm.h>
20 #include <sound/pcm_params.h>
21 #include <linux/mfd/syscon.h>
22 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
23 
24 #include "fsl_sai.h"
25 #include "imx-pcm.h"
26 
27 #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
28 		       FSL_SAI_CSR_FEIE)
29 
30 static const unsigned int fsl_sai_rates[] = {
31 	8000, 11025, 12000, 16000, 22050,
32 	24000, 32000, 44100, 48000, 64000,
33 	88200, 96000, 176400, 192000
34 };
35 
36 static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
37 	.count = ARRAY_SIZE(fsl_sai_rates),
38 	.list = fsl_sai_rates,
39 };
40 
41 /**
42  * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
43  *
44  * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
45  * or Receiver's for both streams. This function is used to check if clocks of
46  * the stream's are synced by the opposite stream.
47  *
48  * @sai: SAI context
49  * @dir: stream direction
50  */
51 static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
52 {
53 	int adir = (dir == TX) ? RX : TX;
54 
55 	/* current dir in async mode while opposite dir in sync mode */
56 	return !sai->synchronous[dir] && sai->synchronous[adir];
57 }
58 
59 static irqreturn_t fsl_sai_isr(int irq, void *devid)
60 {
61 	struct fsl_sai *sai = (struct fsl_sai *)devid;
62 	unsigned int ofs = sai->soc_data->reg_offset;
63 	struct device *dev = &sai->pdev->dev;
64 	u32 flags, xcsr, mask;
65 	irqreturn_t iret = IRQ_NONE;
66 
67 	/*
68 	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
69 	 * different shifts. And we here create a mask only for those
70 	 * IRQs that we activated.
71 	 */
72 	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
73 
74 	/* Tx IRQ */
75 	regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
76 	flags = xcsr & mask;
77 
78 	if (flags)
79 		iret = IRQ_HANDLED;
80 	else
81 		goto irq_rx;
82 
83 	if (flags & FSL_SAI_CSR_WSF)
84 		dev_dbg(dev, "isr: Start of Tx word detected\n");
85 
86 	if (flags & FSL_SAI_CSR_SEF)
87 		dev_dbg(dev, "isr: Tx Frame sync error detected\n");
88 
89 	if (flags & FSL_SAI_CSR_FEF) {
90 		dev_dbg(dev, "isr: Transmit underrun detected\n");
91 		/* FIFO reset for safety */
92 		xcsr |= FSL_SAI_CSR_FR;
93 	}
94 
95 	if (flags & FSL_SAI_CSR_FWF)
96 		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
97 
98 	if (flags & FSL_SAI_CSR_FRF)
99 		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
100 
101 	flags &= FSL_SAI_CSR_xF_W_MASK;
102 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
103 
104 	if (flags)
105 		regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
106 
107 irq_rx:
108 	/* Rx IRQ */
109 	regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
110 	flags = xcsr & mask;
111 
112 	if (flags)
113 		iret = IRQ_HANDLED;
114 	else
115 		goto out;
116 
117 	if (flags & FSL_SAI_CSR_WSF)
118 		dev_dbg(dev, "isr: Start of Rx word detected\n");
119 
120 	if (flags & FSL_SAI_CSR_SEF)
121 		dev_dbg(dev, "isr: Rx Frame sync error detected\n");
122 
123 	if (flags & FSL_SAI_CSR_FEF) {
124 		dev_dbg(dev, "isr: Receive overflow detected\n");
125 		/* FIFO reset for safety */
126 		xcsr |= FSL_SAI_CSR_FR;
127 	}
128 
129 	if (flags & FSL_SAI_CSR_FWF)
130 		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
131 
132 	if (flags & FSL_SAI_CSR_FRF)
133 		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
134 
135 	flags &= FSL_SAI_CSR_xF_W_MASK;
136 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
137 
138 	if (flags)
139 		regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
140 
141 out:
142 	return iret;
143 }
144 
145 static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
146 				u32 rx_mask, int slots, int slot_width)
147 {
148 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
149 
150 	sai->slots = slots;
151 	sai->slot_width = slot_width;
152 
153 	return 0;
154 }
155 
156 static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
157 				      unsigned int ratio)
158 {
159 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
160 
161 	sai->bclk_ratio = ratio;
162 
163 	return 0;
164 }
165 
166 static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
167 		int clk_id, unsigned int freq, bool tx)
168 {
169 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
170 	unsigned int ofs = sai->soc_data->reg_offset;
171 	u32 val_cr2 = 0;
172 
173 	switch (clk_id) {
174 	case FSL_SAI_CLK_BUS:
175 		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
176 		break;
177 	case FSL_SAI_CLK_MAST1:
178 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
179 		break;
180 	case FSL_SAI_CLK_MAST2:
181 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
182 		break;
183 	case FSL_SAI_CLK_MAST3:
184 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
185 		break;
186 	default:
187 		return -EINVAL;
188 	}
189 
190 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
191 			   FSL_SAI_CR2_MSEL_MASK, val_cr2);
192 
193 	return 0;
194 }
195 
196 static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
197 		int clk_id, unsigned int freq, int dir)
198 {
199 	int ret;
200 
201 	if (dir == SND_SOC_CLOCK_IN)
202 		return 0;
203 
204 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, true);
205 	if (ret) {
206 		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
207 		return ret;
208 	}
209 
210 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, false);
211 	if (ret)
212 		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
213 
214 	return ret;
215 }
216 
217 static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
218 				unsigned int fmt, bool tx)
219 {
220 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
221 	unsigned int ofs = sai->soc_data->reg_offset;
222 	u32 val_cr2 = 0, val_cr4 = 0;
223 
224 	if (!sai->is_lsb_first)
225 		val_cr4 |= FSL_SAI_CR4_MF;
226 
227 	/* DAI mode */
228 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
229 	case SND_SOC_DAIFMT_I2S:
230 		/*
231 		 * Frame low, 1clk before data, one word length for frame sync,
232 		 * frame sync starts one serial clock cycle earlier,
233 		 * that is, together with the last bit of the previous
234 		 * data word.
235 		 */
236 		val_cr2 |= FSL_SAI_CR2_BCP;
237 		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
238 		break;
239 	case SND_SOC_DAIFMT_LEFT_J:
240 		/*
241 		 * Frame high, one word length for frame sync,
242 		 * frame sync asserts with the first bit of the frame.
243 		 */
244 		val_cr2 |= FSL_SAI_CR2_BCP;
245 		break;
246 	case SND_SOC_DAIFMT_DSP_A:
247 		/*
248 		 * Frame high, 1clk before data, one bit for frame sync,
249 		 * frame sync starts one serial clock cycle earlier,
250 		 * that is, together with the last bit of the previous
251 		 * data word.
252 		 */
253 		val_cr2 |= FSL_SAI_CR2_BCP;
254 		val_cr4 |= FSL_SAI_CR4_FSE;
255 		sai->is_dsp_mode = true;
256 		break;
257 	case SND_SOC_DAIFMT_DSP_B:
258 		/*
259 		 * Frame high, one bit for frame sync,
260 		 * frame sync asserts with the first bit of the frame.
261 		 */
262 		val_cr2 |= FSL_SAI_CR2_BCP;
263 		sai->is_dsp_mode = true;
264 		break;
265 	case SND_SOC_DAIFMT_RIGHT_J:
266 		/* To be done */
267 	default:
268 		return -EINVAL;
269 	}
270 
271 	/* DAI clock inversion */
272 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
273 	case SND_SOC_DAIFMT_IB_IF:
274 		/* Invert both clocks */
275 		val_cr2 ^= FSL_SAI_CR2_BCP;
276 		val_cr4 ^= FSL_SAI_CR4_FSP;
277 		break;
278 	case SND_SOC_DAIFMT_IB_NF:
279 		/* Invert bit clock */
280 		val_cr2 ^= FSL_SAI_CR2_BCP;
281 		break;
282 	case SND_SOC_DAIFMT_NB_IF:
283 		/* Invert frame clock */
284 		val_cr4 ^= FSL_SAI_CR4_FSP;
285 		break;
286 	case SND_SOC_DAIFMT_NB_NF:
287 		/* Nothing to do for both normal cases */
288 		break;
289 	default:
290 		return -EINVAL;
291 	}
292 
293 	/* DAI clock provider masks */
294 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
295 	case SND_SOC_DAIFMT_CBC_CFC:
296 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
297 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
298 		sai->is_consumer_mode = false;
299 		break;
300 	case SND_SOC_DAIFMT_CBP_CFP:
301 		sai->is_consumer_mode = true;
302 		break;
303 	case SND_SOC_DAIFMT_CBC_CFP:
304 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
305 		sai->is_consumer_mode = false;
306 		break;
307 	case SND_SOC_DAIFMT_CBP_CFC:
308 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
309 		sai->is_consumer_mode = true;
310 		break;
311 	default:
312 		return -EINVAL;
313 	}
314 
315 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
316 			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
317 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
318 			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
319 			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
320 
321 	return 0;
322 }
323 
324 static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
325 {
326 	int ret;
327 
328 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
329 	if (ret) {
330 		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
331 		return ret;
332 	}
333 
334 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
335 	if (ret)
336 		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
337 
338 	return ret;
339 }
340 
341 static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
342 {
343 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
344 	unsigned int reg, ofs = sai->soc_data->reg_offset;
345 	unsigned long clk_rate;
346 	u32 savediv = 0, ratio, bestdiff = freq;
347 	int adir = tx ? RX : TX;
348 	int dir = tx ? TX : RX;
349 	u32 id;
350 	bool support_1_1_ratio = sai->verid.version >= 0x0301;
351 
352 	/* Don't apply to consumer mode */
353 	if (sai->is_consumer_mode)
354 		return 0;
355 
356 	/*
357 	 * There is no point in polling MCLK0 if it is identical to MCLK1.
358 	 * And given that MQS use case has to use MCLK1 though two clocks
359 	 * are the same, we simply skip MCLK0 and start to find from MCLK1.
360 	 */
361 	id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;
362 
363 	for (; id < FSL_SAI_MCLK_MAX; id++) {
364 		int diff;
365 
366 		clk_rate = clk_get_rate(sai->mclk_clk[id]);
367 		if (!clk_rate)
368 			continue;
369 
370 		ratio = DIV_ROUND_CLOSEST(clk_rate, freq);
371 		if (!ratio || ratio > 512)
372 			continue;
373 		if (ratio == 1 && !support_1_1_ratio)
374 			continue;
375 		if ((ratio & 1) && ratio > 1)
376 			continue;
377 
378 		diff = abs((long)clk_rate - ratio * freq);
379 
380 		/*
381 		 * Drop the source that can not be
382 		 * divided into the required rate.
383 		 */
384 		if (diff != 0 && clk_rate / diff < 1000)
385 			continue;
386 
387 		dev_dbg(dai->dev,
388 			"ratio %d for freq %dHz based on clock %ldHz\n",
389 			ratio, freq, clk_rate);
390 
391 
392 		if (diff < bestdiff) {
393 			savediv = ratio;
394 			sai->mclk_id[tx] = id;
395 			bestdiff = diff;
396 		}
397 
398 		if (diff == 0)
399 			break;
400 	}
401 
402 	if (savediv == 0) {
403 		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
404 				tx ? 'T' : 'R', freq);
405 		return -EINVAL;
406 	}
407 
408 	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
409 			sai->mclk_id[tx], savediv, bestdiff);
410 
411 	/*
412 	 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
413 	 *    set TCR2 register for playback.
414 	 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
415 	 *    and capture.
416 	 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
417 	 *    and capture.
418 	 * 4) For Tx and Rx are both Synchronous with another SAI, we just
419 	 *    ignore it.
420 	 */
421 	if (fsl_sai_dir_is_synced(sai, adir))
422 		reg = FSL_SAI_xCR2(!tx, ofs);
423 	else if (!sai->synchronous[dir])
424 		reg = FSL_SAI_xCR2(tx, ofs);
425 	else
426 		return 0;
427 
428 	regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_MSEL_MASK,
429 			   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
430 
431 	if (savediv == 1)
432 		regmap_update_bits(sai->regmap, reg,
433 				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
434 				   FSL_SAI_CR2_BYP);
435 	else
436 		regmap_update_bits(sai->regmap, reg,
437 				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
438 				   savediv / 2 - 1);
439 
440 	return 0;
441 }
442 
443 static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
444 		struct snd_pcm_hw_params *params,
445 		struct snd_soc_dai *cpu_dai)
446 {
447 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
448 	unsigned int ofs = sai->soc_data->reg_offset;
449 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
450 	unsigned int channels = params_channels(params);
451 	u32 word_width = params_width(params);
452 	u32 val_cr4 = 0, val_cr5 = 0;
453 	u32 slots = (channels == 1) ? 2 : channels;
454 	u32 slot_width = word_width;
455 	int adir = tx ? RX : TX;
456 	u32 pins;
457 	int ret;
458 
459 	if (sai->slots)
460 		slots = sai->slots;
461 
462 	if (sai->slot_width)
463 		slot_width = sai->slot_width;
464 
465 	pins = DIV_ROUND_UP(channels, slots);
466 
467 	if (!sai->is_consumer_mode) {
468 		if (sai->bclk_ratio)
469 			ret = fsl_sai_set_bclk(cpu_dai, tx,
470 					       sai->bclk_ratio *
471 					       params_rate(params));
472 		else
473 			ret = fsl_sai_set_bclk(cpu_dai, tx,
474 					       slots * slot_width *
475 					       params_rate(params));
476 		if (ret)
477 			return ret;
478 
479 		/* Do not enable the clock if it is already enabled */
480 		if (!(sai->mclk_streams & BIT(substream->stream))) {
481 			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
482 			if (ret)
483 				return ret;
484 
485 			sai->mclk_streams |= BIT(substream->stream);
486 		}
487 	}
488 
489 	if (!sai->is_dsp_mode)
490 		val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
491 
492 	val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
493 	val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
494 
495 	if (sai->is_lsb_first)
496 		val_cr5 |= FSL_SAI_CR5_FBT(0);
497 	else
498 		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
499 
500 	val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
501 
502 	/* Set to output mode to avoid tri-stated data pins */
503 	if (tx)
504 		val_cr4 |= FSL_SAI_CR4_CHMOD;
505 
506 	/*
507 	 * For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
508 	 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
509 	 * RCR5(TCR5) for playback(capture), or there will be sync error.
510 	 */
511 
512 	if (!sai->is_consumer_mode && fsl_sai_dir_is_synced(sai, adir)) {
513 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
514 				   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
515 				   FSL_SAI_CR4_CHMOD_MASK,
516 				   val_cr4);
517 		regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
518 				   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
519 				   FSL_SAI_CR5_FBT_MASK, val_cr5);
520 	}
521 
522 	if (sai->soc_data->pins > 1)
523 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
524 				   FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT);
525 
526 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
527 			   FSL_SAI_CR3_TRCE_MASK,
528 			   FSL_SAI_CR3_TRCE((1 << pins) - 1));
529 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
530 			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
531 			   FSL_SAI_CR4_CHMOD_MASK,
532 			   val_cr4);
533 	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
534 			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
535 			   FSL_SAI_CR5_FBT_MASK, val_cr5);
536 	regmap_write(sai->regmap, FSL_SAI_xMR(tx),
537 		     ~0UL - ((1 << min(channels, slots)) - 1));
538 
539 	return 0;
540 }
541 
542 static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
543 		struct snd_soc_dai *cpu_dai)
544 {
545 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
546 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
547 	unsigned int ofs = sai->soc_data->reg_offset;
548 
549 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
550 			   FSL_SAI_CR3_TRCE_MASK, 0);
551 
552 	if (!sai->is_consumer_mode &&
553 			sai->mclk_streams & BIT(substream->stream)) {
554 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
555 		sai->mclk_streams &= ~BIT(substream->stream);
556 	}
557 
558 	return 0;
559 }
560 
561 static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
562 {
563 	unsigned int ofs = sai->soc_data->reg_offset;
564 	bool tx = dir == TX;
565 	u32 xcsr, count = 100;
566 
567 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
568 			   FSL_SAI_CSR_TERE, 0);
569 
570 	/* TERE will remain set till the end of current frame */
571 	do {
572 		udelay(10);
573 		regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
574 	} while (--count && xcsr & FSL_SAI_CSR_TERE);
575 
576 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
577 			   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
578 
579 	/*
580 	 * For sai master mode, after several open/close sai,
581 	 * there will be no frame clock, and can't recover
582 	 * anymore. Add software reset to fix this issue.
583 	 * This is a hardware bug, and will be fix in the
584 	 * next sai version.
585 	 */
586 	if (!sai->is_consumer_mode) {
587 		/* Software Reset */
588 		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR);
589 		/* Clear SR bit to finish the reset */
590 		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0);
591 	}
592 }
593 
594 static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
595 		struct snd_soc_dai *cpu_dai)
596 {
597 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
598 	unsigned int ofs = sai->soc_data->reg_offset;
599 
600 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
601 	int adir = tx ? RX : TX;
602 	int dir = tx ? TX : RX;
603 	u32 xcsr;
604 
605 	/*
606 	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
607 	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
608 	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
609 	 */
610 	regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
611 			   sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
612 	regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
613 			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
614 
615 	/*
616 	 * It is recommended that the transmitter is the last enabled
617 	 * and the first disabled.
618 	 */
619 	switch (cmd) {
620 	case SNDRV_PCM_TRIGGER_START:
621 	case SNDRV_PCM_TRIGGER_RESUME:
622 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
623 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
624 				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
625 
626 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
627 				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
628 		/*
629 		 * Enable the opposite direction for synchronous mode
630 		 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
631 		 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
632 		 *
633 		 * RM recommends to enable RE after TE for case 1 and to enable
634 		 * TE after RE for case 2, but we here may not always guarantee
635 		 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
636 		 * TE after RE, which is against what RM recommends but should
637 		 * be safe to do, judging by years of testing results.
638 		 */
639 		if (fsl_sai_dir_is_synced(sai, adir))
640 			regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
641 					   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
642 
643 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
644 				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
645 		break;
646 	case SNDRV_PCM_TRIGGER_STOP:
647 	case SNDRV_PCM_TRIGGER_SUSPEND:
648 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
649 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
650 				   FSL_SAI_CSR_FRDE, 0);
651 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
652 				   FSL_SAI_CSR_xIE_MASK, 0);
653 
654 		/* Check if the opposite FRDE is also disabled */
655 		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
656 
657 		/*
658 		 * If opposite stream provides clocks for synchronous mode and
659 		 * it is inactive, disable it before disabling the current one
660 		 */
661 		if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
662 			fsl_sai_config_disable(sai, adir);
663 
664 		/*
665 		 * Disable current stream if either of:
666 		 * 1. current stream doesn't provide clocks for synchronous mode
667 		 * 2. current stream provides clocks for synchronous mode but no
668 		 *    more stream is active.
669 		 */
670 		if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
671 			fsl_sai_config_disable(sai, dir);
672 
673 		break;
674 	default:
675 		return -EINVAL;
676 	}
677 
678 	return 0;
679 }
680 
681 static int fsl_sai_startup(struct snd_pcm_substream *substream,
682 		struct snd_soc_dai *cpu_dai)
683 {
684 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
685 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
686 	int ret;
687 
688 	/*
689 	 * EDMA controller needs period size to be a multiple of
690 	 * tx/rx maxburst
691 	 */
692 	if (sai->soc_data->use_edma)
693 		snd_pcm_hw_constraint_step(substream->runtime, 0,
694 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
695 					   tx ? sai->dma_params_tx.maxburst :
696 					   sai->dma_params_rx.maxburst);
697 
698 	ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
699 			SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);
700 
701 	return ret;
702 }
703 
704 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
705 	.set_bclk_ratio	= fsl_sai_set_dai_bclk_ratio,
706 	.set_sysclk	= fsl_sai_set_dai_sysclk,
707 	.set_fmt	= fsl_sai_set_dai_fmt,
708 	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot,
709 	.hw_params	= fsl_sai_hw_params,
710 	.hw_free	= fsl_sai_hw_free,
711 	.trigger	= fsl_sai_trigger,
712 	.startup	= fsl_sai_startup,
713 };
714 
715 static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
716 {
717 	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
718 	unsigned int ofs = sai->soc_data->reg_offset;
719 
720 	/* Software Reset for both Tx and Rx */
721 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
722 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
723 	/* Clear SR bit to finish the reset */
724 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
725 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
726 
727 	regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
728 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
729 			   sai->soc_data->fifo_depth - FSL_SAI_MAXBURST_TX);
730 	regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
731 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
732 			   FSL_SAI_MAXBURST_RX - 1);
733 
734 	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
735 				&sai->dma_params_rx);
736 
737 	return 0;
738 }
739 
740 static struct snd_soc_dai_driver fsl_sai_dai_template = {
741 	.probe = fsl_sai_dai_probe,
742 	.playback = {
743 		.stream_name = "CPU-Playback",
744 		.channels_min = 1,
745 		.channels_max = 32,
746 		.rate_min = 8000,
747 		.rate_max = 192000,
748 		.rates = SNDRV_PCM_RATE_KNOT,
749 		.formats = FSL_SAI_FORMATS,
750 	},
751 	.capture = {
752 		.stream_name = "CPU-Capture",
753 		.channels_min = 1,
754 		.channels_max = 32,
755 		.rate_min = 8000,
756 		.rate_max = 192000,
757 		.rates = SNDRV_PCM_RATE_KNOT,
758 		.formats = FSL_SAI_FORMATS,
759 	},
760 	.ops = &fsl_sai_pcm_dai_ops,
761 };
762 
763 static const struct snd_soc_component_driver fsl_component = {
764 	.name           = "fsl-sai",
765 };
766 
767 static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
768 	{FSL_SAI_TCR1(0), 0},
769 	{FSL_SAI_TCR2(0), 0},
770 	{FSL_SAI_TCR3(0), 0},
771 	{FSL_SAI_TCR4(0), 0},
772 	{FSL_SAI_TCR5(0), 0},
773 	{FSL_SAI_TDR0, 0},
774 	{FSL_SAI_TDR1, 0},
775 	{FSL_SAI_TDR2, 0},
776 	{FSL_SAI_TDR3, 0},
777 	{FSL_SAI_TDR4, 0},
778 	{FSL_SAI_TDR5, 0},
779 	{FSL_SAI_TDR6, 0},
780 	{FSL_SAI_TDR7, 0},
781 	{FSL_SAI_TMR, 0},
782 	{FSL_SAI_RCR1(0), 0},
783 	{FSL_SAI_RCR2(0), 0},
784 	{FSL_SAI_RCR3(0), 0},
785 	{FSL_SAI_RCR4(0), 0},
786 	{FSL_SAI_RCR5(0), 0},
787 	{FSL_SAI_RMR, 0},
788 };
789 
790 static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
791 	{FSL_SAI_TCR1(8), 0},
792 	{FSL_SAI_TCR2(8), 0},
793 	{FSL_SAI_TCR3(8), 0},
794 	{FSL_SAI_TCR4(8), 0},
795 	{FSL_SAI_TCR5(8), 0},
796 	{FSL_SAI_TDR0, 0},
797 	{FSL_SAI_TDR1, 0},
798 	{FSL_SAI_TDR2, 0},
799 	{FSL_SAI_TDR3, 0},
800 	{FSL_SAI_TDR4, 0},
801 	{FSL_SAI_TDR5, 0},
802 	{FSL_SAI_TDR6, 0},
803 	{FSL_SAI_TDR7, 0},
804 	{FSL_SAI_TMR, 0},
805 	{FSL_SAI_RCR1(8), 0},
806 	{FSL_SAI_RCR2(8), 0},
807 	{FSL_SAI_RCR3(8), 0},
808 	{FSL_SAI_RCR4(8), 0},
809 	{FSL_SAI_RCR5(8), 0},
810 	{FSL_SAI_RMR, 0},
811 	{FSL_SAI_MCTL, 0},
812 	{FSL_SAI_MDIV, 0},
813 };
814 
815 static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
816 {
817 	struct fsl_sai *sai = dev_get_drvdata(dev);
818 	unsigned int ofs = sai->soc_data->reg_offset;
819 
820 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
821 		return true;
822 
823 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
824 		return true;
825 
826 	switch (reg) {
827 	case FSL_SAI_TFR0:
828 	case FSL_SAI_TFR1:
829 	case FSL_SAI_TFR2:
830 	case FSL_SAI_TFR3:
831 	case FSL_SAI_TFR4:
832 	case FSL_SAI_TFR5:
833 	case FSL_SAI_TFR6:
834 	case FSL_SAI_TFR7:
835 	case FSL_SAI_TMR:
836 	case FSL_SAI_RDR0:
837 	case FSL_SAI_RDR1:
838 	case FSL_SAI_RDR2:
839 	case FSL_SAI_RDR3:
840 	case FSL_SAI_RDR4:
841 	case FSL_SAI_RDR5:
842 	case FSL_SAI_RDR6:
843 	case FSL_SAI_RDR7:
844 	case FSL_SAI_RFR0:
845 	case FSL_SAI_RFR1:
846 	case FSL_SAI_RFR2:
847 	case FSL_SAI_RFR3:
848 	case FSL_SAI_RFR4:
849 	case FSL_SAI_RFR5:
850 	case FSL_SAI_RFR6:
851 	case FSL_SAI_RFR7:
852 	case FSL_SAI_RMR:
853 	case FSL_SAI_MCTL:
854 	case FSL_SAI_MDIV:
855 	case FSL_SAI_VERID:
856 	case FSL_SAI_PARAM:
857 	case FSL_SAI_TTCTN:
858 	case FSL_SAI_RTCTN:
859 	case FSL_SAI_TTCTL:
860 	case FSL_SAI_TBCTN:
861 	case FSL_SAI_TTCAP:
862 	case FSL_SAI_RTCTL:
863 	case FSL_SAI_RBCTN:
864 	case FSL_SAI_RTCAP:
865 		return true;
866 	default:
867 		return false;
868 	}
869 }
870 
871 static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
872 {
873 	struct fsl_sai *sai = dev_get_drvdata(dev);
874 	unsigned int ofs = sai->soc_data->reg_offset;
875 
876 	if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
877 		return true;
878 
879 	/* Set VERID and PARAM be volatile for reading value in probe */
880 	if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
881 		return true;
882 
883 	switch (reg) {
884 	case FSL_SAI_TFR0:
885 	case FSL_SAI_TFR1:
886 	case FSL_SAI_TFR2:
887 	case FSL_SAI_TFR3:
888 	case FSL_SAI_TFR4:
889 	case FSL_SAI_TFR5:
890 	case FSL_SAI_TFR6:
891 	case FSL_SAI_TFR7:
892 	case FSL_SAI_RFR0:
893 	case FSL_SAI_RFR1:
894 	case FSL_SAI_RFR2:
895 	case FSL_SAI_RFR3:
896 	case FSL_SAI_RFR4:
897 	case FSL_SAI_RFR5:
898 	case FSL_SAI_RFR6:
899 	case FSL_SAI_RFR7:
900 	case FSL_SAI_RDR0:
901 	case FSL_SAI_RDR1:
902 	case FSL_SAI_RDR2:
903 	case FSL_SAI_RDR3:
904 	case FSL_SAI_RDR4:
905 	case FSL_SAI_RDR5:
906 	case FSL_SAI_RDR6:
907 	case FSL_SAI_RDR7:
908 		return true;
909 	default:
910 		return false;
911 	}
912 }
913 
914 static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
915 {
916 	struct fsl_sai *sai = dev_get_drvdata(dev);
917 	unsigned int ofs = sai->soc_data->reg_offset;
918 
919 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
920 		return true;
921 
922 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
923 		return true;
924 
925 	switch (reg) {
926 	case FSL_SAI_TDR0:
927 	case FSL_SAI_TDR1:
928 	case FSL_SAI_TDR2:
929 	case FSL_SAI_TDR3:
930 	case FSL_SAI_TDR4:
931 	case FSL_SAI_TDR5:
932 	case FSL_SAI_TDR6:
933 	case FSL_SAI_TDR7:
934 	case FSL_SAI_TMR:
935 	case FSL_SAI_RMR:
936 	case FSL_SAI_MCTL:
937 	case FSL_SAI_MDIV:
938 	case FSL_SAI_TTCTL:
939 	case FSL_SAI_RTCTL:
940 		return true;
941 	default:
942 		return false;
943 	}
944 }
945 
946 static struct regmap_config fsl_sai_regmap_config = {
947 	.reg_bits = 32,
948 	.reg_stride = 4,
949 	.val_bits = 32,
950 	.fast_io = true,
951 
952 	.max_register = FSL_SAI_RMR,
953 	.reg_defaults = fsl_sai_reg_defaults_ofs0,
954 	.num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
955 	.readable_reg = fsl_sai_readable_reg,
956 	.volatile_reg = fsl_sai_volatile_reg,
957 	.writeable_reg = fsl_sai_writeable_reg,
958 	.cache_type = REGCACHE_FLAT,
959 };
960 
961 static int fsl_sai_check_version(struct device *dev)
962 {
963 	struct fsl_sai *sai = dev_get_drvdata(dev);
964 	unsigned char ofs = sai->soc_data->reg_offset;
965 	unsigned int val;
966 	int ret;
967 
968 	if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
969 		return 0;
970 
971 	ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
972 	if (ret < 0)
973 		return ret;
974 
975 	dev_dbg(dev, "VERID: 0x%016X\n", val);
976 
977 	sai->verid.version = val &
978 		(FSL_SAI_VERID_MAJOR_MASK | FSL_SAI_VERID_MINOR_MASK);
979 	sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
980 
981 	ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
982 	if (ret < 0)
983 		return ret;
984 
985 	dev_dbg(dev, "PARAM: 0x%016X\n", val);
986 
987 	/* Max slots per frame, power of 2 */
988 	sai->param.slot_num = 1 <<
989 		((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
990 
991 	/* Words per fifo, power of 2 */
992 	sai->param.fifo_depth = 1 <<
993 		((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
994 
995 	/* Number of datalines implemented */
996 	sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
997 
998 	return 0;
999 }
1000 
1001 static int fsl_sai_runtime_suspend(struct device *dev);
1002 static int fsl_sai_runtime_resume(struct device *dev);
1003 
1004 static int fsl_sai_probe(struct platform_device *pdev)
1005 {
1006 	struct device_node *np = pdev->dev.of_node;
1007 	struct fsl_sai *sai;
1008 	struct regmap *gpr;
1009 	struct resource *res;
1010 	void __iomem *base;
1011 	char tmp[8];
1012 	int irq, ret, i;
1013 	int index;
1014 
1015 	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1016 	if (!sai)
1017 		return -ENOMEM;
1018 
1019 	sai->pdev = pdev;
1020 	sai->soc_data = of_device_get_match_data(&pdev->dev);
1021 
1022 	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1023 
1024 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1025 	if (IS_ERR(base))
1026 		return PTR_ERR(base);
1027 
1028 	if (sai->soc_data->reg_offset == 8) {
1029 		fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1030 		fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1031 		fsl_sai_regmap_config.num_reg_defaults =
1032 			ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
1033 	}
1034 
1035 	sai->regmap = devm_regmap_init_mmio(&pdev->dev, base, &fsl_sai_regmap_config);
1036 	if (IS_ERR(sai->regmap)) {
1037 		dev_err(&pdev->dev, "regmap init failed\n");
1038 		return PTR_ERR(sai->regmap);
1039 	}
1040 
1041 	sai->bus_clk = devm_clk_get(&pdev->dev, "bus");
1042 	/* Compatible with old DTB cases */
1043 	if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
1044 		sai->bus_clk = devm_clk_get(&pdev->dev, "sai");
1045 	if (IS_ERR(sai->bus_clk)) {
1046 		dev_err(&pdev->dev, "failed to get bus clock: %ld\n",
1047 				PTR_ERR(sai->bus_clk));
1048 		/* -EPROBE_DEFER */
1049 		return PTR_ERR(sai->bus_clk);
1050 	}
1051 
1052 	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
1053 		sprintf(tmp, "mclk%d", i);
1054 		sai->mclk_clk[i] = devm_clk_get(&pdev->dev, tmp);
1055 		if (IS_ERR(sai->mclk_clk[i])) {
1056 			dev_err(&pdev->dev, "failed to get mclk%d clock: %ld\n",
1057 					i + 1, PTR_ERR(sai->mclk_clk[i]));
1058 			sai->mclk_clk[i] = NULL;
1059 		}
1060 	}
1061 
1062 	if (sai->soc_data->mclk0_is_mclk1)
1063 		sai->mclk_clk[0] = sai->mclk_clk[1];
1064 	else
1065 		sai->mclk_clk[0] = sai->bus_clk;
1066 
1067 	irq = platform_get_irq(pdev, 0);
1068 	if (irq < 0)
1069 		return irq;
1070 
1071 	ret = devm_request_irq(&pdev->dev, irq, fsl_sai_isr, IRQF_SHARED,
1072 			       np->name, sai);
1073 	if (ret) {
1074 		dev_err(&pdev->dev, "failed to claim irq %u\n", irq);
1075 		return ret;
1076 	}
1077 
1078 	memcpy(&sai->cpu_dai_drv, &fsl_sai_dai_template,
1079 	       sizeof(fsl_sai_dai_template));
1080 
1081 	/* Sync Tx with Rx as default by following old DT binding */
1082 	sai->synchronous[RX] = true;
1083 	sai->synchronous[TX] = false;
1084 	sai->cpu_dai_drv.symmetric_rate = 1;
1085 	sai->cpu_dai_drv.symmetric_channels = 1;
1086 	sai->cpu_dai_drv.symmetric_sample_bits = 1;
1087 
1088 	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL) &&
1089 	    of_find_property(np, "fsl,sai-asynchronous", NULL)) {
1090 		/* error out if both synchronous and asynchronous are present */
1091 		dev_err(&pdev->dev, "invalid binding for synchronous mode\n");
1092 		return -EINVAL;
1093 	}
1094 
1095 	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL)) {
1096 		/* Sync Rx with Tx */
1097 		sai->synchronous[RX] = false;
1098 		sai->synchronous[TX] = true;
1099 	} else if (of_find_property(np, "fsl,sai-asynchronous", NULL)) {
1100 		/* Discard all settings for asynchronous mode */
1101 		sai->synchronous[RX] = false;
1102 		sai->synchronous[TX] = false;
1103 		sai->cpu_dai_drv.symmetric_rate = 0;
1104 		sai->cpu_dai_drv.symmetric_channels = 0;
1105 		sai->cpu_dai_drv.symmetric_sample_bits = 0;
1106 	}
1107 
1108 	if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
1109 	    of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1110 		gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
1111 		if (IS_ERR(gpr)) {
1112 			dev_err(&pdev->dev, "cannot find iomuxc registers\n");
1113 			return PTR_ERR(gpr);
1114 		}
1115 
1116 		index = of_alias_get_id(np, "sai");
1117 		if (index < 0)
1118 			return index;
1119 
1120 		regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
1121 				   MCLK_DIR(index));
1122 	}
1123 
1124 	sai->dma_params_rx.addr = res->start + FSL_SAI_RDR0;
1125 	sai->dma_params_tx.addr = res->start + FSL_SAI_TDR0;
1126 	sai->dma_params_rx.maxburst = FSL_SAI_MAXBURST_RX;
1127 	sai->dma_params_tx.maxburst = FSL_SAI_MAXBURST_TX;
1128 
1129 	platform_set_drvdata(pdev, sai);
1130 	pm_runtime_enable(&pdev->dev);
1131 	if (!pm_runtime_enabled(&pdev->dev)) {
1132 		ret = fsl_sai_runtime_resume(&pdev->dev);
1133 		if (ret)
1134 			goto err_pm_disable;
1135 	}
1136 
1137 	ret = pm_runtime_get_sync(&pdev->dev);
1138 	if (ret < 0) {
1139 		pm_runtime_put_noidle(&pdev->dev);
1140 		goto err_pm_get_sync;
1141 	}
1142 
1143 	/* Get sai version */
1144 	ret = fsl_sai_check_version(&pdev->dev);
1145 	if (ret < 0)
1146 		dev_warn(&pdev->dev, "Error reading SAI version: %d\n", ret);
1147 
1148 	/* Select MCLK direction */
1149 	if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
1150 	    sai->soc_data->max_register >= FSL_SAI_MCTL) {
1151 		regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
1152 				   FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
1153 	}
1154 
1155 	ret = pm_runtime_put_sync(&pdev->dev);
1156 	if (ret < 0)
1157 		goto err_pm_get_sync;
1158 
1159 	/*
1160 	 * Register platform component before registering cpu dai for there
1161 	 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1162 	 */
1163 	if (sai->soc_data->use_imx_pcm) {
1164 		ret = imx_pcm_dma_init(pdev);
1165 		if (ret)
1166 			goto err_pm_get_sync;
1167 	} else {
1168 		ret = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
1169 		if (ret)
1170 			goto err_pm_get_sync;
1171 	}
1172 
1173 	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_component,
1174 					      &sai->cpu_dai_drv, 1);
1175 	if (ret)
1176 		goto err_pm_get_sync;
1177 
1178 	return ret;
1179 
1180 err_pm_get_sync:
1181 	if (!pm_runtime_status_suspended(&pdev->dev))
1182 		fsl_sai_runtime_suspend(&pdev->dev);
1183 err_pm_disable:
1184 	pm_runtime_disable(&pdev->dev);
1185 
1186 	return ret;
1187 }
1188 
1189 static int fsl_sai_remove(struct platform_device *pdev)
1190 {
1191 	pm_runtime_disable(&pdev->dev);
1192 	if (!pm_runtime_status_suspended(&pdev->dev))
1193 		fsl_sai_runtime_suspend(&pdev->dev);
1194 
1195 	return 0;
1196 }
1197 
1198 static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
1199 	.use_imx_pcm = false,
1200 	.use_edma = false,
1201 	.fifo_depth = 32,
1202 	.pins = 1,
1203 	.reg_offset = 0,
1204 	.mclk0_is_mclk1 = false,
1205 	.flags = 0,
1206 	.max_register = FSL_SAI_RMR,
1207 };
1208 
1209 static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
1210 	.use_imx_pcm = true,
1211 	.use_edma = false,
1212 	.fifo_depth = 32,
1213 	.pins = 1,
1214 	.reg_offset = 0,
1215 	.mclk0_is_mclk1 = true,
1216 	.flags = 0,
1217 	.max_register = FSL_SAI_RMR,
1218 };
1219 
1220 static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
1221 	.use_imx_pcm = true,
1222 	.use_edma = false,
1223 	.fifo_depth = 16,
1224 	.pins = 2,
1225 	.reg_offset = 8,
1226 	.mclk0_is_mclk1 = false,
1227 	.flags = PMQOS_CPU_LATENCY,
1228 	.max_register = FSL_SAI_RMR,
1229 };
1230 
1231 static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
1232 	.use_imx_pcm = true,
1233 	.use_edma = false,
1234 	.fifo_depth = 128,
1235 	.pins = 8,
1236 	.reg_offset = 8,
1237 	.mclk0_is_mclk1 = false,
1238 	.flags = 0,
1239 	.max_register = FSL_SAI_RMR,
1240 };
1241 
1242 static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
1243 	.use_imx_pcm = true,
1244 	.use_edma = true,
1245 	.fifo_depth = 64,
1246 	.pins = 1,
1247 	.reg_offset = 0,
1248 	.mclk0_is_mclk1 = false,
1249 	.flags = 0,
1250 	.max_register = FSL_SAI_RMR,
1251 };
1252 
1253 static const struct fsl_sai_soc_data fsl_sai_imx8mm_data = {
1254 	.use_imx_pcm = true,
1255 	.use_edma = false,
1256 	.fifo_depth = 128,
1257 	.reg_offset = 8,
1258 	.mclk0_is_mclk1 = false,
1259 	.pins = 8,
1260 	.flags = 0,
1261 	.max_register = FSL_SAI_MCTL,
1262 };
1263 
1264 static const struct fsl_sai_soc_data fsl_sai_imx8mp_data = {
1265 	.use_imx_pcm = true,
1266 	.use_edma = false,
1267 	.fifo_depth = 128,
1268 	.reg_offset = 8,
1269 	.mclk0_is_mclk1 = false,
1270 	.pins = 8,
1271 	.flags = 0,
1272 	.max_register = FSL_SAI_MDIV,
1273 };
1274 
1275 static const struct fsl_sai_soc_data fsl_sai_imx8ulp_data = {
1276 	.use_imx_pcm = true,
1277 	.use_edma = true,
1278 	.fifo_depth = 16,
1279 	.reg_offset = 8,
1280 	.mclk0_is_mclk1 = false,
1281 	.pins = 4,
1282 	.flags = PMQOS_CPU_LATENCY,
1283 	.max_register = FSL_SAI_RTCAP,
1284 };
1285 
1286 static const struct of_device_id fsl_sai_ids[] = {
1287 	{ .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
1288 	{ .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
1289 	{ .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1290 	{ .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
1291 	{ .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1292 	{ .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1293 	{ .compatible = "fsl,imx8mm-sai", .data = &fsl_sai_imx8mm_data },
1294 	{ .compatible = "fsl,imx8mp-sai", .data = &fsl_sai_imx8mp_data },
1295 	{ .compatible = "fsl,imx8ulp-sai", .data = &fsl_sai_imx8ulp_data },
1296 	{ .compatible = "fsl,imx8mn-sai", .data = &fsl_sai_imx8mp_data },
1297 	{ /* sentinel */ }
1298 };
1299 MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1300 
1301 static int fsl_sai_runtime_suspend(struct device *dev)
1302 {
1303 	struct fsl_sai *sai = dev_get_drvdata(dev);
1304 
1305 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1306 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1307 
1308 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1309 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1310 
1311 	clk_disable_unprepare(sai->bus_clk);
1312 
1313 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1314 		cpu_latency_qos_remove_request(&sai->pm_qos_req);
1315 
1316 	regcache_cache_only(sai->regmap, true);
1317 
1318 	return 0;
1319 }
1320 
1321 static int fsl_sai_runtime_resume(struct device *dev)
1322 {
1323 	struct fsl_sai *sai = dev_get_drvdata(dev);
1324 	unsigned int ofs = sai->soc_data->reg_offset;
1325 	int ret;
1326 
1327 	ret = clk_prepare_enable(sai->bus_clk);
1328 	if (ret) {
1329 		dev_err(dev, "failed to enable bus clock: %d\n", ret);
1330 		return ret;
1331 	}
1332 
1333 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
1334 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
1335 		if (ret)
1336 			goto disable_bus_clk;
1337 	}
1338 
1339 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
1340 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
1341 		if (ret)
1342 			goto disable_tx_clk;
1343 	}
1344 
1345 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1346 		cpu_latency_qos_add_request(&sai->pm_qos_req, 0);
1347 
1348 	regcache_cache_only(sai->regmap, false);
1349 	regcache_mark_dirty(sai->regmap);
1350 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
1351 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
1352 	usleep_range(1000, 2000);
1353 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
1354 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
1355 
1356 	ret = regcache_sync(sai->regmap);
1357 	if (ret)
1358 		goto disable_rx_clk;
1359 
1360 	return 0;
1361 
1362 disable_rx_clk:
1363 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1364 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1365 disable_tx_clk:
1366 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1367 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1368 disable_bus_clk:
1369 	clk_disable_unprepare(sai->bus_clk);
1370 
1371 	return ret;
1372 }
1373 
1374 static const struct dev_pm_ops fsl_sai_pm_ops = {
1375 	SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend,
1376 			   fsl_sai_runtime_resume, NULL)
1377 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1378 				pm_runtime_force_resume)
1379 };
1380 
1381 static struct platform_driver fsl_sai_driver = {
1382 	.probe = fsl_sai_probe,
1383 	.remove = fsl_sai_remove,
1384 	.driver = {
1385 		.name = "fsl-sai",
1386 		.pm = &fsl_sai_pm_ops,
1387 		.of_match_table = fsl_sai_ids,
1388 	},
1389 };
1390 module_platform_driver(fsl_sai_driver);
1391 
1392 MODULE_DESCRIPTION("Freescale Soc SAI Interface");
1393 MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
1394 MODULE_ALIAS("platform:fsl-sai");
1395 MODULE_LICENSE("GPL");
1396