xref: /linux/sound/soc/fsl/fsl_sai.c (revision 23c48a124b469cee2eb0c75e6d22d366d1caa118)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Freescale ALSA SoC Digital Audio Interface (SAI) driver.
4 //
5 // Copyright 2012-2015 Freescale Semiconductor, Inc.
6 
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/of_address.h>
12 #include <linux/of_device.h>
13 #include <linux/pinctrl/consumer.h>
14 #include <linux/pm_qos.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regmap.h>
17 #include <linux/slab.h>
18 #include <linux/time.h>
19 #include <sound/core.h>
20 #include <sound/dmaengine_pcm.h>
21 #include <sound/pcm_params.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
24 
25 #include "fsl_sai.h"
26 #include "fsl_utils.h"
27 #include "imx-pcm.h"
28 
29 #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
30 		       FSL_SAI_CSR_FEIE)
31 
32 static const unsigned int fsl_sai_rates[] = {
33 	8000, 11025, 12000, 16000, 22050,
34 	24000, 32000, 44100, 48000, 64000,
35 	88200, 96000, 176400, 192000, 352800,
36 	384000, 705600, 768000, 1411200, 2822400,
37 };
38 
39 static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
40 	.count = ARRAY_SIZE(fsl_sai_rates),
41 	.list = fsl_sai_rates,
42 };
43 
44 /**
45  * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
46  *
47  * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
48  * or Receiver's for both streams. This function is used to check if clocks of
49  * the stream's are synced by the opposite stream.
50  *
51  * @sai: SAI context
52  * @dir: stream direction
53  */
54 static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
55 {
56 	int adir = (dir == TX) ? RX : TX;
57 
58 	/* current dir in async mode while opposite dir in sync mode */
59 	return !sai->synchronous[dir] && sai->synchronous[adir];
60 }
61 
62 static struct pinctrl_state *fsl_sai_get_pins_state(struct fsl_sai *sai, u32 bclk)
63 {
64 	struct pinctrl_state *state = NULL;
65 
66 	if (sai->is_pdm_mode) {
67 		/* DSD512@44.1kHz, DSD512@48kHz */
68 		if (bclk >= 22579200)
69 			state = pinctrl_lookup_state(sai->pinctrl, "dsd512");
70 
71 		/* Get default DSD state */
72 		if (IS_ERR_OR_NULL(state))
73 			state = pinctrl_lookup_state(sai->pinctrl, "dsd");
74 	} else {
75 		/* 706k32b2c, 768k32b2c, etc */
76 		if (bclk >= 45158400)
77 			state = pinctrl_lookup_state(sai->pinctrl, "pcm_b2m");
78 	}
79 
80 	/* Get default state */
81 	if (IS_ERR_OR_NULL(state))
82 		state = pinctrl_lookup_state(sai->pinctrl, "default");
83 
84 	return state;
85 }
86 
87 static irqreturn_t fsl_sai_isr(int irq, void *devid)
88 {
89 	struct fsl_sai *sai = (struct fsl_sai *)devid;
90 	unsigned int ofs = sai->soc_data->reg_offset;
91 	struct device *dev = &sai->pdev->dev;
92 	u32 flags, xcsr, mask;
93 	irqreturn_t iret = IRQ_NONE;
94 
95 	/*
96 	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
97 	 * different shifts. And we here create a mask only for those
98 	 * IRQs that we activated.
99 	 */
100 	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
101 
102 	/* Tx IRQ */
103 	regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
104 	flags = xcsr & mask;
105 
106 	if (flags)
107 		iret = IRQ_HANDLED;
108 	else
109 		goto irq_rx;
110 
111 	if (flags & FSL_SAI_CSR_WSF)
112 		dev_dbg(dev, "isr: Start of Tx word detected\n");
113 
114 	if (flags & FSL_SAI_CSR_SEF)
115 		dev_dbg(dev, "isr: Tx Frame sync error detected\n");
116 
117 	if (flags & FSL_SAI_CSR_FEF) {
118 		dev_dbg(dev, "isr: Transmit underrun detected\n");
119 		/* FIFO reset for safety */
120 		xcsr |= FSL_SAI_CSR_FR;
121 	}
122 
123 	if (flags & FSL_SAI_CSR_FWF)
124 		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
125 
126 	if (flags & FSL_SAI_CSR_FRF)
127 		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
128 
129 	flags &= FSL_SAI_CSR_xF_W_MASK;
130 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
131 
132 	if (flags)
133 		regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
134 
135 irq_rx:
136 	/* Rx IRQ */
137 	regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
138 	flags = xcsr & mask;
139 
140 	if (flags)
141 		iret = IRQ_HANDLED;
142 	else
143 		goto out;
144 
145 	if (flags & FSL_SAI_CSR_WSF)
146 		dev_dbg(dev, "isr: Start of Rx word detected\n");
147 
148 	if (flags & FSL_SAI_CSR_SEF)
149 		dev_dbg(dev, "isr: Rx Frame sync error detected\n");
150 
151 	if (flags & FSL_SAI_CSR_FEF) {
152 		dev_dbg(dev, "isr: Receive overflow detected\n");
153 		/* FIFO reset for safety */
154 		xcsr |= FSL_SAI_CSR_FR;
155 	}
156 
157 	if (flags & FSL_SAI_CSR_FWF)
158 		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
159 
160 	if (flags & FSL_SAI_CSR_FRF)
161 		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
162 
163 	flags &= FSL_SAI_CSR_xF_W_MASK;
164 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
165 
166 	if (flags)
167 		regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
168 
169 out:
170 	return iret;
171 }
172 
173 static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
174 				u32 rx_mask, int slots, int slot_width)
175 {
176 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
177 
178 	sai->slots = slots;
179 	sai->slot_width = slot_width;
180 
181 	return 0;
182 }
183 
184 static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
185 				      unsigned int ratio)
186 {
187 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
188 
189 	sai->bclk_ratio = ratio;
190 
191 	return 0;
192 }
193 
194 static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
195 		int clk_id, unsigned int freq, bool tx)
196 {
197 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
198 	unsigned int ofs = sai->soc_data->reg_offset;
199 	u32 val_cr2 = 0;
200 
201 	switch (clk_id) {
202 	case FSL_SAI_CLK_BUS:
203 		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
204 		break;
205 	case FSL_SAI_CLK_MAST1:
206 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
207 		break;
208 	case FSL_SAI_CLK_MAST2:
209 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
210 		break;
211 	case FSL_SAI_CLK_MAST3:
212 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
213 		break;
214 	default:
215 		return -EINVAL;
216 	}
217 
218 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
219 			   FSL_SAI_CR2_MSEL_MASK, val_cr2);
220 
221 	return 0;
222 }
223 
224 static int fsl_sai_set_mclk_rate(struct snd_soc_dai *dai, int clk_id, unsigned int freq)
225 {
226 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
227 	int ret;
228 
229 	fsl_asoc_reparent_pll_clocks(dai->dev, sai->mclk_clk[clk_id],
230 				     sai->pll8k_clk, sai->pll11k_clk, freq);
231 
232 	ret = clk_set_rate(sai->mclk_clk[clk_id], freq);
233 	if (ret < 0)
234 		dev_err(dai->dev, "failed to set clock rate (%u): %d\n", freq, ret);
235 
236 	return ret;
237 }
238 
239 static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
240 		int clk_id, unsigned int freq, int dir)
241 {
242 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
243 	int ret;
244 
245 	if (dir == SND_SOC_CLOCK_IN)
246 		return 0;
247 
248 	if (freq > 0 && clk_id != FSL_SAI_CLK_BUS) {
249 		if (clk_id < 0 || clk_id >= FSL_SAI_MCLK_MAX) {
250 			dev_err(cpu_dai->dev, "Unknown clock id: %d\n", clk_id);
251 			return -EINVAL;
252 		}
253 
254 		if (IS_ERR_OR_NULL(sai->mclk_clk[clk_id])) {
255 			dev_err(cpu_dai->dev, "Unassigned clock: %d\n", clk_id);
256 			return -EINVAL;
257 		}
258 
259 		if (sai->mclk_streams == 0) {
260 			ret = fsl_sai_set_mclk_rate(cpu_dai, clk_id, freq);
261 			if (ret < 0)
262 				return ret;
263 		}
264 	}
265 
266 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, true);
267 	if (ret) {
268 		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
269 		return ret;
270 	}
271 
272 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, false);
273 	if (ret)
274 		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
275 
276 	return ret;
277 }
278 
279 static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
280 				unsigned int fmt, bool tx)
281 {
282 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
283 	unsigned int ofs = sai->soc_data->reg_offset;
284 	u32 val_cr2 = 0, val_cr4 = 0;
285 
286 	if (!sai->is_lsb_first)
287 		val_cr4 |= FSL_SAI_CR4_MF;
288 
289 	sai->is_pdm_mode = false;
290 	/* DAI mode */
291 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
292 	case SND_SOC_DAIFMT_I2S:
293 		/*
294 		 * Frame low, 1clk before data, one word length for frame sync,
295 		 * frame sync starts one serial clock cycle earlier,
296 		 * that is, together with the last bit of the previous
297 		 * data word.
298 		 */
299 		val_cr2 |= FSL_SAI_CR2_BCP;
300 		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
301 		break;
302 	case SND_SOC_DAIFMT_LEFT_J:
303 		/*
304 		 * Frame high, one word length for frame sync,
305 		 * frame sync asserts with the first bit of the frame.
306 		 */
307 		val_cr2 |= FSL_SAI_CR2_BCP;
308 		break;
309 	case SND_SOC_DAIFMT_DSP_A:
310 		/*
311 		 * Frame high, 1clk before data, one bit for frame sync,
312 		 * frame sync starts one serial clock cycle earlier,
313 		 * that is, together with the last bit of the previous
314 		 * data word.
315 		 */
316 		val_cr2 |= FSL_SAI_CR2_BCP;
317 		val_cr4 |= FSL_SAI_CR4_FSE;
318 		sai->is_dsp_mode = true;
319 		break;
320 	case SND_SOC_DAIFMT_DSP_B:
321 		/*
322 		 * Frame high, one bit for frame sync,
323 		 * frame sync asserts with the first bit of the frame.
324 		 */
325 		val_cr2 |= FSL_SAI_CR2_BCP;
326 		sai->is_dsp_mode = true;
327 		break;
328 	case SND_SOC_DAIFMT_PDM:
329 		val_cr2 |= FSL_SAI_CR2_BCP;
330 		val_cr4 &= ~FSL_SAI_CR4_MF;
331 		sai->is_pdm_mode = true;
332 		break;
333 	case SND_SOC_DAIFMT_RIGHT_J:
334 		/* To be done */
335 	default:
336 		return -EINVAL;
337 	}
338 
339 	/* DAI clock inversion */
340 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
341 	case SND_SOC_DAIFMT_IB_IF:
342 		/* Invert both clocks */
343 		val_cr2 ^= FSL_SAI_CR2_BCP;
344 		val_cr4 ^= FSL_SAI_CR4_FSP;
345 		break;
346 	case SND_SOC_DAIFMT_IB_NF:
347 		/* Invert bit clock */
348 		val_cr2 ^= FSL_SAI_CR2_BCP;
349 		break;
350 	case SND_SOC_DAIFMT_NB_IF:
351 		/* Invert frame clock */
352 		val_cr4 ^= FSL_SAI_CR4_FSP;
353 		break;
354 	case SND_SOC_DAIFMT_NB_NF:
355 		/* Nothing to do for both normal cases */
356 		break;
357 	default:
358 		return -EINVAL;
359 	}
360 
361 	/* DAI clock provider masks */
362 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
363 	case SND_SOC_DAIFMT_BP_FP:
364 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
365 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
366 		sai->is_consumer_mode = false;
367 		break;
368 	case SND_SOC_DAIFMT_BC_FC:
369 		sai->is_consumer_mode = true;
370 		break;
371 	case SND_SOC_DAIFMT_BP_FC:
372 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
373 		sai->is_consumer_mode = false;
374 		break;
375 	case SND_SOC_DAIFMT_BC_FP:
376 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
377 		sai->is_consumer_mode = true;
378 		break;
379 	default:
380 		return -EINVAL;
381 	}
382 
383 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
384 			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
385 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
386 			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
387 			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
388 
389 	return 0;
390 }
391 
392 static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
393 {
394 	int ret;
395 
396 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
397 	if (ret) {
398 		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
399 		return ret;
400 	}
401 
402 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
403 	if (ret)
404 		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
405 
406 	return ret;
407 }
408 
409 static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
410 {
411 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
412 	unsigned int reg, ofs = sai->soc_data->reg_offset;
413 	unsigned long clk_rate;
414 	u32 savediv = 0, ratio, bestdiff = freq;
415 	int adir = tx ? RX : TX;
416 	int dir = tx ? TX : RX;
417 	u32 id;
418 	bool support_1_1_ratio = sai->verid.version >= 0x0301;
419 
420 	/* Don't apply to consumer mode */
421 	if (sai->is_consumer_mode)
422 		return 0;
423 
424 	/*
425 	 * There is no point in polling MCLK0 if it is identical to MCLK1.
426 	 * And given that MQS use case has to use MCLK1 though two clocks
427 	 * are the same, we simply skip MCLK0 and start to find from MCLK1.
428 	 */
429 	id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;
430 
431 	for (; id < FSL_SAI_MCLK_MAX; id++) {
432 		int diff;
433 
434 		clk_rate = clk_get_rate(sai->mclk_clk[id]);
435 		if (!clk_rate)
436 			continue;
437 
438 		ratio = DIV_ROUND_CLOSEST(clk_rate, freq);
439 		if (!ratio || ratio > 512)
440 			continue;
441 		if (ratio == 1 && !support_1_1_ratio)
442 			continue;
443 		if ((ratio & 1) && ratio > 1)
444 			continue;
445 
446 		diff = abs((long)clk_rate - ratio * freq);
447 
448 		/*
449 		 * Drop the source that can not be
450 		 * divided into the required rate.
451 		 */
452 		if (diff != 0 && clk_rate / diff < 1000)
453 			continue;
454 
455 		dev_dbg(dai->dev,
456 			"ratio %d for freq %dHz based on clock %ldHz\n",
457 			ratio, freq, clk_rate);
458 
459 
460 		if (diff < bestdiff) {
461 			savediv = ratio;
462 			sai->mclk_id[tx] = id;
463 			bestdiff = diff;
464 		}
465 
466 		if (diff == 0)
467 			break;
468 	}
469 
470 	if (savediv == 0) {
471 		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
472 				tx ? 'T' : 'R', freq);
473 		return -EINVAL;
474 	}
475 
476 	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
477 			sai->mclk_id[tx], savediv, bestdiff);
478 
479 	/*
480 	 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
481 	 *    set TCR2 register for playback.
482 	 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
483 	 *    and capture.
484 	 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
485 	 *    and capture.
486 	 * 4) For Tx and Rx are both Synchronous with another SAI, we just
487 	 *    ignore it.
488 	 */
489 	if (fsl_sai_dir_is_synced(sai, adir))
490 		reg = FSL_SAI_xCR2(!tx, ofs);
491 	else if (!sai->synchronous[dir])
492 		reg = FSL_SAI_xCR2(tx, ofs);
493 	else
494 		return 0;
495 
496 	regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_MSEL_MASK,
497 			   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
498 
499 	if (savediv == 1)
500 		regmap_update_bits(sai->regmap, reg,
501 				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
502 				   FSL_SAI_CR2_BYP);
503 	else
504 		regmap_update_bits(sai->regmap, reg,
505 				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
506 				   savediv / 2 - 1);
507 
508 	if (sai->soc_data->max_register >= FSL_SAI_MCTL) {
509 		/* SAI is in master mode at this point, so enable MCLK */
510 		regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
511 				   FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
512 	}
513 
514 	return 0;
515 }
516 
517 static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
518 		struct snd_pcm_hw_params *params,
519 		struct snd_soc_dai *cpu_dai)
520 {
521 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
522 	unsigned int ofs = sai->soc_data->reg_offset;
523 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
524 	unsigned int channels = params_channels(params);
525 	struct snd_dmaengine_dai_dma_data *dma_params;
526 	struct fsl_sai_dl_cfg *dl_cfg = sai->dl_cfg;
527 	u32 word_width = params_width(params);
528 	int trce_mask = 0, dl_cfg_idx = 0;
529 	int dl_cfg_cnt = sai->dl_cfg_cnt;
530 	u32 dl_type = FSL_SAI_DL_I2S;
531 	u32 val_cr4 = 0, val_cr5 = 0;
532 	u32 slots = (channels == 1) ? 2 : channels;
533 	u32 slot_width = word_width;
534 	int adir = tx ? RX : TX;
535 	u32 pins, bclk;
536 	int ret, i;
537 
538 	if (sai->slots)
539 		slots = sai->slots;
540 
541 	if (sai->slot_width)
542 		slot_width = sai->slot_width;
543 
544 	pins = DIV_ROUND_UP(channels, slots);
545 
546 	/*
547 	 * PDM mode, channels are independent
548 	 * each channels are on one dataline/FIFO.
549 	 */
550 	if (sai->is_pdm_mode) {
551 		pins = channels;
552 		dl_type = FSL_SAI_DL_PDM;
553 	}
554 
555 	for (i = 0; i < dl_cfg_cnt; i++) {
556 		if (dl_cfg[i].type == dl_type && dl_cfg[i].pins[tx] == pins) {
557 			dl_cfg_idx = i;
558 			break;
559 		}
560 	}
561 
562 	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) < pins) {
563 		dev_err(cpu_dai->dev, "channel not supported\n");
564 		return -EINVAL;
565 	}
566 
567 	bclk = params_rate(params) * (sai->bclk_ratio ? sai->bclk_ratio : slots * slot_width);
568 
569 	if (!IS_ERR_OR_NULL(sai->pinctrl)) {
570 		sai->pins_state = fsl_sai_get_pins_state(sai, bclk);
571 		if (!IS_ERR_OR_NULL(sai->pins_state)) {
572 			ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
573 			if (ret) {
574 				dev_err(cpu_dai->dev, "failed to set proper pins state: %d\n", ret);
575 				return ret;
576 			}
577 		}
578 	}
579 
580 	if (!sai->is_consumer_mode) {
581 		ret = fsl_sai_set_bclk(cpu_dai, tx, bclk);
582 		if (ret)
583 			return ret;
584 
585 		/* Do not enable the clock if it is already enabled */
586 		if (!(sai->mclk_streams & BIT(substream->stream))) {
587 			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
588 			if (ret)
589 				return ret;
590 
591 			sai->mclk_streams |= BIT(substream->stream);
592 		}
593 	}
594 
595 	if (!sai->is_dsp_mode && !sai->is_pdm_mode)
596 		val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
597 
598 	val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
599 	val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
600 
601 	if (sai->is_lsb_first || sai->is_pdm_mode)
602 		val_cr5 |= FSL_SAI_CR5_FBT(0);
603 	else
604 		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
605 
606 	val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
607 
608 	/* Set to output mode to avoid tri-stated data pins */
609 	if (tx)
610 		val_cr4 |= FSL_SAI_CR4_CHMOD;
611 
612 	/*
613 	 * For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
614 	 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
615 	 * RCR5(TCR5) for playback(capture), or there will be sync error.
616 	 */
617 
618 	if (!sai->is_consumer_mode && fsl_sai_dir_is_synced(sai, adir)) {
619 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
620 				   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
621 				   FSL_SAI_CR4_CHMOD_MASK,
622 				   val_cr4);
623 		regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
624 				   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
625 				   FSL_SAI_CR5_FBT_MASK, val_cr5);
626 	}
627 
628 	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) <= 1)
629 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
630 				   FSL_SAI_CR4_FCOMB_MASK, 0);
631 	else
632 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
633 				   FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT);
634 
635 	dma_params = tx ? &sai->dma_params_tx : &sai->dma_params_rx;
636 	dma_params->addr = sai->res->start + FSL_SAI_xDR0(tx) +
637 			   dl_cfg[dl_cfg_idx].start_off[tx] * 0x4;
638 
639 	/* Find a proper tcre setting */
640 	for (i = 0; i < sai->soc_data->pins; i++) {
641 		trce_mask = (1 << (i + 1)) - 1;
642 		if (hweight8(dl_cfg[dl_cfg_idx].mask[tx] & trce_mask) == pins)
643 			break;
644 	}
645 
646 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
647 			   FSL_SAI_CR3_TRCE_MASK,
648 			   FSL_SAI_CR3_TRCE((dl_cfg[dl_cfg_idx].mask[tx] & trce_mask)));
649 
650 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
651 			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
652 			   FSL_SAI_CR4_CHMOD_MASK,
653 			   val_cr4);
654 	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
655 			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
656 			   FSL_SAI_CR5_FBT_MASK, val_cr5);
657 	regmap_write(sai->regmap, FSL_SAI_xMR(tx),
658 		     ~0UL - ((1 << min(channels, slots)) - 1));
659 
660 	return 0;
661 }
662 
663 static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
664 		struct snd_soc_dai *cpu_dai)
665 {
666 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
667 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
668 	unsigned int ofs = sai->soc_data->reg_offset;
669 
670 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
671 			   FSL_SAI_CR3_TRCE_MASK, 0);
672 
673 	if (!sai->is_consumer_mode &&
674 			sai->mclk_streams & BIT(substream->stream)) {
675 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
676 		sai->mclk_streams &= ~BIT(substream->stream);
677 	}
678 
679 	return 0;
680 }
681 
682 static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
683 {
684 	unsigned int ofs = sai->soc_data->reg_offset;
685 	bool tx = dir == TX;
686 	u32 xcsr, count = 100;
687 
688 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
689 			   FSL_SAI_CSR_TERE, 0);
690 
691 	/* TERE will remain set till the end of current frame */
692 	do {
693 		udelay(10);
694 		regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
695 	} while (--count && xcsr & FSL_SAI_CSR_TERE);
696 
697 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
698 			   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
699 
700 	/*
701 	 * For sai master mode, after several open/close sai,
702 	 * there will be no frame clock, and can't recover
703 	 * anymore. Add software reset to fix this issue.
704 	 * This is a hardware bug, and will be fix in the
705 	 * next sai version.
706 	 */
707 	if (!sai->is_consumer_mode) {
708 		/* Software Reset */
709 		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR);
710 		/* Clear SR bit to finish the reset */
711 		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0);
712 	}
713 }
714 
715 static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
716 		struct snd_soc_dai *cpu_dai)
717 {
718 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
719 	unsigned int ofs = sai->soc_data->reg_offset;
720 
721 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
722 	int adir = tx ? RX : TX;
723 	int dir = tx ? TX : RX;
724 	u32 xcsr;
725 
726 	/*
727 	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
728 	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
729 	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
730 	 */
731 	regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
732 			   sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
733 	regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
734 			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
735 
736 	/*
737 	 * It is recommended that the transmitter is the last enabled
738 	 * and the first disabled.
739 	 */
740 	switch (cmd) {
741 	case SNDRV_PCM_TRIGGER_START:
742 	case SNDRV_PCM_TRIGGER_RESUME:
743 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
744 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
745 				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
746 
747 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
748 				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
749 		/*
750 		 * Enable the opposite direction for synchronous mode
751 		 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
752 		 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
753 		 *
754 		 * RM recommends to enable RE after TE for case 1 and to enable
755 		 * TE after RE for case 2, but we here may not always guarantee
756 		 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
757 		 * TE after RE, which is against what RM recommends but should
758 		 * be safe to do, judging by years of testing results.
759 		 */
760 		if (fsl_sai_dir_is_synced(sai, adir))
761 			regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
762 					   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
763 
764 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
765 				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
766 		break;
767 	case SNDRV_PCM_TRIGGER_STOP:
768 	case SNDRV_PCM_TRIGGER_SUSPEND:
769 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
770 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
771 				   FSL_SAI_CSR_FRDE, 0);
772 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
773 				   FSL_SAI_CSR_xIE_MASK, 0);
774 
775 		/* Check if the opposite FRDE is also disabled */
776 		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
777 
778 		/*
779 		 * If opposite stream provides clocks for synchronous mode and
780 		 * it is inactive, disable it before disabling the current one
781 		 */
782 		if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
783 			fsl_sai_config_disable(sai, adir);
784 
785 		/*
786 		 * Disable current stream if either of:
787 		 * 1. current stream doesn't provide clocks for synchronous mode
788 		 * 2. current stream provides clocks for synchronous mode but no
789 		 *    more stream is active.
790 		 */
791 		if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
792 			fsl_sai_config_disable(sai, dir);
793 
794 		break;
795 	default:
796 		return -EINVAL;
797 	}
798 
799 	return 0;
800 }
801 
802 static int fsl_sai_startup(struct snd_pcm_substream *substream,
803 		struct snd_soc_dai *cpu_dai)
804 {
805 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
806 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
807 	int ret;
808 
809 	/*
810 	 * EDMA controller needs period size to be a multiple of
811 	 * tx/rx maxburst
812 	 */
813 	if (sai->soc_data->use_edma)
814 		snd_pcm_hw_constraint_step(substream->runtime, 0,
815 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
816 					   tx ? sai->dma_params_tx.maxburst :
817 					   sai->dma_params_rx.maxburst);
818 
819 	ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
820 			SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);
821 
822 	return ret;
823 }
824 
825 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
826 	.set_bclk_ratio	= fsl_sai_set_dai_bclk_ratio,
827 	.set_sysclk	= fsl_sai_set_dai_sysclk,
828 	.set_fmt	= fsl_sai_set_dai_fmt,
829 	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot,
830 	.hw_params	= fsl_sai_hw_params,
831 	.hw_free	= fsl_sai_hw_free,
832 	.trigger	= fsl_sai_trigger,
833 	.startup	= fsl_sai_startup,
834 };
835 
836 static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
837 {
838 	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
839 	unsigned int ofs = sai->soc_data->reg_offset;
840 
841 	/* Software Reset for both Tx and Rx */
842 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
843 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
844 	/* Clear SR bit to finish the reset */
845 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
846 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
847 
848 	regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
849 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
850 			   sai->soc_data->fifo_depth - FSL_SAI_MAXBURST_TX);
851 	regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
852 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
853 			   FSL_SAI_MAXBURST_RX - 1);
854 
855 	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
856 				&sai->dma_params_rx);
857 
858 	return 0;
859 }
860 
861 static int fsl_sai_dai_resume(struct snd_soc_component *component)
862 {
863 	struct fsl_sai *sai = snd_soc_component_get_drvdata(component);
864 	struct device *dev = &sai->pdev->dev;
865 	int ret;
866 
867 	if (!IS_ERR_OR_NULL(sai->pinctrl) && !IS_ERR_OR_NULL(sai->pins_state)) {
868 		ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
869 		if (ret) {
870 			dev_err(dev, "failed to set proper pins state: %d\n", ret);
871 			return ret;
872 		}
873 	}
874 
875 	return 0;
876 }
877 
878 static struct snd_soc_dai_driver fsl_sai_dai_template = {
879 	.probe = fsl_sai_dai_probe,
880 	.playback = {
881 		.stream_name = "CPU-Playback",
882 		.channels_min = 1,
883 		.channels_max = 32,
884 		.rate_min = 8000,
885 		.rate_max = 2822400,
886 		.rates = SNDRV_PCM_RATE_KNOT,
887 		.formats = FSL_SAI_FORMATS,
888 	},
889 	.capture = {
890 		.stream_name = "CPU-Capture",
891 		.channels_min = 1,
892 		.channels_max = 32,
893 		.rate_min = 8000,
894 		.rate_max = 2822400,
895 		.rates = SNDRV_PCM_RATE_KNOT,
896 		.formats = FSL_SAI_FORMATS,
897 	},
898 	.ops = &fsl_sai_pcm_dai_ops,
899 };
900 
901 static const struct snd_soc_component_driver fsl_component = {
902 	.name			= "fsl-sai",
903 	.resume			= fsl_sai_dai_resume,
904 	.legacy_dai_naming	= 1,
905 };
906 
907 static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
908 	{FSL_SAI_TCR1(0), 0},
909 	{FSL_SAI_TCR2(0), 0},
910 	{FSL_SAI_TCR3(0), 0},
911 	{FSL_SAI_TCR4(0), 0},
912 	{FSL_SAI_TCR5(0), 0},
913 	{FSL_SAI_TDR0, 0},
914 	{FSL_SAI_TDR1, 0},
915 	{FSL_SAI_TDR2, 0},
916 	{FSL_SAI_TDR3, 0},
917 	{FSL_SAI_TDR4, 0},
918 	{FSL_SAI_TDR5, 0},
919 	{FSL_SAI_TDR6, 0},
920 	{FSL_SAI_TDR7, 0},
921 	{FSL_SAI_TMR, 0},
922 	{FSL_SAI_RCR1(0), 0},
923 	{FSL_SAI_RCR2(0), 0},
924 	{FSL_SAI_RCR3(0), 0},
925 	{FSL_SAI_RCR4(0), 0},
926 	{FSL_SAI_RCR5(0), 0},
927 	{FSL_SAI_RMR, 0},
928 };
929 
930 static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
931 	{FSL_SAI_TCR1(8), 0},
932 	{FSL_SAI_TCR2(8), 0},
933 	{FSL_SAI_TCR3(8), 0},
934 	{FSL_SAI_TCR4(8), 0},
935 	{FSL_SAI_TCR5(8), 0},
936 	{FSL_SAI_TDR0, 0},
937 	{FSL_SAI_TDR1, 0},
938 	{FSL_SAI_TDR2, 0},
939 	{FSL_SAI_TDR3, 0},
940 	{FSL_SAI_TDR4, 0},
941 	{FSL_SAI_TDR5, 0},
942 	{FSL_SAI_TDR6, 0},
943 	{FSL_SAI_TDR7, 0},
944 	{FSL_SAI_TMR, 0},
945 	{FSL_SAI_RCR1(8), 0},
946 	{FSL_SAI_RCR2(8), 0},
947 	{FSL_SAI_RCR3(8), 0},
948 	{FSL_SAI_RCR4(8), 0},
949 	{FSL_SAI_RCR5(8), 0},
950 	{FSL_SAI_RMR, 0},
951 	{FSL_SAI_MCTL, 0},
952 	{FSL_SAI_MDIV, 0},
953 };
954 
955 static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
956 {
957 	struct fsl_sai *sai = dev_get_drvdata(dev);
958 	unsigned int ofs = sai->soc_data->reg_offset;
959 
960 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
961 		return true;
962 
963 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
964 		return true;
965 
966 	switch (reg) {
967 	case FSL_SAI_TFR0:
968 	case FSL_SAI_TFR1:
969 	case FSL_SAI_TFR2:
970 	case FSL_SAI_TFR3:
971 	case FSL_SAI_TFR4:
972 	case FSL_SAI_TFR5:
973 	case FSL_SAI_TFR6:
974 	case FSL_SAI_TFR7:
975 	case FSL_SAI_TMR:
976 	case FSL_SAI_RDR0:
977 	case FSL_SAI_RDR1:
978 	case FSL_SAI_RDR2:
979 	case FSL_SAI_RDR3:
980 	case FSL_SAI_RDR4:
981 	case FSL_SAI_RDR5:
982 	case FSL_SAI_RDR6:
983 	case FSL_SAI_RDR7:
984 	case FSL_SAI_RFR0:
985 	case FSL_SAI_RFR1:
986 	case FSL_SAI_RFR2:
987 	case FSL_SAI_RFR3:
988 	case FSL_SAI_RFR4:
989 	case FSL_SAI_RFR5:
990 	case FSL_SAI_RFR6:
991 	case FSL_SAI_RFR7:
992 	case FSL_SAI_RMR:
993 	case FSL_SAI_MCTL:
994 	case FSL_SAI_MDIV:
995 	case FSL_SAI_VERID:
996 	case FSL_SAI_PARAM:
997 	case FSL_SAI_TTCTN:
998 	case FSL_SAI_RTCTN:
999 	case FSL_SAI_TTCTL:
1000 	case FSL_SAI_TBCTN:
1001 	case FSL_SAI_TTCAP:
1002 	case FSL_SAI_RTCTL:
1003 	case FSL_SAI_RBCTN:
1004 	case FSL_SAI_RTCAP:
1005 		return true;
1006 	default:
1007 		return false;
1008 	}
1009 }
1010 
1011 static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
1012 {
1013 	struct fsl_sai *sai = dev_get_drvdata(dev);
1014 	unsigned int ofs = sai->soc_data->reg_offset;
1015 
1016 	if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
1017 		return true;
1018 
1019 	/* Set VERID and PARAM be volatile for reading value in probe */
1020 	if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
1021 		return true;
1022 
1023 	switch (reg) {
1024 	case FSL_SAI_TFR0:
1025 	case FSL_SAI_TFR1:
1026 	case FSL_SAI_TFR2:
1027 	case FSL_SAI_TFR3:
1028 	case FSL_SAI_TFR4:
1029 	case FSL_SAI_TFR5:
1030 	case FSL_SAI_TFR6:
1031 	case FSL_SAI_TFR7:
1032 	case FSL_SAI_RFR0:
1033 	case FSL_SAI_RFR1:
1034 	case FSL_SAI_RFR2:
1035 	case FSL_SAI_RFR3:
1036 	case FSL_SAI_RFR4:
1037 	case FSL_SAI_RFR5:
1038 	case FSL_SAI_RFR6:
1039 	case FSL_SAI_RFR7:
1040 	case FSL_SAI_RDR0:
1041 	case FSL_SAI_RDR1:
1042 	case FSL_SAI_RDR2:
1043 	case FSL_SAI_RDR3:
1044 	case FSL_SAI_RDR4:
1045 	case FSL_SAI_RDR5:
1046 	case FSL_SAI_RDR6:
1047 	case FSL_SAI_RDR7:
1048 		return true;
1049 	default:
1050 		return false;
1051 	}
1052 }
1053 
1054 static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
1055 {
1056 	struct fsl_sai *sai = dev_get_drvdata(dev);
1057 	unsigned int ofs = sai->soc_data->reg_offset;
1058 
1059 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1060 		return true;
1061 
1062 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1063 		return true;
1064 
1065 	switch (reg) {
1066 	case FSL_SAI_TDR0:
1067 	case FSL_SAI_TDR1:
1068 	case FSL_SAI_TDR2:
1069 	case FSL_SAI_TDR3:
1070 	case FSL_SAI_TDR4:
1071 	case FSL_SAI_TDR5:
1072 	case FSL_SAI_TDR6:
1073 	case FSL_SAI_TDR7:
1074 	case FSL_SAI_TMR:
1075 	case FSL_SAI_RMR:
1076 	case FSL_SAI_MCTL:
1077 	case FSL_SAI_MDIV:
1078 	case FSL_SAI_TTCTL:
1079 	case FSL_SAI_RTCTL:
1080 		return true;
1081 	default:
1082 		return false;
1083 	}
1084 }
1085 
1086 static struct regmap_config fsl_sai_regmap_config = {
1087 	.reg_bits = 32,
1088 	.reg_stride = 4,
1089 	.val_bits = 32,
1090 	.fast_io = true,
1091 
1092 	.max_register = FSL_SAI_RMR,
1093 	.reg_defaults = fsl_sai_reg_defaults_ofs0,
1094 	.num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
1095 	.readable_reg = fsl_sai_readable_reg,
1096 	.volatile_reg = fsl_sai_volatile_reg,
1097 	.writeable_reg = fsl_sai_writeable_reg,
1098 	.cache_type = REGCACHE_FLAT,
1099 };
1100 
1101 static int fsl_sai_check_version(struct device *dev)
1102 {
1103 	struct fsl_sai *sai = dev_get_drvdata(dev);
1104 	unsigned char ofs = sai->soc_data->reg_offset;
1105 	unsigned int val;
1106 	int ret;
1107 
1108 	if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
1109 		return 0;
1110 
1111 	ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
1112 	if (ret < 0)
1113 		return ret;
1114 
1115 	dev_dbg(dev, "VERID: 0x%016X\n", val);
1116 
1117 	sai->verid.version = val &
1118 		(FSL_SAI_VERID_MAJOR_MASK | FSL_SAI_VERID_MINOR_MASK);
1119 	sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
1120 
1121 	ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
1122 	if (ret < 0)
1123 		return ret;
1124 
1125 	dev_dbg(dev, "PARAM: 0x%016X\n", val);
1126 
1127 	/* Max slots per frame, power of 2 */
1128 	sai->param.slot_num = 1 <<
1129 		((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
1130 
1131 	/* Words per fifo, power of 2 */
1132 	sai->param.fifo_depth = 1 <<
1133 		((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
1134 
1135 	/* Number of datalines implemented */
1136 	sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
1137 
1138 	return 0;
1139 }
1140 
1141 /*
1142  * Calculate the offset between first two datalines, don't
1143  * different offset in one case.
1144  */
1145 static unsigned int fsl_sai_calc_dl_off(unsigned long dl_mask)
1146 {
1147 	int fbidx, nbidx, offset;
1148 
1149 	fbidx = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1150 	nbidx = find_next_bit(&dl_mask, FSL_SAI_DL_NUM, fbidx + 1);
1151 	offset = nbidx - fbidx - 1;
1152 
1153 	return (offset < 0 || offset >= (FSL_SAI_DL_NUM - 1) ? 0 : offset);
1154 }
1155 
1156 /*
1157  * read the fsl,dataline property from dts file.
1158  * It has 3 value for each configuration, first one means the type:
1159  * I2S(1) or PDM(2), second one is dataline mask for 'rx', third one is
1160  * dataline mask for 'tx'. for example
1161  *
1162  * fsl,dataline = <1 0xff 0xff 2 0xff 0x11>,
1163  *
1164  * It means I2S type rx mask is 0xff, tx mask is 0xff, PDM type
1165  * rx mask is 0xff, tx mask is 0x11 (dataline 1 and 4 enabled).
1166  *
1167  */
1168 static int fsl_sai_read_dlcfg(struct fsl_sai *sai)
1169 {
1170 	struct platform_device *pdev = sai->pdev;
1171 	struct device_node *np = pdev->dev.of_node;
1172 	struct device *dev = &pdev->dev;
1173 	int ret, elems, i, index, num_cfg;
1174 	char *propname = "fsl,dataline";
1175 	struct fsl_sai_dl_cfg *cfg;
1176 	unsigned long dl_mask;
1177 	unsigned int soc_dl;
1178 	u32 rx, tx, type;
1179 
1180 	elems = of_property_count_u32_elems(np, propname);
1181 
1182 	if (elems <= 0) {
1183 		elems = 0;
1184 	} else if (elems % 3) {
1185 		dev_err(dev, "Number of elements must be divisible to 3.\n");
1186 		return -EINVAL;
1187 	}
1188 
1189 	num_cfg = elems / 3;
1190 	/*  Add one more for default value */
1191 	cfg = devm_kzalloc(&pdev->dev, (num_cfg + 1) * sizeof(*cfg), GFP_KERNEL);
1192 	if (!cfg)
1193 		return -ENOMEM;
1194 
1195 	/* Consider default value "0 0xFF 0xFF" if property is missing */
1196 	soc_dl = BIT(sai->soc_data->pins) - 1;
1197 	cfg[0].type = FSL_SAI_DL_DEFAULT;
1198 	cfg[0].pins[0] = sai->soc_data->pins;
1199 	cfg[0].mask[0] = soc_dl;
1200 	cfg[0].start_off[0] = 0;
1201 	cfg[0].next_off[0] = 0;
1202 
1203 	cfg[0].pins[1] = sai->soc_data->pins;
1204 	cfg[0].mask[1] = soc_dl;
1205 	cfg[0].start_off[1] = 0;
1206 	cfg[0].next_off[1] = 0;
1207 	for (i = 1, index = 0; i < num_cfg + 1; i++) {
1208 		/*
1209 		 * type of dataline
1210 		 * 0 means default mode
1211 		 * 1 means I2S mode
1212 		 * 2 means PDM mode
1213 		 */
1214 		ret = of_property_read_u32_index(np, propname, index++, &type);
1215 		if (ret)
1216 			return -EINVAL;
1217 
1218 		ret = of_property_read_u32_index(np, propname, index++, &rx);
1219 		if (ret)
1220 			return -EINVAL;
1221 
1222 		ret = of_property_read_u32_index(np, propname, index++, &tx);
1223 		if (ret)
1224 			return -EINVAL;
1225 
1226 		if ((rx & ~soc_dl) || (tx & ~soc_dl)) {
1227 			dev_err(dev, "dataline cfg[%d] setting error, mask is 0x%x\n", i, soc_dl);
1228 			return -EINVAL;
1229 		}
1230 
1231 		rx = rx & soc_dl;
1232 		tx = tx & soc_dl;
1233 
1234 		cfg[i].type = type;
1235 		cfg[i].pins[0] = hweight8(rx);
1236 		cfg[i].mask[0] = rx;
1237 		dl_mask = rx;
1238 		cfg[i].start_off[0] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1239 		cfg[i].next_off[0] = fsl_sai_calc_dl_off(rx);
1240 
1241 		cfg[i].pins[1] = hweight8(tx);
1242 		cfg[i].mask[1] = tx;
1243 		dl_mask = tx;
1244 		cfg[i].start_off[1] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1245 		cfg[i].next_off[1] = fsl_sai_calc_dl_off(tx);
1246 	}
1247 
1248 	sai->dl_cfg = cfg;
1249 	sai->dl_cfg_cnt = num_cfg + 1;
1250 	return 0;
1251 }
1252 
1253 static int fsl_sai_runtime_suspend(struct device *dev);
1254 static int fsl_sai_runtime_resume(struct device *dev);
1255 
1256 static int fsl_sai_probe(struct platform_device *pdev)
1257 {
1258 	struct device_node *np = pdev->dev.of_node;
1259 	struct device *dev = &pdev->dev;
1260 	struct fsl_sai *sai;
1261 	struct regmap *gpr;
1262 	void __iomem *base;
1263 	char tmp[8];
1264 	int irq, ret, i;
1265 	int index;
1266 
1267 	sai = devm_kzalloc(dev, sizeof(*sai), GFP_KERNEL);
1268 	if (!sai)
1269 		return -ENOMEM;
1270 
1271 	sai->pdev = pdev;
1272 	sai->soc_data = of_device_get_match_data(dev);
1273 
1274 	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1275 
1276 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &sai->res);
1277 	if (IS_ERR(base))
1278 		return PTR_ERR(base);
1279 
1280 	if (sai->soc_data->reg_offset == 8) {
1281 		fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1282 		fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1283 		fsl_sai_regmap_config.num_reg_defaults =
1284 			ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
1285 	}
1286 
1287 	sai->regmap = devm_regmap_init_mmio(dev, base, &fsl_sai_regmap_config);
1288 	if (IS_ERR(sai->regmap)) {
1289 		dev_err(dev, "regmap init failed\n");
1290 		return PTR_ERR(sai->regmap);
1291 	}
1292 
1293 	sai->bus_clk = devm_clk_get(dev, "bus");
1294 	/* Compatible with old DTB cases */
1295 	if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
1296 		sai->bus_clk = devm_clk_get(dev, "sai");
1297 	if (IS_ERR(sai->bus_clk)) {
1298 		dev_err(dev, "failed to get bus clock: %ld\n",
1299 				PTR_ERR(sai->bus_clk));
1300 		/* -EPROBE_DEFER */
1301 		return PTR_ERR(sai->bus_clk);
1302 	}
1303 
1304 	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
1305 		sprintf(tmp, "mclk%d", i);
1306 		sai->mclk_clk[i] = devm_clk_get(dev, tmp);
1307 		if (IS_ERR(sai->mclk_clk[i])) {
1308 			dev_err(dev, "failed to get mclk%d clock: %ld\n",
1309 					i + 1, PTR_ERR(sai->mclk_clk[i]));
1310 			sai->mclk_clk[i] = NULL;
1311 		}
1312 	}
1313 
1314 	if (sai->soc_data->mclk0_is_mclk1)
1315 		sai->mclk_clk[0] = sai->mclk_clk[1];
1316 	else
1317 		sai->mclk_clk[0] = sai->bus_clk;
1318 
1319 	fsl_asoc_get_pll_clocks(&pdev->dev, &sai->pll8k_clk,
1320 				&sai->pll11k_clk);
1321 
1322 	/* read dataline mask for rx and tx*/
1323 	ret = fsl_sai_read_dlcfg(sai);
1324 	if (ret < 0) {
1325 		dev_err(dev, "failed to read dlcfg %d\n", ret);
1326 		return ret;
1327 	}
1328 
1329 	irq = platform_get_irq(pdev, 0);
1330 	if (irq < 0)
1331 		return irq;
1332 
1333 	ret = devm_request_irq(dev, irq, fsl_sai_isr, IRQF_SHARED,
1334 			       np->name, sai);
1335 	if (ret) {
1336 		dev_err(dev, "failed to claim irq %u\n", irq);
1337 		return ret;
1338 	}
1339 
1340 	memcpy(&sai->cpu_dai_drv, &fsl_sai_dai_template,
1341 	       sizeof(fsl_sai_dai_template));
1342 
1343 	/* Sync Tx with Rx as default by following old DT binding */
1344 	sai->synchronous[RX] = true;
1345 	sai->synchronous[TX] = false;
1346 	sai->cpu_dai_drv.symmetric_rate = 1;
1347 	sai->cpu_dai_drv.symmetric_channels = 1;
1348 	sai->cpu_dai_drv.symmetric_sample_bits = 1;
1349 
1350 	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL) &&
1351 	    of_find_property(np, "fsl,sai-asynchronous", NULL)) {
1352 		/* error out if both synchronous and asynchronous are present */
1353 		dev_err(dev, "invalid binding for synchronous mode\n");
1354 		return -EINVAL;
1355 	}
1356 
1357 	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL)) {
1358 		/* Sync Rx with Tx */
1359 		sai->synchronous[RX] = false;
1360 		sai->synchronous[TX] = true;
1361 	} else if (of_find_property(np, "fsl,sai-asynchronous", NULL)) {
1362 		/* Discard all settings for asynchronous mode */
1363 		sai->synchronous[RX] = false;
1364 		sai->synchronous[TX] = false;
1365 		sai->cpu_dai_drv.symmetric_rate = 0;
1366 		sai->cpu_dai_drv.symmetric_channels = 0;
1367 		sai->cpu_dai_drv.symmetric_sample_bits = 0;
1368 	}
1369 
1370 	if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
1371 	    of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1372 		gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
1373 		if (IS_ERR(gpr)) {
1374 			dev_err(dev, "cannot find iomuxc registers\n");
1375 			return PTR_ERR(gpr);
1376 		}
1377 
1378 		index = of_alias_get_id(np, "sai");
1379 		if (index < 0)
1380 			return index;
1381 
1382 		regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
1383 				   MCLK_DIR(index));
1384 	}
1385 
1386 	sai->dma_params_rx.addr = sai->res->start + FSL_SAI_RDR0;
1387 	sai->dma_params_tx.addr = sai->res->start + FSL_SAI_TDR0;
1388 	sai->dma_params_rx.maxburst = FSL_SAI_MAXBURST_RX;
1389 	sai->dma_params_tx.maxburst = FSL_SAI_MAXBURST_TX;
1390 
1391 	sai->pinctrl = devm_pinctrl_get(&pdev->dev);
1392 
1393 	platform_set_drvdata(pdev, sai);
1394 	pm_runtime_enable(dev);
1395 	if (!pm_runtime_enabled(dev)) {
1396 		ret = fsl_sai_runtime_resume(dev);
1397 		if (ret)
1398 			goto err_pm_disable;
1399 	}
1400 
1401 	ret = pm_runtime_resume_and_get(dev);
1402 	if (ret < 0)
1403 		goto err_pm_get_sync;
1404 
1405 	/* Get sai version */
1406 	ret = fsl_sai_check_version(dev);
1407 	if (ret < 0)
1408 		dev_warn(dev, "Error reading SAI version: %d\n", ret);
1409 
1410 	/* Select MCLK direction */
1411 	if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
1412 	    sai->soc_data->max_register >= FSL_SAI_MCTL) {
1413 		regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
1414 				   FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
1415 	}
1416 
1417 	ret = pm_runtime_put_sync(dev);
1418 	if (ret < 0)
1419 		goto err_pm_get_sync;
1420 
1421 	/*
1422 	 * Register platform component before registering cpu dai for there
1423 	 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1424 	 */
1425 	if (sai->soc_data->use_imx_pcm) {
1426 		ret = imx_pcm_dma_init(pdev);
1427 		if (ret) {
1428 			if (!IS_ENABLED(CONFIG_SND_SOC_IMX_PCM_DMA))
1429 				dev_err(dev, "Error: You must enable the imx-pcm-dma support!\n");
1430 			goto err_pm_get_sync;
1431 		}
1432 	} else {
1433 		ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0);
1434 		if (ret)
1435 			goto err_pm_get_sync;
1436 	}
1437 
1438 	ret = devm_snd_soc_register_component(dev, &fsl_component,
1439 					      &sai->cpu_dai_drv, 1);
1440 	if (ret)
1441 		goto err_pm_get_sync;
1442 
1443 	return ret;
1444 
1445 err_pm_get_sync:
1446 	if (!pm_runtime_status_suspended(dev))
1447 		fsl_sai_runtime_suspend(dev);
1448 err_pm_disable:
1449 	pm_runtime_disable(dev);
1450 
1451 	return ret;
1452 }
1453 
1454 static int fsl_sai_remove(struct platform_device *pdev)
1455 {
1456 	pm_runtime_disable(&pdev->dev);
1457 	if (!pm_runtime_status_suspended(&pdev->dev))
1458 		fsl_sai_runtime_suspend(&pdev->dev);
1459 
1460 	return 0;
1461 }
1462 
1463 static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
1464 	.use_imx_pcm = false,
1465 	.use_edma = false,
1466 	.fifo_depth = 32,
1467 	.pins = 1,
1468 	.reg_offset = 0,
1469 	.mclk0_is_mclk1 = false,
1470 	.flags = 0,
1471 	.max_register = FSL_SAI_RMR,
1472 };
1473 
1474 static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
1475 	.use_imx_pcm = true,
1476 	.use_edma = false,
1477 	.fifo_depth = 32,
1478 	.pins = 1,
1479 	.reg_offset = 0,
1480 	.mclk0_is_mclk1 = true,
1481 	.flags = 0,
1482 	.max_register = FSL_SAI_RMR,
1483 };
1484 
1485 static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
1486 	.use_imx_pcm = true,
1487 	.use_edma = false,
1488 	.fifo_depth = 16,
1489 	.pins = 2,
1490 	.reg_offset = 8,
1491 	.mclk0_is_mclk1 = false,
1492 	.flags = PMQOS_CPU_LATENCY,
1493 	.max_register = FSL_SAI_RMR,
1494 };
1495 
1496 static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
1497 	.use_imx_pcm = true,
1498 	.use_edma = false,
1499 	.fifo_depth = 128,
1500 	.pins = 8,
1501 	.reg_offset = 8,
1502 	.mclk0_is_mclk1 = false,
1503 	.flags = 0,
1504 	.max_register = FSL_SAI_RMR,
1505 };
1506 
1507 static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
1508 	.use_imx_pcm = true,
1509 	.use_edma = true,
1510 	.fifo_depth = 64,
1511 	.pins = 1,
1512 	.reg_offset = 0,
1513 	.mclk0_is_mclk1 = false,
1514 	.flags = 0,
1515 	.max_register = FSL_SAI_RMR,
1516 };
1517 
1518 static const struct fsl_sai_soc_data fsl_sai_imx8mm_data = {
1519 	.use_imx_pcm = true,
1520 	.use_edma = false,
1521 	.fifo_depth = 128,
1522 	.reg_offset = 8,
1523 	.mclk0_is_mclk1 = false,
1524 	.pins = 8,
1525 	.flags = 0,
1526 	.max_register = FSL_SAI_MCTL,
1527 };
1528 
1529 static const struct fsl_sai_soc_data fsl_sai_imx8mp_data = {
1530 	.use_imx_pcm = true,
1531 	.use_edma = false,
1532 	.fifo_depth = 128,
1533 	.reg_offset = 8,
1534 	.mclk0_is_mclk1 = false,
1535 	.pins = 8,
1536 	.flags = 0,
1537 	.max_register = FSL_SAI_MDIV,
1538 };
1539 
1540 static const struct fsl_sai_soc_data fsl_sai_imx8ulp_data = {
1541 	.use_imx_pcm = true,
1542 	.use_edma = true,
1543 	.fifo_depth = 16,
1544 	.reg_offset = 8,
1545 	.mclk0_is_mclk1 = false,
1546 	.pins = 4,
1547 	.flags = PMQOS_CPU_LATENCY,
1548 	.max_register = FSL_SAI_RTCAP,
1549 };
1550 
1551 static const struct of_device_id fsl_sai_ids[] = {
1552 	{ .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
1553 	{ .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
1554 	{ .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1555 	{ .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
1556 	{ .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1557 	{ .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1558 	{ .compatible = "fsl,imx8mm-sai", .data = &fsl_sai_imx8mm_data },
1559 	{ .compatible = "fsl,imx8mp-sai", .data = &fsl_sai_imx8mp_data },
1560 	{ .compatible = "fsl,imx8ulp-sai", .data = &fsl_sai_imx8ulp_data },
1561 	{ .compatible = "fsl,imx8mn-sai", .data = &fsl_sai_imx8mp_data },
1562 	{ /* sentinel */ }
1563 };
1564 MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1565 
1566 static int fsl_sai_runtime_suspend(struct device *dev)
1567 {
1568 	struct fsl_sai *sai = dev_get_drvdata(dev);
1569 
1570 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1571 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1572 
1573 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1574 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1575 
1576 	clk_disable_unprepare(sai->bus_clk);
1577 
1578 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1579 		cpu_latency_qos_remove_request(&sai->pm_qos_req);
1580 
1581 	regcache_cache_only(sai->regmap, true);
1582 
1583 	return 0;
1584 }
1585 
1586 static int fsl_sai_runtime_resume(struct device *dev)
1587 {
1588 	struct fsl_sai *sai = dev_get_drvdata(dev);
1589 	unsigned int ofs = sai->soc_data->reg_offset;
1590 	int ret;
1591 
1592 	ret = clk_prepare_enable(sai->bus_clk);
1593 	if (ret) {
1594 		dev_err(dev, "failed to enable bus clock: %d\n", ret);
1595 		return ret;
1596 	}
1597 
1598 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
1599 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
1600 		if (ret)
1601 			goto disable_bus_clk;
1602 	}
1603 
1604 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
1605 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
1606 		if (ret)
1607 			goto disable_tx_clk;
1608 	}
1609 
1610 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1611 		cpu_latency_qos_add_request(&sai->pm_qos_req, 0);
1612 
1613 	regcache_cache_only(sai->regmap, false);
1614 	regcache_mark_dirty(sai->regmap);
1615 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
1616 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
1617 	usleep_range(1000, 2000);
1618 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
1619 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
1620 
1621 	ret = regcache_sync(sai->regmap);
1622 	if (ret)
1623 		goto disable_rx_clk;
1624 
1625 	return 0;
1626 
1627 disable_rx_clk:
1628 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1629 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1630 disable_tx_clk:
1631 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1632 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1633 disable_bus_clk:
1634 	clk_disable_unprepare(sai->bus_clk);
1635 
1636 	return ret;
1637 }
1638 
1639 static const struct dev_pm_ops fsl_sai_pm_ops = {
1640 	SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend,
1641 			   fsl_sai_runtime_resume, NULL)
1642 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1643 				pm_runtime_force_resume)
1644 };
1645 
1646 static struct platform_driver fsl_sai_driver = {
1647 	.probe = fsl_sai_probe,
1648 	.remove = fsl_sai_remove,
1649 	.driver = {
1650 		.name = "fsl-sai",
1651 		.pm = &fsl_sai_pm_ops,
1652 		.of_match_table = fsl_sai_ids,
1653 	},
1654 };
1655 module_platform_driver(fsl_sai_driver);
1656 
1657 MODULE_DESCRIPTION("Freescale Soc SAI Interface");
1658 MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
1659 MODULE_ALIAS("platform:fsl-sai");
1660 MODULE_LICENSE("GPL");
1661