xref: /linux/sound/soc/fsl/fsl_sai.c (revision 1b0975ee3bdd3eb19a47371c26fd7ef8f7f6b599)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Freescale ALSA SoC Digital Audio Interface (SAI) driver.
4 //
5 // Copyright 2012-2015 Freescale Semiconductor, Inc.
6 
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/of_address.h>
12 #include <linux/of_device.h>
13 #include <linux/pinctrl/consumer.h>
14 #include <linux/pm_qos.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regmap.h>
17 #include <linux/slab.h>
18 #include <linux/time.h>
19 #include <sound/core.h>
20 #include <sound/dmaengine_pcm.h>
21 #include <sound/pcm_params.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
24 
25 #include "fsl_sai.h"
26 #include "fsl_utils.h"
27 #include "imx-pcm.h"
28 
29 #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
30 		       FSL_SAI_CSR_FEIE)
31 
32 static const unsigned int fsl_sai_rates[] = {
33 	8000, 11025, 12000, 16000, 22050,
34 	24000, 32000, 44100, 48000, 64000,
35 	88200, 96000, 176400, 192000, 352800,
36 	384000, 705600, 768000, 1411200, 2822400,
37 };
38 
39 static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
40 	.count = ARRAY_SIZE(fsl_sai_rates),
41 	.list = fsl_sai_rates,
42 };
43 
44 /**
45  * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
46  *
47  * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
48  * or Receiver's for both streams. This function is used to check if clocks of
49  * the stream's are synced by the opposite stream.
50  *
51  * @sai: SAI context
52  * @dir: stream direction
53  */
54 static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
55 {
56 	int adir = (dir == TX) ? RX : TX;
57 
58 	/* current dir in async mode while opposite dir in sync mode */
59 	return !sai->synchronous[dir] && sai->synchronous[adir];
60 }
61 
62 static struct pinctrl_state *fsl_sai_get_pins_state(struct fsl_sai *sai, u32 bclk)
63 {
64 	struct pinctrl_state *state = NULL;
65 
66 	if (sai->is_pdm_mode) {
67 		/* DSD512@44.1kHz, DSD512@48kHz */
68 		if (bclk >= 22579200)
69 			state = pinctrl_lookup_state(sai->pinctrl, "dsd512");
70 
71 		/* Get default DSD state */
72 		if (IS_ERR_OR_NULL(state))
73 			state = pinctrl_lookup_state(sai->pinctrl, "dsd");
74 	} else {
75 		/* 706k32b2c, 768k32b2c, etc */
76 		if (bclk >= 45158400)
77 			state = pinctrl_lookup_state(sai->pinctrl, "pcm_b2m");
78 	}
79 
80 	/* Get default state */
81 	if (IS_ERR_OR_NULL(state))
82 		state = pinctrl_lookup_state(sai->pinctrl, "default");
83 
84 	return state;
85 }
86 
87 static irqreturn_t fsl_sai_isr(int irq, void *devid)
88 {
89 	struct fsl_sai *sai = (struct fsl_sai *)devid;
90 	unsigned int ofs = sai->soc_data->reg_offset;
91 	struct device *dev = &sai->pdev->dev;
92 	u32 flags, xcsr, mask;
93 	irqreturn_t iret = IRQ_NONE;
94 
95 	/*
96 	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
97 	 * different shifts. And we here create a mask only for those
98 	 * IRQs that we activated.
99 	 */
100 	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
101 
102 	/* Tx IRQ */
103 	regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
104 	flags = xcsr & mask;
105 
106 	if (flags)
107 		iret = IRQ_HANDLED;
108 	else
109 		goto irq_rx;
110 
111 	if (flags & FSL_SAI_CSR_WSF)
112 		dev_dbg(dev, "isr: Start of Tx word detected\n");
113 
114 	if (flags & FSL_SAI_CSR_SEF)
115 		dev_dbg(dev, "isr: Tx Frame sync error detected\n");
116 
117 	if (flags & FSL_SAI_CSR_FEF)
118 		dev_dbg(dev, "isr: Transmit underrun detected\n");
119 
120 	if (flags & FSL_SAI_CSR_FWF)
121 		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
122 
123 	if (flags & FSL_SAI_CSR_FRF)
124 		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
125 
126 	flags &= FSL_SAI_CSR_xF_W_MASK;
127 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
128 
129 	if (flags)
130 		regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
131 
132 irq_rx:
133 	/* Rx IRQ */
134 	regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
135 	flags = xcsr & mask;
136 
137 	if (flags)
138 		iret = IRQ_HANDLED;
139 	else
140 		goto out;
141 
142 	if (flags & FSL_SAI_CSR_WSF)
143 		dev_dbg(dev, "isr: Start of Rx word detected\n");
144 
145 	if (flags & FSL_SAI_CSR_SEF)
146 		dev_dbg(dev, "isr: Rx Frame sync error detected\n");
147 
148 	if (flags & FSL_SAI_CSR_FEF)
149 		dev_dbg(dev, "isr: Receive overflow detected\n");
150 
151 	if (flags & FSL_SAI_CSR_FWF)
152 		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
153 
154 	if (flags & FSL_SAI_CSR_FRF)
155 		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
156 
157 	flags &= FSL_SAI_CSR_xF_W_MASK;
158 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
159 
160 	if (flags)
161 		regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
162 
163 out:
164 	return iret;
165 }
166 
167 static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
168 				u32 rx_mask, int slots, int slot_width)
169 {
170 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
171 
172 	sai->slots = slots;
173 	sai->slot_width = slot_width;
174 
175 	return 0;
176 }
177 
178 static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
179 				      unsigned int ratio)
180 {
181 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
182 
183 	sai->bclk_ratio = ratio;
184 
185 	return 0;
186 }
187 
188 static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
189 		int clk_id, unsigned int freq, bool tx)
190 {
191 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
192 	unsigned int ofs = sai->soc_data->reg_offset;
193 	u32 val_cr2 = 0;
194 
195 	switch (clk_id) {
196 	case FSL_SAI_CLK_BUS:
197 		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
198 		break;
199 	case FSL_SAI_CLK_MAST1:
200 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
201 		break;
202 	case FSL_SAI_CLK_MAST2:
203 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
204 		break;
205 	case FSL_SAI_CLK_MAST3:
206 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
207 		break;
208 	default:
209 		return -EINVAL;
210 	}
211 
212 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
213 			   FSL_SAI_CR2_MSEL_MASK, val_cr2);
214 
215 	return 0;
216 }
217 
218 static int fsl_sai_set_mclk_rate(struct snd_soc_dai *dai, int clk_id, unsigned int freq)
219 {
220 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
221 	int ret;
222 
223 	fsl_asoc_reparent_pll_clocks(dai->dev, sai->mclk_clk[clk_id],
224 				     sai->pll8k_clk, sai->pll11k_clk, freq);
225 
226 	ret = clk_set_rate(sai->mclk_clk[clk_id], freq);
227 	if (ret < 0)
228 		dev_err(dai->dev, "failed to set clock rate (%u): %d\n", freq, ret);
229 
230 	return ret;
231 }
232 
233 static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
234 		int clk_id, unsigned int freq, int dir)
235 {
236 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
237 	int ret;
238 
239 	if (dir == SND_SOC_CLOCK_IN)
240 		return 0;
241 
242 	if (freq > 0 && clk_id != FSL_SAI_CLK_BUS) {
243 		if (clk_id < 0 || clk_id >= FSL_SAI_MCLK_MAX) {
244 			dev_err(cpu_dai->dev, "Unknown clock id: %d\n", clk_id);
245 			return -EINVAL;
246 		}
247 
248 		if (IS_ERR_OR_NULL(sai->mclk_clk[clk_id])) {
249 			dev_err(cpu_dai->dev, "Unassigned clock: %d\n", clk_id);
250 			return -EINVAL;
251 		}
252 
253 		if (sai->mclk_streams == 0) {
254 			ret = fsl_sai_set_mclk_rate(cpu_dai, clk_id, freq);
255 			if (ret < 0)
256 				return ret;
257 		}
258 	}
259 
260 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, true);
261 	if (ret) {
262 		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
263 		return ret;
264 	}
265 
266 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, false);
267 	if (ret)
268 		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
269 
270 	return ret;
271 }
272 
273 static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
274 				unsigned int fmt, bool tx)
275 {
276 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
277 	unsigned int ofs = sai->soc_data->reg_offset;
278 	u32 val_cr2 = 0, val_cr4 = 0;
279 
280 	if (!sai->is_lsb_first)
281 		val_cr4 |= FSL_SAI_CR4_MF;
282 
283 	sai->is_pdm_mode = false;
284 	sai->is_dsp_mode = false;
285 	/* DAI mode */
286 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
287 	case SND_SOC_DAIFMT_I2S:
288 		/*
289 		 * Frame low, 1clk before data, one word length for frame sync,
290 		 * frame sync starts one serial clock cycle earlier,
291 		 * that is, together with the last bit of the previous
292 		 * data word.
293 		 */
294 		val_cr2 |= FSL_SAI_CR2_BCP;
295 		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
296 		break;
297 	case SND_SOC_DAIFMT_LEFT_J:
298 		/*
299 		 * Frame high, one word length for frame sync,
300 		 * frame sync asserts with the first bit of the frame.
301 		 */
302 		val_cr2 |= FSL_SAI_CR2_BCP;
303 		break;
304 	case SND_SOC_DAIFMT_DSP_A:
305 		/*
306 		 * Frame high, 1clk before data, one bit for frame sync,
307 		 * frame sync starts one serial clock cycle earlier,
308 		 * that is, together with the last bit of the previous
309 		 * data word.
310 		 */
311 		val_cr2 |= FSL_SAI_CR2_BCP;
312 		val_cr4 |= FSL_SAI_CR4_FSE;
313 		sai->is_dsp_mode = true;
314 		break;
315 	case SND_SOC_DAIFMT_DSP_B:
316 		/*
317 		 * Frame high, one bit for frame sync,
318 		 * frame sync asserts with the first bit of the frame.
319 		 */
320 		val_cr2 |= FSL_SAI_CR2_BCP;
321 		sai->is_dsp_mode = true;
322 		break;
323 	case SND_SOC_DAIFMT_PDM:
324 		val_cr2 |= FSL_SAI_CR2_BCP;
325 		val_cr4 &= ~FSL_SAI_CR4_MF;
326 		sai->is_pdm_mode = true;
327 		break;
328 	case SND_SOC_DAIFMT_RIGHT_J:
329 		/* To be done */
330 	default:
331 		return -EINVAL;
332 	}
333 
334 	/* DAI clock inversion */
335 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
336 	case SND_SOC_DAIFMT_IB_IF:
337 		/* Invert both clocks */
338 		val_cr2 ^= FSL_SAI_CR2_BCP;
339 		val_cr4 ^= FSL_SAI_CR4_FSP;
340 		break;
341 	case SND_SOC_DAIFMT_IB_NF:
342 		/* Invert bit clock */
343 		val_cr2 ^= FSL_SAI_CR2_BCP;
344 		break;
345 	case SND_SOC_DAIFMT_NB_IF:
346 		/* Invert frame clock */
347 		val_cr4 ^= FSL_SAI_CR4_FSP;
348 		break;
349 	case SND_SOC_DAIFMT_NB_NF:
350 		/* Nothing to do for both normal cases */
351 		break;
352 	default:
353 		return -EINVAL;
354 	}
355 
356 	/* DAI clock provider masks */
357 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
358 	case SND_SOC_DAIFMT_BP_FP:
359 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
360 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
361 		sai->is_consumer_mode = false;
362 		break;
363 	case SND_SOC_DAIFMT_BC_FC:
364 		sai->is_consumer_mode = true;
365 		break;
366 	case SND_SOC_DAIFMT_BP_FC:
367 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
368 		sai->is_consumer_mode = false;
369 		break;
370 	case SND_SOC_DAIFMT_BC_FP:
371 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
372 		sai->is_consumer_mode = true;
373 		break;
374 	default:
375 		return -EINVAL;
376 	}
377 
378 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
379 			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
380 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
381 			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
382 			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
383 
384 	return 0;
385 }
386 
387 static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
388 {
389 	int ret;
390 
391 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
392 	if (ret) {
393 		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
394 		return ret;
395 	}
396 
397 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
398 	if (ret)
399 		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
400 
401 	return ret;
402 }
403 
404 static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
405 {
406 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
407 	unsigned int reg, ofs = sai->soc_data->reg_offset;
408 	unsigned long clk_rate;
409 	u32 savediv = 0, ratio, bestdiff = freq;
410 	int adir = tx ? RX : TX;
411 	int dir = tx ? TX : RX;
412 	u32 id;
413 	bool support_1_1_ratio = sai->verid.version >= 0x0301;
414 
415 	/* Don't apply to consumer mode */
416 	if (sai->is_consumer_mode)
417 		return 0;
418 
419 	/*
420 	 * There is no point in polling MCLK0 if it is identical to MCLK1.
421 	 * And given that MQS use case has to use MCLK1 though two clocks
422 	 * are the same, we simply skip MCLK0 and start to find from MCLK1.
423 	 */
424 	id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;
425 
426 	for (; id < FSL_SAI_MCLK_MAX; id++) {
427 		int diff;
428 
429 		clk_rate = clk_get_rate(sai->mclk_clk[id]);
430 		if (!clk_rate)
431 			continue;
432 
433 		ratio = DIV_ROUND_CLOSEST(clk_rate, freq);
434 		if (!ratio || ratio > 512)
435 			continue;
436 		if (ratio == 1 && !support_1_1_ratio)
437 			continue;
438 		if ((ratio & 1) && ratio > 1)
439 			continue;
440 
441 		diff = abs((long)clk_rate - ratio * freq);
442 
443 		/*
444 		 * Drop the source that can not be
445 		 * divided into the required rate.
446 		 */
447 		if (diff != 0 && clk_rate / diff < 1000)
448 			continue;
449 
450 		dev_dbg(dai->dev,
451 			"ratio %d for freq %dHz based on clock %ldHz\n",
452 			ratio, freq, clk_rate);
453 
454 
455 		if (diff < bestdiff) {
456 			savediv = ratio;
457 			sai->mclk_id[tx] = id;
458 			bestdiff = diff;
459 		}
460 
461 		if (diff == 0)
462 			break;
463 	}
464 
465 	if (savediv == 0) {
466 		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
467 				tx ? 'T' : 'R', freq);
468 		return -EINVAL;
469 	}
470 
471 	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
472 			sai->mclk_id[tx], savediv, bestdiff);
473 
474 	/*
475 	 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
476 	 *    set TCR2 register for playback.
477 	 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
478 	 *    and capture.
479 	 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
480 	 *    and capture.
481 	 * 4) For Tx and Rx are both Synchronous with another SAI, we just
482 	 *    ignore it.
483 	 */
484 	if (fsl_sai_dir_is_synced(sai, adir))
485 		reg = FSL_SAI_xCR2(!tx, ofs);
486 	else if (!sai->synchronous[dir])
487 		reg = FSL_SAI_xCR2(tx, ofs);
488 	else
489 		return 0;
490 
491 	regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_MSEL_MASK,
492 			   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
493 
494 	if (savediv == 1) {
495 		regmap_update_bits(sai->regmap, reg,
496 				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
497 				   FSL_SAI_CR2_BYP);
498 		if (fsl_sai_dir_is_synced(sai, adir))
499 			regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
500 					   FSL_SAI_CR2_BCI, FSL_SAI_CR2_BCI);
501 		else
502 			regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
503 					   FSL_SAI_CR2_BCI, 0);
504 	} else {
505 		regmap_update_bits(sai->regmap, reg,
506 				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
507 				   savediv / 2 - 1);
508 	}
509 
510 	if (sai->soc_data->max_register >= FSL_SAI_MCTL) {
511 		/* SAI is in master mode at this point, so enable MCLK */
512 		regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
513 				   FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
514 	}
515 
516 	return 0;
517 }
518 
519 static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
520 		struct snd_pcm_hw_params *params,
521 		struct snd_soc_dai *cpu_dai)
522 {
523 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
524 	unsigned int ofs = sai->soc_data->reg_offset;
525 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
526 	unsigned int channels = params_channels(params);
527 	struct snd_dmaengine_dai_dma_data *dma_params;
528 	struct fsl_sai_dl_cfg *dl_cfg = sai->dl_cfg;
529 	u32 word_width = params_width(params);
530 	int trce_mask = 0, dl_cfg_idx = 0;
531 	int dl_cfg_cnt = sai->dl_cfg_cnt;
532 	u32 dl_type = FSL_SAI_DL_I2S;
533 	u32 val_cr4 = 0, val_cr5 = 0;
534 	u32 slots = (channels == 1) ? 2 : channels;
535 	u32 slot_width = word_width;
536 	int adir = tx ? RX : TX;
537 	u32 pins, bclk;
538 	u32 watermark;
539 	int ret, i;
540 
541 	if (sai->slot_width)
542 		slot_width = sai->slot_width;
543 
544 	if (sai->slots)
545 		slots = sai->slots;
546 	else if (sai->bclk_ratio)
547 		slots = sai->bclk_ratio / slot_width;
548 
549 	pins = DIV_ROUND_UP(channels, slots);
550 
551 	/*
552 	 * PDM mode, channels are independent
553 	 * each channels are on one dataline/FIFO.
554 	 */
555 	if (sai->is_pdm_mode) {
556 		pins = channels;
557 		dl_type = FSL_SAI_DL_PDM;
558 	}
559 
560 	for (i = 0; i < dl_cfg_cnt; i++) {
561 		if (dl_cfg[i].type == dl_type && dl_cfg[i].pins[tx] == pins) {
562 			dl_cfg_idx = i;
563 			break;
564 		}
565 	}
566 
567 	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) < pins) {
568 		dev_err(cpu_dai->dev, "channel not supported\n");
569 		return -EINVAL;
570 	}
571 
572 	bclk = params_rate(params) * (sai->bclk_ratio ? sai->bclk_ratio : slots * slot_width);
573 
574 	if (!IS_ERR_OR_NULL(sai->pinctrl)) {
575 		sai->pins_state = fsl_sai_get_pins_state(sai, bclk);
576 		if (!IS_ERR_OR_NULL(sai->pins_state)) {
577 			ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
578 			if (ret) {
579 				dev_err(cpu_dai->dev, "failed to set proper pins state: %d\n", ret);
580 				return ret;
581 			}
582 		}
583 	}
584 
585 	if (!sai->is_consumer_mode) {
586 		ret = fsl_sai_set_bclk(cpu_dai, tx, bclk);
587 		if (ret)
588 			return ret;
589 
590 		/* Do not enable the clock if it is already enabled */
591 		if (!(sai->mclk_streams & BIT(substream->stream))) {
592 			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
593 			if (ret)
594 				return ret;
595 
596 			sai->mclk_streams |= BIT(substream->stream);
597 		}
598 	}
599 
600 	if (!sai->is_dsp_mode && !sai->is_pdm_mode)
601 		val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
602 
603 	val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
604 	val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
605 
606 	if (sai->is_lsb_first || sai->is_pdm_mode)
607 		val_cr5 |= FSL_SAI_CR5_FBT(0);
608 	else
609 		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
610 
611 	val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
612 
613 	/* Set to output mode to avoid tri-stated data pins */
614 	if (tx)
615 		val_cr4 |= FSL_SAI_CR4_CHMOD;
616 
617 	/*
618 	 * For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
619 	 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
620 	 * RCR5(TCR5) for playback(capture), or there will be sync error.
621 	 */
622 
623 	if (!sai->is_consumer_mode && fsl_sai_dir_is_synced(sai, adir)) {
624 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
625 				   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
626 				   FSL_SAI_CR4_CHMOD_MASK,
627 				   val_cr4);
628 		regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
629 				   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
630 				   FSL_SAI_CR5_FBT_MASK, val_cr5);
631 	}
632 
633 	/*
634 	 * Combine mode has limation:
635 	 * - Can't used for singel dataline/FIFO case except the FIFO0
636 	 * - Can't used for multi dataline/FIFO case except the enabled FIFOs
637 	 *   are successive and start from FIFO0
638 	 *
639 	 * So for common usage, all multi fifo case disable the combine mode.
640 	 */
641 	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) <= 1 || sai->is_multi_fifo_dma)
642 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
643 				   FSL_SAI_CR4_FCOMB_MASK, 0);
644 	else
645 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
646 				   FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT);
647 
648 	dma_params = tx ? &sai->dma_params_tx : &sai->dma_params_rx;
649 	dma_params->addr = sai->res->start + FSL_SAI_xDR0(tx) +
650 			   dl_cfg[dl_cfg_idx].start_off[tx] * 0x4;
651 
652 	if (sai->is_multi_fifo_dma) {
653 		sai->audio_config[tx].words_per_fifo = min(slots, channels);
654 		if (tx) {
655 			sai->audio_config[tx].n_fifos_dst = pins;
656 			sai->audio_config[tx].stride_fifos_dst = dl_cfg[dl_cfg_idx].next_off[tx];
657 		} else {
658 			sai->audio_config[tx].n_fifos_src = pins;
659 			sai->audio_config[tx].stride_fifos_src = dl_cfg[dl_cfg_idx].next_off[tx];
660 		}
661 		dma_params->maxburst = sai->audio_config[tx].words_per_fifo * pins;
662 		dma_params->peripheral_config = &sai->audio_config[tx];
663 		dma_params->peripheral_size = sizeof(sai->audio_config[tx]);
664 
665 		watermark = tx ? (sai->soc_data->fifo_depth - dma_params->maxburst) :
666 				 (dma_params->maxburst - 1);
667 		regmap_update_bits(sai->regmap, FSL_SAI_xCR1(tx, ofs),
668 				   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
669 				   watermark);
670 	}
671 
672 	/* Find a proper tcre setting */
673 	for (i = 0; i < sai->soc_data->pins; i++) {
674 		trce_mask = (1 << (i + 1)) - 1;
675 		if (hweight8(dl_cfg[dl_cfg_idx].mask[tx] & trce_mask) == pins)
676 			break;
677 	}
678 
679 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
680 			   FSL_SAI_CR3_TRCE_MASK,
681 			   FSL_SAI_CR3_TRCE((dl_cfg[dl_cfg_idx].mask[tx] & trce_mask)));
682 
683 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
684 			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
685 			   FSL_SAI_CR4_CHMOD_MASK,
686 			   val_cr4);
687 	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
688 			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
689 			   FSL_SAI_CR5_FBT_MASK, val_cr5);
690 	regmap_write(sai->regmap, FSL_SAI_xMR(tx),
691 		     ~0UL - ((1 << min(channels, slots)) - 1));
692 
693 	return 0;
694 }
695 
696 static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
697 		struct snd_soc_dai *cpu_dai)
698 {
699 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
700 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
701 	unsigned int ofs = sai->soc_data->reg_offset;
702 
703 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
704 			   FSL_SAI_CR3_TRCE_MASK, 0);
705 
706 	if (!sai->is_consumer_mode &&
707 			sai->mclk_streams & BIT(substream->stream)) {
708 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
709 		sai->mclk_streams &= ~BIT(substream->stream);
710 	}
711 
712 	return 0;
713 }
714 
715 static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
716 {
717 	unsigned int ofs = sai->soc_data->reg_offset;
718 	bool tx = dir == TX;
719 	u32 xcsr, count = 100;
720 
721 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
722 			   FSL_SAI_CSR_TERE, 0);
723 
724 	/* TERE will remain set till the end of current frame */
725 	do {
726 		udelay(10);
727 		regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
728 	} while (--count && xcsr & FSL_SAI_CSR_TERE);
729 
730 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
731 			   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
732 
733 	/*
734 	 * For sai master mode, after several open/close sai,
735 	 * there will be no frame clock, and can't recover
736 	 * anymore. Add software reset to fix this issue.
737 	 * This is a hardware bug, and will be fix in the
738 	 * next sai version.
739 	 */
740 	if (!sai->is_consumer_mode) {
741 		/* Software Reset */
742 		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR);
743 		/* Clear SR bit to finish the reset */
744 		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0);
745 	}
746 }
747 
748 static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
749 		struct snd_soc_dai *cpu_dai)
750 {
751 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
752 	unsigned int ofs = sai->soc_data->reg_offset;
753 
754 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
755 	int adir = tx ? RX : TX;
756 	int dir = tx ? TX : RX;
757 	u32 xcsr;
758 
759 	/*
760 	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
761 	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
762 	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
763 	 */
764 	regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
765 			   sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
766 	regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
767 			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
768 
769 	/*
770 	 * It is recommended that the transmitter is the last enabled
771 	 * and the first disabled.
772 	 */
773 	switch (cmd) {
774 	case SNDRV_PCM_TRIGGER_START:
775 	case SNDRV_PCM_TRIGGER_RESUME:
776 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
777 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
778 				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
779 
780 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
781 				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
782 		/*
783 		 * Enable the opposite direction for synchronous mode
784 		 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
785 		 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
786 		 *
787 		 * RM recommends to enable RE after TE for case 1 and to enable
788 		 * TE after RE for case 2, but we here may not always guarantee
789 		 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
790 		 * TE after RE, which is against what RM recommends but should
791 		 * be safe to do, judging by years of testing results.
792 		 */
793 		if (fsl_sai_dir_is_synced(sai, adir))
794 			regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
795 					   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
796 
797 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
798 				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
799 		break;
800 	case SNDRV_PCM_TRIGGER_STOP:
801 	case SNDRV_PCM_TRIGGER_SUSPEND:
802 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
803 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
804 				   FSL_SAI_CSR_FRDE, 0);
805 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
806 				   FSL_SAI_CSR_xIE_MASK, 0);
807 
808 		/* Check if the opposite FRDE is also disabled */
809 		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
810 
811 		/*
812 		 * If opposite stream provides clocks for synchronous mode and
813 		 * it is inactive, disable it before disabling the current one
814 		 */
815 		if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
816 			fsl_sai_config_disable(sai, adir);
817 
818 		/*
819 		 * Disable current stream if either of:
820 		 * 1. current stream doesn't provide clocks for synchronous mode
821 		 * 2. current stream provides clocks for synchronous mode but no
822 		 *    more stream is active.
823 		 */
824 		if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
825 			fsl_sai_config_disable(sai, dir);
826 
827 		break;
828 	default:
829 		return -EINVAL;
830 	}
831 
832 	return 0;
833 }
834 
835 static int fsl_sai_startup(struct snd_pcm_substream *substream,
836 		struct snd_soc_dai *cpu_dai)
837 {
838 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
839 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
840 	int ret;
841 
842 	/*
843 	 * EDMA controller needs period size to be a multiple of
844 	 * tx/rx maxburst
845 	 */
846 	if (sai->soc_data->use_edma)
847 		snd_pcm_hw_constraint_step(substream->runtime, 0,
848 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
849 					   tx ? sai->dma_params_tx.maxburst :
850 					   sai->dma_params_rx.maxburst);
851 
852 	ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
853 			SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);
854 
855 	return ret;
856 }
857 
858 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
859 	.set_bclk_ratio	= fsl_sai_set_dai_bclk_ratio,
860 	.set_sysclk	= fsl_sai_set_dai_sysclk,
861 	.set_fmt	= fsl_sai_set_dai_fmt,
862 	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot,
863 	.hw_params	= fsl_sai_hw_params,
864 	.hw_free	= fsl_sai_hw_free,
865 	.trigger	= fsl_sai_trigger,
866 	.startup	= fsl_sai_startup,
867 };
868 
869 static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
870 {
871 	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
872 	unsigned int ofs = sai->soc_data->reg_offset;
873 
874 	/* Software Reset for both Tx and Rx */
875 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
876 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
877 	/* Clear SR bit to finish the reset */
878 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
879 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
880 
881 	regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
882 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
883 			   sai->soc_data->fifo_depth - sai->dma_params_tx.maxburst);
884 	regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
885 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
886 			   sai->dma_params_rx.maxburst - 1);
887 
888 	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
889 				&sai->dma_params_rx);
890 
891 	return 0;
892 }
893 
894 static int fsl_sai_dai_resume(struct snd_soc_component *component)
895 {
896 	struct fsl_sai *sai = snd_soc_component_get_drvdata(component);
897 	struct device *dev = &sai->pdev->dev;
898 	int ret;
899 
900 	if (!IS_ERR_OR_NULL(sai->pinctrl) && !IS_ERR_OR_NULL(sai->pins_state)) {
901 		ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
902 		if (ret) {
903 			dev_err(dev, "failed to set proper pins state: %d\n", ret);
904 			return ret;
905 		}
906 	}
907 
908 	return 0;
909 }
910 
911 static struct snd_soc_dai_driver fsl_sai_dai_template = {
912 	.probe = fsl_sai_dai_probe,
913 	.playback = {
914 		.stream_name = "CPU-Playback",
915 		.channels_min = 1,
916 		.channels_max = 32,
917 		.rate_min = 8000,
918 		.rate_max = 2822400,
919 		.rates = SNDRV_PCM_RATE_KNOT,
920 		.formats = FSL_SAI_FORMATS,
921 	},
922 	.capture = {
923 		.stream_name = "CPU-Capture",
924 		.channels_min = 1,
925 		.channels_max = 32,
926 		.rate_min = 8000,
927 		.rate_max = 2822400,
928 		.rates = SNDRV_PCM_RATE_KNOT,
929 		.formats = FSL_SAI_FORMATS,
930 	},
931 	.ops = &fsl_sai_pcm_dai_ops,
932 };
933 
934 static const struct snd_soc_component_driver fsl_component = {
935 	.name			= "fsl-sai",
936 	.resume			= fsl_sai_dai_resume,
937 	.legacy_dai_naming	= 1,
938 };
939 
940 static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
941 	{FSL_SAI_TCR1(0), 0},
942 	{FSL_SAI_TCR2(0), 0},
943 	{FSL_SAI_TCR3(0), 0},
944 	{FSL_SAI_TCR4(0), 0},
945 	{FSL_SAI_TCR5(0), 0},
946 	{FSL_SAI_TDR0, 0},
947 	{FSL_SAI_TDR1, 0},
948 	{FSL_SAI_TDR2, 0},
949 	{FSL_SAI_TDR3, 0},
950 	{FSL_SAI_TDR4, 0},
951 	{FSL_SAI_TDR5, 0},
952 	{FSL_SAI_TDR6, 0},
953 	{FSL_SAI_TDR7, 0},
954 	{FSL_SAI_TMR, 0},
955 	{FSL_SAI_RCR1(0), 0},
956 	{FSL_SAI_RCR2(0), 0},
957 	{FSL_SAI_RCR3(0), 0},
958 	{FSL_SAI_RCR4(0), 0},
959 	{FSL_SAI_RCR5(0), 0},
960 	{FSL_SAI_RMR, 0},
961 };
962 
963 static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
964 	{FSL_SAI_TCR1(8), 0},
965 	{FSL_SAI_TCR2(8), 0},
966 	{FSL_SAI_TCR3(8), 0},
967 	{FSL_SAI_TCR4(8), 0},
968 	{FSL_SAI_TCR5(8), 0},
969 	{FSL_SAI_TDR0, 0},
970 	{FSL_SAI_TDR1, 0},
971 	{FSL_SAI_TDR2, 0},
972 	{FSL_SAI_TDR3, 0},
973 	{FSL_SAI_TDR4, 0},
974 	{FSL_SAI_TDR5, 0},
975 	{FSL_SAI_TDR6, 0},
976 	{FSL_SAI_TDR7, 0},
977 	{FSL_SAI_TMR, 0},
978 	{FSL_SAI_RCR1(8), 0},
979 	{FSL_SAI_RCR2(8), 0},
980 	{FSL_SAI_RCR3(8), 0},
981 	{FSL_SAI_RCR4(8), 0},
982 	{FSL_SAI_RCR5(8), 0},
983 	{FSL_SAI_RMR, 0},
984 	{FSL_SAI_MCTL, 0},
985 	{FSL_SAI_MDIV, 0},
986 };
987 
988 static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
989 {
990 	struct fsl_sai *sai = dev_get_drvdata(dev);
991 	unsigned int ofs = sai->soc_data->reg_offset;
992 
993 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
994 		return true;
995 
996 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
997 		return true;
998 
999 	switch (reg) {
1000 	case FSL_SAI_TFR0:
1001 	case FSL_SAI_TFR1:
1002 	case FSL_SAI_TFR2:
1003 	case FSL_SAI_TFR3:
1004 	case FSL_SAI_TFR4:
1005 	case FSL_SAI_TFR5:
1006 	case FSL_SAI_TFR6:
1007 	case FSL_SAI_TFR7:
1008 	case FSL_SAI_TMR:
1009 	case FSL_SAI_RDR0:
1010 	case FSL_SAI_RDR1:
1011 	case FSL_SAI_RDR2:
1012 	case FSL_SAI_RDR3:
1013 	case FSL_SAI_RDR4:
1014 	case FSL_SAI_RDR5:
1015 	case FSL_SAI_RDR6:
1016 	case FSL_SAI_RDR7:
1017 	case FSL_SAI_RFR0:
1018 	case FSL_SAI_RFR1:
1019 	case FSL_SAI_RFR2:
1020 	case FSL_SAI_RFR3:
1021 	case FSL_SAI_RFR4:
1022 	case FSL_SAI_RFR5:
1023 	case FSL_SAI_RFR6:
1024 	case FSL_SAI_RFR7:
1025 	case FSL_SAI_RMR:
1026 	case FSL_SAI_MCTL:
1027 	case FSL_SAI_MDIV:
1028 	case FSL_SAI_VERID:
1029 	case FSL_SAI_PARAM:
1030 	case FSL_SAI_TTCTN:
1031 	case FSL_SAI_RTCTN:
1032 	case FSL_SAI_TTCTL:
1033 	case FSL_SAI_TBCTN:
1034 	case FSL_SAI_TTCAP:
1035 	case FSL_SAI_RTCTL:
1036 	case FSL_SAI_RBCTN:
1037 	case FSL_SAI_RTCAP:
1038 		return true;
1039 	default:
1040 		return false;
1041 	}
1042 }
1043 
1044 static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
1045 {
1046 	struct fsl_sai *sai = dev_get_drvdata(dev);
1047 	unsigned int ofs = sai->soc_data->reg_offset;
1048 
1049 	if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
1050 		return true;
1051 
1052 	/* Set VERID and PARAM be volatile for reading value in probe */
1053 	if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
1054 		return true;
1055 
1056 	switch (reg) {
1057 	case FSL_SAI_TFR0:
1058 	case FSL_SAI_TFR1:
1059 	case FSL_SAI_TFR2:
1060 	case FSL_SAI_TFR3:
1061 	case FSL_SAI_TFR4:
1062 	case FSL_SAI_TFR5:
1063 	case FSL_SAI_TFR6:
1064 	case FSL_SAI_TFR7:
1065 	case FSL_SAI_RFR0:
1066 	case FSL_SAI_RFR1:
1067 	case FSL_SAI_RFR2:
1068 	case FSL_SAI_RFR3:
1069 	case FSL_SAI_RFR4:
1070 	case FSL_SAI_RFR5:
1071 	case FSL_SAI_RFR6:
1072 	case FSL_SAI_RFR7:
1073 	case FSL_SAI_RDR0:
1074 	case FSL_SAI_RDR1:
1075 	case FSL_SAI_RDR2:
1076 	case FSL_SAI_RDR3:
1077 	case FSL_SAI_RDR4:
1078 	case FSL_SAI_RDR5:
1079 	case FSL_SAI_RDR6:
1080 	case FSL_SAI_RDR7:
1081 		return true;
1082 	default:
1083 		return false;
1084 	}
1085 }
1086 
1087 static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
1088 {
1089 	struct fsl_sai *sai = dev_get_drvdata(dev);
1090 	unsigned int ofs = sai->soc_data->reg_offset;
1091 
1092 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1093 		return true;
1094 
1095 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1096 		return true;
1097 
1098 	switch (reg) {
1099 	case FSL_SAI_TDR0:
1100 	case FSL_SAI_TDR1:
1101 	case FSL_SAI_TDR2:
1102 	case FSL_SAI_TDR3:
1103 	case FSL_SAI_TDR4:
1104 	case FSL_SAI_TDR5:
1105 	case FSL_SAI_TDR6:
1106 	case FSL_SAI_TDR7:
1107 	case FSL_SAI_TMR:
1108 	case FSL_SAI_RMR:
1109 	case FSL_SAI_MCTL:
1110 	case FSL_SAI_MDIV:
1111 	case FSL_SAI_TTCTL:
1112 	case FSL_SAI_RTCTL:
1113 		return true;
1114 	default:
1115 		return false;
1116 	}
1117 }
1118 
1119 static struct regmap_config fsl_sai_regmap_config = {
1120 	.reg_bits = 32,
1121 	.reg_stride = 4,
1122 	.val_bits = 32,
1123 	.fast_io = true,
1124 
1125 	.max_register = FSL_SAI_RMR,
1126 	.reg_defaults = fsl_sai_reg_defaults_ofs0,
1127 	.num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
1128 	.readable_reg = fsl_sai_readable_reg,
1129 	.volatile_reg = fsl_sai_volatile_reg,
1130 	.writeable_reg = fsl_sai_writeable_reg,
1131 	.cache_type = REGCACHE_FLAT,
1132 };
1133 
1134 static int fsl_sai_check_version(struct device *dev)
1135 {
1136 	struct fsl_sai *sai = dev_get_drvdata(dev);
1137 	unsigned char ofs = sai->soc_data->reg_offset;
1138 	unsigned int val;
1139 	int ret;
1140 
1141 	if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
1142 		return 0;
1143 
1144 	ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
1145 	if (ret < 0)
1146 		return ret;
1147 
1148 	dev_dbg(dev, "VERID: 0x%016X\n", val);
1149 
1150 	sai->verid.version = val &
1151 		(FSL_SAI_VERID_MAJOR_MASK | FSL_SAI_VERID_MINOR_MASK);
1152 	sai->verid.version >>= FSL_SAI_VERID_MINOR_SHIFT;
1153 	sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
1154 
1155 	ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
1156 	if (ret < 0)
1157 		return ret;
1158 
1159 	dev_dbg(dev, "PARAM: 0x%016X\n", val);
1160 
1161 	/* Max slots per frame, power of 2 */
1162 	sai->param.slot_num = 1 <<
1163 		((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
1164 
1165 	/* Words per fifo, power of 2 */
1166 	sai->param.fifo_depth = 1 <<
1167 		((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
1168 
1169 	/* Number of datalines implemented */
1170 	sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
1171 
1172 	return 0;
1173 }
1174 
1175 /*
1176  * Calculate the offset between first two datalines, don't
1177  * different offset in one case.
1178  */
1179 static unsigned int fsl_sai_calc_dl_off(unsigned long dl_mask)
1180 {
1181 	int fbidx, nbidx, offset;
1182 
1183 	fbidx = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1184 	nbidx = find_next_bit(&dl_mask, FSL_SAI_DL_NUM, fbidx + 1);
1185 	offset = nbidx - fbidx - 1;
1186 
1187 	return (offset < 0 || offset >= (FSL_SAI_DL_NUM - 1) ? 0 : offset);
1188 }
1189 
1190 /*
1191  * read the fsl,dataline property from dts file.
1192  * It has 3 value for each configuration, first one means the type:
1193  * I2S(1) or PDM(2), second one is dataline mask for 'rx', third one is
1194  * dataline mask for 'tx'. for example
1195  *
1196  * fsl,dataline = <1 0xff 0xff 2 0xff 0x11>,
1197  *
1198  * It means I2S type rx mask is 0xff, tx mask is 0xff, PDM type
1199  * rx mask is 0xff, tx mask is 0x11 (dataline 1 and 4 enabled).
1200  *
1201  */
1202 static int fsl_sai_read_dlcfg(struct fsl_sai *sai)
1203 {
1204 	struct platform_device *pdev = sai->pdev;
1205 	struct device_node *np = pdev->dev.of_node;
1206 	struct device *dev = &pdev->dev;
1207 	int ret, elems, i, index, num_cfg;
1208 	char *propname = "fsl,dataline";
1209 	struct fsl_sai_dl_cfg *cfg;
1210 	unsigned long dl_mask;
1211 	unsigned int soc_dl;
1212 	u32 rx, tx, type;
1213 
1214 	elems = of_property_count_u32_elems(np, propname);
1215 
1216 	if (elems <= 0) {
1217 		elems = 0;
1218 	} else if (elems % 3) {
1219 		dev_err(dev, "Number of elements must be divisible to 3.\n");
1220 		return -EINVAL;
1221 	}
1222 
1223 	num_cfg = elems / 3;
1224 	/*  Add one more for default value */
1225 	cfg = devm_kzalloc(&pdev->dev, (num_cfg + 1) * sizeof(*cfg), GFP_KERNEL);
1226 	if (!cfg)
1227 		return -ENOMEM;
1228 
1229 	/* Consider default value "0 0xFF 0xFF" if property is missing */
1230 	soc_dl = BIT(sai->soc_data->pins) - 1;
1231 	cfg[0].type = FSL_SAI_DL_DEFAULT;
1232 	cfg[0].pins[0] = sai->soc_data->pins;
1233 	cfg[0].mask[0] = soc_dl;
1234 	cfg[0].start_off[0] = 0;
1235 	cfg[0].next_off[0] = 0;
1236 
1237 	cfg[0].pins[1] = sai->soc_data->pins;
1238 	cfg[0].mask[1] = soc_dl;
1239 	cfg[0].start_off[1] = 0;
1240 	cfg[0].next_off[1] = 0;
1241 	for (i = 1, index = 0; i < num_cfg + 1; i++) {
1242 		/*
1243 		 * type of dataline
1244 		 * 0 means default mode
1245 		 * 1 means I2S mode
1246 		 * 2 means PDM mode
1247 		 */
1248 		ret = of_property_read_u32_index(np, propname, index++, &type);
1249 		if (ret)
1250 			return -EINVAL;
1251 
1252 		ret = of_property_read_u32_index(np, propname, index++, &rx);
1253 		if (ret)
1254 			return -EINVAL;
1255 
1256 		ret = of_property_read_u32_index(np, propname, index++, &tx);
1257 		if (ret)
1258 			return -EINVAL;
1259 
1260 		if ((rx & ~soc_dl) || (tx & ~soc_dl)) {
1261 			dev_err(dev, "dataline cfg[%d] setting error, mask is 0x%x\n", i, soc_dl);
1262 			return -EINVAL;
1263 		}
1264 
1265 		rx = rx & soc_dl;
1266 		tx = tx & soc_dl;
1267 
1268 		cfg[i].type = type;
1269 		cfg[i].pins[0] = hweight8(rx);
1270 		cfg[i].mask[0] = rx;
1271 		dl_mask = rx;
1272 		cfg[i].start_off[0] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1273 		cfg[i].next_off[0] = fsl_sai_calc_dl_off(rx);
1274 
1275 		cfg[i].pins[1] = hweight8(tx);
1276 		cfg[i].mask[1] = tx;
1277 		dl_mask = tx;
1278 		cfg[i].start_off[1] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1279 		cfg[i].next_off[1] = fsl_sai_calc_dl_off(tx);
1280 	}
1281 
1282 	sai->dl_cfg = cfg;
1283 	sai->dl_cfg_cnt = num_cfg + 1;
1284 	return 0;
1285 }
1286 
1287 static int fsl_sai_runtime_suspend(struct device *dev);
1288 static int fsl_sai_runtime_resume(struct device *dev);
1289 
1290 static int fsl_sai_probe(struct platform_device *pdev)
1291 {
1292 	struct device_node *np = pdev->dev.of_node;
1293 	struct device *dev = &pdev->dev;
1294 	struct fsl_sai *sai;
1295 	struct regmap *gpr;
1296 	void __iomem *base;
1297 	char tmp[8];
1298 	int irq, ret, i;
1299 	int index;
1300 	u32 dmas[4];
1301 
1302 	sai = devm_kzalloc(dev, sizeof(*sai), GFP_KERNEL);
1303 	if (!sai)
1304 		return -ENOMEM;
1305 
1306 	sai->pdev = pdev;
1307 	sai->soc_data = of_device_get_match_data(dev);
1308 
1309 	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1310 
1311 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &sai->res);
1312 	if (IS_ERR(base))
1313 		return PTR_ERR(base);
1314 
1315 	if (sai->soc_data->reg_offset == 8) {
1316 		fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1317 		fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1318 		fsl_sai_regmap_config.num_reg_defaults =
1319 			ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
1320 	}
1321 
1322 	sai->regmap = devm_regmap_init_mmio(dev, base, &fsl_sai_regmap_config);
1323 	if (IS_ERR(sai->regmap)) {
1324 		dev_err(dev, "regmap init failed\n");
1325 		return PTR_ERR(sai->regmap);
1326 	}
1327 
1328 	sai->bus_clk = devm_clk_get(dev, "bus");
1329 	/* Compatible with old DTB cases */
1330 	if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
1331 		sai->bus_clk = devm_clk_get(dev, "sai");
1332 	if (IS_ERR(sai->bus_clk)) {
1333 		dev_err(dev, "failed to get bus clock: %ld\n",
1334 				PTR_ERR(sai->bus_clk));
1335 		/* -EPROBE_DEFER */
1336 		return PTR_ERR(sai->bus_clk);
1337 	}
1338 
1339 	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
1340 		sprintf(tmp, "mclk%d", i);
1341 		sai->mclk_clk[i] = devm_clk_get(dev, tmp);
1342 		if (IS_ERR(sai->mclk_clk[i])) {
1343 			dev_err(dev, "failed to get mclk%d clock: %ld\n",
1344 					i, PTR_ERR(sai->mclk_clk[i]));
1345 			sai->mclk_clk[i] = NULL;
1346 		}
1347 	}
1348 
1349 	if (sai->soc_data->mclk0_is_mclk1)
1350 		sai->mclk_clk[0] = sai->mclk_clk[1];
1351 	else
1352 		sai->mclk_clk[0] = sai->bus_clk;
1353 
1354 	fsl_asoc_get_pll_clocks(&pdev->dev, &sai->pll8k_clk,
1355 				&sai->pll11k_clk);
1356 
1357 	/* Use Multi FIFO mode depending on the support from SDMA script */
1358 	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1359 	if (!sai->soc_data->use_edma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI)
1360 		sai->is_multi_fifo_dma = true;
1361 
1362 	/* read dataline mask for rx and tx*/
1363 	ret = fsl_sai_read_dlcfg(sai);
1364 	if (ret < 0) {
1365 		dev_err(dev, "failed to read dlcfg %d\n", ret);
1366 		return ret;
1367 	}
1368 
1369 	irq = platform_get_irq(pdev, 0);
1370 	if (irq < 0)
1371 		return irq;
1372 
1373 	ret = devm_request_irq(dev, irq, fsl_sai_isr, IRQF_SHARED,
1374 			       np->name, sai);
1375 	if (ret) {
1376 		dev_err(dev, "failed to claim irq %u\n", irq);
1377 		return ret;
1378 	}
1379 
1380 	memcpy(&sai->cpu_dai_drv, &fsl_sai_dai_template,
1381 	       sizeof(fsl_sai_dai_template));
1382 
1383 	/* Sync Tx with Rx as default by following old DT binding */
1384 	sai->synchronous[RX] = true;
1385 	sai->synchronous[TX] = false;
1386 	sai->cpu_dai_drv.symmetric_rate = 1;
1387 	sai->cpu_dai_drv.symmetric_channels = 1;
1388 	sai->cpu_dai_drv.symmetric_sample_bits = 1;
1389 
1390 	if (of_property_read_bool(np, "fsl,sai-synchronous-rx") &&
1391 	    of_property_read_bool(np, "fsl,sai-asynchronous")) {
1392 		/* error out if both synchronous and asynchronous are present */
1393 		dev_err(dev, "invalid binding for synchronous mode\n");
1394 		return -EINVAL;
1395 	}
1396 
1397 	if (of_property_read_bool(np, "fsl,sai-synchronous-rx")) {
1398 		/* Sync Rx with Tx */
1399 		sai->synchronous[RX] = false;
1400 		sai->synchronous[TX] = true;
1401 	} else if (of_property_read_bool(np, "fsl,sai-asynchronous")) {
1402 		/* Discard all settings for asynchronous mode */
1403 		sai->synchronous[RX] = false;
1404 		sai->synchronous[TX] = false;
1405 		sai->cpu_dai_drv.symmetric_rate = 0;
1406 		sai->cpu_dai_drv.symmetric_channels = 0;
1407 		sai->cpu_dai_drv.symmetric_sample_bits = 0;
1408 	}
1409 
1410 	sai->mclk_direction_output = of_property_read_bool(np, "fsl,sai-mclk-direction-output");
1411 
1412 	if (sai->mclk_direction_output &&
1413 	    of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1414 		gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
1415 		if (IS_ERR(gpr)) {
1416 			dev_err(dev, "cannot find iomuxc registers\n");
1417 			return PTR_ERR(gpr);
1418 		}
1419 
1420 		index = of_alias_get_id(np, "sai");
1421 		if (index < 0)
1422 			return index;
1423 
1424 		regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
1425 				   MCLK_DIR(index));
1426 	}
1427 
1428 	sai->dma_params_rx.addr = sai->res->start + FSL_SAI_RDR0;
1429 	sai->dma_params_tx.addr = sai->res->start + FSL_SAI_TDR0;
1430 	sai->dma_params_rx.maxburst =
1431 		sai->soc_data->max_burst[RX] ? sai->soc_data->max_burst[RX] : FSL_SAI_MAXBURST_RX;
1432 	sai->dma_params_tx.maxburst =
1433 		sai->soc_data->max_burst[TX] ? sai->soc_data->max_burst[TX] : FSL_SAI_MAXBURST_TX;
1434 
1435 	sai->pinctrl = devm_pinctrl_get(&pdev->dev);
1436 
1437 	platform_set_drvdata(pdev, sai);
1438 	pm_runtime_enable(dev);
1439 	if (!pm_runtime_enabled(dev)) {
1440 		ret = fsl_sai_runtime_resume(dev);
1441 		if (ret)
1442 			goto err_pm_disable;
1443 	}
1444 
1445 	ret = pm_runtime_resume_and_get(dev);
1446 	if (ret < 0)
1447 		goto err_pm_get_sync;
1448 
1449 	/* Get sai version */
1450 	ret = fsl_sai_check_version(dev);
1451 	if (ret < 0)
1452 		dev_warn(dev, "Error reading SAI version: %d\n", ret);
1453 
1454 	/* Select MCLK direction */
1455 	if (sai->mclk_direction_output &&
1456 	    sai->soc_data->max_register >= FSL_SAI_MCTL) {
1457 		regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
1458 				   FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
1459 	}
1460 
1461 	ret = pm_runtime_put_sync(dev);
1462 	if (ret < 0 && ret != -ENOSYS)
1463 		goto err_pm_get_sync;
1464 
1465 	/*
1466 	 * Register platform component before registering cpu dai for there
1467 	 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1468 	 */
1469 	if (sai->soc_data->use_imx_pcm) {
1470 		ret = imx_pcm_dma_init(pdev);
1471 		if (ret) {
1472 			dev_err_probe(dev, ret, "PCM DMA init failed\n");
1473 			if (!IS_ENABLED(CONFIG_SND_SOC_IMX_PCM_DMA))
1474 				dev_err(dev, "Error: You must enable the imx-pcm-dma support!\n");
1475 			goto err_pm_get_sync;
1476 		}
1477 	} else {
1478 		ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0);
1479 		if (ret) {
1480 			dev_err_probe(dev, ret, "Registering PCM dmaengine failed\n");
1481 			goto err_pm_get_sync;
1482 		}
1483 	}
1484 
1485 	ret = devm_snd_soc_register_component(dev, &fsl_component,
1486 					      &sai->cpu_dai_drv, 1);
1487 	if (ret)
1488 		goto err_pm_get_sync;
1489 
1490 	return ret;
1491 
1492 err_pm_get_sync:
1493 	if (!pm_runtime_status_suspended(dev))
1494 		fsl_sai_runtime_suspend(dev);
1495 err_pm_disable:
1496 	pm_runtime_disable(dev);
1497 
1498 	return ret;
1499 }
1500 
1501 static void fsl_sai_remove(struct platform_device *pdev)
1502 {
1503 	pm_runtime_disable(&pdev->dev);
1504 	if (!pm_runtime_status_suspended(&pdev->dev))
1505 		fsl_sai_runtime_suspend(&pdev->dev);
1506 }
1507 
1508 static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
1509 	.use_imx_pcm = false,
1510 	.use_edma = false,
1511 	.fifo_depth = 32,
1512 	.pins = 1,
1513 	.reg_offset = 0,
1514 	.mclk0_is_mclk1 = false,
1515 	.flags = 0,
1516 	.max_register = FSL_SAI_RMR,
1517 };
1518 
1519 static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
1520 	.use_imx_pcm = true,
1521 	.use_edma = false,
1522 	.fifo_depth = 32,
1523 	.pins = 1,
1524 	.reg_offset = 0,
1525 	.mclk0_is_mclk1 = true,
1526 	.flags = 0,
1527 	.max_register = FSL_SAI_RMR,
1528 };
1529 
1530 static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
1531 	.use_imx_pcm = true,
1532 	.use_edma = false,
1533 	.fifo_depth = 16,
1534 	.pins = 2,
1535 	.reg_offset = 8,
1536 	.mclk0_is_mclk1 = false,
1537 	.flags = PMQOS_CPU_LATENCY,
1538 	.max_register = FSL_SAI_RMR,
1539 };
1540 
1541 static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
1542 	.use_imx_pcm = true,
1543 	.use_edma = false,
1544 	.fifo_depth = 128,
1545 	.pins = 8,
1546 	.reg_offset = 8,
1547 	.mclk0_is_mclk1 = false,
1548 	.flags = 0,
1549 	.max_register = FSL_SAI_RMR,
1550 };
1551 
1552 static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
1553 	.use_imx_pcm = true,
1554 	.use_edma = true,
1555 	.fifo_depth = 64,
1556 	.pins = 4,
1557 	.reg_offset = 0,
1558 	.mclk0_is_mclk1 = false,
1559 	.flags = 0,
1560 	.max_register = FSL_SAI_RMR,
1561 };
1562 
1563 static const struct fsl_sai_soc_data fsl_sai_imx8mm_data = {
1564 	.use_imx_pcm = true,
1565 	.use_edma = false,
1566 	.fifo_depth = 128,
1567 	.reg_offset = 8,
1568 	.mclk0_is_mclk1 = false,
1569 	.pins = 8,
1570 	.flags = 0,
1571 	.max_register = FSL_SAI_MCTL,
1572 };
1573 
1574 static const struct fsl_sai_soc_data fsl_sai_imx8mn_data = {
1575 	.use_imx_pcm = true,
1576 	.use_edma = false,
1577 	.fifo_depth = 128,
1578 	.reg_offset = 8,
1579 	.mclk0_is_mclk1 = false,
1580 	.pins = 8,
1581 	.flags = 0,
1582 	.max_register = FSL_SAI_MDIV,
1583 };
1584 
1585 static const struct fsl_sai_soc_data fsl_sai_imx8mp_data = {
1586 	.use_imx_pcm = true,
1587 	.use_edma = false,
1588 	.fifo_depth = 128,
1589 	.reg_offset = 8,
1590 	.mclk0_is_mclk1 = false,
1591 	.pins = 8,
1592 	.flags = 0,
1593 	.max_register = FSL_SAI_MDIV,
1594 	.mclk_with_tere = true,
1595 };
1596 
1597 static const struct fsl_sai_soc_data fsl_sai_imx8ulp_data = {
1598 	.use_imx_pcm = true,
1599 	.use_edma = true,
1600 	.fifo_depth = 16,
1601 	.reg_offset = 8,
1602 	.mclk0_is_mclk1 = false,
1603 	.pins = 4,
1604 	.flags = PMQOS_CPU_LATENCY,
1605 	.max_register = FSL_SAI_RTCAP,
1606 };
1607 
1608 static const struct fsl_sai_soc_data fsl_sai_imx93_data = {
1609 	.use_imx_pcm = true,
1610 	.use_edma = true,
1611 	.fifo_depth = 128,
1612 	.reg_offset = 8,
1613 	.mclk0_is_mclk1 = false,
1614 	.pins = 4,
1615 	.flags = 0,
1616 	.max_register = FSL_SAI_MCTL,
1617 	.max_burst = {8, 8},
1618 };
1619 
1620 static const struct of_device_id fsl_sai_ids[] = {
1621 	{ .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
1622 	{ .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
1623 	{ .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1624 	{ .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
1625 	{ .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1626 	{ .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1627 	{ .compatible = "fsl,imx8mm-sai", .data = &fsl_sai_imx8mm_data },
1628 	{ .compatible = "fsl,imx8mp-sai", .data = &fsl_sai_imx8mp_data },
1629 	{ .compatible = "fsl,imx8ulp-sai", .data = &fsl_sai_imx8ulp_data },
1630 	{ .compatible = "fsl,imx8mn-sai", .data = &fsl_sai_imx8mn_data },
1631 	{ .compatible = "fsl,imx93-sai", .data = &fsl_sai_imx93_data },
1632 	{ /* sentinel */ }
1633 };
1634 MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1635 
1636 static int fsl_sai_runtime_suspend(struct device *dev)
1637 {
1638 	struct fsl_sai *sai = dev_get_drvdata(dev);
1639 
1640 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1641 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1642 
1643 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1644 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1645 
1646 	clk_disable_unprepare(sai->bus_clk);
1647 
1648 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1649 		cpu_latency_qos_remove_request(&sai->pm_qos_req);
1650 
1651 	regcache_cache_only(sai->regmap, true);
1652 
1653 	return 0;
1654 }
1655 
1656 static int fsl_sai_runtime_resume(struct device *dev)
1657 {
1658 	struct fsl_sai *sai = dev_get_drvdata(dev);
1659 	unsigned int ofs = sai->soc_data->reg_offset;
1660 	int ret;
1661 
1662 	ret = clk_prepare_enable(sai->bus_clk);
1663 	if (ret) {
1664 		dev_err(dev, "failed to enable bus clock: %d\n", ret);
1665 		return ret;
1666 	}
1667 
1668 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
1669 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
1670 		if (ret)
1671 			goto disable_bus_clk;
1672 	}
1673 
1674 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
1675 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
1676 		if (ret)
1677 			goto disable_tx_clk;
1678 	}
1679 
1680 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1681 		cpu_latency_qos_add_request(&sai->pm_qos_req, 0);
1682 
1683 	regcache_cache_only(sai->regmap, false);
1684 	regcache_mark_dirty(sai->regmap);
1685 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
1686 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
1687 	usleep_range(1000, 2000);
1688 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
1689 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
1690 
1691 	ret = regcache_sync(sai->regmap);
1692 	if (ret)
1693 		goto disable_rx_clk;
1694 
1695 	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
1696 		regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs),
1697 				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
1698 
1699 	return 0;
1700 
1701 disable_rx_clk:
1702 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1703 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1704 disable_tx_clk:
1705 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1706 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1707 disable_bus_clk:
1708 	clk_disable_unprepare(sai->bus_clk);
1709 
1710 	return ret;
1711 }
1712 
1713 static const struct dev_pm_ops fsl_sai_pm_ops = {
1714 	SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend,
1715 			   fsl_sai_runtime_resume, NULL)
1716 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1717 				pm_runtime_force_resume)
1718 };
1719 
1720 static struct platform_driver fsl_sai_driver = {
1721 	.probe = fsl_sai_probe,
1722 	.remove_new = fsl_sai_remove,
1723 	.driver = {
1724 		.name = "fsl-sai",
1725 		.pm = &fsl_sai_pm_ops,
1726 		.of_match_table = fsl_sai_ids,
1727 	},
1728 };
1729 module_platform_driver(fsl_sai_driver);
1730 
1731 MODULE_DESCRIPTION("Freescale Soc SAI Interface");
1732 MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
1733 MODULE_ALIAS("platform:fsl-sai");
1734 MODULE_LICENSE("GPL");
1735