xref: /linux/sound/soc/fsl/fsl_micfil.c (revision 0da908c291070d89482f6211dbe81d4d43c3f7cb)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright 2018 NXP
3 
4 #include <linux/bitfield.h>
5 #include <linux/clk.h>
6 #include <linux/device.h>
7 #include <linux/interrupt.h>
8 #include <linux/kobject.h>
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_platform.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regmap.h>
17 #include <linux/sysfs.h>
18 #include <linux/types.h>
19 #include <linux/dma/imx-dma.h>
20 #include <sound/dmaengine_pcm.h>
21 #include <sound/pcm.h>
22 #include <sound/soc.h>
23 #include <sound/tlv.h>
24 #include <sound/core.h>
25 
26 #include "fsl_micfil.h"
27 #include "fsl_utils.h"
28 
29 #define MICFIL_OSR_DEFAULT	16
30 
31 enum quality {
32 	QUALITY_HIGH,
33 	QUALITY_MEDIUM,
34 	QUALITY_LOW,
35 	QUALITY_VLOW0,
36 	QUALITY_VLOW1,
37 	QUALITY_VLOW2,
38 };
39 
40 struct fsl_micfil {
41 	struct platform_device *pdev;
42 	struct regmap *regmap;
43 	const struct fsl_micfil_soc_data *soc;
44 	struct clk *busclk;
45 	struct clk *mclk;
46 	struct clk *pll8k_clk;
47 	struct clk *pll11k_clk;
48 	struct snd_dmaengine_dai_dma_data dma_params_rx;
49 	struct sdma_peripheral_config sdmacfg;
50 	struct snd_soc_card *card;
51 	unsigned int dataline;
52 	char name[32];
53 	int irq[MICFIL_IRQ_LINES];
54 	enum quality quality;
55 	int dc_remover;
56 	int vad_init_mode;
57 	int vad_enabled;
58 	int vad_detected;
59 };
60 
61 struct fsl_micfil_soc_data {
62 	unsigned int fifos;
63 	unsigned int fifo_depth;
64 	unsigned int dataline;
65 	bool imx;
66 	bool use_edma;
67 	u64  formats;
68 };
69 
70 static struct fsl_micfil_soc_data fsl_micfil_imx8mm = {
71 	.imx = true,
72 	.fifos = 8,
73 	.fifo_depth = 8,
74 	.dataline =  0xf,
75 	.formats = SNDRV_PCM_FMTBIT_S16_LE,
76 };
77 
78 static struct fsl_micfil_soc_data fsl_micfil_imx8mp = {
79 	.imx = true,
80 	.fifos = 8,
81 	.fifo_depth = 32,
82 	.dataline =  0xf,
83 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
84 };
85 
86 static struct fsl_micfil_soc_data fsl_micfil_imx93 = {
87 	.imx = true,
88 	.fifos = 8,
89 	.fifo_depth = 32,
90 	.dataline =  0xf,
91 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
92 	.use_edma = true,
93 };
94 
95 static const struct of_device_id fsl_micfil_dt_ids[] = {
96 	{ .compatible = "fsl,imx8mm-micfil", .data = &fsl_micfil_imx8mm },
97 	{ .compatible = "fsl,imx8mp-micfil", .data = &fsl_micfil_imx8mp },
98 	{ .compatible = "fsl,imx93-micfil", .data = &fsl_micfil_imx93 },
99 	{}
100 };
101 MODULE_DEVICE_TABLE(of, fsl_micfil_dt_ids);
102 
103 static const char * const micfil_quality_select_texts[] = {
104 	[QUALITY_HIGH] = "High",
105 	[QUALITY_MEDIUM] = "Medium",
106 	[QUALITY_LOW] = "Low",
107 	[QUALITY_VLOW0] = "VLow0",
108 	[QUALITY_VLOW1] = "Vlow1",
109 	[QUALITY_VLOW2] = "Vlow2",
110 };
111 
112 static const struct soc_enum fsl_micfil_quality_enum =
113 	SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_quality_select_texts),
114 			    micfil_quality_select_texts);
115 
116 static DECLARE_TLV_DB_SCALE(gain_tlv, 0, 100, 0);
117 
118 static int micfil_set_quality(struct fsl_micfil *micfil)
119 {
120 	u32 qsel;
121 
122 	switch (micfil->quality) {
123 	case QUALITY_HIGH:
124 		qsel = MICFIL_QSEL_HIGH_QUALITY;
125 		break;
126 	case QUALITY_MEDIUM:
127 		qsel = MICFIL_QSEL_MEDIUM_QUALITY;
128 		break;
129 	case QUALITY_LOW:
130 		qsel = MICFIL_QSEL_LOW_QUALITY;
131 		break;
132 	case QUALITY_VLOW0:
133 		qsel = MICFIL_QSEL_VLOW0_QUALITY;
134 		break;
135 	case QUALITY_VLOW1:
136 		qsel = MICFIL_QSEL_VLOW1_QUALITY;
137 		break;
138 	case QUALITY_VLOW2:
139 		qsel = MICFIL_QSEL_VLOW2_QUALITY;
140 		break;
141 	}
142 
143 	return regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL2,
144 				  MICFIL_CTRL2_QSEL,
145 				  FIELD_PREP(MICFIL_CTRL2_QSEL, qsel));
146 }
147 
148 static int micfil_quality_get(struct snd_kcontrol *kcontrol,
149 			      struct snd_ctl_elem_value *ucontrol)
150 {
151 	struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol);
152 	struct fsl_micfil *micfil = snd_soc_component_get_drvdata(cmpnt);
153 
154 	ucontrol->value.integer.value[0] = micfil->quality;
155 
156 	return 0;
157 }
158 
159 static int micfil_quality_set(struct snd_kcontrol *kcontrol,
160 			      struct snd_ctl_elem_value *ucontrol)
161 {
162 	struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol);
163 	struct fsl_micfil *micfil = snd_soc_component_get_drvdata(cmpnt);
164 
165 	micfil->quality = ucontrol->value.integer.value[0];
166 
167 	return micfil_set_quality(micfil);
168 }
169 
170 static const char * const micfil_hwvad_enable[] = {
171 	"Disable (Record only)",
172 	"Enable (Record with Vad)",
173 };
174 
175 static const char * const micfil_hwvad_init_mode[] = {
176 	"Envelope mode", "Energy mode",
177 };
178 
179 static const char * const micfil_hwvad_hpf_texts[] = {
180 	"Filter bypass",
181 	"Cut-off @1750Hz",
182 	"Cut-off @215Hz",
183 	"Cut-off @102Hz",
184 };
185 
186 /*
187  * DC Remover Control
188  * Filter Bypassed	1 1
189  * Cut-off @21Hz	0 0
190  * Cut-off @83Hz	0 1
191  * Cut-off @152HZ	1 0
192  */
193 static const char * const micfil_dc_remover_texts[] = {
194 	"Cut-off @21Hz", "Cut-off @83Hz",
195 	"Cut-off @152Hz", "Bypass",
196 };
197 
198 static const struct soc_enum hwvad_enable_enum =
199 	SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_hwvad_enable),
200 			    micfil_hwvad_enable);
201 static const struct soc_enum hwvad_init_mode_enum =
202 	SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_hwvad_init_mode),
203 			    micfil_hwvad_init_mode);
204 static const struct soc_enum hwvad_hpf_enum =
205 	SOC_ENUM_SINGLE(REG_MICFIL_VAD0_CTRL2, 0,
206 			ARRAY_SIZE(micfil_hwvad_hpf_texts),
207 			micfil_hwvad_hpf_texts);
208 static const struct soc_enum fsl_micfil_dc_remover_enum =
209 	SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_dc_remover_texts),
210 			    micfil_dc_remover_texts);
211 
212 static int micfil_put_dc_remover_state(struct snd_kcontrol *kcontrol,
213 				       struct snd_ctl_elem_value *ucontrol)
214 {
215 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
216 	struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
217 	struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
218 	unsigned int *item = ucontrol->value.enumerated.item;
219 	int val = snd_soc_enum_item_to_val(e, item[0]);
220 	int i = 0, ret = 0;
221 	u32 reg_val = 0;
222 
223 	if (val < 0 || val > 3)
224 		return -EINVAL;
225 
226 	micfil->dc_remover = val;
227 
228 	/* Calculate total value for all channels */
229 	for (i = 0; i < MICFIL_OUTPUT_CHANNELS; i++)
230 		reg_val |= val << MICFIL_DC_CHX_SHIFT(i);
231 
232 	/* Update DC Remover mode for all channels */
233 	ret = snd_soc_component_update_bits(comp, REG_MICFIL_DC_CTRL,
234 					    MICFIL_DC_CTRL_CONFIG, reg_val);
235 	if (ret < 0)
236 		return ret;
237 
238 	return 0;
239 }
240 
241 static int micfil_get_dc_remover_state(struct snd_kcontrol *kcontrol,
242 				       struct snd_ctl_elem_value *ucontrol)
243 {
244 	struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
245 	struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
246 
247 	ucontrol->value.enumerated.item[0] = micfil->dc_remover;
248 
249 	return 0;
250 }
251 
252 static int hwvad_put_enable(struct snd_kcontrol *kcontrol,
253 			    struct snd_ctl_elem_value *ucontrol)
254 {
255 	struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
256 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
257 	unsigned int *item = ucontrol->value.enumerated.item;
258 	struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
259 	int val = snd_soc_enum_item_to_val(e, item[0]);
260 
261 	micfil->vad_enabled = val;
262 
263 	return 0;
264 }
265 
266 static int hwvad_get_enable(struct snd_kcontrol *kcontrol,
267 			    struct snd_ctl_elem_value *ucontrol)
268 {
269 	struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
270 	struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
271 
272 	ucontrol->value.enumerated.item[0] = micfil->vad_enabled;
273 
274 	return 0;
275 }
276 
277 static int hwvad_put_init_mode(struct snd_kcontrol *kcontrol,
278 			       struct snd_ctl_elem_value *ucontrol)
279 {
280 	struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
281 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
282 	unsigned int *item = ucontrol->value.enumerated.item;
283 	struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
284 	int val = snd_soc_enum_item_to_val(e, item[0]);
285 
286 	/* 0 - Envelope-based Mode
287 	 * 1 - Energy-based Mode
288 	 */
289 	micfil->vad_init_mode = val;
290 
291 	return 0;
292 }
293 
294 static int hwvad_get_init_mode(struct snd_kcontrol *kcontrol,
295 			       struct snd_ctl_elem_value *ucontrol)
296 {
297 	struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
298 	struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
299 
300 	ucontrol->value.enumerated.item[0] = micfil->vad_init_mode;
301 
302 	return 0;
303 }
304 
305 static int hwvad_detected(struct snd_kcontrol *kcontrol,
306 			  struct snd_ctl_elem_value *ucontrol)
307 {
308 	struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
309 	struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
310 
311 	ucontrol->value.enumerated.item[0] = micfil->vad_detected;
312 
313 	return 0;
314 }
315 
316 static const struct snd_kcontrol_new fsl_micfil_snd_controls[] = {
317 	SOC_SINGLE_SX_TLV("CH0 Volume", REG_MICFIL_OUT_CTRL,
318 			  MICFIL_OUTGAIN_CHX_SHIFT(0), 0x8, 0xF, gain_tlv),
319 	SOC_SINGLE_SX_TLV("CH1 Volume", REG_MICFIL_OUT_CTRL,
320 			  MICFIL_OUTGAIN_CHX_SHIFT(1), 0x8, 0xF, gain_tlv),
321 	SOC_SINGLE_SX_TLV("CH2 Volume", REG_MICFIL_OUT_CTRL,
322 			  MICFIL_OUTGAIN_CHX_SHIFT(2), 0x8, 0xF, gain_tlv),
323 	SOC_SINGLE_SX_TLV("CH3 Volume", REG_MICFIL_OUT_CTRL,
324 			  MICFIL_OUTGAIN_CHX_SHIFT(3), 0x8, 0xF, gain_tlv),
325 	SOC_SINGLE_SX_TLV("CH4 Volume", REG_MICFIL_OUT_CTRL,
326 			  MICFIL_OUTGAIN_CHX_SHIFT(4), 0x8, 0xF, gain_tlv),
327 	SOC_SINGLE_SX_TLV("CH5 Volume", REG_MICFIL_OUT_CTRL,
328 			  MICFIL_OUTGAIN_CHX_SHIFT(5), 0x8, 0xF, gain_tlv),
329 	SOC_SINGLE_SX_TLV("CH6 Volume", REG_MICFIL_OUT_CTRL,
330 			  MICFIL_OUTGAIN_CHX_SHIFT(6), 0x8, 0xF, gain_tlv),
331 	SOC_SINGLE_SX_TLV("CH7 Volume", REG_MICFIL_OUT_CTRL,
332 			  MICFIL_OUTGAIN_CHX_SHIFT(7), 0x8, 0xF, gain_tlv),
333 	SOC_ENUM_EXT("MICFIL Quality Select",
334 		     fsl_micfil_quality_enum,
335 		     micfil_quality_get, micfil_quality_set),
336 	SOC_ENUM_EXT("HWVAD Enablement Switch", hwvad_enable_enum,
337 		     hwvad_get_enable, hwvad_put_enable),
338 	SOC_ENUM_EXT("HWVAD Initialization Mode", hwvad_init_mode_enum,
339 		     hwvad_get_init_mode, hwvad_put_init_mode),
340 	SOC_ENUM("HWVAD High-Pass Filter", hwvad_hpf_enum),
341 	SOC_SINGLE("HWVAD ZCD Switch", REG_MICFIL_VAD0_ZCD, 0, 1, 0),
342 	SOC_SINGLE("HWVAD ZCD Auto Threshold Switch",
343 		   REG_MICFIL_VAD0_ZCD, 2, 1, 0),
344 	SOC_ENUM_EXT("MICFIL DC Remover Control", fsl_micfil_dc_remover_enum,
345 		     micfil_get_dc_remover_state, micfil_put_dc_remover_state),
346 	SOC_SINGLE("HWVAD Input Gain", REG_MICFIL_VAD0_CTRL2, 8, 15, 0),
347 	SOC_SINGLE("HWVAD Sound Gain", REG_MICFIL_VAD0_SCONFIG, 0, 15, 0),
348 	SOC_SINGLE("HWVAD Noise Gain", REG_MICFIL_VAD0_NCONFIG, 0, 15, 0),
349 	SOC_SINGLE_RANGE("HWVAD Detector Frame Time", REG_MICFIL_VAD0_CTRL2, 16, 0, 63, 0),
350 	SOC_SINGLE("HWVAD Detector Initialization Time", REG_MICFIL_VAD0_CTRL1, 8, 31, 0),
351 	SOC_SINGLE("HWVAD Noise Filter Adjustment", REG_MICFIL_VAD0_NCONFIG, 8, 31, 0),
352 	SOC_SINGLE("HWVAD ZCD Threshold", REG_MICFIL_VAD0_ZCD, 16, 1023, 0),
353 	SOC_SINGLE("HWVAD ZCD Adjustment", REG_MICFIL_VAD0_ZCD, 8, 15, 0),
354 	SOC_SINGLE("HWVAD ZCD And Behavior Switch",
355 		   REG_MICFIL_VAD0_ZCD, 4, 1, 0),
356 	SOC_SINGLE_BOOL_EXT("VAD Detected", 0, hwvad_detected, NULL),
357 };
358 
359 /* The SRES is a self-negated bit which provides the CPU with the
360  * capability to initialize the PDM Interface module through the
361  * slave-bus interface. This bit always reads as zero, and this
362  * bit is only effective when MDIS is cleared
363  */
364 static int fsl_micfil_reset(struct device *dev)
365 {
366 	struct fsl_micfil *micfil = dev_get_drvdata(dev);
367 	int ret;
368 
369 	ret = regmap_clear_bits(micfil->regmap, REG_MICFIL_CTRL1,
370 				MICFIL_CTRL1_MDIS);
371 	if (ret)
372 		return ret;
373 
374 	ret = regmap_set_bits(micfil->regmap, REG_MICFIL_CTRL1,
375 			      MICFIL_CTRL1_SRES);
376 	if (ret)
377 		return ret;
378 
379 	/*
380 	 * SRES is self-cleared bit, but REG_MICFIL_CTRL1 is defined
381 	 * as non-volatile register, so SRES still remain in regmap
382 	 * cache after set, that every update of REG_MICFIL_CTRL1,
383 	 * software reset happens. so clear it explicitly.
384 	 */
385 	ret = regmap_clear_bits(micfil->regmap, REG_MICFIL_CTRL1,
386 				MICFIL_CTRL1_SRES);
387 	if (ret)
388 		return ret;
389 
390 	/*
391 	 * Set SRES should clear CHnF flags, But even add delay here
392 	 * the CHnF may not be cleared sometimes, so clear CHnF explicitly.
393 	 */
394 	ret = regmap_write_bits(micfil->regmap, REG_MICFIL_STAT, 0xFF, 0xFF);
395 	if (ret)
396 		return ret;
397 
398 	return 0;
399 }
400 
401 static int fsl_micfil_startup(struct snd_pcm_substream *substream,
402 			      struct snd_soc_dai *dai)
403 {
404 	struct fsl_micfil *micfil = snd_soc_dai_get_drvdata(dai);
405 
406 	if (!micfil) {
407 		dev_err(dai->dev, "micfil dai priv_data not set\n");
408 		return -EINVAL;
409 	}
410 
411 	return 0;
412 }
413 
414 /* Enable/disable hwvad interrupts */
415 static int fsl_micfil_configure_hwvad_interrupts(struct fsl_micfil *micfil, int enable)
416 {
417 	u32 vadie_reg = enable ? MICFIL_VAD0_CTRL1_IE : 0;
418 	u32 vaderie_reg = enable ? MICFIL_VAD0_CTRL1_ERIE : 0;
419 
420 	/* Voice Activity Detector Error Interruption */
421 	regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
422 			   MICFIL_VAD0_CTRL1_ERIE, vaderie_reg);
423 
424 	/* Voice Activity Detector Interruption */
425 	regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
426 			   MICFIL_VAD0_CTRL1_IE, vadie_reg);
427 
428 	return 0;
429 }
430 
431 /* Configuration done only in energy-based initialization mode */
432 static int fsl_micfil_init_hwvad_energy_mode(struct fsl_micfil *micfil)
433 {
434 	/* Keep the VADFRENDIS bitfield cleared. */
435 	regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL2,
436 			  MICFIL_VAD0_CTRL2_FRENDIS);
437 
438 	/* Keep the VADPREFEN bitfield cleared. */
439 	regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL2,
440 			  MICFIL_VAD0_CTRL2_PREFEN);
441 
442 	/* Keep the VADSFILEN bitfield cleared. */
443 	regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_SCONFIG,
444 			  MICFIL_VAD0_SCONFIG_SFILEN);
445 
446 	/* Keep the VADSMAXEN bitfield cleared. */
447 	regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_SCONFIG,
448 			  MICFIL_VAD0_SCONFIG_SMAXEN);
449 
450 	/* Keep the VADNFILAUTO bitfield asserted. */
451 	regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
452 			MICFIL_VAD0_NCONFIG_NFILAUT);
453 
454 	/* Keep the VADNMINEN bitfield cleared. */
455 	regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
456 			  MICFIL_VAD0_NCONFIG_NMINEN);
457 
458 	/* Keep the VADNDECEN bitfield cleared. */
459 	regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
460 			  MICFIL_VAD0_NCONFIG_NDECEN);
461 
462 	/* Keep the VADNOREN bitfield cleared. */
463 	regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
464 			  MICFIL_VAD0_NCONFIG_NOREN);
465 
466 	return 0;
467 }
468 
469 /* Configuration done only in envelope-based initialization mode */
470 static int fsl_micfil_init_hwvad_envelope_mode(struct fsl_micfil *micfil)
471 {
472 	/* Assert the VADFRENDIS bitfield */
473 	regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL2,
474 			MICFIL_VAD0_CTRL2_FRENDIS);
475 
476 	/* Assert the VADPREFEN bitfield. */
477 	regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL2,
478 			MICFIL_VAD0_CTRL2_PREFEN);
479 
480 	/* Assert the VADSFILEN bitfield. */
481 	regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_SCONFIG,
482 			MICFIL_VAD0_SCONFIG_SFILEN);
483 
484 	/* Assert the VADSMAXEN bitfield. */
485 	regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_SCONFIG,
486 			MICFIL_VAD0_SCONFIG_SMAXEN);
487 
488 	/* Clear the VADNFILAUTO bitfield */
489 	regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
490 			  MICFIL_VAD0_NCONFIG_NFILAUT);
491 
492 	/* Assert the VADNMINEN bitfield. */
493 	regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
494 			MICFIL_VAD0_NCONFIG_NMINEN);
495 
496 	/* Assert the VADNDECEN bitfield. */
497 	regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
498 			MICFIL_VAD0_NCONFIG_NDECEN);
499 
500 	/* Assert VADNOREN bitfield. */
501 	regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
502 			MICFIL_VAD0_NCONFIG_NOREN);
503 
504 	return 0;
505 }
506 
507 /*
508  * Hardware Voice Active Detection: The HWVAD takes data from the input
509  * of a selected PDM microphone to detect if there is any
510  * voice activity. When a voice activity is detected, an interrupt could
511  * be delivered to the system. Initialization in section 8.4:
512  * Can work in two modes:
513  *  -> Eneveope-based mode (section 8.4.1)
514  *  -> Energy-based mode (section 8.4.2)
515  *
516  * It is important to remark that the HWVAD detector could be enabled
517  * or reset only when the MICFIL isn't running i.e. when the BSY_FIL
518  * bit in STAT register is cleared
519  */
520 static int fsl_micfil_hwvad_enable(struct fsl_micfil *micfil)
521 {
522 	int ret;
523 
524 	micfil->vad_detected = 0;
525 
526 	/* envelope-based specific initialization */
527 	if (micfil->vad_init_mode == MICFIL_HWVAD_ENVELOPE_MODE)
528 		ret = fsl_micfil_init_hwvad_envelope_mode(micfil);
529 	else
530 		ret = fsl_micfil_init_hwvad_energy_mode(micfil);
531 	if (ret)
532 		return ret;
533 
534 	/* Voice Activity Detector Internal Filters Initialization*/
535 	regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
536 			MICFIL_VAD0_CTRL1_ST10);
537 
538 	/* Voice Activity Detector Internal Filter */
539 	regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
540 			  MICFIL_VAD0_CTRL1_ST10);
541 
542 	/* Enable Interrupts */
543 	ret = fsl_micfil_configure_hwvad_interrupts(micfil, 1);
544 	if (ret)
545 		return ret;
546 
547 	/* Voice Activity Detector Reset */
548 	regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
549 			MICFIL_VAD0_CTRL1_RST);
550 
551 	/* Voice Activity Detector Enabled */
552 	regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
553 			MICFIL_VAD0_CTRL1_EN);
554 
555 	return 0;
556 }
557 
558 static int fsl_micfil_hwvad_disable(struct fsl_micfil *micfil)
559 {
560 	struct device *dev = &micfil->pdev->dev;
561 	int ret = 0;
562 
563 	/* Disable HWVAD */
564 	regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
565 			  MICFIL_VAD0_CTRL1_EN);
566 
567 	/* Disable hwvad interrupts */
568 	ret = fsl_micfil_configure_hwvad_interrupts(micfil, 0);
569 	if (ret)
570 		dev_err(dev, "Failed to disable interrupts\n");
571 
572 	return ret;
573 }
574 
575 static int fsl_micfil_trigger(struct snd_pcm_substream *substream, int cmd,
576 			      struct snd_soc_dai *dai)
577 {
578 	struct fsl_micfil *micfil = snd_soc_dai_get_drvdata(dai);
579 	struct device *dev = &micfil->pdev->dev;
580 	int ret;
581 
582 	switch (cmd) {
583 	case SNDRV_PCM_TRIGGER_START:
584 	case SNDRV_PCM_TRIGGER_RESUME:
585 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
586 		ret = fsl_micfil_reset(dev);
587 		if (ret) {
588 			dev_err(dev, "failed to soft reset\n");
589 			return ret;
590 		}
591 
592 		/* DMA Interrupt Selection - DISEL bits
593 		 * 00 - DMA and IRQ disabled
594 		 * 01 - DMA req enabled
595 		 * 10 - IRQ enabled
596 		 * 11 - reserved
597 		 */
598 		ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL1,
599 				MICFIL_CTRL1_DISEL,
600 				FIELD_PREP(MICFIL_CTRL1_DISEL, MICFIL_CTRL1_DISEL_DMA));
601 		if (ret)
602 			return ret;
603 
604 		/* Enable the module */
605 		ret = regmap_set_bits(micfil->regmap, REG_MICFIL_CTRL1,
606 				      MICFIL_CTRL1_PDMIEN);
607 		if (ret)
608 			return ret;
609 
610 		if (micfil->vad_enabled)
611 			fsl_micfil_hwvad_enable(micfil);
612 
613 		break;
614 	case SNDRV_PCM_TRIGGER_STOP:
615 	case SNDRV_PCM_TRIGGER_SUSPEND:
616 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
617 		if (micfil->vad_enabled)
618 			fsl_micfil_hwvad_disable(micfil);
619 
620 		/* Disable the module */
621 		ret = regmap_clear_bits(micfil->regmap, REG_MICFIL_CTRL1,
622 					MICFIL_CTRL1_PDMIEN);
623 		if (ret)
624 			return ret;
625 
626 		ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL1,
627 				MICFIL_CTRL1_DISEL,
628 				FIELD_PREP(MICFIL_CTRL1_DISEL, MICFIL_CTRL1_DISEL_DISABLE));
629 		if (ret)
630 			return ret;
631 		break;
632 	default:
633 		return -EINVAL;
634 	}
635 	return 0;
636 }
637 
638 static int fsl_micfil_reparent_rootclk(struct fsl_micfil *micfil, unsigned int sample_rate)
639 {
640 	struct device *dev = &micfil->pdev->dev;
641 	u64 ratio = sample_rate;
642 	struct clk *clk;
643 	int ret;
644 
645 	/* Get root clock */
646 	clk = micfil->mclk;
647 
648 	/* Disable clock first, for it was enabled by pm_runtime */
649 	clk_disable_unprepare(clk);
650 	fsl_asoc_reparent_pll_clocks(dev, clk, micfil->pll8k_clk,
651 				     micfil->pll11k_clk, ratio);
652 	ret = clk_prepare_enable(clk);
653 	if (ret)
654 		return ret;
655 
656 	return 0;
657 }
658 
659 static int fsl_micfil_hw_params(struct snd_pcm_substream *substream,
660 				struct snd_pcm_hw_params *params,
661 				struct snd_soc_dai *dai)
662 {
663 	struct fsl_micfil *micfil = snd_soc_dai_get_drvdata(dai);
664 	unsigned int channels = params_channels(params);
665 	unsigned int rate = params_rate(params);
666 	int clk_div = 8;
667 	int osr = MICFIL_OSR_DEFAULT;
668 	int ret;
669 
670 	/* 1. Disable the module */
671 	ret = regmap_clear_bits(micfil->regmap, REG_MICFIL_CTRL1,
672 				MICFIL_CTRL1_PDMIEN);
673 	if (ret)
674 		return ret;
675 
676 	/* enable channels */
677 	ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL1,
678 				 0xFF, ((1 << channels) - 1));
679 	if (ret)
680 		return ret;
681 
682 	ret = fsl_micfil_reparent_rootclk(micfil, rate);
683 	if (ret)
684 		return ret;
685 
686 	ret = clk_set_rate(micfil->mclk, rate * clk_div * osr * 8);
687 	if (ret)
688 		return ret;
689 
690 	ret = micfil_set_quality(micfil);
691 	if (ret)
692 		return ret;
693 
694 	ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL2,
695 				 MICFIL_CTRL2_CLKDIV | MICFIL_CTRL2_CICOSR,
696 				 FIELD_PREP(MICFIL_CTRL2_CLKDIV, clk_div) |
697 				 FIELD_PREP(MICFIL_CTRL2_CICOSR, 16 - osr));
698 
699 	/* Configure CIC OSR in VADCICOSR */
700 	regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
701 			   MICFIL_VAD0_CTRL1_CICOSR,
702 			   FIELD_PREP(MICFIL_VAD0_CTRL1_CICOSR, 16 - osr));
703 
704 	/* Configure source channel in VADCHSEL */
705 	regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
706 			   MICFIL_VAD0_CTRL1_CHSEL,
707 			   FIELD_PREP(MICFIL_VAD0_CTRL1_CHSEL, (channels - 1)));
708 
709 	micfil->dma_params_rx.peripheral_config = &micfil->sdmacfg;
710 	micfil->dma_params_rx.peripheral_size = sizeof(micfil->sdmacfg);
711 	micfil->sdmacfg.n_fifos_src = channels;
712 	micfil->sdmacfg.sw_done = true;
713 	micfil->dma_params_rx.maxburst = channels * MICFIL_DMA_MAXBURST_RX;
714 	if (micfil->soc->use_edma)
715 		micfil->dma_params_rx.maxburst = channels;
716 
717 	return 0;
718 }
719 
720 static const struct snd_soc_dai_ops fsl_micfil_dai_ops = {
721 	.startup = fsl_micfil_startup,
722 	.trigger = fsl_micfil_trigger,
723 	.hw_params = fsl_micfil_hw_params,
724 };
725 
726 static int fsl_micfil_dai_probe(struct snd_soc_dai *cpu_dai)
727 {
728 	struct fsl_micfil *micfil = dev_get_drvdata(cpu_dai->dev);
729 	struct device *dev = cpu_dai->dev;
730 	unsigned int val = 0;
731 	int ret, i;
732 
733 	micfil->quality = QUALITY_VLOW0;
734 	micfil->card = cpu_dai->component->card;
735 
736 	/* set default gain to 2 */
737 	regmap_write(micfil->regmap, REG_MICFIL_OUT_CTRL, 0x22222222);
738 
739 	/* set DC Remover in bypass mode*/
740 	for (i = 0; i < MICFIL_OUTPUT_CHANNELS; i++)
741 		val |= MICFIL_DC_BYPASS << MICFIL_DC_CHX_SHIFT(i);
742 	ret = regmap_update_bits(micfil->regmap, REG_MICFIL_DC_CTRL,
743 				 MICFIL_DC_CTRL_CONFIG, val);
744 	if (ret) {
745 		dev_err(dev, "failed to set DC Remover mode bits\n");
746 		return ret;
747 	}
748 	micfil->dc_remover = MICFIL_DC_BYPASS;
749 
750 	snd_soc_dai_init_dma_data(cpu_dai, NULL,
751 				  &micfil->dma_params_rx);
752 
753 	/* FIFO Watermark Control - FIFOWMK*/
754 	ret = regmap_update_bits(micfil->regmap, REG_MICFIL_FIFO_CTRL,
755 			MICFIL_FIFO_CTRL_FIFOWMK,
756 			FIELD_PREP(MICFIL_FIFO_CTRL_FIFOWMK, micfil->soc->fifo_depth - 1));
757 	if (ret)
758 		return ret;
759 
760 	return 0;
761 }
762 
763 static struct snd_soc_dai_driver fsl_micfil_dai = {
764 	.probe = fsl_micfil_dai_probe,
765 	.capture = {
766 		.stream_name = "CPU-Capture",
767 		.channels_min = 1,
768 		.channels_max = 8,
769 		.rates = SNDRV_PCM_RATE_8000_48000,
770 		.formats = SNDRV_PCM_FMTBIT_S16_LE,
771 	},
772 	.ops = &fsl_micfil_dai_ops,
773 };
774 
775 static const struct snd_soc_component_driver fsl_micfil_component = {
776 	.name		= "fsl-micfil-dai",
777 	.controls       = fsl_micfil_snd_controls,
778 	.num_controls   = ARRAY_SIZE(fsl_micfil_snd_controls),
779 	.legacy_dai_naming      = 1,
780 };
781 
782 /* REGMAP */
783 static const struct reg_default fsl_micfil_reg_defaults[] = {
784 	{REG_MICFIL_CTRL1,		0x00000000},
785 	{REG_MICFIL_CTRL2,		0x00000000},
786 	{REG_MICFIL_STAT,		0x00000000},
787 	{REG_MICFIL_FIFO_CTRL,		0x00000007},
788 	{REG_MICFIL_FIFO_STAT,		0x00000000},
789 	{REG_MICFIL_DATACH0,		0x00000000},
790 	{REG_MICFIL_DATACH1,		0x00000000},
791 	{REG_MICFIL_DATACH2,		0x00000000},
792 	{REG_MICFIL_DATACH3,		0x00000000},
793 	{REG_MICFIL_DATACH4,		0x00000000},
794 	{REG_MICFIL_DATACH5,		0x00000000},
795 	{REG_MICFIL_DATACH6,		0x00000000},
796 	{REG_MICFIL_DATACH7,		0x00000000},
797 	{REG_MICFIL_DC_CTRL,		0x00000000},
798 	{REG_MICFIL_OUT_CTRL,		0x00000000},
799 	{REG_MICFIL_OUT_STAT,		0x00000000},
800 	{REG_MICFIL_VAD0_CTRL1,		0x00000000},
801 	{REG_MICFIL_VAD0_CTRL2,		0x000A0000},
802 	{REG_MICFIL_VAD0_STAT,		0x00000000},
803 	{REG_MICFIL_VAD0_SCONFIG,	0x00000000},
804 	{REG_MICFIL_VAD0_NCONFIG,	0x80000000},
805 	{REG_MICFIL_VAD0_NDATA,		0x00000000},
806 	{REG_MICFIL_VAD0_ZCD,		0x00000004},
807 };
808 
809 static bool fsl_micfil_readable_reg(struct device *dev, unsigned int reg)
810 {
811 	switch (reg) {
812 	case REG_MICFIL_CTRL1:
813 	case REG_MICFIL_CTRL2:
814 	case REG_MICFIL_STAT:
815 	case REG_MICFIL_FIFO_CTRL:
816 	case REG_MICFIL_FIFO_STAT:
817 	case REG_MICFIL_DATACH0:
818 	case REG_MICFIL_DATACH1:
819 	case REG_MICFIL_DATACH2:
820 	case REG_MICFIL_DATACH3:
821 	case REG_MICFIL_DATACH4:
822 	case REG_MICFIL_DATACH5:
823 	case REG_MICFIL_DATACH6:
824 	case REG_MICFIL_DATACH7:
825 	case REG_MICFIL_DC_CTRL:
826 	case REG_MICFIL_OUT_CTRL:
827 	case REG_MICFIL_OUT_STAT:
828 	case REG_MICFIL_VAD0_CTRL1:
829 	case REG_MICFIL_VAD0_CTRL2:
830 	case REG_MICFIL_VAD0_STAT:
831 	case REG_MICFIL_VAD0_SCONFIG:
832 	case REG_MICFIL_VAD0_NCONFIG:
833 	case REG_MICFIL_VAD0_NDATA:
834 	case REG_MICFIL_VAD0_ZCD:
835 		return true;
836 	default:
837 		return false;
838 	}
839 }
840 
841 static bool fsl_micfil_writeable_reg(struct device *dev, unsigned int reg)
842 {
843 	switch (reg) {
844 	case REG_MICFIL_CTRL1:
845 	case REG_MICFIL_CTRL2:
846 	case REG_MICFIL_STAT:		/* Write 1 to Clear */
847 	case REG_MICFIL_FIFO_CTRL:
848 	case REG_MICFIL_FIFO_STAT:	/* Write 1 to Clear */
849 	case REG_MICFIL_DC_CTRL:
850 	case REG_MICFIL_OUT_CTRL:
851 	case REG_MICFIL_OUT_STAT:	/* Write 1 to Clear */
852 	case REG_MICFIL_VAD0_CTRL1:
853 	case REG_MICFIL_VAD0_CTRL2:
854 	case REG_MICFIL_VAD0_STAT:	/* Write 1 to Clear */
855 	case REG_MICFIL_VAD0_SCONFIG:
856 	case REG_MICFIL_VAD0_NCONFIG:
857 	case REG_MICFIL_VAD0_ZCD:
858 		return true;
859 	default:
860 		return false;
861 	}
862 }
863 
864 static bool fsl_micfil_volatile_reg(struct device *dev, unsigned int reg)
865 {
866 	switch (reg) {
867 	case REG_MICFIL_STAT:
868 	case REG_MICFIL_DATACH0:
869 	case REG_MICFIL_DATACH1:
870 	case REG_MICFIL_DATACH2:
871 	case REG_MICFIL_DATACH3:
872 	case REG_MICFIL_DATACH4:
873 	case REG_MICFIL_DATACH5:
874 	case REG_MICFIL_DATACH6:
875 	case REG_MICFIL_DATACH7:
876 	case REG_MICFIL_VAD0_STAT:
877 	case REG_MICFIL_VAD0_NDATA:
878 		return true;
879 	default:
880 		return false;
881 	}
882 }
883 
884 static const struct regmap_config fsl_micfil_regmap_config = {
885 	.reg_bits = 32,
886 	.reg_stride = 4,
887 	.val_bits = 32,
888 
889 	.max_register = REG_MICFIL_VAD0_ZCD,
890 	.reg_defaults = fsl_micfil_reg_defaults,
891 	.num_reg_defaults = ARRAY_SIZE(fsl_micfil_reg_defaults),
892 	.readable_reg = fsl_micfil_readable_reg,
893 	.volatile_reg = fsl_micfil_volatile_reg,
894 	.writeable_reg = fsl_micfil_writeable_reg,
895 	.cache_type = REGCACHE_RBTREE,
896 };
897 
898 /* END OF REGMAP */
899 
900 static irqreturn_t micfil_isr(int irq, void *devid)
901 {
902 	struct fsl_micfil *micfil = (struct fsl_micfil *)devid;
903 	struct platform_device *pdev = micfil->pdev;
904 	u32 stat_reg;
905 	u32 fifo_stat_reg;
906 	u32 ctrl1_reg;
907 	bool dma_enabled;
908 	int i;
909 
910 	regmap_read(micfil->regmap, REG_MICFIL_STAT, &stat_reg);
911 	regmap_read(micfil->regmap, REG_MICFIL_CTRL1, &ctrl1_reg);
912 	regmap_read(micfil->regmap, REG_MICFIL_FIFO_STAT, &fifo_stat_reg);
913 
914 	dma_enabled = FIELD_GET(MICFIL_CTRL1_DISEL, ctrl1_reg) == MICFIL_CTRL1_DISEL_DMA;
915 
916 	/* Channel 0-7 Output Data Flags */
917 	for (i = 0; i < MICFIL_OUTPUT_CHANNELS; i++) {
918 		if (stat_reg & MICFIL_STAT_CHXF(i))
919 			dev_dbg(&pdev->dev,
920 				"Data available in Data Channel %d\n", i);
921 		/* if DMA is not enabled, field must be written with 1
922 		 * to clear
923 		 */
924 		if (!dma_enabled)
925 			regmap_write_bits(micfil->regmap,
926 					  REG_MICFIL_STAT,
927 					  MICFIL_STAT_CHXF(i),
928 					  1);
929 	}
930 
931 	for (i = 0; i < MICFIL_FIFO_NUM; i++) {
932 		if (fifo_stat_reg & MICFIL_FIFO_STAT_FIFOX_OVER(i))
933 			dev_dbg(&pdev->dev,
934 				"FIFO Overflow Exception flag for channel %d\n",
935 				i);
936 
937 		if (fifo_stat_reg & MICFIL_FIFO_STAT_FIFOX_UNDER(i))
938 			dev_dbg(&pdev->dev,
939 				"FIFO Underflow Exception flag for channel %d\n",
940 				i);
941 	}
942 
943 	return IRQ_HANDLED;
944 }
945 
946 static irqreturn_t micfil_err_isr(int irq, void *devid)
947 {
948 	struct fsl_micfil *micfil = (struct fsl_micfil *)devid;
949 	struct platform_device *pdev = micfil->pdev;
950 	u32 stat_reg;
951 
952 	regmap_read(micfil->regmap, REG_MICFIL_STAT, &stat_reg);
953 
954 	if (stat_reg & MICFIL_STAT_BSY_FIL)
955 		dev_dbg(&pdev->dev, "isr: Decimation Filter is running\n");
956 
957 	if (stat_reg & MICFIL_STAT_FIR_RDY)
958 		dev_dbg(&pdev->dev, "isr: FIR Filter Data ready\n");
959 
960 	if (stat_reg & MICFIL_STAT_LOWFREQF) {
961 		dev_dbg(&pdev->dev, "isr: ipg_clk_app is too low\n");
962 		regmap_write_bits(micfil->regmap, REG_MICFIL_STAT,
963 				  MICFIL_STAT_LOWFREQF, 1);
964 	}
965 
966 	return IRQ_HANDLED;
967 }
968 
969 static irqreturn_t voice_detected_fn(int irq, void *devid)
970 {
971 	struct fsl_micfil *micfil = (struct fsl_micfil *)devid;
972 	struct snd_kcontrol *kctl;
973 
974 	if (!micfil->card)
975 		return IRQ_HANDLED;
976 
977 	kctl = snd_soc_card_get_kcontrol(micfil->card, "VAD Detected");
978 	if (!kctl)
979 		return IRQ_HANDLED;
980 
981 	if (micfil->vad_detected)
982 		snd_ctl_notify(micfil->card->snd_card,
983 			       SNDRV_CTL_EVENT_MASK_VALUE,
984 			       &kctl->id);
985 
986 	return IRQ_HANDLED;
987 }
988 
989 static irqreturn_t hwvad_isr(int irq, void *devid)
990 {
991 	struct fsl_micfil *micfil = (struct fsl_micfil *)devid;
992 	struct device *dev = &micfil->pdev->dev;
993 	u32 vad0_reg;
994 	int ret;
995 
996 	regmap_read(micfil->regmap, REG_MICFIL_VAD0_STAT, &vad0_reg);
997 
998 	/*
999 	 * The only difference between MICFIL_VAD0_STAT_EF and
1000 	 * MICFIL_VAD0_STAT_IF is that the former requires Write
1001 	 * 1 to Clear. Since both flags are set, it is enough
1002 	 * to only read one of them
1003 	 */
1004 	if (vad0_reg & MICFIL_VAD0_STAT_IF) {
1005 		/* Write 1 to clear */
1006 		regmap_write_bits(micfil->regmap, REG_MICFIL_VAD0_STAT,
1007 				  MICFIL_VAD0_STAT_IF,
1008 				  MICFIL_VAD0_STAT_IF);
1009 
1010 		micfil->vad_detected = 1;
1011 	}
1012 
1013 	ret = fsl_micfil_hwvad_disable(micfil);
1014 	if (ret)
1015 		dev_err(dev, "Failed to disable hwvad\n");
1016 
1017 	return IRQ_WAKE_THREAD;
1018 }
1019 
1020 static irqreturn_t hwvad_err_isr(int irq, void *devid)
1021 {
1022 	struct fsl_micfil *micfil = (struct fsl_micfil *)devid;
1023 	struct device *dev = &micfil->pdev->dev;
1024 	u32 vad0_reg;
1025 
1026 	regmap_read(micfil->regmap, REG_MICFIL_VAD0_STAT, &vad0_reg);
1027 
1028 	if (vad0_reg & MICFIL_VAD0_STAT_INSATF)
1029 		dev_dbg(dev, "voice activity input overflow/underflow detected\n");
1030 
1031 	return IRQ_HANDLED;
1032 }
1033 
1034 static int fsl_micfil_probe(struct platform_device *pdev)
1035 {
1036 	struct device_node *np = pdev->dev.of_node;
1037 	struct fsl_micfil *micfil;
1038 	struct resource *res;
1039 	void __iomem *regs;
1040 	int ret, i;
1041 
1042 	micfil = devm_kzalloc(&pdev->dev, sizeof(*micfil), GFP_KERNEL);
1043 	if (!micfil)
1044 		return -ENOMEM;
1045 
1046 	micfil->pdev = pdev;
1047 	strncpy(micfil->name, np->name, sizeof(micfil->name) - 1);
1048 
1049 	micfil->soc = of_device_get_match_data(&pdev->dev);
1050 
1051 	/* ipg_clk is used to control the registers
1052 	 * ipg_clk_app is used to operate the filter
1053 	 */
1054 	micfil->mclk = devm_clk_get(&pdev->dev, "ipg_clk_app");
1055 	if (IS_ERR(micfil->mclk)) {
1056 		dev_err(&pdev->dev, "failed to get core clock: %ld\n",
1057 			PTR_ERR(micfil->mclk));
1058 		return PTR_ERR(micfil->mclk);
1059 	}
1060 
1061 	micfil->busclk = devm_clk_get(&pdev->dev, "ipg_clk");
1062 	if (IS_ERR(micfil->busclk)) {
1063 		dev_err(&pdev->dev, "failed to get ipg clock: %ld\n",
1064 			PTR_ERR(micfil->busclk));
1065 		return PTR_ERR(micfil->busclk);
1066 	}
1067 
1068 	fsl_asoc_get_pll_clocks(&pdev->dev, &micfil->pll8k_clk,
1069 				&micfil->pll11k_clk);
1070 
1071 	/* init regmap */
1072 	regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1073 	if (IS_ERR(regs))
1074 		return PTR_ERR(regs);
1075 
1076 	micfil->regmap = devm_regmap_init_mmio(&pdev->dev,
1077 					       regs,
1078 					       &fsl_micfil_regmap_config);
1079 	if (IS_ERR(micfil->regmap)) {
1080 		dev_err(&pdev->dev, "failed to init MICFIL regmap: %ld\n",
1081 			PTR_ERR(micfil->regmap));
1082 		return PTR_ERR(micfil->regmap);
1083 	}
1084 
1085 	/* dataline mask for RX */
1086 	ret = of_property_read_u32_index(np,
1087 					 "fsl,dataline",
1088 					 0,
1089 					 &micfil->dataline);
1090 	if (ret)
1091 		micfil->dataline = 1;
1092 
1093 	if (micfil->dataline & ~micfil->soc->dataline) {
1094 		dev_err(&pdev->dev, "dataline setting error, Mask is 0x%X\n",
1095 			micfil->soc->dataline);
1096 		return -EINVAL;
1097 	}
1098 
1099 	/* get IRQs */
1100 	for (i = 0; i < MICFIL_IRQ_LINES; i++) {
1101 		micfil->irq[i] = platform_get_irq(pdev, i);
1102 		if (micfil->irq[i] < 0)
1103 			return micfil->irq[i];
1104 	}
1105 
1106 	/* Digital Microphone interface interrupt */
1107 	ret = devm_request_irq(&pdev->dev, micfil->irq[0],
1108 			       micfil_isr, IRQF_SHARED,
1109 			       micfil->name, micfil);
1110 	if (ret) {
1111 		dev_err(&pdev->dev, "failed to claim mic interface irq %u\n",
1112 			micfil->irq[0]);
1113 		return ret;
1114 	}
1115 
1116 	/* Digital Microphone interface error interrupt */
1117 	ret = devm_request_irq(&pdev->dev, micfil->irq[1],
1118 			       micfil_err_isr, IRQF_SHARED,
1119 			       micfil->name, micfil);
1120 	if (ret) {
1121 		dev_err(&pdev->dev, "failed to claim mic interface error irq %u\n",
1122 			micfil->irq[1]);
1123 		return ret;
1124 	}
1125 
1126 	/* Digital Microphone interface voice activity detector event */
1127 	ret = devm_request_threaded_irq(&pdev->dev, micfil->irq[2],
1128 					hwvad_isr, voice_detected_fn,
1129 					IRQF_SHARED, micfil->name, micfil);
1130 	if (ret) {
1131 		dev_err(&pdev->dev, "failed to claim hwvad event irq %u\n",
1132 			micfil->irq[0]);
1133 		return ret;
1134 	}
1135 
1136 	/* Digital Microphone interface voice activity detector error */
1137 	ret = devm_request_irq(&pdev->dev, micfil->irq[3],
1138 			       hwvad_err_isr, IRQF_SHARED,
1139 			       micfil->name, micfil);
1140 	if (ret) {
1141 		dev_err(&pdev->dev, "failed to claim hwvad error irq %u\n",
1142 			micfil->irq[1]);
1143 		return ret;
1144 	}
1145 
1146 	micfil->dma_params_rx.chan_name = "rx";
1147 	micfil->dma_params_rx.addr = res->start + REG_MICFIL_DATACH0;
1148 	micfil->dma_params_rx.maxburst = MICFIL_DMA_MAXBURST_RX;
1149 
1150 	platform_set_drvdata(pdev, micfil);
1151 
1152 	pm_runtime_enable(&pdev->dev);
1153 	regcache_cache_only(micfil->regmap, true);
1154 
1155 	/*
1156 	 * Register platform component before registering cpu dai for there
1157 	 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1158 	 */
1159 	ret = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
1160 	if (ret) {
1161 		dev_err(&pdev->dev, "failed to pcm register\n");
1162 		return ret;
1163 	}
1164 
1165 	fsl_micfil_dai.capture.formats = micfil->soc->formats;
1166 
1167 	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_micfil_component,
1168 					      &fsl_micfil_dai, 1);
1169 	if (ret) {
1170 		dev_err(&pdev->dev, "failed to register component %s\n",
1171 			fsl_micfil_component.name);
1172 	}
1173 
1174 	return ret;
1175 }
1176 
1177 static int __maybe_unused fsl_micfil_runtime_suspend(struct device *dev)
1178 {
1179 	struct fsl_micfil *micfil = dev_get_drvdata(dev);
1180 
1181 	regcache_cache_only(micfil->regmap, true);
1182 
1183 	clk_disable_unprepare(micfil->mclk);
1184 	clk_disable_unprepare(micfil->busclk);
1185 
1186 	return 0;
1187 }
1188 
1189 static int __maybe_unused fsl_micfil_runtime_resume(struct device *dev)
1190 {
1191 	struct fsl_micfil *micfil = dev_get_drvdata(dev);
1192 	int ret;
1193 
1194 	ret = clk_prepare_enable(micfil->busclk);
1195 	if (ret < 0)
1196 		return ret;
1197 
1198 	ret = clk_prepare_enable(micfil->mclk);
1199 	if (ret < 0) {
1200 		clk_disable_unprepare(micfil->busclk);
1201 		return ret;
1202 	}
1203 
1204 	regcache_cache_only(micfil->regmap, false);
1205 	regcache_mark_dirty(micfil->regmap);
1206 	regcache_sync(micfil->regmap);
1207 
1208 	return 0;
1209 }
1210 
1211 static int __maybe_unused fsl_micfil_suspend(struct device *dev)
1212 {
1213 	pm_runtime_force_suspend(dev);
1214 
1215 	return 0;
1216 }
1217 
1218 static int __maybe_unused fsl_micfil_resume(struct device *dev)
1219 {
1220 	pm_runtime_force_resume(dev);
1221 
1222 	return 0;
1223 }
1224 
1225 static const struct dev_pm_ops fsl_micfil_pm_ops = {
1226 	SET_RUNTIME_PM_OPS(fsl_micfil_runtime_suspend,
1227 			   fsl_micfil_runtime_resume,
1228 			   NULL)
1229 	SET_SYSTEM_SLEEP_PM_OPS(fsl_micfil_suspend,
1230 				fsl_micfil_resume)
1231 };
1232 
1233 static struct platform_driver fsl_micfil_driver = {
1234 	.probe = fsl_micfil_probe,
1235 	.driver = {
1236 		.name = "fsl-micfil-dai",
1237 		.pm = &fsl_micfil_pm_ops,
1238 		.of_match_table = fsl_micfil_dt_ids,
1239 	},
1240 };
1241 module_platform_driver(fsl_micfil_driver);
1242 
1243 MODULE_AUTHOR("Cosmin-Gabriel Samoila <cosmin.samoila@nxp.com>");
1244 MODULE_DESCRIPTION("NXP PDM Microphone Interface (MICFIL) driver");
1245 MODULE_LICENSE("GPL v2");
1246