1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright 2019 NXP 3 4 #include <linux/atomic.h> 5 #include <linux/clk.h> 6 #include <linux/device.h> 7 #include <linux/dma-mapping.h> 8 #include <linux/firmware.h> 9 #include <linux/interrupt.h> 10 #include <linux/kobject.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/miscdevice.h> 14 #include <linux/of.h> 15 #include <linux/of_address.h> 16 #include <linux/of_irq.h> 17 #include <linux/of_platform.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/regmap.h> 20 #include <linux/sched/signal.h> 21 #include <linux/sysfs.h> 22 #include <linux/types.h> 23 #include <linux/gcd.h> 24 #include <sound/dmaengine_pcm.h> 25 #include <sound/pcm.h> 26 #include <sound/pcm_params.h> 27 #include <sound/soc.h> 28 #include <sound/tlv.h> 29 #include <sound/core.h> 30 31 #include "fsl_easrc.h" 32 #include "imx-pcm.h" 33 34 #define FSL_EASRC_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | \ 35 SNDRV_PCM_FMTBIT_U16_LE | \ 36 SNDRV_PCM_FMTBIT_S24_LE | \ 37 SNDRV_PCM_FMTBIT_S24_3LE | \ 38 SNDRV_PCM_FMTBIT_U24_LE | \ 39 SNDRV_PCM_FMTBIT_U24_3LE | \ 40 SNDRV_PCM_FMTBIT_S32_LE | \ 41 SNDRV_PCM_FMTBIT_U32_LE | \ 42 SNDRV_PCM_FMTBIT_S20_3LE | \ 43 SNDRV_PCM_FMTBIT_U20_3LE | \ 44 SNDRV_PCM_FMTBIT_FLOAT_LE) 45 46 static int fsl_easrc_iec958_put_bits(struct snd_kcontrol *kcontrol, 47 struct snd_ctl_elem_value *ucontrol) 48 { 49 struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol); 50 struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp); 51 struct fsl_easrc_priv *easrc_priv = easrc->private; 52 struct soc_mreg_control *mc = 53 (struct soc_mreg_control *)kcontrol->private_value; 54 unsigned int regval = ucontrol->value.integer.value[0]; 55 56 easrc_priv->bps_iec958[mc->regbase] = regval; 57 58 return 0; 59 } 60 61 static int fsl_easrc_iec958_get_bits(struct snd_kcontrol *kcontrol, 62 struct snd_ctl_elem_value *ucontrol) 63 { 64 struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol); 65 struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp); 66 struct fsl_easrc_priv *easrc_priv = easrc->private; 67 struct soc_mreg_control *mc = 68 (struct soc_mreg_control *)kcontrol->private_value; 69 70 ucontrol->value.enumerated.item[0] = easrc_priv->bps_iec958[mc->regbase]; 71 72 return 0; 73 } 74 75 static int fsl_easrc_get_reg(struct snd_kcontrol *kcontrol, 76 struct snd_ctl_elem_value *ucontrol) 77 { 78 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 79 struct soc_mreg_control *mc = 80 (struct soc_mreg_control *)kcontrol->private_value; 81 unsigned int regval; 82 83 regval = snd_soc_component_read(component, mc->regbase); 84 85 ucontrol->value.integer.value[0] = regval; 86 87 return 0; 88 } 89 90 static int fsl_easrc_set_reg(struct snd_kcontrol *kcontrol, 91 struct snd_ctl_elem_value *ucontrol) 92 { 93 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 94 struct soc_mreg_control *mc = 95 (struct soc_mreg_control *)kcontrol->private_value; 96 unsigned int regval = ucontrol->value.integer.value[0]; 97 int ret; 98 99 ret = snd_soc_component_write(component, mc->regbase, regval); 100 if (ret < 0) 101 return ret; 102 103 return 0; 104 } 105 106 #define SOC_SINGLE_REG_RW(xname, xreg) \ 107 { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \ 108 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 109 .info = snd_soc_info_xr_sx, .get = fsl_easrc_get_reg, \ 110 .put = fsl_easrc_set_reg, \ 111 .private_value = (unsigned long)&(struct soc_mreg_control) \ 112 { .regbase = xreg, .regcount = 1, .nbits = 32, \ 113 .invert = 0, .min = 0, .max = 0xffffffff, } } 114 115 #define SOC_SINGLE_VAL_RW(xname, xreg) \ 116 { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \ 117 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 118 .info = snd_soc_info_xr_sx, .get = fsl_easrc_iec958_get_bits, \ 119 .put = fsl_easrc_iec958_put_bits, \ 120 .private_value = (unsigned long)&(struct soc_mreg_control) \ 121 { .regbase = xreg, .regcount = 1, .nbits = 32, \ 122 .invert = 0, .min = 0, .max = 2, } } 123 124 static const struct snd_kcontrol_new fsl_easrc_snd_controls[] = { 125 SOC_SINGLE("Context 0 Dither Switch", REG_EASRC_COC(0), 0, 1, 0), 126 SOC_SINGLE("Context 1 Dither Switch", REG_EASRC_COC(1), 0, 1, 0), 127 SOC_SINGLE("Context 2 Dither Switch", REG_EASRC_COC(2), 0, 1, 0), 128 SOC_SINGLE("Context 3 Dither Switch", REG_EASRC_COC(3), 0, 1, 0), 129 130 SOC_SINGLE("Context 0 IEC958 Validity", REG_EASRC_COC(0), 2, 1, 0), 131 SOC_SINGLE("Context 1 IEC958 Validity", REG_EASRC_COC(1), 2, 1, 0), 132 SOC_SINGLE("Context 2 IEC958 Validity", REG_EASRC_COC(2), 2, 1, 0), 133 SOC_SINGLE("Context 3 IEC958 Validity", REG_EASRC_COC(3), 2, 1, 0), 134 135 SOC_SINGLE_VAL_RW("Context 0 IEC958 Bits Per Sample", 0), 136 SOC_SINGLE_VAL_RW("Context 1 IEC958 Bits Per Sample", 1), 137 SOC_SINGLE_VAL_RW("Context 2 IEC958 Bits Per Sample", 2), 138 SOC_SINGLE_VAL_RW("Context 3 IEC958 Bits Per Sample", 3), 139 140 SOC_SINGLE_REG_RW("Context 0 IEC958 CS0", REG_EASRC_CS0(0)), 141 SOC_SINGLE_REG_RW("Context 1 IEC958 CS0", REG_EASRC_CS0(1)), 142 SOC_SINGLE_REG_RW("Context 2 IEC958 CS0", REG_EASRC_CS0(2)), 143 SOC_SINGLE_REG_RW("Context 3 IEC958 CS0", REG_EASRC_CS0(3)), 144 SOC_SINGLE_REG_RW("Context 0 IEC958 CS1", REG_EASRC_CS1(0)), 145 SOC_SINGLE_REG_RW("Context 1 IEC958 CS1", REG_EASRC_CS1(1)), 146 SOC_SINGLE_REG_RW("Context 2 IEC958 CS1", REG_EASRC_CS1(2)), 147 SOC_SINGLE_REG_RW("Context 3 IEC958 CS1", REG_EASRC_CS1(3)), 148 SOC_SINGLE_REG_RW("Context 0 IEC958 CS2", REG_EASRC_CS2(0)), 149 SOC_SINGLE_REG_RW("Context 1 IEC958 CS2", REG_EASRC_CS2(1)), 150 SOC_SINGLE_REG_RW("Context 2 IEC958 CS2", REG_EASRC_CS2(2)), 151 SOC_SINGLE_REG_RW("Context 3 IEC958 CS2", REG_EASRC_CS2(3)), 152 SOC_SINGLE_REG_RW("Context 0 IEC958 CS3", REG_EASRC_CS3(0)), 153 SOC_SINGLE_REG_RW("Context 1 IEC958 CS3", REG_EASRC_CS3(1)), 154 SOC_SINGLE_REG_RW("Context 2 IEC958 CS3", REG_EASRC_CS3(2)), 155 SOC_SINGLE_REG_RW("Context 3 IEC958 CS3", REG_EASRC_CS3(3)), 156 SOC_SINGLE_REG_RW("Context 0 IEC958 CS4", REG_EASRC_CS4(0)), 157 SOC_SINGLE_REG_RW("Context 1 IEC958 CS4", REG_EASRC_CS4(1)), 158 SOC_SINGLE_REG_RW("Context 2 IEC958 CS4", REG_EASRC_CS4(2)), 159 SOC_SINGLE_REG_RW("Context 3 IEC958 CS4", REG_EASRC_CS4(3)), 160 SOC_SINGLE_REG_RW("Context 0 IEC958 CS5", REG_EASRC_CS5(0)), 161 SOC_SINGLE_REG_RW("Context 1 IEC958 CS5", REG_EASRC_CS5(1)), 162 SOC_SINGLE_REG_RW("Context 2 IEC958 CS5", REG_EASRC_CS5(2)), 163 SOC_SINGLE_REG_RW("Context 3 IEC958 CS5", REG_EASRC_CS5(3)), 164 }; 165 166 /* 167 * fsl_easrc_set_rs_ratio 168 * 169 * According to the resample taps, calculate the resample ratio 170 * ratio = in_rate / out_rate 171 */ 172 static int fsl_easrc_set_rs_ratio(struct fsl_asrc_pair *ctx) 173 { 174 struct fsl_asrc *easrc = ctx->asrc; 175 struct fsl_easrc_priv *easrc_priv = easrc->private; 176 struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; 177 unsigned int in_rate = ctx_priv->in_params.norm_rate; 178 unsigned int out_rate = ctx_priv->out_params.norm_rate; 179 unsigned int frac_bits; 180 u64 val; 181 u32 *r; 182 183 switch (easrc_priv->rs_num_taps) { 184 case EASRC_RS_32_TAPS: 185 /* integer bits = 5; */ 186 frac_bits = 39; 187 break; 188 case EASRC_RS_64_TAPS: 189 /* integer bits = 6; */ 190 frac_bits = 38; 191 break; 192 case EASRC_RS_128_TAPS: 193 /* integer bits = 7; */ 194 frac_bits = 37; 195 break; 196 default: 197 return -EINVAL; 198 } 199 200 val = (u64)in_rate << frac_bits; 201 do_div(val, out_rate); 202 r = (uint32_t *)&val; 203 204 if (r[1] & 0xFFFFF000) { 205 dev_err(&easrc->pdev->dev, "ratio exceed range\n"); 206 return -EINVAL; 207 } 208 209 regmap_write(easrc->regmap, REG_EASRC_RRL(ctx->index), 210 EASRC_RRL_RS_RL(r[0])); 211 regmap_write(easrc->regmap, REG_EASRC_RRH(ctx->index), 212 EASRC_RRH_RS_RH(r[1])); 213 214 return 0; 215 } 216 217 /* Normalize input and output sample rates */ 218 static void fsl_easrc_normalize_rates(struct fsl_asrc_pair *ctx) 219 { 220 struct fsl_easrc_ctx_priv *ctx_priv; 221 int a, b; 222 223 if (!ctx) 224 return; 225 226 ctx_priv = ctx->private; 227 228 a = ctx_priv->in_params.sample_rate; 229 b = ctx_priv->out_params.sample_rate; 230 231 a = gcd(a, b); 232 233 /* Divide by gcd to normalize the rate */ 234 ctx_priv->in_params.norm_rate = ctx_priv->in_params.sample_rate / a; 235 ctx_priv->out_params.norm_rate = ctx_priv->out_params.sample_rate / a; 236 } 237 238 /* Resets the pointer of the coeff memory pointers */ 239 static int fsl_easrc_coeff_mem_ptr_reset(struct fsl_asrc *easrc, 240 unsigned int ctx_id, int mem_type) 241 { 242 struct device *dev; 243 u32 reg, mask, val; 244 245 if (!easrc) 246 return -ENODEV; 247 248 dev = &easrc->pdev->dev; 249 250 switch (mem_type) { 251 case EASRC_PF_COEFF_MEM: 252 /* This resets the prefilter memory pointer addr */ 253 if (ctx_id >= EASRC_CTX_MAX_NUM) { 254 dev_err(dev, "Invalid context id[%d]\n", ctx_id); 255 return -EINVAL; 256 } 257 258 reg = REG_EASRC_CCE1(ctx_id); 259 mask = EASRC_CCE1_COEF_MEM_RST_MASK; 260 val = EASRC_CCE1_COEF_MEM_RST; 261 break; 262 case EASRC_RS_COEFF_MEM: 263 /* This resets the resampling memory pointer addr */ 264 reg = REG_EASRC_CRCC; 265 mask = EASRC_CRCC_RS_CPR_MASK; 266 val = EASRC_CRCC_RS_CPR; 267 break; 268 default: 269 dev_err(dev, "Unknown memory type\n"); 270 return -EINVAL; 271 } 272 273 /* 274 * To reset the write pointer back to zero, the register field 275 * ASRC_CTX_CTRL_EXT1x[PF_COEFF_MEM_RST] can be toggled from 276 * 0x0 to 0x1 to 0x0. 277 */ 278 regmap_update_bits(easrc->regmap, reg, mask, 0); 279 regmap_update_bits(easrc->regmap, reg, mask, val); 280 regmap_update_bits(easrc->regmap, reg, mask, 0); 281 282 return 0; 283 } 284 285 static inline uint32_t bits_taps_to_val(unsigned int t) 286 { 287 switch (t) { 288 case EASRC_RS_32_TAPS: 289 return 32; 290 case EASRC_RS_64_TAPS: 291 return 64; 292 case EASRC_RS_128_TAPS: 293 return 128; 294 } 295 296 return 0; 297 } 298 299 static int fsl_easrc_resampler_config(struct fsl_asrc *easrc) 300 { 301 struct device *dev = &easrc->pdev->dev; 302 struct fsl_easrc_priv *easrc_priv = easrc->private; 303 struct asrc_firmware_hdr *hdr = easrc_priv->firmware_hdr; 304 struct interp_params *interp = easrc_priv->interp; 305 struct interp_params *selected_interp = NULL; 306 unsigned int num_coeff; 307 unsigned int i; 308 u64 *coef; 309 u32 *r; 310 int ret; 311 312 if (!hdr) { 313 dev_err(dev, "firmware not loaded!\n"); 314 return -ENODEV; 315 } 316 317 for (i = 0; i < hdr->interp_scen; i++) { 318 if ((interp[i].num_taps - 1) != 319 bits_taps_to_val(easrc_priv->rs_num_taps)) 320 continue; 321 322 coef = interp[i].coeff; 323 selected_interp = &interp[i]; 324 dev_dbg(dev, "Selected interp_filter: %u taps - %u phases\n", 325 selected_interp->num_taps, 326 selected_interp->num_phases); 327 break; 328 } 329 330 if (!selected_interp) { 331 dev_err(dev, "failed to get interpreter configuration\n"); 332 return -EINVAL; 333 } 334 335 /* 336 * RS_LOW - first half of center tap of the sinc function 337 * RS_HIGH - second half of center tap of the sinc function 338 * This is due to the fact the resampling function must be 339 * symetrical - i.e. odd number of taps 340 */ 341 r = (uint32_t *)&selected_interp->center_tap; 342 regmap_write(easrc->regmap, REG_EASRC_RCTCL, EASRC_RCTCL_RS_CL(r[0])); 343 regmap_write(easrc->regmap, REG_EASRC_RCTCH, EASRC_RCTCH_RS_CH(r[1])); 344 345 /* 346 * Write Number of Resampling Coefficient Taps 347 * 00b - 32-Tap Resampling Filter 348 * 01b - 64-Tap Resampling Filter 349 * 10b - 128-Tap Resampling Filter 350 * 11b - N/A 351 */ 352 regmap_update_bits(easrc->regmap, REG_EASRC_CRCC, 353 EASRC_CRCC_RS_TAPS_MASK, 354 EASRC_CRCC_RS_TAPS(easrc_priv->rs_num_taps)); 355 356 /* Reset prefilter coefficient pointer back to 0 */ 357 ret = fsl_easrc_coeff_mem_ptr_reset(easrc, 0, EASRC_RS_COEFF_MEM); 358 if (ret) 359 return ret; 360 361 /* 362 * When the filter is programmed to run in: 363 * 32-tap mode, 16-taps, 128-phases 4-coefficients per phase 364 * 64-tap mode, 32-taps, 64-phases 4-coefficients per phase 365 * 128-tap mode, 64-taps, 32-phases 4-coefficients per phase 366 * This means the number of writes is constant no matter 367 * the mode we are using 368 */ 369 num_coeff = 16 * 128 * 4; 370 371 for (i = 0; i < num_coeff; i++) { 372 r = (uint32_t *)&coef[i]; 373 regmap_write(easrc->regmap, REG_EASRC_CRCM, 374 EASRC_CRCM_RS_CWD(r[0])); 375 regmap_write(easrc->regmap, REG_EASRC_CRCM, 376 EASRC_CRCM_RS_CWD(r[1])); 377 } 378 379 return 0; 380 } 381 382 /** 383 * Scale filter coefficients (64 bits float) 384 * For input float32 normalized range (1.0,-1.0) -> output int[16,24,32]: 385 * scale it by multiplying filter coefficients by 2^31 386 * For input int[16, 24, 32] -> output float32 387 * scale it by multiplying filter coefficients by 2^-15, 2^-23, 2^-31 388 * input: 389 * @easrc: Structure pointer of fsl_asrc 390 * @infilter : Pointer to non-scaled input filter 391 * @shift: The multiply factor 392 * output: 393 * @outfilter: scaled filter 394 */ 395 static int fsl_easrc_normalize_filter(struct fsl_asrc *easrc, 396 u64 *infilter, 397 u64 *outfilter, 398 int shift) 399 { 400 struct device *dev = &easrc->pdev->dev; 401 u64 coef = *infilter; 402 s64 exp = (coef & 0x7ff0000000000000ll) >> 52; 403 u64 outcoef; 404 405 /* 406 * If exponent is zero (value == 0), or 7ff (value == NaNs) 407 * dont touch the content 408 */ 409 if (exp == 0 || exp == 0x7ff) { 410 *outfilter = coef; 411 return 0; 412 } 413 414 /* coef * 2^shift ==> exp + shift */ 415 exp += shift; 416 417 if ((shift > 0 && exp >= 0x7ff) || (shift < 0 && exp <= 0)) { 418 dev_err(dev, "coef out of range\n"); 419 return -EINVAL; 420 } 421 422 outcoef = (u64)(coef & 0x800FFFFFFFFFFFFFll) + ((u64)exp << 52); 423 *outfilter = outcoef; 424 425 return 0; 426 } 427 428 static int fsl_easrc_write_pf_coeff_mem(struct fsl_asrc *easrc, int ctx_id, 429 u64 *coef, int n_taps, int shift) 430 { 431 struct device *dev = &easrc->pdev->dev; 432 int ret = 0; 433 int i; 434 u32 *r; 435 u64 tmp; 436 437 /* If STx_NUM_TAPS is set to 0x0 then return */ 438 if (!n_taps) 439 return 0; 440 441 if (!coef) { 442 dev_err(dev, "coef table is NULL\n"); 443 return -EINVAL; 444 } 445 446 /* 447 * When switching between stages, the address pointer 448 * should be reset back to 0x0 before performing a write 449 */ 450 ret = fsl_easrc_coeff_mem_ptr_reset(easrc, ctx_id, EASRC_PF_COEFF_MEM); 451 if (ret) 452 return ret; 453 454 for (i = 0; i < (n_taps + 1) / 2; i++) { 455 ret = fsl_easrc_normalize_filter(easrc, &coef[i], &tmp, shift); 456 if (ret) 457 return ret; 458 459 r = (uint32_t *)&tmp; 460 regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id), 461 EASRC_PCF_CD(r[0])); 462 regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id), 463 EASRC_PCF_CD(r[1])); 464 } 465 466 return 0; 467 } 468 469 static int fsl_easrc_prefilter_config(struct fsl_asrc *easrc, 470 unsigned int ctx_id) 471 { 472 struct prefil_params *prefil, *selected_prefil = NULL; 473 struct fsl_easrc_ctx_priv *ctx_priv; 474 struct fsl_easrc_priv *easrc_priv; 475 struct asrc_firmware_hdr *hdr; 476 struct fsl_asrc_pair *ctx; 477 struct device *dev; 478 u32 inrate, outrate, offset = 0; 479 u32 in_s_rate, out_s_rate, in_s_fmt, out_s_fmt; 480 int ret, i; 481 482 if (!easrc) 483 return -ENODEV; 484 485 dev = &easrc->pdev->dev; 486 487 if (ctx_id >= EASRC_CTX_MAX_NUM) { 488 dev_err(dev, "Invalid context id[%d]\n", ctx_id); 489 return -EINVAL; 490 } 491 492 easrc_priv = easrc->private; 493 494 ctx = easrc->pair[ctx_id]; 495 ctx_priv = ctx->private; 496 497 in_s_rate = ctx_priv->in_params.sample_rate; 498 out_s_rate = ctx_priv->out_params.sample_rate; 499 in_s_fmt = ctx_priv->in_params.sample_format; 500 out_s_fmt = ctx_priv->out_params.sample_format; 501 502 ctx_priv->in_filled_sample = bits_taps_to_val(easrc_priv->rs_num_taps) / 2; 503 ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate; 504 505 ctx_priv->st1_num_taps = 0; 506 ctx_priv->st2_num_taps = 0; 507 508 regmap_write(easrc->regmap, REG_EASRC_CCE1(ctx_id), 0); 509 regmap_write(easrc->regmap, REG_EASRC_CCE2(ctx_id), 0); 510 511 /* 512 * The audio float point data range is (-1, 1), the asrc would output 513 * all zero for float point input and integer output case, that is to 514 * drop the fractional part of the data directly. 515 * 516 * In order to support float to int conversion or int to float 517 * conversion we need to do special operation on the coefficient to 518 * enlarge/reduce the data to the expected range. 519 * 520 * For float to int case: 521 * Up sampling: 522 * 1. Create a 1 tap filter with center tap (only tap) of 2^31 523 * in 64 bits floating point. 524 * double value = (double)(((uint64_t)1) << 31) 525 * 2. Program 1 tap prefilter with center tap above. 526 * 527 * Down sampling, 528 * 1. If the filter is single stage filter, add "shift" to the exponent 529 * of stage 1 coefficients. 530 * 2. If the filter is two stage filter , add "shift" to the exponent 531 * of stage 2 coefficients. 532 * 533 * The "shift" is 31, same for int16, int24, int32 case. 534 * 535 * For int to float case: 536 * Up sampling: 537 * 1. Create a 1 tap filter with center tap (only tap) of 2^-31 538 * in 64 bits floating point. 539 * 2. Program 1 tap prefilter with center tap above. 540 * 541 * Down sampling, 542 * 1. If the filter is single stage filter, subtract "shift" to the 543 * exponent of stage 1 coefficients. 544 * 2. If the filter is two stage filter , subtract "shift" to the 545 * exponent of stage 2 coefficients. 546 * 547 * The "shift" is 15,23,31, different for int16, int24, int32 case. 548 * 549 */ 550 if (out_s_rate >= in_s_rate) { 551 if (out_s_rate == in_s_rate) 552 regmap_update_bits(easrc->regmap, 553 REG_EASRC_CCE1(ctx_id), 554 EASRC_CCE1_RS_BYPASS_MASK, 555 EASRC_CCE1_RS_BYPASS); 556 557 ctx_priv->st1_num_taps = 1; 558 ctx_priv->st1_coeff = &easrc_priv->const_coeff; 559 ctx_priv->st1_num_exp = 1; 560 ctx_priv->st2_num_taps = 0; 561 562 if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE && 563 out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE) 564 ctx_priv->st1_addexp = 31; 565 else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE && 566 out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE) 567 ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp; 568 } else { 569 inrate = ctx_priv->in_params.norm_rate; 570 outrate = ctx_priv->out_params.norm_rate; 571 572 hdr = easrc_priv->firmware_hdr; 573 prefil = easrc_priv->prefil; 574 575 for (i = 0; i < hdr->prefil_scen; i++) { 576 if (inrate == prefil[i].insr && 577 outrate == prefil[i].outsr) { 578 selected_prefil = &prefil[i]; 579 dev_dbg(dev, "Selected prefilter: %u insr, %u outsr, %u st1_taps, %u st2_taps\n", 580 selected_prefil->insr, 581 selected_prefil->outsr, 582 selected_prefil->st1_taps, 583 selected_prefil->st2_taps); 584 break; 585 } 586 } 587 588 if (!selected_prefil) { 589 dev_err(dev, "Conversion from in ratio %u(%u) to out ratio %u(%u) is not supported\n", 590 in_s_rate, inrate, 591 out_s_rate, outrate); 592 return -EINVAL; 593 } 594 595 /* 596 * In prefilter coeff array, first st1_num_taps represent the 597 * stage1 prefilter coefficients followed by next st2_num_taps 598 * representing stage 2 coefficients 599 */ 600 ctx_priv->st1_num_taps = selected_prefil->st1_taps; 601 ctx_priv->st1_coeff = selected_prefil->coeff; 602 ctx_priv->st1_num_exp = selected_prefil->st1_exp; 603 604 offset = ((selected_prefil->st1_taps + 1) / 2); 605 ctx_priv->st2_num_taps = selected_prefil->st2_taps; 606 ctx_priv->st2_coeff = selected_prefil->coeff + offset; 607 608 if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE && 609 out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE) { 610 /* only change stage2 coefficient for 2 stage case */ 611 if (ctx_priv->st2_num_taps > 0) 612 ctx_priv->st2_addexp = 31; 613 else 614 ctx_priv->st1_addexp = 31; 615 } else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE && 616 out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE) { 617 if (ctx_priv->st2_num_taps > 0) 618 ctx_priv->st2_addexp -= ctx_priv->in_params.fmt.addexp; 619 else 620 ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp; 621 } 622 } 623 624 ctx_priv->in_filled_sample += (ctx_priv->st1_num_taps / 2) * ctx_priv->st1_num_exp + 625 ctx_priv->st2_num_taps / 2; 626 ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate; 627 628 if (ctx_priv->in_filled_sample * out_s_rate % in_s_rate != 0) 629 ctx_priv->out_missed_sample += 1; 630 /* 631 * To modify the value of a prefilter coefficient, the user must 632 * perform a write to the register ASRC_PRE_COEFF_FIFOn[COEFF_DATA] 633 * while the respective context RUN_EN bit is set to 0b0 634 */ 635 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id), 636 EASRC_CC_EN_MASK, 0); 637 638 if (ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) { 639 dev_err(dev, "ST1 taps [%d] mus be lower than %d\n", 640 ctx_priv->st1_num_taps, EASRC_MAX_PF_TAPS); 641 ret = -EINVAL; 642 goto ctx_error; 643 } 644 645 /* Update ctx ST1_NUM_TAPS in Context Control Extended 2 register */ 646 regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id), 647 EASRC_CCE2_ST1_TAPS_MASK, 648 EASRC_CCE2_ST1_TAPS(ctx_priv->st1_num_taps - 1)); 649 650 /* Prefilter Coefficient Write Select to write in ST1 coeff */ 651 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), 652 EASRC_CCE1_COEF_WS_MASK, 653 EASRC_PF_ST1_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT); 654 655 ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id, 656 ctx_priv->st1_coeff, 657 ctx_priv->st1_num_taps, 658 ctx_priv->st1_addexp); 659 if (ret) 660 goto ctx_error; 661 662 if (ctx_priv->st2_num_taps > 0) { 663 if (ctx_priv->st2_num_taps + ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) { 664 dev_err(dev, "ST2 taps [%d] mus be lower than %d\n", 665 ctx_priv->st2_num_taps, EASRC_MAX_PF_TAPS); 666 ret = -EINVAL; 667 goto ctx_error; 668 } 669 670 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), 671 EASRC_CCE1_PF_TSEN_MASK, 672 EASRC_CCE1_PF_TSEN); 673 /* 674 * Enable prefilter stage1 writeback floating point 675 * which is used for FLOAT_LE case 676 */ 677 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), 678 EASRC_CCE1_PF_ST1_WBFP_MASK, 679 EASRC_CCE1_PF_ST1_WBFP); 680 681 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), 682 EASRC_CCE1_PF_EXP_MASK, 683 EASRC_CCE1_PF_EXP(ctx_priv->st1_num_exp - 1)); 684 685 /* Update ctx ST2_NUM_TAPS in Context Control Extended 2 reg */ 686 regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id), 687 EASRC_CCE2_ST2_TAPS_MASK, 688 EASRC_CCE2_ST2_TAPS(ctx_priv->st2_num_taps - 1)); 689 690 /* Prefilter Coefficient Write Select to write in ST2 coeff */ 691 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), 692 EASRC_CCE1_COEF_WS_MASK, 693 EASRC_PF_ST2_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT); 694 695 ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id, 696 ctx_priv->st2_coeff, 697 ctx_priv->st2_num_taps, 698 ctx_priv->st2_addexp); 699 if (ret) 700 goto ctx_error; 701 } 702 703 return 0; 704 705 ctx_error: 706 return ret; 707 } 708 709 static int fsl_easrc_max_ch_for_slot(struct fsl_asrc_pair *ctx, 710 struct fsl_easrc_slot *slot) 711 { 712 struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; 713 int st1_mem_alloc = 0, st2_mem_alloc = 0; 714 int pf_mem_alloc = 0; 715 int max_channels = 8 - slot->num_channel; 716 int channels = 0; 717 718 if (ctx_priv->st1_num_taps > 0) { 719 if (ctx_priv->st2_num_taps > 0) 720 st1_mem_alloc = 721 (ctx_priv->st1_num_taps - 1) * ctx_priv->st1_num_exp + 1; 722 else 723 st1_mem_alloc = ctx_priv->st1_num_taps; 724 } 725 726 if (ctx_priv->st2_num_taps > 0) 727 st2_mem_alloc = ctx_priv->st2_num_taps; 728 729 pf_mem_alloc = st1_mem_alloc + st2_mem_alloc; 730 731 if (pf_mem_alloc != 0) 732 channels = (6144 - slot->pf_mem_used) / pf_mem_alloc; 733 else 734 channels = 8; 735 736 if (channels < max_channels) 737 max_channels = channels; 738 739 return max_channels; 740 } 741 742 static int fsl_easrc_config_one_slot(struct fsl_asrc_pair *ctx, 743 struct fsl_easrc_slot *slot, 744 unsigned int slot_ctx_idx, 745 unsigned int *req_channels, 746 unsigned int *start_channel, 747 unsigned int *avail_channel) 748 { 749 struct fsl_asrc *easrc = ctx->asrc; 750 struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; 751 int st1_chanxexp, st1_mem_alloc = 0, st2_mem_alloc = 0; 752 unsigned int reg0, reg1, reg2, reg3; 753 unsigned int addr; 754 755 if (slot->slot_index == 0) { 756 reg0 = REG_EASRC_DPCS0R0(slot_ctx_idx); 757 reg1 = REG_EASRC_DPCS0R1(slot_ctx_idx); 758 reg2 = REG_EASRC_DPCS0R2(slot_ctx_idx); 759 reg3 = REG_EASRC_DPCS0R3(slot_ctx_idx); 760 } else { 761 reg0 = REG_EASRC_DPCS1R0(slot_ctx_idx); 762 reg1 = REG_EASRC_DPCS1R1(slot_ctx_idx); 763 reg2 = REG_EASRC_DPCS1R2(slot_ctx_idx); 764 reg3 = REG_EASRC_DPCS1R3(slot_ctx_idx); 765 } 766 767 if (*req_channels <= *avail_channel) { 768 slot->num_channel = *req_channels; 769 *req_channels = 0; 770 } else { 771 slot->num_channel = *avail_channel; 772 *req_channels -= *avail_channel; 773 } 774 775 slot->min_channel = *start_channel; 776 slot->max_channel = *start_channel + slot->num_channel - 1; 777 slot->ctx_index = ctx->index; 778 slot->busy = true; 779 *start_channel += slot->num_channel; 780 781 regmap_update_bits(easrc->regmap, reg0, 782 EASRC_DPCS0R0_MAXCH_MASK, 783 EASRC_DPCS0R0_MAXCH(slot->max_channel)); 784 785 regmap_update_bits(easrc->regmap, reg0, 786 EASRC_DPCS0R0_MINCH_MASK, 787 EASRC_DPCS0R0_MINCH(slot->min_channel)); 788 789 regmap_update_bits(easrc->regmap, reg0, 790 EASRC_DPCS0R0_NUMCH_MASK, 791 EASRC_DPCS0R0_NUMCH(slot->num_channel - 1)); 792 793 regmap_update_bits(easrc->regmap, reg0, 794 EASRC_DPCS0R0_CTXNUM_MASK, 795 EASRC_DPCS0R0_CTXNUM(slot->ctx_index)); 796 797 if (ctx_priv->st1_num_taps > 0) { 798 if (ctx_priv->st2_num_taps > 0) 799 st1_mem_alloc = 800 (ctx_priv->st1_num_taps - 1) * slot->num_channel * 801 ctx_priv->st1_num_exp + slot->num_channel; 802 else 803 st1_mem_alloc = ctx_priv->st1_num_taps * slot->num_channel; 804 805 slot->pf_mem_used = st1_mem_alloc; 806 regmap_update_bits(easrc->regmap, reg2, 807 EASRC_DPCS0R2_ST1_MA_MASK, 808 EASRC_DPCS0R2_ST1_MA(st1_mem_alloc)); 809 810 if (slot->slot_index == 1) 811 addr = PREFILTER_MEM_LEN - st1_mem_alloc; 812 else 813 addr = 0; 814 815 regmap_update_bits(easrc->regmap, reg2, 816 EASRC_DPCS0R2_ST1_SA_MASK, 817 EASRC_DPCS0R2_ST1_SA(addr)); 818 } 819 820 if (ctx_priv->st2_num_taps > 0) { 821 st1_chanxexp = slot->num_channel * (ctx_priv->st1_num_exp - 1); 822 823 regmap_update_bits(easrc->regmap, reg1, 824 EASRC_DPCS0R1_ST1_EXP_MASK, 825 EASRC_DPCS0R1_ST1_EXP(st1_chanxexp)); 826 827 st2_mem_alloc = slot->num_channel * ctx_priv->st2_num_taps; 828 slot->pf_mem_used += st2_mem_alloc; 829 regmap_update_bits(easrc->regmap, reg3, 830 EASRC_DPCS0R3_ST2_MA_MASK, 831 EASRC_DPCS0R3_ST2_MA(st2_mem_alloc)); 832 833 if (slot->slot_index == 1) 834 addr = PREFILTER_MEM_LEN - st1_mem_alloc - st2_mem_alloc; 835 else 836 addr = st1_mem_alloc; 837 838 regmap_update_bits(easrc->regmap, reg3, 839 EASRC_DPCS0R3_ST2_SA_MASK, 840 EASRC_DPCS0R3_ST2_SA(addr)); 841 } 842 843 regmap_update_bits(easrc->regmap, reg0, 844 EASRC_DPCS0R0_EN_MASK, EASRC_DPCS0R0_EN); 845 846 return 0; 847 } 848 849 /* 850 * fsl_easrc_config_slot 851 * 852 * A single context can be split amongst any of the 4 context processing pipes 853 * in the design. 854 * The total number of channels consumed within the context processor must be 855 * less than or equal to 8. if a single context is configured to contain more 856 * than 8 channels then it must be distributed across multiple context 857 * processing pipe slots. 858 * 859 */ 860 static int fsl_easrc_config_slot(struct fsl_asrc *easrc, unsigned int ctx_id) 861 { 862 struct fsl_easrc_priv *easrc_priv = easrc->private; 863 struct fsl_asrc_pair *ctx = easrc->pair[ctx_id]; 864 int req_channels = ctx->channels; 865 int start_channel = 0, avail_channel; 866 struct fsl_easrc_slot *slot0, *slot1; 867 struct fsl_easrc_slot *slota, *slotb; 868 int i, ret; 869 870 if (req_channels <= 0) 871 return -EINVAL; 872 873 for (i = 0; i < EASRC_CTX_MAX_NUM; i++) { 874 slot0 = &easrc_priv->slot[i][0]; 875 slot1 = &easrc_priv->slot[i][1]; 876 877 if (slot0->busy && slot1->busy) { 878 continue; 879 } else if ((slot0->busy && slot0->ctx_index == ctx->index) || 880 (slot1->busy && slot1->ctx_index == ctx->index)) { 881 continue; 882 } else if (!slot0->busy) { 883 slota = slot0; 884 slotb = slot1; 885 slota->slot_index = 0; 886 } else if (!slot1->busy) { 887 slota = slot1; 888 slotb = slot0; 889 slota->slot_index = 1; 890 } 891 892 if (!slota || !slotb) 893 continue; 894 895 avail_channel = fsl_easrc_max_ch_for_slot(ctx, slotb); 896 if (avail_channel <= 0) 897 continue; 898 899 ret = fsl_easrc_config_one_slot(ctx, slota, i, &req_channels, 900 &start_channel, &avail_channel); 901 if (ret) 902 return ret; 903 904 if (req_channels > 0) 905 continue; 906 else 907 break; 908 } 909 910 if (req_channels > 0) { 911 dev_err(&easrc->pdev->dev, "no avail slot.\n"); 912 return -EINVAL; 913 } 914 915 return 0; 916 } 917 918 /* 919 * fsl_easrc_release_slot 920 * 921 * Clear the slot configuration 922 */ 923 static int fsl_easrc_release_slot(struct fsl_asrc *easrc, unsigned int ctx_id) 924 { 925 struct fsl_easrc_priv *easrc_priv = easrc->private; 926 struct fsl_asrc_pair *ctx = easrc->pair[ctx_id]; 927 int i; 928 929 for (i = 0; i < EASRC_CTX_MAX_NUM; i++) { 930 if (easrc_priv->slot[i][0].busy && 931 easrc_priv->slot[i][0].ctx_index == ctx->index) { 932 easrc_priv->slot[i][0].busy = false; 933 easrc_priv->slot[i][0].num_channel = 0; 934 easrc_priv->slot[i][0].pf_mem_used = 0; 935 /* set registers */ 936 regmap_write(easrc->regmap, REG_EASRC_DPCS0R0(i), 0); 937 regmap_write(easrc->regmap, REG_EASRC_DPCS0R1(i), 0); 938 regmap_write(easrc->regmap, REG_EASRC_DPCS0R2(i), 0); 939 regmap_write(easrc->regmap, REG_EASRC_DPCS0R3(i), 0); 940 } 941 942 if (easrc_priv->slot[i][1].busy && 943 easrc_priv->slot[i][1].ctx_index == ctx->index) { 944 easrc_priv->slot[i][1].busy = false; 945 easrc_priv->slot[i][1].num_channel = 0; 946 easrc_priv->slot[i][1].pf_mem_used = 0; 947 /* set registers */ 948 regmap_write(easrc->regmap, REG_EASRC_DPCS1R0(i), 0); 949 regmap_write(easrc->regmap, REG_EASRC_DPCS1R1(i), 0); 950 regmap_write(easrc->regmap, REG_EASRC_DPCS1R2(i), 0); 951 regmap_write(easrc->regmap, REG_EASRC_DPCS1R3(i), 0); 952 } 953 } 954 955 return 0; 956 } 957 958 /* 959 * fsl_easrc_config_context 960 * 961 * Configure the register relate with context. 962 */ 963 static int fsl_easrc_config_context(struct fsl_asrc *easrc, unsigned int ctx_id) 964 { 965 struct fsl_easrc_ctx_priv *ctx_priv; 966 struct fsl_asrc_pair *ctx; 967 struct device *dev; 968 unsigned long lock_flags; 969 int ret; 970 971 if (!easrc) 972 return -ENODEV; 973 974 dev = &easrc->pdev->dev; 975 976 if (ctx_id >= EASRC_CTX_MAX_NUM) { 977 dev_err(dev, "Invalid context id[%d]\n", ctx_id); 978 return -EINVAL; 979 } 980 981 ctx = easrc->pair[ctx_id]; 982 983 ctx_priv = ctx->private; 984 985 fsl_easrc_normalize_rates(ctx); 986 987 ret = fsl_easrc_set_rs_ratio(ctx); 988 if (ret) 989 return ret; 990 991 /* Initialize the context coeficients */ 992 ret = fsl_easrc_prefilter_config(easrc, ctx->index); 993 if (ret) 994 return ret; 995 996 spin_lock_irqsave(&easrc->lock, lock_flags); 997 ret = fsl_easrc_config_slot(easrc, ctx->index); 998 spin_unlock_irqrestore(&easrc->lock, lock_flags); 999 if (ret) 1000 return ret; 1001 1002 /* 1003 * Both prefilter and resampling filters can use following 1004 * initialization modes: 1005 * 2 - zero-fil mode 1006 * 1 - replication mode 1007 * 0 - software control 1008 */ 1009 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), 1010 EASRC_CCE1_RS_INIT_MASK, 1011 EASRC_CCE1_RS_INIT(ctx_priv->rs_init_mode)); 1012 1013 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), 1014 EASRC_CCE1_PF_INIT_MASK, 1015 EASRC_CCE1_PF_INIT(ctx_priv->pf_init_mode)); 1016 1017 /* 1018 * Context Input FIFO Watermark 1019 * DMA request is generated when input FIFO < FIFO_WTMK 1020 */ 1021 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id), 1022 EASRC_CC_FIFO_WTMK_MASK, 1023 EASRC_CC_FIFO_WTMK(ctx_priv->in_params.fifo_wtmk)); 1024 1025 /* 1026 * Context Output FIFO Watermark 1027 * DMA request is generated when output FIFO > FIFO_WTMK 1028 * So we set fifo_wtmk -1 to register. 1029 */ 1030 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx_id), 1031 EASRC_COC_FIFO_WTMK_MASK, 1032 EASRC_COC_FIFO_WTMK(ctx_priv->out_params.fifo_wtmk - 1)); 1033 1034 /* Number of channels */ 1035 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id), 1036 EASRC_CC_CHEN_MASK, 1037 EASRC_CC_CHEN(ctx->channels - 1)); 1038 return 0; 1039 } 1040 1041 static int fsl_easrc_process_format(struct fsl_asrc_pair *ctx, 1042 struct fsl_easrc_data_fmt *fmt, 1043 snd_pcm_format_t raw_fmt) 1044 { 1045 struct fsl_asrc *easrc = ctx->asrc; 1046 struct fsl_easrc_priv *easrc_priv = easrc->private; 1047 int ret; 1048 1049 if (!fmt) 1050 return -EINVAL; 1051 1052 /* 1053 * Context Input Floating Point Format 1054 * 0 - Integer Format 1055 * 1 - Single Precision FP Format 1056 */ 1057 fmt->floating_point = !snd_pcm_format_linear(raw_fmt); 1058 fmt->sample_pos = 0; 1059 fmt->iec958 = 0; 1060 1061 /* Get the data width */ 1062 switch (snd_pcm_format_width(raw_fmt)) { 1063 case 16: 1064 fmt->width = EASRC_WIDTH_16_BIT; 1065 fmt->addexp = 15; 1066 break; 1067 case 20: 1068 fmt->width = EASRC_WIDTH_20_BIT; 1069 fmt->addexp = 19; 1070 break; 1071 case 24: 1072 fmt->width = EASRC_WIDTH_24_BIT; 1073 fmt->addexp = 23; 1074 break; 1075 case 32: 1076 fmt->width = EASRC_WIDTH_32_BIT; 1077 fmt->addexp = 31; 1078 break; 1079 default: 1080 return -EINVAL; 1081 } 1082 1083 switch (raw_fmt) { 1084 case SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE: 1085 fmt->width = easrc_priv->bps_iec958[ctx->index]; 1086 fmt->iec958 = 1; 1087 fmt->floating_point = 0; 1088 if (fmt->width == EASRC_WIDTH_16_BIT) { 1089 fmt->sample_pos = 12; 1090 fmt->addexp = 15; 1091 } else if (fmt->width == EASRC_WIDTH_20_BIT) { 1092 fmt->sample_pos = 8; 1093 fmt->addexp = 19; 1094 } else if (fmt->width == EASRC_WIDTH_24_BIT) { 1095 fmt->sample_pos = 4; 1096 fmt->addexp = 23; 1097 } 1098 break; 1099 default: 1100 break; 1101 } 1102 1103 /* 1104 * Data Endianness 1105 * 0 - Little-Endian 1106 * 1 - Big-Endian 1107 */ 1108 ret = snd_pcm_format_big_endian(raw_fmt); 1109 if (ret < 0) 1110 return ret; 1111 1112 fmt->endianness = ret; 1113 1114 /* 1115 * Input Data sign 1116 * 0b - Signed Format 1117 * 1b - Unsigned Format 1118 */ 1119 fmt->unsign = snd_pcm_format_unsigned(raw_fmt) > 0 ? 1 : 0; 1120 1121 return 0; 1122 } 1123 1124 static int fsl_easrc_set_ctx_format(struct fsl_asrc_pair *ctx, 1125 snd_pcm_format_t *in_raw_format, 1126 snd_pcm_format_t *out_raw_format) 1127 { 1128 struct fsl_asrc *easrc = ctx->asrc; 1129 struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; 1130 struct fsl_easrc_data_fmt *in_fmt = &ctx_priv->in_params.fmt; 1131 struct fsl_easrc_data_fmt *out_fmt = &ctx_priv->out_params.fmt; 1132 int ret = 0; 1133 1134 /* Get the bitfield values for input data format */ 1135 if (in_raw_format && out_raw_format) { 1136 ret = fsl_easrc_process_format(ctx, in_fmt, *in_raw_format); 1137 if (ret) 1138 return ret; 1139 } 1140 1141 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1142 EASRC_CC_BPS_MASK, 1143 EASRC_CC_BPS(in_fmt->width)); 1144 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1145 EASRC_CC_ENDIANNESS_MASK, 1146 in_fmt->endianness << EASRC_CC_ENDIANNESS_SHIFT); 1147 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1148 EASRC_CC_FMT_MASK, 1149 in_fmt->floating_point << EASRC_CC_FMT_SHIFT); 1150 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1151 EASRC_CC_INSIGN_MASK, 1152 in_fmt->unsign << EASRC_CC_INSIGN_SHIFT); 1153 1154 /* In Sample Position */ 1155 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1156 EASRC_CC_SAMPLE_POS_MASK, 1157 EASRC_CC_SAMPLE_POS(in_fmt->sample_pos)); 1158 1159 /* Get the bitfield values for input data format */ 1160 if (in_raw_format && out_raw_format) { 1161 ret = fsl_easrc_process_format(ctx, out_fmt, *out_raw_format); 1162 if (ret) 1163 return ret; 1164 } 1165 1166 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), 1167 EASRC_COC_BPS_MASK, 1168 EASRC_COC_BPS(out_fmt->width)); 1169 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), 1170 EASRC_COC_ENDIANNESS_MASK, 1171 out_fmt->endianness << EASRC_COC_ENDIANNESS_SHIFT); 1172 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), 1173 EASRC_COC_FMT_MASK, 1174 out_fmt->floating_point << EASRC_COC_FMT_SHIFT); 1175 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), 1176 EASRC_COC_OUTSIGN_MASK, 1177 out_fmt->unsign << EASRC_COC_OUTSIGN_SHIFT); 1178 1179 /* Out Sample Position */ 1180 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), 1181 EASRC_COC_SAMPLE_POS_MASK, 1182 EASRC_COC_SAMPLE_POS(out_fmt->sample_pos)); 1183 1184 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), 1185 EASRC_COC_IEC_EN_MASK, 1186 out_fmt->iec958 << EASRC_COC_IEC_EN_SHIFT); 1187 1188 return ret; 1189 } 1190 1191 /* 1192 * The ASRC provides interleaving support in hardware to ensure that a 1193 * variety of sample sources can be internally combined 1194 * to conform with this format. Interleaving parameters are accessed 1195 * through the ASRC_CTRL_IN_ACCESSa and ASRC_CTRL_OUT_ACCESSa registers 1196 */ 1197 static int fsl_easrc_set_ctx_organziation(struct fsl_asrc_pair *ctx) 1198 { 1199 struct fsl_easrc_ctx_priv *ctx_priv; 1200 struct fsl_asrc *easrc; 1201 1202 if (!ctx) 1203 return -ENODEV; 1204 1205 easrc = ctx->asrc; 1206 ctx_priv = ctx->private; 1207 1208 /* input interleaving parameters */ 1209 regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index), 1210 EASRC_CIA_ITER_MASK, 1211 EASRC_CIA_ITER(ctx_priv->in_params.iterations)); 1212 regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index), 1213 EASRC_CIA_GRLEN_MASK, 1214 EASRC_CIA_GRLEN(ctx_priv->in_params.group_len)); 1215 regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index), 1216 EASRC_CIA_ACCLEN_MASK, 1217 EASRC_CIA_ACCLEN(ctx_priv->in_params.access_len)); 1218 1219 /* output interleaving parameters */ 1220 regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index), 1221 EASRC_COA_ITER_MASK, 1222 EASRC_COA_ITER(ctx_priv->out_params.iterations)); 1223 regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index), 1224 EASRC_COA_GRLEN_MASK, 1225 EASRC_COA_GRLEN(ctx_priv->out_params.group_len)); 1226 regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index), 1227 EASRC_COA_ACCLEN_MASK, 1228 EASRC_COA_ACCLEN(ctx_priv->out_params.access_len)); 1229 1230 return 0; 1231 } 1232 1233 /* 1234 * Request one of the available contexts 1235 * 1236 * Returns a negative number on error and >=0 as context id 1237 * on success 1238 */ 1239 static int fsl_easrc_request_context(int channels, struct fsl_asrc_pair *ctx) 1240 { 1241 enum asrc_pair_index index = ASRC_INVALID_PAIR; 1242 struct fsl_asrc *easrc = ctx->asrc; 1243 struct device *dev; 1244 unsigned long lock_flags; 1245 int ret = 0; 1246 int i; 1247 1248 dev = &easrc->pdev->dev; 1249 1250 spin_lock_irqsave(&easrc->lock, lock_flags); 1251 1252 for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) { 1253 if (easrc->pair[i]) 1254 continue; 1255 1256 index = i; 1257 break; 1258 } 1259 1260 if (index == ASRC_INVALID_PAIR) { 1261 dev_err(dev, "all contexts are busy\n"); 1262 ret = -EBUSY; 1263 } else if (channels > easrc->channel_avail) { 1264 dev_err(dev, "can't give the required channels: %d\n", 1265 channels); 1266 ret = -EINVAL; 1267 } else { 1268 ctx->index = index; 1269 ctx->channels = channels; 1270 easrc->pair[index] = ctx; 1271 easrc->channel_avail -= channels; 1272 } 1273 1274 spin_unlock_irqrestore(&easrc->lock, lock_flags); 1275 1276 return ret; 1277 } 1278 1279 /* 1280 * Release the context 1281 * 1282 * This funciton is mainly doing the revert thing in request context 1283 */ 1284 static void fsl_easrc_release_context(struct fsl_asrc_pair *ctx) 1285 { 1286 unsigned long lock_flags; 1287 struct fsl_asrc *easrc; 1288 1289 if (!ctx) 1290 return; 1291 1292 easrc = ctx->asrc; 1293 1294 spin_lock_irqsave(&easrc->lock, lock_flags); 1295 1296 fsl_easrc_release_slot(easrc, ctx->index); 1297 1298 easrc->channel_avail += ctx->channels; 1299 easrc->pair[ctx->index] = NULL; 1300 1301 spin_unlock_irqrestore(&easrc->lock, lock_flags); 1302 } 1303 1304 /* 1305 * Start the context 1306 * 1307 * Enable the DMA request and context 1308 */ 1309 static int fsl_easrc_start_context(struct fsl_asrc_pair *ctx) 1310 { 1311 struct fsl_asrc *easrc = ctx->asrc; 1312 1313 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1314 EASRC_CC_FWMDE_MASK, EASRC_CC_FWMDE); 1315 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), 1316 EASRC_COC_FWMDE_MASK, EASRC_COC_FWMDE); 1317 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1318 EASRC_CC_EN_MASK, EASRC_CC_EN); 1319 return 0; 1320 } 1321 1322 /* 1323 * Stop the context 1324 * 1325 * Disable the DMA request and context 1326 */ 1327 static int fsl_easrc_stop_context(struct fsl_asrc_pair *ctx) 1328 { 1329 struct fsl_asrc *easrc = ctx->asrc; 1330 int val, i; 1331 int size = 0; 1332 int retry = 200; 1333 1334 regmap_read(easrc->regmap, REG_EASRC_CC(ctx->index), &val); 1335 1336 if (val & EASRC_CC_EN_MASK) { 1337 regmap_update_bits(easrc->regmap, 1338 REG_EASRC_CC(ctx->index), 1339 EASRC_CC_STOP_MASK, EASRC_CC_STOP); 1340 do { 1341 regmap_read(easrc->regmap, REG_EASRC_SFS(ctx->index), &val); 1342 val &= EASRC_SFS_NSGO_MASK; 1343 size = val >> EASRC_SFS_NSGO_SHIFT; 1344 1345 /* Read FIFO, drop the data */ 1346 for (i = 0; i < size * ctx->channels; i++) 1347 regmap_read(easrc->regmap, REG_EASRC_RDFIFO(ctx->index), &val); 1348 /* Check RUN_STOP_DONE */ 1349 regmap_read(easrc->regmap, REG_EASRC_IRQF, &val); 1350 if (val & EASRC_IRQF_RSD(1 << ctx->index)) { 1351 /*Clear RUN_STOP_DONE*/ 1352 regmap_write_bits(easrc->regmap, 1353 REG_EASRC_IRQF, 1354 EASRC_IRQF_RSD(1 << ctx->index), 1355 EASRC_IRQF_RSD(1 << ctx->index)); 1356 break; 1357 } 1358 udelay(100); 1359 } while (--retry); 1360 1361 if (retry == 0) 1362 dev_warn(&easrc->pdev->dev, "RUN STOP fail\n"); 1363 } 1364 1365 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1366 EASRC_CC_EN_MASK | EASRC_CC_STOP_MASK, 0); 1367 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1368 EASRC_CC_FWMDE_MASK, 0); 1369 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), 1370 EASRC_COC_FWMDE_MASK, 0); 1371 return 0; 1372 } 1373 1374 static struct dma_chan *fsl_easrc_get_dma_channel(struct fsl_asrc_pair *ctx, 1375 bool dir) 1376 { 1377 struct fsl_asrc *easrc = ctx->asrc; 1378 enum asrc_pair_index index = ctx->index; 1379 char name[8]; 1380 1381 /* Example of dma name: ctx0_rx */ 1382 sprintf(name, "ctx%c_%cx", index + '0', dir == IN ? 'r' : 't'); 1383 1384 return dma_request_slave_channel(&easrc->pdev->dev, name); 1385 }; 1386 1387 static const unsigned int easrc_rates[] = { 1388 8000, 11025, 12000, 16000, 1389 22050, 24000, 32000, 44100, 1390 48000, 64000, 88200, 96000, 1391 128000, 176400, 192000, 256000, 1392 352800, 384000, 705600, 768000, 1393 }; 1394 1395 static const struct snd_pcm_hw_constraint_list easrc_rate_constraints = { 1396 .count = ARRAY_SIZE(easrc_rates), 1397 .list = easrc_rates, 1398 }; 1399 1400 static int fsl_easrc_startup(struct snd_pcm_substream *substream, 1401 struct snd_soc_dai *dai) 1402 { 1403 return snd_pcm_hw_constraint_list(substream->runtime, 0, 1404 SNDRV_PCM_HW_PARAM_RATE, 1405 &easrc_rate_constraints); 1406 } 1407 1408 static int fsl_easrc_trigger(struct snd_pcm_substream *substream, 1409 int cmd, struct snd_soc_dai *dai) 1410 { 1411 struct snd_pcm_runtime *runtime = substream->runtime; 1412 struct fsl_asrc_pair *ctx = runtime->private_data; 1413 int ret; 1414 1415 switch (cmd) { 1416 case SNDRV_PCM_TRIGGER_START: 1417 case SNDRV_PCM_TRIGGER_RESUME: 1418 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1419 ret = fsl_easrc_start_context(ctx); 1420 if (ret) 1421 return ret; 1422 break; 1423 case SNDRV_PCM_TRIGGER_STOP: 1424 case SNDRV_PCM_TRIGGER_SUSPEND: 1425 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1426 ret = fsl_easrc_stop_context(ctx); 1427 if (ret) 1428 return ret; 1429 break; 1430 default: 1431 return -EINVAL; 1432 } 1433 1434 return 0; 1435 } 1436 1437 static int fsl_easrc_hw_params(struct snd_pcm_substream *substream, 1438 struct snd_pcm_hw_params *params, 1439 struct snd_soc_dai *dai) 1440 { 1441 struct fsl_asrc *easrc = snd_soc_dai_get_drvdata(dai); 1442 struct snd_pcm_runtime *runtime = substream->runtime; 1443 struct device *dev = &easrc->pdev->dev; 1444 struct fsl_asrc_pair *ctx = runtime->private_data; 1445 struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; 1446 unsigned int channels = params_channels(params); 1447 unsigned int rate = params_rate(params); 1448 snd_pcm_format_t format = params_format(params); 1449 int ret; 1450 1451 ret = fsl_easrc_request_context(channels, ctx); 1452 if (ret) { 1453 dev_err(dev, "failed to request context\n"); 1454 return ret; 1455 } 1456 1457 ctx_priv->ctx_streams |= BIT(substream->stream); 1458 1459 /* 1460 * Set the input and output ratio so we can compute 1461 * the resampling ratio in RS_LOW/HIGH 1462 */ 1463 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 1464 ctx_priv->in_params.sample_rate = rate; 1465 ctx_priv->in_params.sample_format = format; 1466 ctx_priv->out_params.sample_rate = easrc->asrc_rate; 1467 ctx_priv->out_params.sample_format = easrc->asrc_format; 1468 } else { 1469 ctx_priv->out_params.sample_rate = rate; 1470 ctx_priv->out_params.sample_format = format; 1471 ctx_priv->in_params.sample_rate = easrc->asrc_rate; 1472 ctx_priv->in_params.sample_format = easrc->asrc_format; 1473 } 1474 1475 ctx->channels = channels; 1476 ctx_priv->in_params.fifo_wtmk = 0x20; 1477 ctx_priv->out_params.fifo_wtmk = 0x20; 1478 1479 /* 1480 * Do only rate conversion and keep the same format for input 1481 * and output data 1482 */ 1483 ret = fsl_easrc_set_ctx_format(ctx, 1484 &ctx_priv->in_params.sample_format, 1485 &ctx_priv->out_params.sample_format); 1486 if (ret) { 1487 dev_err(dev, "failed to set format %d", ret); 1488 return ret; 1489 } 1490 1491 ret = fsl_easrc_config_context(easrc, ctx->index); 1492 if (ret) { 1493 dev_err(dev, "failed to config context\n"); 1494 return ret; 1495 } 1496 1497 ctx_priv->in_params.iterations = 1; 1498 ctx_priv->in_params.group_len = ctx->channels; 1499 ctx_priv->in_params.access_len = ctx->channels; 1500 ctx_priv->out_params.iterations = 1; 1501 ctx_priv->out_params.group_len = ctx->channels; 1502 ctx_priv->out_params.access_len = ctx->channels; 1503 1504 ret = fsl_easrc_set_ctx_organziation(ctx); 1505 if (ret) { 1506 dev_err(dev, "failed to set fifo organization\n"); 1507 return ret; 1508 } 1509 1510 return 0; 1511 } 1512 1513 static int fsl_easrc_hw_free(struct snd_pcm_substream *substream, 1514 struct snd_soc_dai *dai) 1515 { 1516 struct snd_pcm_runtime *runtime = substream->runtime; 1517 struct fsl_asrc_pair *ctx = runtime->private_data; 1518 struct fsl_easrc_ctx_priv *ctx_priv; 1519 1520 if (!ctx) 1521 return -EINVAL; 1522 1523 ctx_priv = ctx->private; 1524 1525 if (ctx_priv->ctx_streams & BIT(substream->stream)) { 1526 ctx_priv->ctx_streams &= ~BIT(substream->stream); 1527 fsl_easrc_release_context(ctx); 1528 } 1529 1530 return 0; 1531 } 1532 1533 static struct snd_soc_dai_ops fsl_easrc_dai_ops = { 1534 .startup = fsl_easrc_startup, 1535 .trigger = fsl_easrc_trigger, 1536 .hw_params = fsl_easrc_hw_params, 1537 .hw_free = fsl_easrc_hw_free, 1538 }; 1539 1540 static int fsl_easrc_dai_probe(struct snd_soc_dai *cpu_dai) 1541 { 1542 struct fsl_asrc *easrc = dev_get_drvdata(cpu_dai->dev); 1543 1544 snd_soc_dai_init_dma_data(cpu_dai, 1545 &easrc->dma_params_tx, 1546 &easrc->dma_params_rx); 1547 return 0; 1548 } 1549 1550 static struct snd_soc_dai_driver fsl_easrc_dai = { 1551 .probe = fsl_easrc_dai_probe, 1552 .playback = { 1553 .stream_name = "ASRC-Playback", 1554 .channels_min = 1, 1555 .channels_max = 32, 1556 .rate_min = 8000, 1557 .rate_max = 768000, 1558 .rates = SNDRV_PCM_RATE_KNOT, 1559 .formats = FSL_EASRC_FORMATS, 1560 }, 1561 .capture = { 1562 .stream_name = "ASRC-Capture", 1563 .channels_min = 1, 1564 .channels_max = 32, 1565 .rate_min = 8000, 1566 .rate_max = 768000, 1567 .rates = SNDRV_PCM_RATE_KNOT, 1568 .formats = FSL_EASRC_FORMATS | 1569 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1570 }, 1571 .ops = &fsl_easrc_dai_ops, 1572 }; 1573 1574 static const struct snd_soc_component_driver fsl_easrc_component = { 1575 .name = "fsl-easrc-dai", 1576 .controls = fsl_easrc_snd_controls, 1577 .num_controls = ARRAY_SIZE(fsl_easrc_snd_controls), 1578 }; 1579 1580 static const struct reg_default fsl_easrc_reg_defaults[] = { 1581 {REG_EASRC_WRFIFO(0), 0x00000000}, 1582 {REG_EASRC_WRFIFO(1), 0x00000000}, 1583 {REG_EASRC_WRFIFO(2), 0x00000000}, 1584 {REG_EASRC_WRFIFO(3), 0x00000000}, 1585 {REG_EASRC_RDFIFO(0), 0x00000000}, 1586 {REG_EASRC_RDFIFO(1), 0x00000000}, 1587 {REG_EASRC_RDFIFO(2), 0x00000000}, 1588 {REG_EASRC_RDFIFO(3), 0x00000000}, 1589 {REG_EASRC_CC(0), 0x00000000}, 1590 {REG_EASRC_CC(1), 0x00000000}, 1591 {REG_EASRC_CC(2), 0x00000000}, 1592 {REG_EASRC_CC(3), 0x00000000}, 1593 {REG_EASRC_CCE1(0), 0x00000000}, 1594 {REG_EASRC_CCE1(1), 0x00000000}, 1595 {REG_EASRC_CCE1(2), 0x00000000}, 1596 {REG_EASRC_CCE1(3), 0x00000000}, 1597 {REG_EASRC_CCE2(0), 0x00000000}, 1598 {REG_EASRC_CCE2(1), 0x00000000}, 1599 {REG_EASRC_CCE2(2), 0x00000000}, 1600 {REG_EASRC_CCE2(3), 0x00000000}, 1601 {REG_EASRC_CIA(0), 0x00000000}, 1602 {REG_EASRC_CIA(1), 0x00000000}, 1603 {REG_EASRC_CIA(2), 0x00000000}, 1604 {REG_EASRC_CIA(3), 0x00000000}, 1605 {REG_EASRC_DPCS0R0(0), 0x00000000}, 1606 {REG_EASRC_DPCS0R0(1), 0x00000000}, 1607 {REG_EASRC_DPCS0R0(2), 0x00000000}, 1608 {REG_EASRC_DPCS0R0(3), 0x00000000}, 1609 {REG_EASRC_DPCS0R1(0), 0x00000000}, 1610 {REG_EASRC_DPCS0R1(1), 0x00000000}, 1611 {REG_EASRC_DPCS0R1(2), 0x00000000}, 1612 {REG_EASRC_DPCS0R1(3), 0x00000000}, 1613 {REG_EASRC_DPCS0R2(0), 0x00000000}, 1614 {REG_EASRC_DPCS0R2(1), 0x00000000}, 1615 {REG_EASRC_DPCS0R2(2), 0x00000000}, 1616 {REG_EASRC_DPCS0R2(3), 0x00000000}, 1617 {REG_EASRC_DPCS0R3(0), 0x00000000}, 1618 {REG_EASRC_DPCS0R3(1), 0x00000000}, 1619 {REG_EASRC_DPCS0R3(2), 0x00000000}, 1620 {REG_EASRC_DPCS0R3(3), 0x00000000}, 1621 {REG_EASRC_DPCS1R0(0), 0x00000000}, 1622 {REG_EASRC_DPCS1R0(1), 0x00000000}, 1623 {REG_EASRC_DPCS1R0(2), 0x00000000}, 1624 {REG_EASRC_DPCS1R0(3), 0x00000000}, 1625 {REG_EASRC_DPCS1R1(0), 0x00000000}, 1626 {REG_EASRC_DPCS1R1(1), 0x00000000}, 1627 {REG_EASRC_DPCS1R1(2), 0x00000000}, 1628 {REG_EASRC_DPCS1R1(3), 0x00000000}, 1629 {REG_EASRC_DPCS1R2(0), 0x00000000}, 1630 {REG_EASRC_DPCS1R2(1), 0x00000000}, 1631 {REG_EASRC_DPCS1R2(2), 0x00000000}, 1632 {REG_EASRC_DPCS1R2(3), 0x00000000}, 1633 {REG_EASRC_DPCS1R3(0), 0x00000000}, 1634 {REG_EASRC_DPCS1R3(1), 0x00000000}, 1635 {REG_EASRC_DPCS1R3(2), 0x00000000}, 1636 {REG_EASRC_DPCS1R3(3), 0x00000000}, 1637 {REG_EASRC_COC(0), 0x00000000}, 1638 {REG_EASRC_COC(1), 0x00000000}, 1639 {REG_EASRC_COC(2), 0x00000000}, 1640 {REG_EASRC_COC(3), 0x00000000}, 1641 {REG_EASRC_COA(0), 0x00000000}, 1642 {REG_EASRC_COA(1), 0x00000000}, 1643 {REG_EASRC_COA(2), 0x00000000}, 1644 {REG_EASRC_COA(3), 0x00000000}, 1645 {REG_EASRC_SFS(0), 0x00000000}, 1646 {REG_EASRC_SFS(1), 0x00000000}, 1647 {REG_EASRC_SFS(2), 0x00000000}, 1648 {REG_EASRC_SFS(3), 0x00000000}, 1649 {REG_EASRC_RRL(0), 0x00000000}, 1650 {REG_EASRC_RRL(1), 0x00000000}, 1651 {REG_EASRC_RRL(2), 0x00000000}, 1652 {REG_EASRC_RRL(3), 0x00000000}, 1653 {REG_EASRC_RRH(0), 0x00000000}, 1654 {REG_EASRC_RRH(1), 0x00000000}, 1655 {REG_EASRC_RRH(2), 0x00000000}, 1656 {REG_EASRC_RRH(3), 0x00000000}, 1657 {REG_EASRC_RUC(0), 0x00000000}, 1658 {REG_EASRC_RUC(1), 0x00000000}, 1659 {REG_EASRC_RUC(2), 0x00000000}, 1660 {REG_EASRC_RUC(3), 0x00000000}, 1661 {REG_EASRC_RUR(0), 0x7FFFFFFF}, 1662 {REG_EASRC_RUR(1), 0x7FFFFFFF}, 1663 {REG_EASRC_RUR(2), 0x7FFFFFFF}, 1664 {REG_EASRC_RUR(3), 0x7FFFFFFF}, 1665 {REG_EASRC_RCTCL, 0x00000000}, 1666 {REG_EASRC_RCTCH, 0x00000000}, 1667 {REG_EASRC_PCF(0), 0x00000000}, 1668 {REG_EASRC_PCF(1), 0x00000000}, 1669 {REG_EASRC_PCF(2), 0x00000000}, 1670 {REG_EASRC_PCF(3), 0x00000000}, 1671 {REG_EASRC_CRCM, 0x00000000}, 1672 {REG_EASRC_CRCC, 0x00000000}, 1673 {REG_EASRC_IRQC, 0x00000FFF}, 1674 {REG_EASRC_IRQF, 0x00000000}, 1675 {REG_EASRC_CS0(0), 0x00000000}, 1676 {REG_EASRC_CS0(1), 0x00000000}, 1677 {REG_EASRC_CS0(2), 0x00000000}, 1678 {REG_EASRC_CS0(3), 0x00000000}, 1679 {REG_EASRC_CS1(0), 0x00000000}, 1680 {REG_EASRC_CS1(1), 0x00000000}, 1681 {REG_EASRC_CS1(2), 0x00000000}, 1682 {REG_EASRC_CS1(3), 0x00000000}, 1683 {REG_EASRC_CS2(0), 0x00000000}, 1684 {REG_EASRC_CS2(1), 0x00000000}, 1685 {REG_EASRC_CS2(2), 0x00000000}, 1686 {REG_EASRC_CS2(3), 0x00000000}, 1687 {REG_EASRC_CS3(0), 0x00000000}, 1688 {REG_EASRC_CS3(1), 0x00000000}, 1689 {REG_EASRC_CS3(2), 0x00000000}, 1690 {REG_EASRC_CS3(3), 0x00000000}, 1691 {REG_EASRC_CS4(0), 0x00000000}, 1692 {REG_EASRC_CS4(1), 0x00000000}, 1693 {REG_EASRC_CS4(2), 0x00000000}, 1694 {REG_EASRC_CS4(3), 0x00000000}, 1695 {REG_EASRC_CS5(0), 0x00000000}, 1696 {REG_EASRC_CS5(1), 0x00000000}, 1697 {REG_EASRC_CS5(2), 0x00000000}, 1698 {REG_EASRC_CS5(3), 0x00000000}, 1699 {REG_EASRC_DBGC, 0x00000000}, 1700 {REG_EASRC_DBGS, 0x00000000}, 1701 }; 1702 1703 static const struct regmap_range fsl_easrc_readable_ranges[] = { 1704 regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RCTCH), 1705 regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_PCF(3)), 1706 regmap_reg_range(REG_EASRC_CRCC, REG_EASRC_DBGS), 1707 }; 1708 1709 static const struct regmap_access_table fsl_easrc_readable_table = { 1710 .yes_ranges = fsl_easrc_readable_ranges, 1711 .n_yes_ranges = ARRAY_SIZE(fsl_easrc_readable_ranges), 1712 }; 1713 1714 static const struct regmap_range fsl_easrc_writeable_ranges[] = { 1715 regmap_reg_range(REG_EASRC_WRFIFO(0), REG_EASRC_WRFIFO(3)), 1716 regmap_reg_range(REG_EASRC_CC(0), REG_EASRC_COA(3)), 1717 regmap_reg_range(REG_EASRC_RRL(0), REG_EASRC_RCTCH), 1718 regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_DBGC), 1719 }; 1720 1721 static const struct regmap_access_table fsl_easrc_writeable_table = { 1722 .yes_ranges = fsl_easrc_writeable_ranges, 1723 .n_yes_ranges = ARRAY_SIZE(fsl_easrc_writeable_ranges), 1724 }; 1725 1726 static const struct regmap_range fsl_easrc_volatileable_ranges[] = { 1727 regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RDFIFO(3)), 1728 regmap_reg_range(REG_EASRC_SFS(0), REG_EASRC_SFS(3)), 1729 regmap_reg_range(REG_EASRC_IRQF, REG_EASRC_IRQF), 1730 regmap_reg_range(REG_EASRC_DBGS, REG_EASRC_DBGS), 1731 }; 1732 1733 static const struct regmap_access_table fsl_easrc_volatileable_table = { 1734 .yes_ranges = fsl_easrc_volatileable_ranges, 1735 .n_yes_ranges = ARRAY_SIZE(fsl_easrc_volatileable_ranges), 1736 }; 1737 1738 static const struct regmap_config fsl_easrc_regmap_config = { 1739 .reg_bits = 32, 1740 .reg_stride = 4, 1741 .val_bits = 32, 1742 1743 .max_register = REG_EASRC_DBGS, 1744 .reg_defaults = fsl_easrc_reg_defaults, 1745 .num_reg_defaults = ARRAY_SIZE(fsl_easrc_reg_defaults), 1746 .rd_table = &fsl_easrc_readable_table, 1747 .wr_table = &fsl_easrc_writeable_table, 1748 .volatile_table = &fsl_easrc_volatileable_table, 1749 .cache_type = REGCACHE_RBTREE, 1750 }; 1751 1752 #ifdef DEBUG 1753 static void fsl_easrc_dump_firmware(struct fsl_asrc *easrc) 1754 { 1755 struct fsl_easrc_priv *easrc_priv = easrc->private; 1756 struct asrc_firmware_hdr *firm = easrc_priv->firmware_hdr; 1757 struct interp_params *interp = easrc_priv->interp; 1758 struct prefil_params *prefil = easrc_priv->prefil; 1759 struct device *dev = &easrc->pdev->dev; 1760 int i; 1761 1762 if (firm->magic != FIRMWARE_MAGIC) { 1763 dev_err(dev, "Wrong magic. Something went wrong!"); 1764 return; 1765 } 1766 1767 dev_dbg(dev, "Firmware v%u dump:\n", firm->firmware_version); 1768 dev_dbg(dev, "Num prefilter scenarios: %u\n", firm->prefil_scen); 1769 dev_dbg(dev, "Num interpolation scenarios: %u\n", firm->interp_scen); 1770 dev_dbg(dev, "\nInterpolation scenarios:\n"); 1771 1772 for (i = 0; i < firm->interp_scen; i++) { 1773 if (interp[i].magic != FIRMWARE_MAGIC) { 1774 dev_dbg(dev, "%d. wrong interp magic: %x\n", 1775 i, interp[i].magic); 1776 continue; 1777 } 1778 dev_dbg(dev, "%d. taps: %u, phases: %u, center: %llu\n", i, 1779 interp[i].num_taps, interp[i].num_phases, 1780 interp[i].center_tap); 1781 } 1782 1783 for (i = 0; i < firm->prefil_scen; i++) { 1784 if (prefil[i].magic != FIRMWARE_MAGIC) { 1785 dev_dbg(dev, "%d. wrong prefil magic: %x\n", 1786 i, prefil[i].magic); 1787 continue; 1788 } 1789 dev_dbg(dev, "%d. insr: %u, outsr: %u, st1: %u, st2: %u\n", i, 1790 prefil[i].insr, prefil[i].outsr, 1791 prefil[i].st1_taps, prefil[i].st2_taps); 1792 } 1793 1794 dev_dbg(dev, "end of firmware dump\n"); 1795 } 1796 #endif 1797 1798 static int fsl_easrc_get_firmware(struct fsl_asrc *easrc) 1799 { 1800 struct fsl_easrc_priv *easrc_priv; 1801 const struct firmware **fw_p; 1802 u32 pnum, inum, offset; 1803 const u8 *data; 1804 int ret; 1805 1806 if (!easrc) 1807 return -EINVAL; 1808 1809 easrc_priv = easrc->private; 1810 fw_p = &easrc_priv->fw; 1811 1812 ret = request_firmware(fw_p, easrc_priv->fw_name, &easrc->pdev->dev); 1813 if (ret) 1814 return ret; 1815 1816 data = easrc_priv->fw->data; 1817 1818 easrc_priv->firmware_hdr = (struct asrc_firmware_hdr *)data; 1819 pnum = easrc_priv->firmware_hdr->prefil_scen; 1820 inum = easrc_priv->firmware_hdr->interp_scen; 1821 1822 if (inum) { 1823 offset = sizeof(struct asrc_firmware_hdr); 1824 easrc_priv->interp = (struct interp_params *)(data + offset); 1825 } 1826 1827 if (pnum) { 1828 offset = sizeof(struct asrc_firmware_hdr) + 1829 inum * sizeof(struct interp_params); 1830 easrc_priv->prefil = (struct prefil_params *)(data + offset); 1831 } 1832 1833 #ifdef DEBUG 1834 fsl_easrc_dump_firmware(easrc); 1835 #endif 1836 1837 return 0; 1838 } 1839 1840 static irqreturn_t fsl_easrc_isr(int irq, void *dev_id) 1841 { 1842 struct fsl_asrc *easrc = (struct fsl_asrc *)dev_id; 1843 struct device *dev = &easrc->pdev->dev; 1844 int val; 1845 1846 regmap_read(easrc->regmap, REG_EASRC_IRQF, &val); 1847 1848 if (val & EASRC_IRQF_OER_MASK) 1849 dev_dbg(dev, "output FIFO underflow\n"); 1850 1851 if (val & EASRC_IRQF_IFO_MASK) 1852 dev_dbg(dev, "input FIFO overflow\n"); 1853 1854 return IRQ_HANDLED; 1855 } 1856 1857 static int fsl_easrc_get_fifo_addr(u8 dir, enum asrc_pair_index index) 1858 { 1859 return REG_EASRC_FIFO(dir, index); 1860 } 1861 1862 static const struct of_device_id fsl_easrc_dt_ids[] = { 1863 { .compatible = "fsl,imx8mn-easrc",}, 1864 {} 1865 }; 1866 MODULE_DEVICE_TABLE(of, fsl_easrc_dt_ids); 1867 1868 static int fsl_easrc_probe(struct platform_device *pdev) 1869 { 1870 struct fsl_easrc_priv *easrc_priv; 1871 struct device *dev = &pdev->dev; 1872 struct fsl_asrc *easrc; 1873 struct resource *res; 1874 struct device_node *np; 1875 void __iomem *regs; 1876 int ret, irq; 1877 1878 easrc = devm_kzalloc(dev, sizeof(*easrc), GFP_KERNEL); 1879 if (!easrc) 1880 return -ENOMEM; 1881 1882 easrc_priv = devm_kzalloc(dev, sizeof(*easrc_priv), GFP_KERNEL); 1883 if (!easrc_priv) 1884 return -ENOMEM; 1885 1886 easrc->pdev = pdev; 1887 easrc->private = easrc_priv; 1888 np = dev->of_node; 1889 1890 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1891 regs = devm_ioremap_resource(dev, res); 1892 if (IS_ERR(regs)) { 1893 dev_err(&pdev->dev, "failed ioremap\n"); 1894 return PTR_ERR(regs); 1895 } 1896 1897 easrc->paddr = res->start; 1898 1899 easrc->regmap = devm_regmap_init_mmio_clk(dev, "mem", regs, 1900 &fsl_easrc_regmap_config); 1901 if (IS_ERR(easrc->regmap)) { 1902 dev_err(dev, "failed to init regmap"); 1903 return PTR_ERR(easrc->regmap); 1904 } 1905 1906 irq = platform_get_irq(pdev, 0); 1907 if (irq < 0) { 1908 dev_err(dev, "no irq for node %pOF\n", np); 1909 return irq; 1910 } 1911 1912 ret = devm_request_irq(&pdev->dev, irq, fsl_easrc_isr, 0, 1913 dev_name(dev), easrc); 1914 if (ret) { 1915 dev_err(dev, "failed to claim irq %u: %d\n", irq, ret); 1916 return ret; 1917 } 1918 1919 easrc->mem_clk = devm_clk_get(dev, "mem"); 1920 if (IS_ERR(easrc->mem_clk)) { 1921 dev_err(dev, "failed to get mem clock\n"); 1922 return PTR_ERR(easrc->mem_clk); 1923 } 1924 1925 /* Set default value */ 1926 easrc->channel_avail = 32; 1927 easrc->get_dma_channel = fsl_easrc_get_dma_channel; 1928 easrc->request_pair = fsl_easrc_request_context; 1929 easrc->release_pair = fsl_easrc_release_context; 1930 easrc->get_fifo_addr = fsl_easrc_get_fifo_addr; 1931 easrc->pair_priv_size = sizeof(struct fsl_easrc_ctx_priv); 1932 1933 easrc_priv->rs_num_taps = EASRC_RS_32_TAPS; 1934 easrc_priv->const_coeff = 0x3FF0000000000000; 1935 1936 ret = of_property_read_u32(np, "fsl,asrc-rate", &easrc->asrc_rate); 1937 if (ret) { 1938 dev_err(dev, "failed to asrc rate\n"); 1939 return ret; 1940 } 1941 1942 ret = of_property_read_u32(np, "fsl,asrc-format", &easrc->asrc_format); 1943 if (ret) { 1944 dev_err(dev, "failed to asrc format\n"); 1945 return ret; 1946 } 1947 1948 if (!(FSL_EASRC_FORMATS & (1ULL << easrc->asrc_format))) { 1949 dev_warn(dev, "unsupported format, switching to S24_LE\n"); 1950 easrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE; 1951 } 1952 1953 ret = of_property_read_string(np, "firmware-name", 1954 &easrc_priv->fw_name); 1955 if (ret) { 1956 dev_err(dev, "failed to get firmware name\n"); 1957 return ret; 1958 } 1959 1960 platform_set_drvdata(pdev, easrc); 1961 pm_runtime_enable(dev); 1962 1963 spin_lock_init(&easrc->lock); 1964 1965 regcache_cache_only(easrc->regmap, true); 1966 1967 ret = devm_snd_soc_register_component(dev, &fsl_easrc_component, 1968 &fsl_easrc_dai, 1); 1969 if (ret) { 1970 dev_err(dev, "failed to register ASoC DAI\n"); 1971 return ret; 1972 } 1973 1974 ret = devm_snd_soc_register_component(dev, &fsl_asrc_component, 1975 NULL, 0); 1976 if (ret) { 1977 dev_err(&pdev->dev, "failed to register ASoC platform\n"); 1978 return ret; 1979 } 1980 1981 return 0; 1982 } 1983 1984 static int fsl_easrc_remove(struct platform_device *pdev) 1985 { 1986 pm_runtime_disable(&pdev->dev); 1987 1988 return 0; 1989 } 1990 1991 static __maybe_unused int fsl_easrc_runtime_suspend(struct device *dev) 1992 { 1993 struct fsl_asrc *easrc = dev_get_drvdata(dev); 1994 struct fsl_easrc_priv *easrc_priv = easrc->private; 1995 unsigned long lock_flags; 1996 1997 regcache_cache_only(easrc->regmap, true); 1998 1999 clk_disable_unprepare(easrc->mem_clk); 2000 2001 spin_lock_irqsave(&easrc->lock, lock_flags); 2002 easrc_priv->firmware_loaded = 0; 2003 spin_unlock_irqrestore(&easrc->lock, lock_flags); 2004 2005 return 0; 2006 } 2007 2008 static __maybe_unused int fsl_easrc_runtime_resume(struct device *dev) 2009 { 2010 struct fsl_asrc *easrc = dev_get_drvdata(dev); 2011 struct fsl_easrc_priv *easrc_priv = easrc->private; 2012 struct fsl_easrc_ctx_priv *ctx_priv; 2013 struct fsl_asrc_pair *ctx; 2014 unsigned long lock_flags; 2015 int ret; 2016 int i; 2017 2018 ret = clk_prepare_enable(easrc->mem_clk); 2019 if (ret) 2020 return ret; 2021 2022 regcache_cache_only(easrc->regmap, false); 2023 regcache_mark_dirty(easrc->regmap); 2024 regcache_sync(easrc->regmap); 2025 2026 spin_lock_irqsave(&easrc->lock, lock_flags); 2027 if (easrc_priv->firmware_loaded) { 2028 spin_unlock_irqrestore(&easrc->lock, lock_flags); 2029 goto skip_load; 2030 } 2031 easrc_priv->firmware_loaded = 1; 2032 spin_unlock_irqrestore(&easrc->lock, lock_flags); 2033 2034 ret = fsl_easrc_get_firmware(easrc); 2035 if (ret) { 2036 dev_err(dev, "failed to get firmware\n"); 2037 goto disable_mem_clk; 2038 } 2039 2040 /* 2041 * Write Resampling Coefficients 2042 * The coefficient RAM must be configured prior to beginning of 2043 * any context processing within the ASRC 2044 */ 2045 ret = fsl_easrc_resampler_config(easrc); 2046 if (ret) { 2047 dev_err(dev, "resampler config failed\n"); 2048 goto disable_mem_clk; 2049 } 2050 2051 for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) { 2052 ctx = easrc->pair[i]; 2053 if (!ctx) 2054 continue; 2055 2056 ctx_priv = ctx->private; 2057 fsl_easrc_set_rs_ratio(ctx); 2058 ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * 2059 ctx_priv->out_params.sample_rate / 2060 ctx_priv->in_params.sample_rate; 2061 if (ctx_priv->in_filled_sample * ctx_priv->out_params.sample_rate 2062 % ctx_priv->in_params.sample_rate != 0) 2063 ctx_priv->out_missed_sample += 1; 2064 2065 ret = fsl_easrc_write_pf_coeff_mem(easrc, i, 2066 ctx_priv->st1_coeff, 2067 ctx_priv->st1_num_taps, 2068 ctx_priv->st1_addexp); 2069 if (ret) 2070 goto disable_mem_clk; 2071 2072 ret = fsl_easrc_write_pf_coeff_mem(easrc, i, 2073 ctx_priv->st2_coeff, 2074 ctx_priv->st2_num_taps, 2075 ctx_priv->st2_addexp); 2076 if (ret) 2077 goto disable_mem_clk; 2078 } 2079 2080 skip_load: 2081 return 0; 2082 2083 disable_mem_clk: 2084 clk_disable_unprepare(easrc->mem_clk); 2085 return ret; 2086 } 2087 2088 static const struct dev_pm_ops fsl_easrc_pm_ops = { 2089 SET_RUNTIME_PM_OPS(fsl_easrc_runtime_suspend, 2090 fsl_easrc_runtime_resume, 2091 NULL) 2092 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 2093 pm_runtime_force_resume) 2094 }; 2095 2096 static struct platform_driver fsl_easrc_driver = { 2097 .probe = fsl_easrc_probe, 2098 .remove = fsl_easrc_remove, 2099 .driver = { 2100 .name = "fsl-easrc", 2101 .pm = &fsl_easrc_pm_ops, 2102 .of_match_table = fsl_easrc_dt_ids, 2103 }, 2104 }; 2105 module_platform_driver(fsl_easrc_driver); 2106 2107 MODULE_DESCRIPTION("NXP Enhanced Asynchronous Sample Rate (eASRC) driver"); 2108 MODULE_LICENSE("GPL v2"); 2109