1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright 2019 NXP 3 4 #include <linux/atomic.h> 5 #include <linux/clk.h> 6 #include <linux/device.h> 7 #include <linux/dma-mapping.h> 8 #include <linux/firmware.h> 9 #include <linux/interrupt.h> 10 #include <linux/kobject.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/miscdevice.h> 14 #include <linux/of.h> 15 #include <linux/of_address.h> 16 #include <linux/of_irq.h> 17 #include <linux/of_platform.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/regmap.h> 20 #include <linux/sched/signal.h> 21 #include <linux/sysfs.h> 22 #include <linux/types.h> 23 #include <linux/gcd.h> 24 #include <sound/dmaengine_pcm.h> 25 #include <sound/pcm.h> 26 #include <sound/pcm_params.h> 27 #include <sound/soc.h> 28 #include <sound/tlv.h> 29 #include <sound/core.h> 30 31 #include "fsl_easrc.h" 32 #include "imx-pcm.h" 33 34 #define FSL_EASRC_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | \ 35 SNDRV_PCM_FMTBIT_U16_LE | \ 36 SNDRV_PCM_FMTBIT_S24_LE | \ 37 SNDRV_PCM_FMTBIT_S24_3LE | \ 38 SNDRV_PCM_FMTBIT_U24_LE | \ 39 SNDRV_PCM_FMTBIT_U24_3LE | \ 40 SNDRV_PCM_FMTBIT_S32_LE | \ 41 SNDRV_PCM_FMTBIT_U32_LE | \ 42 SNDRV_PCM_FMTBIT_S20_3LE | \ 43 SNDRV_PCM_FMTBIT_U20_3LE | \ 44 SNDRV_PCM_FMTBIT_FLOAT_LE) 45 46 static int fsl_easrc_iec958_put_bits(struct snd_kcontrol *kcontrol, 47 struct snd_ctl_elem_value *ucontrol) 48 { 49 struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol); 50 struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp); 51 struct fsl_easrc_priv *easrc_priv = easrc->private; 52 struct soc_mreg_control *mc = 53 (struct soc_mreg_control *)kcontrol->private_value; 54 unsigned int regval = ucontrol->value.integer.value[0]; 55 56 easrc_priv->bps_iec958[mc->regbase] = regval; 57 58 return 0; 59 } 60 61 static int fsl_easrc_iec958_get_bits(struct snd_kcontrol *kcontrol, 62 struct snd_ctl_elem_value *ucontrol) 63 { 64 struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol); 65 struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp); 66 struct fsl_easrc_priv *easrc_priv = easrc->private; 67 struct soc_mreg_control *mc = 68 (struct soc_mreg_control *)kcontrol->private_value; 69 70 ucontrol->value.enumerated.item[0] = easrc_priv->bps_iec958[mc->regbase]; 71 72 return 0; 73 } 74 75 static int fsl_easrc_get_reg(struct snd_kcontrol *kcontrol, 76 struct snd_ctl_elem_value *ucontrol) 77 { 78 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 79 struct soc_mreg_control *mc = 80 (struct soc_mreg_control *)kcontrol->private_value; 81 unsigned int regval; 82 83 regval = snd_soc_component_read(component, mc->regbase); 84 85 ucontrol->value.integer.value[0] = regval; 86 87 return 0; 88 } 89 90 static int fsl_easrc_set_reg(struct snd_kcontrol *kcontrol, 91 struct snd_ctl_elem_value *ucontrol) 92 { 93 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 94 struct soc_mreg_control *mc = 95 (struct soc_mreg_control *)kcontrol->private_value; 96 unsigned int regval = ucontrol->value.integer.value[0]; 97 int ret; 98 99 ret = snd_soc_component_write(component, mc->regbase, regval); 100 if (ret < 0) 101 return ret; 102 103 return 0; 104 } 105 106 #define SOC_SINGLE_REG_RW(xname, xreg) \ 107 { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \ 108 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 109 .info = snd_soc_info_xr_sx, .get = fsl_easrc_get_reg, \ 110 .put = fsl_easrc_set_reg, \ 111 .private_value = (unsigned long)&(struct soc_mreg_control) \ 112 { .regbase = xreg, .regcount = 1, .nbits = 32, \ 113 .invert = 0, .min = 0, .max = 0xffffffff, } } 114 115 #define SOC_SINGLE_VAL_RW(xname, xreg) \ 116 { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \ 117 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 118 .info = snd_soc_info_xr_sx, .get = fsl_easrc_iec958_get_bits, \ 119 .put = fsl_easrc_iec958_put_bits, \ 120 .private_value = (unsigned long)&(struct soc_mreg_control) \ 121 { .regbase = xreg, .regcount = 1, .nbits = 32, \ 122 .invert = 0, .min = 0, .max = 2, } } 123 124 static const struct snd_kcontrol_new fsl_easrc_snd_controls[] = { 125 SOC_SINGLE("Context 0 Dither Switch", REG_EASRC_COC(0), 0, 1, 0), 126 SOC_SINGLE("Context 1 Dither Switch", REG_EASRC_COC(1), 0, 1, 0), 127 SOC_SINGLE("Context 2 Dither Switch", REG_EASRC_COC(2), 0, 1, 0), 128 SOC_SINGLE("Context 3 Dither Switch", REG_EASRC_COC(3), 0, 1, 0), 129 130 SOC_SINGLE("Context 0 IEC958 Validity", REG_EASRC_COC(0), 2, 1, 0), 131 SOC_SINGLE("Context 1 IEC958 Validity", REG_EASRC_COC(1), 2, 1, 0), 132 SOC_SINGLE("Context 2 IEC958 Validity", REG_EASRC_COC(2), 2, 1, 0), 133 SOC_SINGLE("Context 3 IEC958 Validity", REG_EASRC_COC(3), 2, 1, 0), 134 135 SOC_SINGLE_VAL_RW("Context 0 IEC958 Bits Per Sample", 0), 136 SOC_SINGLE_VAL_RW("Context 1 IEC958 Bits Per Sample", 1), 137 SOC_SINGLE_VAL_RW("Context 2 IEC958 Bits Per Sample", 2), 138 SOC_SINGLE_VAL_RW("Context 3 IEC958 Bits Per Sample", 3), 139 140 SOC_SINGLE_REG_RW("Context 0 IEC958 CS0", REG_EASRC_CS0(0)), 141 SOC_SINGLE_REG_RW("Context 1 IEC958 CS0", REG_EASRC_CS0(1)), 142 SOC_SINGLE_REG_RW("Context 2 IEC958 CS0", REG_EASRC_CS0(2)), 143 SOC_SINGLE_REG_RW("Context 3 IEC958 CS0", REG_EASRC_CS0(3)), 144 SOC_SINGLE_REG_RW("Context 0 IEC958 CS1", REG_EASRC_CS1(0)), 145 SOC_SINGLE_REG_RW("Context 1 IEC958 CS1", REG_EASRC_CS1(1)), 146 SOC_SINGLE_REG_RW("Context 2 IEC958 CS1", REG_EASRC_CS1(2)), 147 SOC_SINGLE_REG_RW("Context 3 IEC958 CS1", REG_EASRC_CS1(3)), 148 SOC_SINGLE_REG_RW("Context 0 IEC958 CS2", REG_EASRC_CS2(0)), 149 SOC_SINGLE_REG_RW("Context 1 IEC958 CS2", REG_EASRC_CS2(1)), 150 SOC_SINGLE_REG_RW("Context 2 IEC958 CS2", REG_EASRC_CS2(2)), 151 SOC_SINGLE_REG_RW("Context 3 IEC958 CS2", REG_EASRC_CS2(3)), 152 SOC_SINGLE_REG_RW("Context 0 IEC958 CS3", REG_EASRC_CS3(0)), 153 SOC_SINGLE_REG_RW("Context 1 IEC958 CS3", REG_EASRC_CS3(1)), 154 SOC_SINGLE_REG_RW("Context 2 IEC958 CS3", REG_EASRC_CS3(2)), 155 SOC_SINGLE_REG_RW("Context 3 IEC958 CS3", REG_EASRC_CS3(3)), 156 SOC_SINGLE_REG_RW("Context 0 IEC958 CS4", REG_EASRC_CS4(0)), 157 SOC_SINGLE_REG_RW("Context 1 IEC958 CS4", REG_EASRC_CS4(1)), 158 SOC_SINGLE_REG_RW("Context 2 IEC958 CS4", REG_EASRC_CS4(2)), 159 SOC_SINGLE_REG_RW("Context 3 IEC958 CS4", REG_EASRC_CS4(3)), 160 SOC_SINGLE_REG_RW("Context 0 IEC958 CS5", REG_EASRC_CS5(0)), 161 SOC_SINGLE_REG_RW("Context 1 IEC958 CS5", REG_EASRC_CS5(1)), 162 SOC_SINGLE_REG_RW("Context 2 IEC958 CS5", REG_EASRC_CS5(2)), 163 SOC_SINGLE_REG_RW("Context 3 IEC958 CS5", REG_EASRC_CS5(3)), 164 }; 165 166 /* 167 * fsl_easrc_set_rs_ratio 168 * 169 * According to the resample taps, calculate the resample ratio 170 * ratio = in_rate / out_rate 171 */ 172 static int fsl_easrc_set_rs_ratio(struct fsl_asrc_pair *ctx) 173 { 174 struct fsl_asrc *easrc = ctx->asrc; 175 struct fsl_easrc_priv *easrc_priv = easrc->private; 176 struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; 177 unsigned int in_rate = ctx_priv->in_params.norm_rate; 178 unsigned int out_rate = ctx_priv->out_params.norm_rate; 179 unsigned int frac_bits; 180 u64 val; 181 u32 *r; 182 183 switch (easrc_priv->rs_num_taps) { 184 case EASRC_RS_32_TAPS: 185 /* integer bits = 5; */ 186 frac_bits = 39; 187 break; 188 case EASRC_RS_64_TAPS: 189 /* integer bits = 6; */ 190 frac_bits = 38; 191 break; 192 case EASRC_RS_128_TAPS: 193 /* integer bits = 7; */ 194 frac_bits = 37; 195 break; 196 default: 197 return -EINVAL; 198 } 199 200 val = (u64)in_rate << frac_bits; 201 do_div(val, out_rate); 202 r = (uint32_t *)&val; 203 204 if (r[1] & 0xFFFFF000) { 205 dev_err(&easrc->pdev->dev, "ratio exceed range\n"); 206 return -EINVAL; 207 } 208 209 regmap_write(easrc->regmap, REG_EASRC_RRL(ctx->index), 210 EASRC_RRL_RS_RL(r[0])); 211 regmap_write(easrc->regmap, REG_EASRC_RRH(ctx->index), 212 EASRC_RRH_RS_RH(r[1])); 213 214 return 0; 215 } 216 217 /* Normalize input and output sample rates */ 218 static void fsl_easrc_normalize_rates(struct fsl_asrc_pair *ctx) 219 { 220 struct fsl_easrc_ctx_priv *ctx_priv; 221 int a, b; 222 223 if (!ctx) 224 return; 225 226 ctx_priv = ctx->private; 227 228 a = ctx_priv->in_params.sample_rate; 229 b = ctx_priv->out_params.sample_rate; 230 231 a = gcd(a, b); 232 233 /* Divide by gcd to normalize the rate */ 234 ctx_priv->in_params.norm_rate = ctx_priv->in_params.sample_rate / a; 235 ctx_priv->out_params.norm_rate = ctx_priv->out_params.sample_rate / a; 236 } 237 238 /* Resets the pointer of the coeff memory pointers */ 239 static int fsl_easrc_coeff_mem_ptr_reset(struct fsl_asrc *easrc, 240 unsigned int ctx_id, int mem_type) 241 { 242 struct device *dev; 243 u32 reg, mask, val; 244 245 if (!easrc) 246 return -ENODEV; 247 248 dev = &easrc->pdev->dev; 249 250 switch (mem_type) { 251 case EASRC_PF_COEFF_MEM: 252 /* This resets the prefilter memory pointer addr */ 253 if (ctx_id >= EASRC_CTX_MAX_NUM) { 254 dev_err(dev, "Invalid context id[%d]\n", ctx_id); 255 return -EINVAL; 256 } 257 258 reg = REG_EASRC_CCE1(ctx_id); 259 mask = EASRC_CCE1_COEF_MEM_RST_MASK; 260 val = EASRC_CCE1_COEF_MEM_RST; 261 break; 262 case EASRC_RS_COEFF_MEM: 263 /* This resets the resampling memory pointer addr */ 264 reg = REG_EASRC_CRCC; 265 mask = EASRC_CRCC_RS_CPR_MASK; 266 val = EASRC_CRCC_RS_CPR; 267 break; 268 default: 269 dev_err(dev, "Unknown memory type\n"); 270 return -EINVAL; 271 } 272 273 /* 274 * To reset the write pointer back to zero, the register field 275 * ASRC_CTX_CTRL_EXT1x[PF_COEFF_MEM_RST] can be toggled from 276 * 0x0 to 0x1 to 0x0. 277 */ 278 regmap_update_bits(easrc->regmap, reg, mask, 0); 279 regmap_update_bits(easrc->regmap, reg, mask, val); 280 regmap_update_bits(easrc->regmap, reg, mask, 0); 281 282 return 0; 283 } 284 285 static inline uint32_t bits_taps_to_val(unsigned int t) 286 { 287 switch (t) { 288 case EASRC_RS_32_TAPS: 289 return 32; 290 case EASRC_RS_64_TAPS: 291 return 64; 292 case EASRC_RS_128_TAPS: 293 return 128; 294 } 295 296 return 0; 297 } 298 299 static int fsl_easrc_resampler_config(struct fsl_asrc *easrc) 300 { 301 struct device *dev = &easrc->pdev->dev; 302 struct fsl_easrc_priv *easrc_priv = easrc->private; 303 struct asrc_firmware_hdr *hdr = easrc_priv->firmware_hdr; 304 struct interp_params *interp = easrc_priv->interp; 305 struct interp_params *selected_interp = NULL; 306 unsigned int num_coeff; 307 unsigned int i; 308 u64 *coef; 309 u32 *r; 310 int ret; 311 312 if (!hdr) { 313 dev_err(dev, "firmware not loaded!\n"); 314 return -ENODEV; 315 } 316 317 for (i = 0; i < hdr->interp_scen; i++) { 318 if ((interp[i].num_taps - 1) != 319 bits_taps_to_val(easrc_priv->rs_num_taps)) 320 continue; 321 322 coef = interp[i].coeff; 323 selected_interp = &interp[i]; 324 dev_dbg(dev, "Selected interp_filter: %u taps - %u phases\n", 325 selected_interp->num_taps, 326 selected_interp->num_phases); 327 break; 328 } 329 330 if (!selected_interp) { 331 dev_err(dev, "failed to get interpreter configuration\n"); 332 return -EINVAL; 333 } 334 335 /* 336 * RS_LOW - first half of center tap of the sinc function 337 * RS_HIGH - second half of center tap of the sinc function 338 * This is due to the fact the resampling function must be 339 * symetrical - i.e. odd number of taps 340 */ 341 r = (uint32_t *)&selected_interp->center_tap; 342 regmap_write(easrc->regmap, REG_EASRC_RCTCL, EASRC_RCTCL_RS_CL(r[0])); 343 regmap_write(easrc->regmap, REG_EASRC_RCTCH, EASRC_RCTCH_RS_CH(r[1])); 344 345 /* 346 * Write Number of Resampling Coefficient Taps 347 * 00b - 32-Tap Resampling Filter 348 * 01b - 64-Tap Resampling Filter 349 * 10b - 128-Tap Resampling Filter 350 * 11b - N/A 351 */ 352 regmap_update_bits(easrc->regmap, REG_EASRC_CRCC, 353 EASRC_CRCC_RS_TAPS_MASK, 354 EASRC_CRCC_RS_TAPS(easrc_priv->rs_num_taps)); 355 356 /* Reset prefilter coefficient pointer back to 0 */ 357 ret = fsl_easrc_coeff_mem_ptr_reset(easrc, 0, EASRC_RS_COEFF_MEM); 358 if (ret) 359 return ret; 360 361 /* 362 * When the filter is programmed to run in: 363 * 32-tap mode, 16-taps, 128-phases 4-coefficients per phase 364 * 64-tap mode, 32-taps, 64-phases 4-coefficients per phase 365 * 128-tap mode, 64-taps, 32-phases 4-coefficients per phase 366 * This means the number of writes is constant no matter 367 * the mode we are using 368 */ 369 num_coeff = 16 * 128 * 4; 370 371 for (i = 0; i < num_coeff; i++) { 372 r = (uint32_t *)&coef[i]; 373 regmap_write(easrc->regmap, REG_EASRC_CRCM, 374 EASRC_CRCM_RS_CWD(r[0])); 375 regmap_write(easrc->regmap, REG_EASRC_CRCM, 376 EASRC_CRCM_RS_CWD(r[1])); 377 } 378 379 return 0; 380 } 381 382 /** 383 * fsl_easrc_normalize_filter - Scale filter coefficients (64 bits float) 384 * For input float32 normalized range (1.0,-1.0) -> output int[16,24,32]: 385 * scale it by multiplying filter coefficients by 2^31 386 * For input int[16, 24, 32] -> output float32 387 * scale it by multiplying filter coefficients by 2^-15, 2^-23, 2^-31 388 * input: 389 * @easrc: Structure pointer of fsl_asrc 390 * @infilter : Pointer to non-scaled input filter 391 * @shift: The multiply factor 392 * output: 393 * @outfilter: scaled filter 394 */ 395 static int fsl_easrc_normalize_filter(struct fsl_asrc *easrc, 396 u64 *infilter, 397 u64 *outfilter, 398 int shift) 399 { 400 struct device *dev = &easrc->pdev->dev; 401 u64 coef = *infilter; 402 s64 exp = (coef & 0x7ff0000000000000ll) >> 52; 403 u64 outcoef; 404 405 /* 406 * If exponent is zero (value == 0), or 7ff (value == NaNs) 407 * dont touch the content 408 */ 409 if (exp == 0 || exp == 0x7ff) { 410 *outfilter = coef; 411 return 0; 412 } 413 414 /* coef * 2^shift ==> exp + shift */ 415 exp += shift; 416 417 if ((shift > 0 && exp >= 0x7ff) || (shift < 0 && exp <= 0)) { 418 dev_err(dev, "coef out of range\n"); 419 return -EINVAL; 420 } 421 422 outcoef = (u64)(coef & 0x800FFFFFFFFFFFFFll) + ((u64)exp << 52); 423 *outfilter = outcoef; 424 425 return 0; 426 } 427 428 static int fsl_easrc_write_pf_coeff_mem(struct fsl_asrc *easrc, int ctx_id, 429 u64 *coef, int n_taps, int shift) 430 { 431 struct device *dev = &easrc->pdev->dev; 432 int ret = 0; 433 int i; 434 u32 *r; 435 u64 tmp; 436 437 /* If STx_NUM_TAPS is set to 0x0 then return */ 438 if (!n_taps) 439 return 0; 440 441 if (!coef) { 442 dev_err(dev, "coef table is NULL\n"); 443 return -EINVAL; 444 } 445 446 /* 447 * When switching between stages, the address pointer 448 * should be reset back to 0x0 before performing a write 449 */ 450 ret = fsl_easrc_coeff_mem_ptr_reset(easrc, ctx_id, EASRC_PF_COEFF_MEM); 451 if (ret) 452 return ret; 453 454 for (i = 0; i < (n_taps + 1) / 2; i++) { 455 ret = fsl_easrc_normalize_filter(easrc, &coef[i], &tmp, shift); 456 if (ret) 457 return ret; 458 459 r = (uint32_t *)&tmp; 460 regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id), 461 EASRC_PCF_CD(r[0])); 462 regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id), 463 EASRC_PCF_CD(r[1])); 464 } 465 466 return 0; 467 } 468 469 static int fsl_easrc_prefilter_config(struct fsl_asrc *easrc, 470 unsigned int ctx_id) 471 { 472 struct prefil_params *prefil, *selected_prefil = NULL; 473 struct fsl_easrc_ctx_priv *ctx_priv; 474 struct fsl_easrc_priv *easrc_priv; 475 struct asrc_firmware_hdr *hdr; 476 struct fsl_asrc_pair *ctx; 477 struct device *dev; 478 u32 inrate, outrate, offset = 0; 479 u32 in_s_rate, out_s_rate; 480 snd_pcm_format_t in_s_fmt, out_s_fmt; 481 int ret, i; 482 483 if (!easrc) 484 return -ENODEV; 485 486 dev = &easrc->pdev->dev; 487 488 if (ctx_id >= EASRC_CTX_MAX_NUM) { 489 dev_err(dev, "Invalid context id[%d]\n", ctx_id); 490 return -EINVAL; 491 } 492 493 easrc_priv = easrc->private; 494 495 ctx = easrc->pair[ctx_id]; 496 ctx_priv = ctx->private; 497 498 in_s_rate = ctx_priv->in_params.sample_rate; 499 out_s_rate = ctx_priv->out_params.sample_rate; 500 in_s_fmt = ctx_priv->in_params.sample_format; 501 out_s_fmt = ctx_priv->out_params.sample_format; 502 503 ctx_priv->in_filled_sample = bits_taps_to_val(easrc_priv->rs_num_taps) / 2; 504 ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate; 505 506 ctx_priv->st1_num_taps = 0; 507 ctx_priv->st2_num_taps = 0; 508 509 regmap_write(easrc->regmap, REG_EASRC_CCE1(ctx_id), 0); 510 regmap_write(easrc->regmap, REG_EASRC_CCE2(ctx_id), 0); 511 512 /* 513 * The audio float point data range is (-1, 1), the asrc would output 514 * all zero for float point input and integer output case, that is to 515 * drop the fractional part of the data directly. 516 * 517 * In order to support float to int conversion or int to float 518 * conversion we need to do special operation on the coefficient to 519 * enlarge/reduce the data to the expected range. 520 * 521 * For float to int case: 522 * Up sampling: 523 * 1. Create a 1 tap filter with center tap (only tap) of 2^31 524 * in 64 bits floating point. 525 * double value = (double)(((uint64_t)1) << 31) 526 * 2. Program 1 tap prefilter with center tap above. 527 * 528 * Down sampling, 529 * 1. If the filter is single stage filter, add "shift" to the exponent 530 * of stage 1 coefficients. 531 * 2. If the filter is two stage filter , add "shift" to the exponent 532 * of stage 2 coefficients. 533 * 534 * The "shift" is 31, same for int16, int24, int32 case. 535 * 536 * For int to float case: 537 * Up sampling: 538 * 1. Create a 1 tap filter with center tap (only tap) of 2^-31 539 * in 64 bits floating point. 540 * 2. Program 1 tap prefilter with center tap above. 541 * 542 * Down sampling, 543 * 1. If the filter is single stage filter, subtract "shift" to the 544 * exponent of stage 1 coefficients. 545 * 2. If the filter is two stage filter , subtract "shift" to the 546 * exponent of stage 2 coefficients. 547 * 548 * The "shift" is 15,23,31, different for int16, int24, int32 case. 549 * 550 */ 551 if (out_s_rate >= in_s_rate) { 552 if (out_s_rate == in_s_rate) 553 regmap_update_bits(easrc->regmap, 554 REG_EASRC_CCE1(ctx_id), 555 EASRC_CCE1_RS_BYPASS_MASK, 556 EASRC_CCE1_RS_BYPASS); 557 558 ctx_priv->st1_num_taps = 1; 559 ctx_priv->st1_coeff = &easrc_priv->const_coeff; 560 ctx_priv->st1_num_exp = 1; 561 ctx_priv->st2_num_taps = 0; 562 563 if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE && 564 out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE) 565 ctx_priv->st1_addexp = 31; 566 else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE && 567 out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE) 568 ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp; 569 } else { 570 inrate = ctx_priv->in_params.norm_rate; 571 outrate = ctx_priv->out_params.norm_rate; 572 573 hdr = easrc_priv->firmware_hdr; 574 prefil = easrc_priv->prefil; 575 576 for (i = 0; i < hdr->prefil_scen; i++) { 577 if (inrate == prefil[i].insr && 578 outrate == prefil[i].outsr) { 579 selected_prefil = &prefil[i]; 580 dev_dbg(dev, "Selected prefilter: %u insr, %u outsr, %u st1_taps, %u st2_taps\n", 581 selected_prefil->insr, 582 selected_prefil->outsr, 583 selected_prefil->st1_taps, 584 selected_prefil->st2_taps); 585 break; 586 } 587 } 588 589 if (!selected_prefil) { 590 dev_err(dev, "Conversion from in ratio %u(%u) to out ratio %u(%u) is not supported\n", 591 in_s_rate, inrate, 592 out_s_rate, outrate); 593 return -EINVAL; 594 } 595 596 /* 597 * In prefilter coeff array, first st1_num_taps represent the 598 * stage1 prefilter coefficients followed by next st2_num_taps 599 * representing stage 2 coefficients 600 */ 601 ctx_priv->st1_num_taps = selected_prefil->st1_taps; 602 ctx_priv->st1_coeff = selected_prefil->coeff; 603 ctx_priv->st1_num_exp = selected_prefil->st1_exp; 604 605 offset = ((selected_prefil->st1_taps + 1) / 2); 606 ctx_priv->st2_num_taps = selected_prefil->st2_taps; 607 ctx_priv->st2_coeff = selected_prefil->coeff + offset; 608 609 if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE && 610 out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE) { 611 /* only change stage2 coefficient for 2 stage case */ 612 if (ctx_priv->st2_num_taps > 0) 613 ctx_priv->st2_addexp = 31; 614 else 615 ctx_priv->st1_addexp = 31; 616 } else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE && 617 out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE) { 618 if (ctx_priv->st2_num_taps > 0) 619 ctx_priv->st2_addexp -= ctx_priv->in_params.fmt.addexp; 620 else 621 ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp; 622 } 623 } 624 625 ctx_priv->in_filled_sample += (ctx_priv->st1_num_taps / 2) * ctx_priv->st1_num_exp + 626 ctx_priv->st2_num_taps / 2; 627 ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate; 628 629 if (ctx_priv->in_filled_sample * out_s_rate % in_s_rate != 0) 630 ctx_priv->out_missed_sample += 1; 631 /* 632 * To modify the value of a prefilter coefficient, the user must 633 * perform a write to the register ASRC_PRE_COEFF_FIFOn[COEFF_DATA] 634 * while the respective context RUN_EN bit is set to 0b0 635 */ 636 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id), 637 EASRC_CC_EN_MASK, 0); 638 639 if (ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) { 640 dev_err(dev, "ST1 taps [%d] mus be lower than %d\n", 641 ctx_priv->st1_num_taps, EASRC_MAX_PF_TAPS); 642 ret = -EINVAL; 643 goto ctx_error; 644 } 645 646 /* Update ctx ST1_NUM_TAPS in Context Control Extended 2 register */ 647 regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id), 648 EASRC_CCE2_ST1_TAPS_MASK, 649 EASRC_CCE2_ST1_TAPS(ctx_priv->st1_num_taps - 1)); 650 651 /* Prefilter Coefficient Write Select to write in ST1 coeff */ 652 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), 653 EASRC_CCE1_COEF_WS_MASK, 654 EASRC_PF_ST1_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT); 655 656 ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id, 657 ctx_priv->st1_coeff, 658 ctx_priv->st1_num_taps, 659 ctx_priv->st1_addexp); 660 if (ret) 661 goto ctx_error; 662 663 if (ctx_priv->st2_num_taps > 0) { 664 if (ctx_priv->st2_num_taps + ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) { 665 dev_err(dev, "ST2 taps [%d] mus be lower than %d\n", 666 ctx_priv->st2_num_taps, EASRC_MAX_PF_TAPS); 667 ret = -EINVAL; 668 goto ctx_error; 669 } 670 671 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), 672 EASRC_CCE1_PF_TSEN_MASK, 673 EASRC_CCE1_PF_TSEN); 674 /* 675 * Enable prefilter stage1 writeback floating point 676 * which is used for FLOAT_LE case 677 */ 678 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), 679 EASRC_CCE1_PF_ST1_WBFP_MASK, 680 EASRC_CCE1_PF_ST1_WBFP); 681 682 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), 683 EASRC_CCE1_PF_EXP_MASK, 684 EASRC_CCE1_PF_EXP(ctx_priv->st1_num_exp - 1)); 685 686 /* Update ctx ST2_NUM_TAPS in Context Control Extended 2 reg */ 687 regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id), 688 EASRC_CCE2_ST2_TAPS_MASK, 689 EASRC_CCE2_ST2_TAPS(ctx_priv->st2_num_taps - 1)); 690 691 /* Prefilter Coefficient Write Select to write in ST2 coeff */ 692 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), 693 EASRC_CCE1_COEF_WS_MASK, 694 EASRC_PF_ST2_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT); 695 696 ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id, 697 ctx_priv->st2_coeff, 698 ctx_priv->st2_num_taps, 699 ctx_priv->st2_addexp); 700 if (ret) 701 goto ctx_error; 702 } 703 704 return 0; 705 706 ctx_error: 707 return ret; 708 } 709 710 static int fsl_easrc_max_ch_for_slot(struct fsl_asrc_pair *ctx, 711 struct fsl_easrc_slot *slot) 712 { 713 struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; 714 int st1_mem_alloc = 0, st2_mem_alloc = 0; 715 int pf_mem_alloc = 0; 716 int max_channels = 8 - slot->num_channel; 717 int channels = 0; 718 719 if (ctx_priv->st1_num_taps > 0) { 720 if (ctx_priv->st2_num_taps > 0) 721 st1_mem_alloc = 722 (ctx_priv->st1_num_taps - 1) * ctx_priv->st1_num_exp + 1; 723 else 724 st1_mem_alloc = ctx_priv->st1_num_taps; 725 } 726 727 if (ctx_priv->st2_num_taps > 0) 728 st2_mem_alloc = ctx_priv->st2_num_taps; 729 730 pf_mem_alloc = st1_mem_alloc + st2_mem_alloc; 731 732 if (pf_mem_alloc != 0) 733 channels = (6144 - slot->pf_mem_used) / pf_mem_alloc; 734 else 735 channels = 8; 736 737 if (channels < max_channels) 738 max_channels = channels; 739 740 return max_channels; 741 } 742 743 static int fsl_easrc_config_one_slot(struct fsl_asrc_pair *ctx, 744 struct fsl_easrc_slot *slot, 745 unsigned int slot_ctx_idx, 746 unsigned int *req_channels, 747 unsigned int *start_channel, 748 unsigned int *avail_channel) 749 { 750 struct fsl_asrc *easrc = ctx->asrc; 751 struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; 752 int st1_chanxexp, st1_mem_alloc = 0, st2_mem_alloc; 753 unsigned int reg0, reg1, reg2, reg3; 754 unsigned int addr; 755 756 if (slot->slot_index == 0) { 757 reg0 = REG_EASRC_DPCS0R0(slot_ctx_idx); 758 reg1 = REG_EASRC_DPCS0R1(slot_ctx_idx); 759 reg2 = REG_EASRC_DPCS0R2(slot_ctx_idx); 760 reg3 = REG_EASRC_DPCS0R3(slot_ctx_idx); 761 } else { 762 reg0 = REG_EASRC_DPCS1R0(slot_ctx_idx); 763 reg1 = REG_EASRC_DPCS1R1(slot_ctx_idx); 764 reg2 = REG_EASRC_DPCS1R2(slot_ctx_idx); 765 reg3 = REG_EASRC_DPCS1R3(slot_ctx_idx); 766 } 767 768 if (*req_channels <= *avail_channel) { 769 slot->num_channel = *req_channels; 770 *req_channels = 0; 771 } else { 772 slot->num_channel = *avail_channel; 773 *req_channels -= *avail_channel; 774 } 775 776 slot->min_channel = *start_channel; 777 slot->max_channel = *start_channel + slot->num_channel - 1; 778 slot->ctx_index = ctx->index; 779 slot->busy = true; 780 *start_channel += slot->num_channel; 781 782 regmap_update_bits(easrc->regmap, reg0, 783 EASRC_DPCS0R0_MAXCH_MASK, 784 EASRC_DPCS0R0_MAXCH(slot->max_channel)); 785 786 regmap_update_bits(easrc->regmap, reg0, 787 EASRC_DPCS0R0_MINCH_MASK, 788 EASRC_DPCS0R0_MINCH(slot->min_channel)); 789 790 regmap_update_bits(easrc->regmap, reg0, 791 EASRC_DPCS0R0_NUMCH_MASK, 792 EASRC_DPCS0R0_NUMCH(slot->num_channel - 1)); 793 794 regmap_update_bits(easrc->regmap, reg0, 795 EASRC_DPCS0R0_CTXNUM_MASK, 796 EASRC_DPCS0R0_CTXNUM(slot->ctx_index)); 797 798 if (ctx_priv->st1_num_taps > 0) { 799 if (ctx_priv->st2_num_taps > 0) 800 st1_mem_alloc = 801 (ctx_priv->st1_num_taps - 1) * slot->num_channel * 802 ctx_priv->st1_num_exp + slot->num_channel; 803 else 804 st1_mem_alloc = ctx_priv->st1_num_taps * slot->num_channel; 805 806 slot->pf_mem_used = st1_mem_alloc; 807 regmap_update_bits(easrc->regmap, reg2, 808 EASRC_DPCS0R2_ST1_MA_MASK, 809 EASRC_DPCS0R2_ST1_MA(st1_mem_alloc)); 810 811 if (slot->slot_index == 1) 812 addr = PREFILTER_MEM_LEN - st1_mem_alloc; 813 else 814 addr = 0; 815 816 regmap_update_bits(easrc->regmap, reg2, 817 EASRC_DPCS0R2_ST1_SA_MASK, 818 EASRC_DPCS0R2_ST1_SA(addr)); 819 } 820 821 if (ctx_priv->st2_num_taps > 0) { 822 st1_chanxexp = slot->num_channel * (ctx_priv->st1_num_exp - 1); 823 824 regmap_update_bits(easrc->regmap, reg1, 825 EASRC_DPCS0R1_ST1_EXP_MASK, 826 EASRC_DPCS0R1_ST1_EXP(st1_chanxexp)); 827 828 st2_mem_alloc = slot->num_channel * ctx_priv->st2_num_taps; 829 slot->pf_mem_used += st2_mem_alloc; 830 regmap_update_bits(easrc->regmap, reg3, 831 EASRC_DPCS0R3_ST2_MA_MASK, 832 EASRC_DPCS0R3_ST2_MA(st2_mem_alloc)); 833 834 if (slot->slot_index == 1) 835 addr = PREFILTER_MEM_LEN - st1_mem_alloc - st2_mem_alloc; 836 else 837 addr = st1_mem_alloc; 838 839 regmap_update_bits(easrc->regmap, reg3, 840 EASRC_DPCS0R3_ST2_SA_MASK, 841 EASRC_DPCS0R3_ST2_SA(addr)); 842 } 843 844 regmap_update_bits(easrc->regmap, reg0, 845 EASRC_DPCS0R0_EN_MASK, EASRC_DPCS0R0_EN); 846 847 return 0; 848 } 849 850 /* 851 * fsl_easrc_config_slot 852 * 853 * A single context can be split amongst any of the 4 context processing pipes 854 * in the design. 855 * The total number of channels consumed within the context processor must be 856 * less than or equal to 8. if a single context is configured to contain more 857 * than 8 channels then it must be distributed across multiple context 858 * processing pipe slots. 859 * 860 */ 861 static int fsl_easrc_config_slot(struct fsl_asrc *easrc, unsigned int ctx_id) 862 { 863 struct fsl_easrc_priv *easrc_priv = easrc->private; 864 struct fsl_asrc_pair *ctx = easrc->pair[ctx_id]; 865 int req_channels = ctx->channels; 866 int start_channel = 0, avail_channel; 867 struct fsl_easrc_slot *slot0, *slot1; 868 struct fsl_easrc_slot *slota, *slotb; 869 int i, ret; 870 871 if (req_channels <= 0) 872 return -EINVAL; 873 874 for (i = 0; i < EASRC_CTX_MAX_NUM; i++) { 875 slot0 = &easrc_priv->slot[i][0]; 876 slot1 = &easrc_priv->slot[i][1]; 877 878 if (slot0->busy && slot1->busy) { 879 continue; 880 } else if ((slot0->busy && slot0->ctx_index == ctx->index) || 881 (slot1->busy && slot1->ctx_index == ctx->index)) { 882 continue; 883 } else if (!slot0->busy) { 884 slota = slot0; 885 slotb = slot1; 886 slota->slot_index = 0; 887 } else if (!slot1->busy) { 888 slota = slot1; 889 slotb = slot0; 890 slota->slot_index = 1; 891 } 892 893 if (!slota || !slotb) 894 continue; 895 896 avail_channel = fsl_easrc_max_ch_for_slot(ctx, slotb); 897 if (avail_channel <= 0) 898 continue; 899 900 ret = fsl_easrc_config_one_slot(ctx, slota, i, &req_channels, 901 &start_channel, &avail_channel); 902 if (ret) 903 return ret; 904 905 if (req_channels > 0) 906 continue; 907 else 908 break; 909 } 910 911 if (req_channels > 0) { 912 dev_err(&easrc->pdev->dev, "no avail slot.\n"); 913 return -EINVAL; 914 } 915 916 return 0; 917 } 918 919 /* 920 * fsl_easrc_release_slot 921 * 922 * Clear the slot configuration 923 */ 924 static int fsl_easrc_release_slot(struct fsl_asrc *easrc, unsigned int ctx_id) 925 { 926 struct fsl_easrc_priv *easrc_priv = easrc->private; 927 struct fsl_asrc_pair *ctx = easrc->pair[ctx_id]; 928 int i; 929 930 for (i = 0; i < EASRC_CTX_MAX_NUM; i++) { 931 if (easrc_priv->slot[i][0].busy && 932 easrc_priv->slot[i][0].ctx_index == ctx->index) { 933 easrc_priv->slot[i][0].busy = false; 934 easrc_priv->slot[i][0].num_channel = 0; 935 easrc_priv->slot[i][0].pf_mem_used = 0; 936 /* set registers */ 937 regmap_write(easrc->regmap, REG_EASRC_DPCS0R0(i), 0); 938 regmap_write(easrc->regmap, REG_EASRC_DPCS0R1(i), 0); 939 regmap_write(easrc->regmap, REG_EASRC_DPCS0R2(i), 0); 940 regmap_write(easrc->regmap, REG_EASRC_DPCS0R3(i), 0); 941 } 942 943 if (easrc_priv->slot[i][1].busy && 944 easrc_priv->slot[i][1].ctx_index == ctx->index) { 945 easrc_priv->slot[i][1].busy = false; 946 easrc_priv->slot[i][1].num_channel = 0; 947 easrc_priv->slot[i][1].pf_mem_used = 0; 948 /* set registers */ 949 regmap_write(easrc->regmap, REG_EASRC_DPCS1R0(i), 0); 950 regmap_write(easrc->regmap, REG_EASRC_DPCS1R1(i), 0); 951 regmap_write(easrc->regmap, REG_EASRC_DPCS1R2(i), 0); 952 regmap_write(easrc->regmap, REG_EASRC_DPCS1R3(i), 0); 953 } 954 } 955 956 return 0; 957 } 958 959 /* 960 * fsl_easrc_config_context 961 * 962 * Configure the register relate with context. 963 */ 964 static int fsl_easrc_config_context(struct fsl_asrc *easrc, unsigned int ctx_id) 965 { 966 struct fsl_easrc_ctx_priv *ctx_priv; 967 struct fsl_asrc_pair *ctx; 968 struct device *dev; 969 unsigned long lock_flags; 970 int ret; 971 972 if (!easrc) 973 return -ENODEV; 974 975 dev = &easrc->pdev->dev; 976 977 if (ctx_id >= EASRC_CTX_MAX_NUM) { 978 dev_err(dev, "Invalid context id[%d]\n", ctx_id); 979 return -EINVAL; 980 } 981 982 ctx = easrc->pair[ctx_id]; 983 984 ctx_priv = ctx->private; 985 986 fsl_easrc_normalize_rates(ctx); 987 988 ret = fsl_easrc_set_rs_ratio(ctx); 989 if (ret) 990 return ret; 991 992 /* Initialize the context coeficients */ 993 ret = fsl_easrc_prefilter_config(easrc, ctx->index); 994 if (ret) 995 return ret; 996 997 spin_lock_irqsave(&easrc->lock, lock_flags); 998 ret = fsl_easrc_config_slot(easrc, ctx->index); 999 spin_unlock_irqrestore(&easrc->lock, lock_flags); 1000 if (ret) 1001 return ret; 1002 1003 /* 1004 * Both prefilter and resampling filters can use following 1005 * initialization modes: 1006 * 2 - zero-fil mode 1007 * 1 - replication mode 1008 * 0 - software control 1009 */ 1010 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), 1011 EASRC_CCE1_RS_INIT_MASK, 1012 EASRC_CCE1_RS_INIT(ctx_priv->rs_init_mode)); 1013 1014 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), 1015 EASRC_CCE1_PF_INIT_MASK, 1016 EASRC_CCE1_PF_INIT(ctx_priv->pf_init_mode)); 1017 1018 /* 1019 * Context Input FIFO Watermark 1020 * DMA request is generated when input FIFO < FIFO_WTMK 1021 */ 1022 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id), 1023 EASRC_CC_FIFO_WTMK_MASK, 1024 EASRC_CC_FIFO_WTMK(ctx_priv->in_params.fifo_wtmk)); 1025 1026 /* 1027 * Context Output FIFO Watermark 1028 * DMA request is generated when output FIFO > FIFO_WTMK 1029 * So we set fifo_wtmk -1 to register. 1030 */ 1031 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx_id), 1032 EASRC_COC_FIFO_WTMK_MASK, 1033 EASRC_COC_FIFO_WTMK(ctx_priv->out_params.fifo_wtmk - 1)); 1034 1035 /* Number of channels */ 1036 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id), 1037 EASRC_CC_CHEN_MASK, 1038 EASRC_CC_CHEN(ctx->channels - 1)); 1039 return 0; 1040 } 1041 1042 static int fsl_easrc_process_format(struct fsl_asrc_pair *ctx, 1043 struct fsl_easrc_data_fmt *fmt, 1044 snd_pcm_format_t raw_fmt) 1045 { 1046 struct fsl_asrc *easrc = ctx->asrc; 1047 struct fsl_easrc_priv *easrc_priv = easrc->private; 1048 int ret; 1049 1050 if (!fmt) 1051 return -EINVAL; 1052 1053 /* 1054 * Context Input Floating Point Format 1055 * 0 - Integer Format 1056 * 1 - Single Precision FP Format 1057 */ 1058 fmt->floating_point = !snd_pcm_format_linear(raw_fmt); 1059 fmt->sample_pos = 0; 1060 fmt->iec958 = 0; 1061 1062 /* Get the data width */ 1063 switch (snd_pcm_format_width(raw_fmt)) { 1064 case 16: 1065 fmt->width = EASRC_WIDTH_16_BIT; 1066 fmt->addexp = 15; 1067 break; 1068 case 20: 1069 fmt->width = EASRC_WIDTH_20_BIT; 1070 fmt->addexp = 19; 1071 break; 1072 case 24: 1073 fmt->width = EASRC_WIDTH_24_BIT; 1074 fmt->addexp = 23; 1075 break; 1076 case 32: 1077 fmt->width = EASRC_WIDTH_32_BIT; 1078 fmt->addexp = 31; 1079 break; 1080 default: 1081 return -EINVAL; 1082 } 1083 1084 switch (raw_fmt) { 1085 case SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE: 1086 fmt->width = easrc_priv->bps_iec958[ctx->index]; 1087 fmt->iec958 = 1; 1088 fmt->floating_point = 0; 1089 if (fmt->width == EASRC_WIDTH_16_BIT) { 1090 fmt->sample_pos = 12; 1091 fmt->addexp = 15; 1092 } else if (fmt->width == EASRC_WIDTH_20_BIT) { 1093 fmt->sample_pos = 8; 1094 fmt->addexp = 19; 1095 } else if (fmt->width == EASRC_WIDTH_24_BIT) { 1096 fmt->sample_pos = 4; 1097 fmt->addexp = 23; 1098 } 1099 break; 1100 default: 1101 break; 1102 } 1103 1104 /* 1105 * Data Endianness 1106 * 0 - Little-Endian 1107 * 1 - Big-Endian 1108 */ 1109 ret = snd_pcm_format_big_endian(raw_fmt); 1110 if (ret < 0) 1111 return ret; 1112 1113 fmt->endianness = ret; 1114 1115 /* 1116 * Input Data sign 1117 * 0b - Signed Format 1118 * 1b - Unsigned Format 1119 */ 1120 fmt->unsign = snd_pcm_format_unsigned(raw_fmt) > 0 ? 1 : 0; 1121 1122 return 0; 1123 } 1124 1125 static int fsl_easrc_set_ctx_format(struct fsl_asrc_pair *ctx, 1126 snd_pcm_format_t *in_raw_format, 1127 snd_pcm_format_t *out_raw_format) 1128 { 1129 struct fsl_asrc *easrc = ctx->asrc; 1130 struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; 1131 struct fsl_easrc_data_fmt *in_fmt = &ctx_priv->in_params.fmt; 1132 struct fsl_easrc_data_fmt *out_fmt = &ctx_priv->out_params.fmt; 1133 int ret = 0; 1134 1135 /* Get the bitfield values for input data format */ 1136 if (in_raw_format && out_raw_format) { 1137 ret = fsl_easrc_process_format(ctx, in_fmt, *in_raw_format); 1138 if (ret) 1139 return ret; 1140 } 1141 1142 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1143 EASRC_CC_BPS_MASK, 1144 EASRC_CC_BPS(in_fmt->width)); 1145 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1146 EASRC_CC_ENDIANNESS_MASK, 1147 in_fmt->endianness << EASRC_CC_ENDIANNESS_SHIFT); 1148 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1149 EASRC_CC_FMT_MASK, 1150 in_fmt->floating_point << EASRC_CC_FMT_SHIFT); 1151 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1152 EASRC_CC_INSIGN_MASK, 1153 in_fmt->unsign << EASRC_CC_INSIGN_SHIFT); 1154 1155 /* In Sample Position */ 1156 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1157 EASRC_CC_SAMPLE_POS_MASK, 1158 EASRC_CC_SAMPLE_POS(in_fmt->sample_pos)); 1159 1160 /* Get the bitfield values for input data format */ 1161 if (in_raw_format && out_raw_format) { 1162 ret = fsl_easrc_process_format(ctx, out_fmt, *out_raw_format); 1163 if (ret) 1164 return ret; 1165 } 1166 1167 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), 1168 EASRC_COC_BPS_MASK, 1169 EASRC_COC_BPS(out_fmt->width)); 1170 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), 1171 EASRC_COC_ENDIANNESS_MASK, 1172 out_fmt->endianness << EASRC_COC_ENDIANNESS_SHIFT); 1173 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), 1174 EASRC_COC_FMT_MASK, 1175 out_fmt->floating_point << EASRC_COC_FMT_SHIFT); 1176 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), 1177 EASRC_COC_OUTSIGN_MASK, 1178 out_fmt->unsign << EASRC_COC_OUTSIGN_SHIFT); 1179 1180 /* Out Sample Position */ 1181 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), 1182 EASRC_COC_SAMPLE_POS_MASK, 1183 EASRC_COC_SAMPLE_POS(out_fmt->sample_pos)); 1184 1185 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), 1186 EASRC_COC_IEC_EN_MASK, 1187 out_fmt->iec958 << EASRC_COC_IEC_EN_SHIFT); 1188 1189 return ret; 1190 } 1191 1192 /* 1193 * The ASRC provides interleaving support in hardware to ensure that a 1194 * variety of sample sources can be internally combined 1195 * to conform with this format. Interleaving parameters are accessed 1196 * through the ASRC_CTRL_IN_ACCESSa and ASRC_CTRL_OUT_ACCESSa registers 1197 */ 1198 static int fsl_easrc_set_ctx_organziation(struct fsl_asrc_pair *ctx) 1199 { 1200 struct fsl_easrc_ctx_priv *ctx_priv; 1201 struct fsl_asrc *easrc; 1202 1203 if (!ctx) 1204 return -ENODEV; 1205 1206 easrc = ctx->asrc; 1207 ctx_priv = ctx->private; 1208 1209 /* input interleaving parameters */ 1210 regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index), 1211 EASRC_CIA_ITER_MASK, 1212 EASRC_CIA_ITER(ctx_priv->in_params.iterations)); 1213 regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index), 1214 EASRC_CIA_GRLEN_MASK, 1215 EASRC_CIA_GRLEN(ctx_priv->in_params.group_len)); 1216 regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index), 1217 EASRC_CIA_ACCLEN_MASK, 1218 EASRC_CIA_ACCLEN(ctx_priv->in_params.access_len)); 1219 1220 /* output interleaving parameters */ 1221 regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index), 1222 EASRC_COA_ITER_MASK, 1223 EASRC_COA_ITER(ctx_priv->out_params.iterations)); 1224 regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index), 1225 EASRC_COA_GRLEN_MASK, 1226 EASRC_COA_GRLEN(ctx_priv->out_params.group_len)); 1227 regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index), 1228 EASRC_COA_ACCLEN_MASK, 1229 EASRC_COA_ACCLEN(ctx_priv->out_params.access_len)); 1230 1231 return 0; 1232 } 1233 1234 /* 1235 * Request one of the available contexts 1236 * 1237 * Returns a negative number on error and >=0 as context id 1238 * on success 1239 */ 1240 static int fsl_easrc_request_context(int channels, struct fsl_asrc_pair *ctx) 1241 { 1242 enum asrc_pair_index index = ASRC_INVALID_PAIR; 1243 struct fsl_asrc *easrc = ctx->asrc; 1244 struct device *dev; 1245 unsigned long lock_flags; 1246 int ret = 0; 1247 int i; 1248 1249 dev = &easrc->pdev->dev; 1250 1251 spin_lock_irqsave(&easrc->lock, lock_flags); 1252 1253 for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) { 1254 if (easrc->pair[i]) 1255 continue; 1256 1257 index = i; 1258 break; 1259 } 1260 1261 if (index == ASRC_INVALID_PAIR) { 1262 dev_err(dev, "all contexts are busy\n"); 1263 ret = -EBUSY; 1264 } else if (channels > easrc->channel_avail) { 1265 dev_err(dev, "can't give the required channels: %d\n", 1266 channels); 1267 ret = -EINVAL; 1268 } else { 1269 ctx->index = index; 1270 ctx->channels = channels; 1271 easrc->pair[index] = ctx; 1272 easrc->channel_avail -= channels; 1273 } 1274 1275 spin_unlock_irqrestore(&easrc->lock, lock_flags); 1276 1277 return ret; 1278 } 1279 1280 /* 1281 * Release the context 1282 * 1283 * This funciton is mainly doing the revert thing in request context 1284 */ 1285 static void fsl_easrc_release_context(struct fsl_asrc_pair *ctx) 1286 { 1287 unsigned long lock_flags; 1288 struct fsl_asrc *easrc; 1289 1290 if (!ctx) 1291 return; 1292 1293 easrc = ctx->asrc; 1294 1295 spin_lock_irqsave(&easrc->lock, lock_flags); 1296 1297 fsl_easrc_release_slot(easrc, ctx->index); 1298 1299 easrc->channel_avail += ctx->channels; 1300 easrc->pair[ctx->index] = NULL; 1301 1302 spin_unlock_irqrestore(&easrc->lock, lock_flags); 1303 } 1304 1305 /* 1306 * Start the context 1307 * 1308 * Enable the DMA request and context 1309 */ 1310 static int fsl_easrc_start_context(struct fsl_asrc_pair *ctx) 1311 { 1312 struct fsl_asrc *easrc = ctx->asrc; 1313 1314 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1315 EASRC_CC_FWMDE_MASK, EASRC_CC_FWMDE); 1316 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), 1317 EASRC_COC_FWMDE_MASK, EASRC_COC_FWMDE); 1318 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1319 EASRC_CC_EN_MASK, EASRC_CC_EN); 1320 return 0; 1321 } 1322 1323 /* 1324 * Stop the context 1325 * 1326 * Disable the DMA request and context 1327 */ 1328 static int fsl_easrc_stop_context(struct fsl_asrc_pair *ctx) 1329 { 1330 struct fsl_asrc *easrc = ctx->asrc; 1331 int val, i; 1332 int size; 1333 int retry = 200; 1334 1335 regmap_read(easrc->regmap, REG_EASRC_CC(ctx->index), &val); 1336 1337 if (val & EASRC_CC_EN_MASK) { 1338 regmap_update_bits(easrc->regmap, 1339 REG_EASRC_CC(ctx->index), 1340 EASRC_CC_STOP_MASK, EASRC_CC_STOP); 1341 do { 1342 regmap_read(easrc->regmap, REG_EASRC_SFS(ctx->index), &val); 1343 val &= EASRC_SFS_NSGO_MASK; 1344 size = val >> EASRC_SFS_NSGO_SHIFT; 1345 1346 /* Read FIFO, drop the data */ 1347 for (i = 0; i < size * ctx->channels; i++) 1348 regmap_read(easrc->regmap, REG_EASRC_RDFIFO(ctx->index), &val); 1349 /* Check RUN_STOP_DONE */ 1350 regmap_read(easrc->regmap, REG_EASRC_IRQF, &val); 1351 if (val & EASRC_IRQF_RSD(1 << ctx->index)) { 1352 /*Clear RUN_STOP_DONE*/ 1353 regmap_write_bits(easrc->regmap, 1354 REG_EASRC_IRQF, 1355 EASRC_IRQF_RSD(1 << ctx->index), 1356 EASRC_IRQF_RSD(1 << ctx->index)); 1357 break; 1358 } 1359 udelay(100); 1360 } while (--retry); 1361 1362 if (retry == 0) 1363 dev_warn(&easrc->pdev->dev, "RUN STOP fail\n"); 1364 } 1365 1366 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1367 EASRC_CC_EN_MASK | EASRC_CC_STOP_MASK, 0); 1368 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), 1369 EASRC_CC_FWMDE_MASK, 0); 1370 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), 1371 EASRC_COC_FWMDE_MASK, 0); 1372 return 0; 1373 } 1374 1375 static struct dma_chan *fsl_easrc_get_dma_channel(struct fsl_asrc_pair *ctx, 1376 bool dir) 1377 { 1378 struct fsl_asrc *easrc = ctx->asrc; 1379 enum asrc_pair_index index = ctx->index; 1380 char name[8]; 1381 1382 /* Example of dma name: ctx0_rx */ 1383 sprintf(name, "ctx%c_%cx", index + '0', dir == IN ? 'r' : 't'); 1384 1385 return dma_request_slave_channel(&easrc->pdev->dev, name); 1386 }; 1387 1388 static const unsigned int easrc_rates[] = { 1389 8000, 11025, 12000, 16000, 1390 22050, 24000, 32000, 44100, 1391 48000, 64000, 88200, 96000, 1392 128000, 176400, 192000, 256000, 1393 352800, 384000, 705600, 768000, 1394 }; 1395 1396 static const struct snd_pcm_hw_constraint_list easrc_rate_constraints = { 1397 .count = ARRAY_SIZE(easrc_rates), 1398 .list = easrc_rates, 1399 }; 1400 1401 static int fsl_easrc_startup(struct snd_pcm_substream *substream, 1402 struct snd_soc_dai *dai) 1403 { 1404 return snd_pcm_hw_constraint_list(substream->runtime, 0, 1405 SNDRV_PCM_HW_PARAM_RATE, 1406 &easrc_rate_constraints); 1407 } 1408 1409 static int fsl_easrc_trigger(struct snd_pcm_substream *substream, 1410 int cmd, struct snd_soc_dai *dai) 1411 { 1412 struct snd_pcm_runtime *runtime = substream->runtime; 1413 struct fsl_asrc_pair *ctx = runtime->private_data; 1414 int ret; 1415 1416 switch (cmd) { 1417 case SNDRV_PCM_TRIGGER_START: 1418 case SNDRV_PCM_TRIGGER_RESUME: 1419 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1420 ret = fsl_easrc_start_context(ctx); 1421 if (ret) 1422 return ret; 1423 break; 1424 case SNDRV_PCM_TRIGGER_STOP: 1425 case SNDRV_PCM_TRIGGER_SUSPEND: 1426 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1427 ret = fsl_easrc_stop_context(ctx); 1428 if (ret) 1429 return ret; 1430 break; 1431 default: 1432 return -EINVAL; 1433 } 1434 1435 return 0; 1436 } 1437 1438 static int fsl_easrc_hw_params(struct snd_pcm_substream *substream, 1439 struct snd_pcm_hw_params *params, 1440 struct snd_soc_dai *dai) 1441 { 1442 struct fsl_asrc *easrc = snd_soc_dai_get_drvdata(dai); 1443 struct snd_pcm_runtime *runtime = substream->runtime; 1444 struct device *dev = &easrc->pdev->dev; 1445 struct fsl_asrc_pair *ctx = runtime->private_data; 1446 struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; 1447 unsigned int channels = params_channels(params); 1448 unsigned int rate = params_rate(params); 1449 snd_pcm_format_t format = params_format(params); 1450 int ret; 1451 1452 ret = fsl_easrc_request_context(channels, ctx); 1453 if (ret) { 1454 dev_err(dev, "failed to request context\n"); 1455 return ret; 1456 } 1457 1458 ctx_priv->ctx_streams |= BIT(substream->stream); 1459 1460 /* 1461 * Set the input and output ratio so we can compute 1462 * the resampling ratio in RS_LOW/HIGH 1463 */ 1464 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 1465 ctx_priv->in_params.sample_rate = rate; 1466 ctx_priv->in_params.sample_format = format; 1467 ctx_priv->out_params.sample_rate = easrc->asrc_rate; 1468 ctx_priv->out_params.sample_format = easrc->asrc_format; 1469 } else { 1470 ctx_priv->out_params.sample_rate = rate; 1471 ctx_priv->out_params.sample_format = format; 1472 ctx_priv->in_params.sample_rate = easrc->asrc_rate; 1473 ctx_priv->in_params.sample_format = easrc->asrc_format; 1474 } 1475 1476 ctx->channels = channels; 1477 ctx_priv->in_params.fifo_wtmk = 0x20; 1478 ctx_priv->out_params.fifo_wtmk = 0x20; 1479 1480 /* 1481 * Do only rate conversion and keep the same format for input 1482 * and output data 1483 */ 1484 ret = fsl_easrc_set_ctx_format(ctx, 1485 &ctx_priv->in_params.sample_format, 1486 &ctx_priv->out_params.sample_format); 1487 if (ret) { 1488 dev_err(dev, "failed to set format %d", ret); 1489 return ret; 1490 } 1491 1492 ret = fsl_easrc_config_context(easrc, ctx->index); 1493 if (ret) { 1494 dev_err(dev, "failed to config context\n"); 1495 return ret; 1496 } 1497 1498 ctx_priv->in_params.iterations = 1; 1499 ctx_priv->in_params.group_len = ctx->channels; 1500 ctx_priv->in_params.access_len = ctx->channels; 1501 ctx_priv->out_params.iterations = 1; 1502 ctx_priv->out_params.group_len = ctx->channels; 1503 ctx_priv->out_params.access_len = ctx->channels; 1504 1505 ret = fsl_easrc_set_ctx_organziation(ctx); 1506 if (ret) { 1507 dev_err(dev, "failed to set fifo organization\n"); 1508 return ret; 1509 } 1510 1511 return 0; 1512 } 1513 1514 static int fsl_easrc_hw_free(struct snd_pcm_substream *substream, 1515 struct snd_soc_dai *dai) 1516 { 1517 struct snd_pcm_runtime *runtime = substream->runtime; 1518 struct fsl_asrc_pair *ctx = runtime->private_data; 1519 struct fsl_easrc_ctx_priv *ctx_priv; 1520 1521 if (!ctx) 1522 return -EINVAL; 1523 1524 ctx_priv = ctx->private; 1525 1526 if (ctx_priv->ctx_streams & BIT(substream->stream)) { 1527 ctx_priv->ctx_streams &= ~BIT(substream->stream); 1528 fsl_easrc_release_context(ctx); 1529 } 1530 1531 return 0; 1532 } 1533 1534 static int fsl_easrc_dai_probe(struct snd_soc_dai *cpu_dai) 1535 { 1536 struct fsl_asrc *easrc = dev_get_drvdata(cpu_dai->dev); 1537 1538 snd_soc_dai_init_dma_data(cpu_dai, 1539 &easrc->dma_params_tx, 1540 &easrc->dma_params_rx); 1541 return 0; 1542 } 1543 1544 static const struct snd_soc_dai_ops fsl_easrc_dai_ops = { 1545 .probe = fsl_easrc_dai_probe, 1546 .startup = fsl_easrc_startup, 1547 .trigger = fsl_easrc_trigger, 1548 .hw_params = fsl_easrc_hw_params, 1549 .hw_free = fsl_easrc_hw_free, 1550 }; 1551 1552 static struct snd_soc_dai_driver fsl_easrc_dai = { 1553 .playback = { 1554 .stream_name = "ASRC-Playback", 1555 .channels_min = 1, 1556 .channels_max = 32, 1557 .rate_min = 8000, 1558 .rate_max = 768000, 1559 .rates = SNDRV_PCM_RATE_KNOT, 1560 .formats = FSL_EASRC_FORMATS, 1561 }, 1562 .capture = { 1563 .stream_name = "ASRC-Capture", 1564 .channels_min = 1, 1565 .channels_max = 32, 1566 .rate_min = 8000, 1567 .rate_max = 768000, 1568 .rates = SNDRV_PCM_RATE_KNOT, 1569 .formats = FSL_EASRC_FORMATS | 1570 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1571 }, 1572 .ops = &fsl_easrc_dai_ops, 1573 }; 1574 1575 static const struct snd_soc_component_driver fsl_easrc_component = { 1576 .name = "fsl-easrc-dai", 1577 .controls = fsl_easrc_snd_controls, 1578 .num_controls = ARRAY_SIZE(fsl_easrc_snd_controls), 1579 .legacy_dai_naming = 1, 1580 }; 1581 1582 static const struct reg_default fsl_easrc_reg_defaults[] = { 1583 {REG_EASRC_WRFIFO(0), 0x00000000}, 1584 {REG_EASRC_WRFIFO(1), 0x00000000}, 1585 {REG_EASRC_WRFIFO(2), 0x00000000}, 1586 {REG_EASRC_WRFIFO(3), 0x00000000}, 1587 {REG_EASRC_RDFIFO(0), 0x00000000}, 1588 {REG_EASRC_RDFIFO(1), 0x00000000}, 1589 {REG_EASRC_RDFIFO(2), 0x00000000}, 1590 {REG_EASRC_RDFIFO(3), 0x00000000}, 1591 {REG_EASRC_CC(0), 0x00000000}, 1592 {REG_EASRC_CC(1), 0x00000000}, 1593 {REG_EASRC_CC(2), 0x00000000}, 1594 {REG_EASRC_CC(3), 0x00000000}, 1595 {REG_EASRC_CCE1(0), 0x00000000}, 1596 {REG_EASRC_CCE1(1), 0x00000000}, 1597 {REG_EASRC_CCE1(2), 0x00000000}, 1598 {REG_EASRC_CCE1(3), 0x00000000}, 1599 {REG_EASRC_CCE2(0), 0x00000000}, 1600 {REG_EASRC_CCE2(1), 0x00000000}, 1601 {REG_EASRC_CCE2(2), 0x00000000}, 1602 {REG_EASRC_CCE2(3), 0x00000000}, 1603 {REG_EASRC_CIA(0), 0x00000000}, 1604 {REG_EASRC_CIA(1), 0x00000000}, 1605 {REG_EASRC_CIA(2), 0x00000000}, 1606 {REG_EASRC_CIA(3), 0x00000000}, 1607 {REG_EASRC_DPCS0R0(0), 0x00000000}, 1608 {REG_EASRC_DPCS0R0(1), 0x00000000}, 1609 {REG_EASRC_DPCS0R0(2), 0x00000000}, 1610 {REG_EASRC_DPCS0R0(3), 0x00000000}, 1611 {REG_EASRC_DPCS0R1(0), 0x00000000}, 1612 {REG_EASRC_DPCS0R1(1), 0x00000000}, 1613 {REG_EASRC_DPCS0R1(2), 0x00000000}, 1614 {REG_EASRC_DPCS0R1(3), 0x00000000}, 1615 {REG_EASRC_DPCS0R2(0), 0x00000000}, 1616 {REG_EASRC_DPCS0R2(1), 0x00000000}, 1617 {REG_EASRC_DPCS0R2(2), 0x00000000}, 1618 {REG_EASRC_DPCS0R2(3), 0x00000000}, 1619 {REG_EASRC_DPCS0R3(0), 0x00000000}, 1620 {REG_EASRC_DPCS0R3(1), 0x00000000}, 1621 {REG_EASRC_DPCS0R3(2), 0x00000000}, 1622 {REG_EASRC_DPCS0R3(3), 0x00000000}, 1623 {REG_EASRC_DPCS1R0(0), 0x00000000}, 1624 {REG_EASRC_DPCS1R0(1), 0x00000000}, 1625 {REG_EASRC_DPCS1R0(2), 0x00000000}, 1626 {REG_EASRC_DPCS1R0(3), 0x00000000}, 1627 {REG_EASRC_DPCS1R1(0), 0x00000000}, 1628 {REG_EASRC_DPCS1R1(1), 0x00000000}, 1629 {REG_EASRC_DPCS1R1(2), 0x00000000}, 1630 {REG_EASRC_DPCS1R1(3), 0x00000000}, 1631 {REG_EASRC_DPCS1R2(0), 0x00000000}, 1632 {REG_EASRC_DPCS1R2(1), 0x00000000}, 1633 {REG_EASRC_DPCS1R2(2), 0x00000000}, 1634 {REG_EASRC_DPCS1R2(3), 0x00000000}, 1635 {REG_EASRC_DPCS1R3(0), 0x00000000}, 1636 {REG_EASRC_DPCS1R3(1), 0x00000000}, 1637 {REG_EASRC_DPCS1R3(2), 0x00000000}, 1638 {REG_EASRC_DPCS1R3(3), 0x00000000}, 1639 {REG_EASRC_COC(0), 0x00000000}, 1640 {REG_EASRC_COC(1), 0x00000000}, 1641 {REG_EASRC_COC(2), 0x00000000}, 1642 {REG_EASRC_COC(3), 0x00000000}, 1643 {REG_EASRC_COA(0), 0x00000000}, 1644 {REG_EASRC_COA(1), 0x00000000}, 1645 {REG_EASRC_COA(2), 0x00000000}, 1646 {REG_EASRC_COA(3), 0x00000000}, 1647 {REG_EASRC_SFS(0), 0x00000000}, 1648 {REG_EASRC_SFS(1), 0x00000000}, 1649 {REG_EASRC_SFS(2), 0x00000000}, 1650 {REG_EASRC_SFS(3), 0x00000000}, 1651 {REG_EASRC_RRL(0), 0x00000000}, 1652 {REG_EASRC_RRL(1), 0x00000000}, 1653 {REG_EASRC_RRL(2), 0x00000000}, 1654 {REG_EASRC_RRL(3), 0x00000000}, 1655 {REG_EASRC_RRH(0), 0x00000000}, 1656 {REG_EASRC_RRH(1), 0x00000000}, 1657 {REG_EASRC_RRH(2), 0x00000000}, 1658 {REG_EASRC_RRH(3), 0x00000000}, 1659 {REG_EASRC_RUC(0), 0x00000000}, 1660 {REG_EASRC_RUC(1), 0x00000000}, 1661 {REG_EASRC_RUC(2), 0x00000000}, 1662 {REG_EASRC_RUC(3), 0x00000000}, 1663 {REG_EASRC_RUR(0), 0x7FFFFFFF}, 1664 {REG_EASRC_RUR(1), 0x7FFFFFFF}, 1665 {REG_EASRC_RUR(2), 0x7FFFFFFF}, 1666 {REG_EASRC_RUR(3), 0x7FFFFFFF}, 1667 {REG_EASRC_RCTCL, 0x00000000}, 1668 {REG_EASRC_RCTCH, 0x00000000}, 1669 {REG_EASRC_PCF(0), 0x00000000}, 1670 {REG_EASRC_PCF(1), 0x00000000}, 1671 {REG_EASRC_PCF(2), 0x00000000}, 1672 {REG_EASRC_PCF(3), 0x00000000}, 1673 {REG_EASRC_CRCM, 0x00000000}, 1674 {REG_EASRC_CRCC, 0x00000000}, 1675 {REG_EASRC_IRQC, 0x00000FFF}, 1676 {REG_EASRC_IRQF, 0x00000000}, 1677 {REG_EASRC_CS0(0), 0x00000000}, 1678 {REG_EASRC_CS0(1), 0x00000000}, 1679 {REG_EASRC_CS0(2), 0x00000000}, 1680 {REG_EASRC_CS0(3), 0x00000000}, 1681 {REG_EASRC_CS1(0), 0x00000000}, 1682 {REG_EASRC_CS1(1), 0x00000000}, 1683 {REG_EASRC_CS1(2), 0x00000000}, 1684 {REG_EASRC_CS1(3), 0x00000000}, 1685 {REG_EASRC_CS2(0), 0x00000000}, 1686 {REG_EASRC_CS2(1), 0x00000000}, 1687 {REG_EASRC_CS2(2), 0x00000000}, 1688 {REG_EASRC_CS2(3), 0x00000000}, 1689 {REG_EASRC_CS3(0), 0x00000000}, 1690 {REG_EASRC_CS3(1), 0x00000000}, 1691 {REG_EASRC_CS3(2), 0x00000000}, 1692 {REG_EASRC_CS3(3), 0x00000000}, 1693 {REG_EASRC_CS4(0), 0x00000000}, 1694 {REG_EASRC_CS4(1), 0x00000000}, 1695 {REG_EASRC_CS4(2), 0x00000000}, 1696 {REG_EASRC_CS4(3), 0x00000000}, 1697 {REG_EASRC_CS5(0), 0x00000000}, 1698 {REG_EASRC_CS5(1), 0x00000000}, 1699 {REG_EASRC_CS5(2), 0x00000000}, 1700 {REG_EASRC_CS5(3), 0x00000000}, 1701 {REG_EASRC_DBGC, 0x00000000}, 1702 {REG_EASRC_DBGS, 0x00000000}, 1703 }; 1704 1705 static const struct regmap_range fsl_easrc_readable_ranges[] = { 1706 regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RCTCH), 1707 regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_PCF(3)), 1708 regmap_reg_range(REG_EASRC_CRCC, REG_EASRC_DBGS), 1709 }; 1710 1711 static const struct regmap_access_table fsl_easrc_readable_table = { 1712 .yes_ranges = fsl_easrc_readable_ranges, 1713 .n_yes_ranges = ARRAY_SIZE(fsl_easrc_readable_ranges), 1714 }; 1715 1716 static const struct regmap_range fsl_easrc_writeable_ranges[] = { 1717 regmap_reg_range(REG_EASRC_WRFIFO(0), REG_EASRC_WRFIFO(3)), 1718 regmap_reg_range(REG_EASRC_CC(0), REG_EASRC_COA(3)), 1719 regmap_reg_range(REG_EASRC_RRL(0), REG_EASRC_RCTCH), 1720 regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_DBGC), 1721 }; 1722 1723 static const struct regmap_access_table fsl_easrc_writeable_table = { 1724 .yes_ranges = fsl_easrc_writeable_ranges, 1725 .n_yes_ranges = ARRAY_SIZE(fsl_easrc_writeable_ranges), 1726 }; 1727 1728 static const struct regmap_range fsl_easrc_volatileable_ranges[] = { 1729 regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RDFIFO(3)), 1730 regmap_reg_range(REG_EASRC_SFS(0), REG_EASRC_SFS(3)), 1731 regmap_reg_range(REG_EASRC_IRQF, REG_EASRC_IRQF), 1732 regmap_reg_range(REG_EASRC_DBGS, REG_EASRC_DBGS), 1733 }; 1734 1735 static const struct regmap_access_table fsl_easrc_volatileable_table = { 1736 .yes_ranges = fsl_easrc_volatileable_ranges, 1737 .n_yes_ranges = ARRAY_SIZE(fsl_easrc_volatileable_ranges), 1738 }; 1739 1740 static const struct regmap_config fsl_easrc_regmap_config = { 1741 .reg_bits = 32, 1742 .reg_stride = 4, 1743 .val_bits = 32, 1744 1745 .max_register = REG_EASRC_DBGS, 1746 .reg_defaults = fsl_easrc_reg_defaults, 1747 .num_reg_defaults = ARRAY_SIZE(fsl_easrc_reg_defaults), 1748 .rd_table = &fsl_easrc_readable_table, 1749 .wr_table = &fsl_easrc_writeable_table, 1750 .volatile_table = &fsl_easrc_volatileable_table, 1751 .cache_type = REGCACHE_RBTREE, 1752 }; 1753 1754 #ifdef DEBUG 1755 static void fsl_easrc_dump_firmware(struct fsl_asrc *easrc) 1756 { 1757 struct fsl_easrc_priv *easrc_priv = easrc->private; 1758 struct asrc_firmware_hdr *firm = easrc_priv->firmware_hdr; 1759 struct interp_params *interp = easrc_priv->interp; 1760 struct prefil_params *prefil = easrc_priv->prefil; 1761 struct device *dev = &easrc->pdev->dev; 1762 int i; 1763 1764 if (firm->magic != FIRMWARE_MAGIC) { 1765 dev_err(dev, "Wrong magic. Something went wrong!"); 1766 return; 1767 } 1768 1769 dev_dbg(dev, "Firmware v%u dump:\n", firm->firmware_version); 1770 dev_dbg(dev, "Num prefilter scenarios: %u\n", firm->prefil_scen); 1771 dev_dbg(dev, "Num interpolation scenarios: %u\n", firm->interp_scen); 1772 dev_dbg(dev, "\nInterpolation scenarios:\n"); 1773 1774 for (i = 0; i < firm->interp_scen; i++) { 1775 if (interp[i].magic != FIRMWARE_MAGIC) { 1776 dev_dbg(dev, "%d. wrong interp magic: %x\n", 1777 i, interp[i].magic); 1778 continue; 1779 } 1780 dev_dbg(dev, "%d. taps: %u, phases: %u, center: %llu\n", i, 1781 interp[i].num_taps, interp[i].num_phases, 1782 interp[i].center_tap); 1783 } 1784 1785 for (i = 0; i < firm->prefil_scen; i++) { 1786 if (prefil[i].magic != FIRMWARE_MAGIC) { 1787 dev_dbg(dev, "%d. wrong prefil magic: %x\n", 1788 i, prefil[i].magic); 1789 continue; 1790 } 1791 dev_dbg(dev, "%d. insr: %u, outsr: %u, st1: %u, st2: %u\n", i, 1792 prefil[i].insr, prefil[i].outsr, 1793 prefil[i].st1_taps, prefil[i].st2_taps); 1794 } 1795 1796 dev_dbg(dev, "end of firmware dump\n"); 1797 } 1798 #endif 1799 1800 static int fsl_easrc_get_firmware(struct fsl_asrc *easrc) 1801 { 1802 struct fsl_easrc_priv *easrc_priv; 1803 const struct firmware **fw_p; 1804 u32 pnum, inum, offset; 1805 const u8 *data; 1806 int ret; 1807 1808 if (!easrc) 1809 return -EINVAL; 1810 1811 easrc_priv = easrc->private; 1812 fw_p = &easrc_priv->fw; 1813 1814 ret = request_firmware(fw_p, easrc_priv->fw_name, &easrc->pdev->dev); 1815 if (ret) 1816 return ret; 1817 1818 data = easrc_priv->fw->data; 1819 1820 easrc_priv->firmware_hdr = (struct asrc_firmware_hdr *)data; 1821 pnum = easrc_priv->firmware_hdr->prefil_scen; 1822 inum = easrc_priv->firmware_hdr->interp_scen; 1823 1824 if (inum) { 1825 offset = sizeof(struct asrc_firmware_hdr); 1826 easrc_priv->interp = (struct interp_params *)(data + offset); 1827 } 1828 1829 if (pnum) { 1830 offset = sizeof(struct asrc_firmware_hdr) + 1831 inum * sizeof(struct interp_params); 1832 easrc_priv->prefil = (struct prefil_params *)(data + offset); 1833 } 1834 1835 #ifdef DEBUG 1836 fsl_easrc_dump_firmware(easrc); 1837 #endif 1838 1839 return 0; 1840 } 1841 1842 static irqreturn_t fsl_easrc_isr(int irq, void *dev_id) 1843 { 1844 struct fsl_asrc *easrc = (struct fsl_asrc *)dev_id; 1845 struct device *dev = &easrc->pdev->dev; 1846 int val; 1847 1848 regmap_read(easrc->regmap, REG_EASRC_IRQF, &val); 1849 1850 if (val & EASRC_IRQF_OER_MASK) 1851 dev_dbg(dev, "output FIFO underflow\n"); 1852 1853 if (val & EASRC_IRQF_IFO_MASK) 1854 dev_dbg(dev, "input FIFO overflow\n"); 1855 1856 return IRQ_HANDLED; 1857 } 1858 1859 static int fsl_easrc_get_fifo_addr(u8 dir, enum asrc_pair_index index) 1860 { 1861 return REG_EASRC_FIFO(dir, index); 1862 } 1863 1864 static const struct of_device_id fsl_easrc_dt_ids[] = { 1865 { .compatible = "fsl,imx8mn-easrc",}, 1866 {} 1867 }; 1868 MODULE_DEVICE_TABLE(of, fsl_easrc_dt_ids); 1869 1870 static int fsl_easrc_probe(struct platform_device *pdev) 1871 { 1872 struct fsl_easrc_priv *easrc_priv; 1873 struct device *dev = &pdev->dev; 1874 struct fsl_asrc *easrc; 1875 struct resource *res; 1876 struct device_node *np; 1877 void __iomem *regs; 1878 u32 asrc_fmt = 0; 1879 int ret, irq; 1880 1881 easrc = devm_kzalloc(dev, sizeof(*easrc), GFP_KERNEL); 1882 if (!easrc) 1883 return -ENOMEM; 1884 1885 easrc_priv = devm_kzalloc(dev, sizeof(*easrc_priv), GFP_KERNEL); 1886 if (!easrc_priv) 1887 return -ENOMEM; 1888 1889 easrc->pdev = pdev; 1890 easrc->private = easrc_priv; 1891 np = dev->of_node; 1892 1893 regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 1894 if (IS_ERR(regs)) 1895 return PTR_ERR(regs); 1896 1897 easrc->paddr = res->start; 1898 1899 easrc->regmap = devm_regmap_init_mmio(dev, regs, &fsl_easrc_regmap_config); 1900 if (IS_ERR(easrc->regmap)) { 1901 dev_err(dev, "failed to init regmap"); 1902 return PTR_ERR(easrc->regmap); 1903 } 1904 1905 irq = platform_get_irq(pdev, 0); 1906 if (irq < 0) 1907 return irq; 1908 1909 ret = devm_request_irq(&pdev->dev, irq, fsl_easrc_isr, 0, 1910 dev_name(dev), easrc); 1911 if (ret) { 1912 dev_err(dev, "failed to claim irq %u: %d\n", irq, ret); 1913 return ret; 1914 } 1915 1916 easrc->mem_clk = devm_clk_get(dev, "mem"); 1917 if (IS_ERR(easrc->mem_clk)) { 1918 dev_err(dev, "failed to get mem clock\n"); 1919 return PTR_ERR(easrc->mem_clk); 1920 } 1921 1922 /* Set default value */ 1923 easrc->channel_avail = 32; 1924 easrc->get_dma_channel = fsl_easrc_get_dma_channel; 1925 easrc->request_pair = fsl_easrc_request_context; 1926 easrc->release_pair = fsl_easrc_release_context; 1927 easrc->get_fifo_addr = fsl_easrc_get_fifo_addr; 1928 easrc->pair_priv_size = sizeof(struct fsl_easrc_ctx_priv); 1929 1930 easrc_priv->rs_num_taps = EASRC_RS_32_TAPS; 1931 easrc_priv->const_coeff = 0x3FF0000000000000; 1932 1933 ret = of_property_read_u32(np, "fsl,asrc-rate", &easrc->asrc_rate); 1934 if (ret) { 1935 dev_err(dev, "failed to asrc rate\n"); 1936 return ret; 1937 } 1938 1939 ret = of_property_read_u32(np, "fsl,asrc-format", &asrc_fmt); 1940 easrc->asrc_format = (__force snd_pcm_format_t)asrc_fmt; 1941 if (ret) { 1942 dev_err(dev, "failed to asrc format\n"); 1943 return ret; 1944 } 1945 1946 if (!(FSL_EASRC_FORMATS & (pcm_format_to_bits(easrc->asrc_format)))) { 1947 dev_warn(dev, "unsupported format, switching to S24_LE\n"); 1948 easrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE; 1949 } 1950 1951 ret = of_property_read_string(np, "firmware-name", 1952 &easrc_priv->fw_name); 1953 if (ret) { 1954 dev_err(dev, "failed to get firmware name\n"); 1955 return ret; 1956 } 1957 1958 platform_set_drvdata(pdev, easrc); 1959 pm_runtime_enable(dev); 1960 1961 spin_lock_init(&easrc->lock); 1962 1963 regcache_cache_only(easrc->regmap, true); 1964 1965 ret = devm_snd_soc_register_component(dev, &fsl_easrc_component, 1966 &fsl_easrc_dai, 1); 1967 if (ret) { 1968 dev_err(dev, "failed to register ASoC DAI\n"); 1969 goto err_pm_disable; 1970 } 1971 1972 ret = devm_snd_soc_register_component(dev, &fsl_asrc_component, 1973 NULL, 0); 1974 if (ret) { 1975 dev_err(&pdev->dev, "failed to register ASoC platform\n"); 1976 goto err_pm_disable; 1977 } 1978 1979 return 0; 1980 1981 err_pm_disable: 1982 pm_runtime_disable(&pdev->dev); 1983 return ret; 1984 } 1985 1986 static void fsl_easrc_remove(struct platform_device *pdev) 1987 { 1988 pm_runtime_disable(&pdev->dev); 1989 } 1990 1991 static int fsl_easrc_runtime_suspend(struct device *dev) 1992 { 1993 struct fsl_asrc *easrc = dev_get_drvdata(dev); 1994 struct fsl_easrc_priv *easrc_priv = easrc->private; 1995 unsigned long lock_flags; 1996 1997 regcache_cache_only(easrc->regmap, true); 1998 1999 clk_disable_unprepare(easrc->mem_clk); 2000 2001 spin_lock_irqsave(&easrc->lock, lock_flags); 2002 easrc_priv->firmware_loaded = 0; 2003 spin_unlock_irqrestore(&easrc->lock, lock_flags); 2004 2005 return 0; 2006 } 2007 2008 static int fsl_easrc_runtime_resume(struct device *dev) 2009 { 2010 struct fsl_asrc *easrc = dev_get_drvdata(dev); 2011 struct fsl_easrc_priv *easrc_priv = easrc->private; 2012 struct fsl_easrc_ctx_priv *ctx_priv; 2013 struct fsl_asrc_pair *ctx; 2014 unsigned long lock_flags; 2015 int ret; 2016 int i; 2017 2018 ret = clk_prepare_enable(easrc->mem_clk); 2019 if (ret) 2020 return ret; 2021 2022 regcache_cache_only(easrc->regmap, false); 2023 regcache_mark_dirty(easrc->regmap); 2024 regcache_sync(easrc->regmap); 2025 2026 spin_lock_irqsave(&easrc->lock, lock_flags); 2027 if (easrc_priv->firmware_loaded) { 2028 spin_unlock_irqrestore(&easrc->lock, lock_flags); 2029 goto skip_load; 2030 } 2031 easrc_priv->firmware_loaded = 1; 2032 spin_unlock_irqrestore(&easrc->lock, lock_flags); 2033 2034 ret = fsl_easrc_get_firmware(easrc); 2035 if (ret) { 2036 dev_err(dev, "failed to get firmware\n"); 2037 goto disable_mem_clk; 2038 } 2039 2040 /* 2041 * Write Resampling Coefficients 2042 * The coefficient RAM must be configured prior to beginning of 2043 * any context processing within the ASRC 2044 */ 2045 ret = fsl_easrc_resampler_config(easrc); 2046 if (ret) { 2047 dev_err(dev, "resampler config failed\n"); 2048 goto disable_mem_clk; 2049 } 2050 2051 for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) { 2052 ctx = easrc->pair[i]; 2053 if (!ctx) 2054 continue; 2055 2056 ctx_priv = ctx->private; 2057 fsl_easrc_set_rs_ratio(ctx); 2058 ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * 2059 ctx_priv->out_params.sample_rate / 2060 ctx_priv->in_params.sample_rate; 2061 if (ctx_priv->in_filled_sample * ctx_priv->out_params.sample_rate 2062 % ctx_priv->in_params.sample_rate != 0) 2063 ctx_priv->out_missed_sample += 1; 2064 2065 ret = fsl_easrc_write_pf_coeff_mem(easrc, i, 2066 ctx_priv->st1_coeff, 2067 ctx_priv->st1_num_taps, 2068 ctx_priv->st1_addexp); 2069 if (ret) 2070 goto disable_mem_clk; 2071 2072 ret = fsl_easrc_write_pf_coeff_mem(easrc, i, 2073 ctx_priv->st2_coeff, 2074 ctx_priv->st2_num_taps, 2075 ctx_priv->st2_addexp); 2076 if (ret) 2077 goto disable_mem_clk; 2078 } 2079 2080 skip_load: 2081 return 0; 2082 2083 disable_mem_clk: 2084 clk_disable_unprepare(easrc->mem_clk); 2085 return ret; 2086 } 2087 2088 static const struct dev_pm_ops fsl_easrc_pm_ops = { 2089 RUNTIME_PM_OPS(fsl_easrc_runtime_suspend, fsl_easrc_runtime_resume, NULL) 2090 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 2091 pm_runtime_force_resume) 2092 }; 2093 2094 static struct platform_driver fsl_easrc_driver = { 2095 .probe = fsl_easrc_probe, 2096 .remove_new = fsl_easrc_remove, 2097 .driver = { 2098 .name = "fsl-easrc", 2099 .pm = pm_ptr(&fsl_easrc_pm_ops), 2100 .of_match_table = fsl_easrc_dt_ids, 2101 }, 2102 }; 2103 module_platform_driver(fsl_easrc_driver); 2104 2105 MODULE_DESCRIPTION("NXP Enhanced Asynchronous Sample Rate (eASRC) driver"); 2106 MODULE_LICENSE("GPL v2"); 2107