xref: /linux/sound/soc/fsl/fsl_easrc.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright 2019 NXP
3 
4 #include <linux/atomic.h>
5 #include <linux/clk.h>
6 #include <linux/device.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/firmware.h>
9 #include <linux/interrupt.h>
10 #include <linux/kobject.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/miscdevice.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/of_irq.h>
17 #include <linux/of_platform.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sysfs.h>
22 #include <linux/types.h>
23 #include <linux/gcd.h>
24 #include <sound/dmaengine_pcm.h>
25 #include <sound/pcm.h>
26 #include <sound/pcm_params.h>
27 #include <sound/soc.h>
28 #include <sound/tlv.h>
29 #include <sound/core.h>
30 
31 #include "fsl_easrc.h"
32 #include "imx-pcm.h"
33 
34 #define FSL_EASRC_FORMATS       (SNDRV_PCM_FMTBIT_S16_LE | \
35 				 SNDRV_PCM_FMTBIT_U16_LE | \
36 				 SNDRV_PCM_FMTBIT_S24_LE | \
37 				 SNDRV_PCM_FMTBIT_S24_3LE | \
38 				 SNDRV_PCM_FMTBIT_U24_LE | \
39 				 SNDRV_PCM_FMTBIT_U24_3LE | \
40 				 SNDRV_PCM_FMTBIT_S32_LE | \
41 				 SNDRV_PCM_FMTBIT_U32_LE | \
42 				 SNDRV_PCM_FMTBIT_S20_3LE | \
43 				 SNDRV_PCM_FMTBIT_U20_3LE | \
44 				 SNDRV_PCM_FMTBIT_FLOAT_LE)
45 
46 static int fsl_easrc_iec958_put_bits(struct snd_kcontrol *kcontrol,
47 				     struct snd_ctl_elem_value *ucontrol)
48 {
49 	struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
50 	struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
51 	struct fsl_easrc_priv *easrc_priv = easrc->private;
52 	struct soc_mreg_control *mc =
53 		(struct soc_mreg_control *)kcontrol->private_value;
54 	unsigned int regval = ucontrol->value.integer.value[0];
55 
56 	easrc_priv->bps_iec958[mc->regbase] = regval;
57 
58 	return 0;
59 }
60 
61 static int fsl_easrc_iec958_get_bits(struct snd_kcontrol *kcontrol,
62 				     struct snd_ctl_elem_value *ucontrol)
63 {
64 	struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
65 	struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
66 	struct fsl_easrc_priv *easrc_priv = easrc->private;
67 	struct soc_mreg_control *mc =
68 		(struct soc_mreg_control *)kcontrol->private_value;
69 
70 	ucontrol->value.enumerated.item[0] = easrc_priv->bps_iec958[mc->regbase];
71 
72 	return 0;
73 }
74 
75 static int fsl_easrc_get_reg(struct snd_kcontrol *kcontrol,
76 			     struct snd_ctl_elem_value *ucontrol)
77 {
78 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
79 	struct soc_mreg_control *mc =
80 		(struct soc_mreg_control *)kcontrol->private_value;
81 	unsigned int regval;
82 
83 	regval = snd_soc_component_read(component, mc->regbase);
84 
85 	ucontrol->value.integer.value[0] = regval;
86 
87 	return 0;
88 }
89 
90 static int fsl_easrc_set_reg(struct snd_kcontrol *kcontrol,
91 			     struct snd_ctl_elem_value *ucontrol)
92 {
93 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 	struct soc_mreg_control *mc =
95 		(struct soc_mreg_control *)kcontrol->private_value;
96 	unsigned int regval = ucontrol->value.integer.value[0];
97 	int ret;
98 
99 	ret = snd_soc_component_write(component, mc->regbase, regval);
100 	if (ret < 0)
101 		return ret;
102 
103 	return 0;
104 }
105 
106 #define SOC_SINGLE_REG_RW(xname, xreg) \
107 {	.iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
108 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
109 	.info = snd_soc_info_xr_sx, .get = fsl_easrc_get_reg, \
110 	.put = fsl_easrc_set_reg, \
111 	.private_value = (unsigned long)&(struct soc_mreg_control) \
112 		{ .regbase = xreg, .regcount = 1, .nbits = 32, \
113 		  .invert = 0, .min = 0, .max = 0xffffffff, } }
114 
115 #define SOC_SINGLE_VAL_RW(xname, xreg) \
116 {	.iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
117 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
118 	.info = snd_soc_info_xr_sx, .get = fsl_easrc_iec958_get_bits, \
119 	.put = fsl_easrc_iec958_put_bits, \
120 	.private_value = (unsigned long)&(struct soc_mreg_control) \
121 		{ .regbase = xreg, .regcount = 1, .nbits = 32, \
122 		  .invert = 0, .min = 0, .max = 2, } }
123 
124 static const struct snd_kcontrol_new fsl_easrc_snd_controls[] = {
125 	SOC_SINGLE("Context 0 Dither Switch", REG_EASRC_COC(0), 0, 1, 0),
126 	SOC_SINGLE("Context 1 Dither Switch", REG_EASRC_COC(1), 0, 1, 0),
127 	SOC_SINGLE("Context 2 Dither Switch", REG_EASRC_COC(2), 0, 1, 0),
128 	SOC_SINGLE("Context 3 Dither Switch", REG_EASRC_COC(3), 0, 1, 0),
129 
130 	SOC_SINGLE("Context 0 IEC958 Validity", REG_EASRC_COC(0), 2, 1, 0),
131 	SOC_SINGLE("Context 1 IEC958 Validity", REG_EASRC_COC(1), 2, 1, 0),
132 	SOC_SINGLE("Context 2 IEC958 Validity", REG_EASRC_COC(2), 2, 1, 0),
133 	SOC_SINGLE("Context 3 IEC958 Validity", REG_EASRC_COC(3), 2, 1, 0),
134 
135 	SOC_SINGLE_VAL_RW("Context 0 IEC958 Bits Per Sample", 0),
136 	SOC_SINGLE_VAL_RW("Context 1 IEC958 Bits Per Sample", 1),
137 	SOC_SINGLE_VAL_RW("Context 2 IEC958 Bits Per Sample", 2),
138 	SOC_SINGLE_VAL_RW("Context 3 IEC958 Bits Per Sample", 3),
139 
140 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS0", REG_EASRC_CS0(0)),
141 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS0", REG_EASRC_CS0(1)),
142 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS0", REG_EASRC_CS0(2)),
143 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS0", REG_EASRC_CS0(3)),
144 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS1", REG_EASRC_CS1(0)),
145 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS1", REG_EASRC_CS1(1)),
146 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS1", REG_EASRC_CS1(2)),
147 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS1", REG_EASRC_CS1(3)),
148 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS2", REG_EASRC_CS2(0)),
149 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS2", REG_EASRC_CS2(1)),
150 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS2", REG_EASRC_CS2(2)),
151 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS2", REG_EASRC_CS2(3)),
152 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS3", REG_EASRC_CS3(0)),
153 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS3", REG_EASRC_CS3(1)),
154 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS3", REG_EASRC_CS3(2)),
155 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS3", REG_EASRC_CS3(3)),
156 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS4", REG_EASRC_CS4(0)),
157 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS4", REG_EASRC_CS4(1)),
158 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS4", REG_EASRC_CS4(2)),
159 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS4", REG_EASRC_CS4(3)),
160 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS5", REG_EASRC_CS5(0)),
161 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS5", REG_EASRC_CS5(1)),
162 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS5", REG_EASRC_CS5(2)),
163 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS5", REG_EASRC_CS5(3)),
164 };
165 
166 /*
167  * fsl_easrc_set_rs_ratio
168  *
169  * According to the resample taps, calculate the resample ratio
170  * ratio = in_rate / out_rate
171  */
172 static int fsl_easrc_set_rs_ratio(struct fsl_asrc_pair *ctx)
173 {
174 	struct fsl_asrc *easrc = ctx->asrc;
175 	struct fsl_easrc_priv *easrc_priv = easrc->private;
176 	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
177 	unsigned int in_rate = ctx_priv->in_params.norm_rate;
178 	unsigned int out_rate = ctx_priv->out_params.norm_rate;
179 	unsigned int frac_bits;
180 	u64 val;
181 	u32 *r;
182 
183 	switch (easrc_priv->rs_num_taps) {
184 	case EASRC_RS_32_TAPS:
185 		/* integer bits = 5; */
186 		frac_bits = 39;
187 		break;
188 	case EASRC_RS_64_TAPS:
189 		/* integer bits = 6; */
190 		frac_bits = 38;
191 		break;
192 	case EASRC_RS_128_TAPS:
193 		/* integer bits = 7; */
194 		frac_bits = 37;
195 		break;
196 	default:
197 		return -EINVAL;
198 	}
199 
200 	val = (u64)in_rate << frac_bits;
201 	do_div(val, out_rate);
202 	r = (uint32_t *)&val;
203 
204 	if (r[1] & 0xFFFFF000) {
205 		dev_err(&easrc->pdev->dev, "ratio exceed range\n");
206 		return -EINVAL;
207 	}
208 
209 	regmap_write(easrc->regmap, REG_EASRC_RRL(ctx->index),
210 		     EASRC_RRL_RS_RL(r[0]));
211 	regmap_write(easrc->regmap, REG_EASRC_RRH(ctx->index),
212 		     EASRC_RRH_RS_RH(r[1]));
213 
214 	return 0;
215 }
216 
217 /* Normalize input and output sample rates */
218 static void fsl_easrc_normalize_rates(struct fsl_asrc_pair *ctx)
219 {
220 	struct fsl_easrc_ctx_priv *ctx_priv;
221 	int a, b;
222 
223 	if (!ctx)
224 		return;
225 
226 	ctx_priv = ctx->private;
227 
228 	a = ctx_priv->in_params.sample_rate;
229 	b = ctx_priv->out_params.sample_rate;
230 
231 	a = gcd(a, b);
232 
233 	/* Divide by gcd to normalize the rate */
234 	ctx_priv->in_params.norm_rate = ctx_priv->in_params.sample_rate / a;
235 	ctx_priv->out_params.norm_rate = ctx_priv->out_params.sample_rate / a;
236 }
237 
238 /* Resets the pointer of the coeff memory pointers */
239 static int fsl_easrc_coeff_mem_ptr_reset(struct fsl_asrc *easrc,
240 					 unsigned int ctx_id, int mem_type)
241 {
242 	struct device *dev;
243 	u32 reg, mask, val;
244 
245 	if (!easrc)
246 		return -ENODEV;
247 
248 	dev = &easrc->pdev->dev;
249 
250 	switch (mem_type) {
251 	case EASRC_PF_COEFF_MEM:
252 		/* This resets the prefilter memory pointer addr */
253 		if (ctx_id >= EASRC_CTX_MAX_NUM) {
254 			dev_err(dev, "Invalid context id[%d]\n", ctx_id);
255 			return -EINVAL;
256 		}
257 
258 		reg = REG_EASRC_CCE1(ctx_id);
259 		mask = EASRC_CCE1_COEF_MEM_RST_MASK;
260 		val = EASRC_CCE1_COEF_MEM_RST;
261 		break;
262 	case EASRC_RS_COEFF_MEM:
263 		/* This resets the resampling memory pointer addr */
264 		reg = REG_EASRC_CRCC;
265 		mask = EASRC_CRCC_RS_CPR_MASK;
266 		val = EASRC_CRCC_RS_CPR;
267 		break;
268 	default:
269 		dev_err(dev, "Unknown memory type\n");
270 		return -EINVAL;
271 	}
272 
273 	/*
274 	 * To reset the write pointer back to zero, the register field
275 	 * ASRC_CTX_CTRL_EXT1x[PF_COEFF_MEM_RST] can be toggled from
276 	 * 0x0 to 0x1 to 0x0.
277 	 */
278 	regmap_update_bits(easrc->regmap, reg, mask, 0);
279 	regmap_update_bits(easrc->regmap, reg, mask, val);
280 	regmap_update_bits(easrc->regmap, reg, mask, 0);
281 
282 	return 0;
283 }
284 
285 static inline uint32_t bits_taps_to_val(unsigned int t)
286 {
287 	switch (t) {
288 	case EASRC_RS_32_TAPS:
289 		return 32;
290 	case EASRC_RS_64_TAPS:
291 		return 64;
292 	case EASRC_RS_128_TAPS:
293 		return 128;
294 	}
295 
296 	return 0;
297 }
298 
299 static int fsl_easrc_resampler_config(struct fsl_asrc *easrc)
300 {
301 	struct device *dev = &easrc->pdev->dev;
302 	struct fsl_easrc_priv *easrc_priv = easrc->private;
303 	struct asrc_firmware_hdr *hdr =  easrc_priv->firmware_hdr;
304 	struct interp_params *interp = easrc_priv->interp;
305 	struct interp_params *selected_interp = NULL;
306 	unsigned int num_coeff;
307 	unsigned int i;
308 	u64 *coef;
309 	u32 *r;
310 	int ret;
311 
312 	if (!hdr) {
313 		dev_err(dev, "firmware not loaded!\n");
314 		return -ENODEV;
315 	}
316 
317 	for (i = 0; i < hdr->interp_scen; i++) {
318 		if ((interp[i].num_taps - 1) !=
319 		    bits_taps_to_val(easrc_priv->rs_num_taps))
320 			continue;
321 
322 		coef = interp[i].coeff;
323 		selected_interp = &interp[i];
324 		dev_dbg(dev, "Selected interp_filter: %u taps - %u phases\n",
325 			selected_interp->num_taps,
326 			selected_interp->num_phases);
327 		break;
328 	}
329 
330 	if (!selected_interp) {
331 		dev_err(dev, "failed to get interpreter configuration\n");
332 		return -EINVAL;
333 	}
334 
335 	/*
336 	 * RS_LOW - first half of center tap of the sinc function
337 	 * RS_HIGH - second half of center tap of the sinc function
338 	 * This is due to the fact the resampling function must be
339 	 * symetrical - i.e. odd number of taps
340 	 */
341 	r = (uint32_t *)&selected_interp->center_tap;
342 	regmap_write(easrc->regmap, REG_EASRC_RCTCL, EASRC_RCTCL_RS_CL(r[0]));
343 	regmap_write(easrc->regmap, REG_EASRC_RCTCH, EASRC_RCTCH_RS_CH(r[1]));
344 
345 	/*
346 	 * Write Number of Resampling Coefficient Taps
347 	 * 00b - 32-Tap Resampling Filter
348 	 * 01b - 64-Tap Resampling Filter
349 	 * 10b - 128-Tap Resampling Filter
350 	 * 11b - N/A
351 	 */
352 	regmap_update_bits(easrc->regmap, REG_EASRC_CRCC,
353 			   EASRC_CRCC_RS_TAPS_MASK,
354 			   EASRC_CRCC_RS_TAPS(easrc_priv->rs_num_taps));
355 
356 	/* Reset prefilter coefficient pointer back to 0 */
357 	ret = fsl_easrc_coeff_mem_ptr_reset(easrc, 0, EASRC_RS_COEFF_MEM);
358 	if (ret)
359 		return ret;
360 
361 	/*
362 	 * When the filter is programmed to run in:
363 	 * 32-tap mode, 16-taps, 128-phases 4-coefficients per phase
364 	 * 64-tap mode, 32-taps, 64-phases 4-coefficients per phase
365 	 * 128-tap mode, 64-taps, 32-phases 4-coefficients per phase
366 	 * This means the number of writes is constant no matter
367 	 * the mode we are using
368 	 */
369 	num_coeff = 16 * 128 * 4;
370 
371 	for (i = 0; i < num_coeff; i++) {
372 		r = (uint32_t *)&coef[i];
373 		regmap_write(easrc->regmap, REG_EASRC_CRCM,
374 			     EASRC_CRCM_RS_CWD(r[0]));
375 		regmap_write(easrc->regmap, REG_EASRC_CRCM,
376 			     EASRC_CRCM_RS_CWD(r[1]));
377 	}
378 
379 	return 0;
380 }
381 
382 /**
383  *  fsl_easrc_normalize_filter - Scale filter coefficients (64 bits float)
384  *  For input float32 normalized range (1.0,-1.0) -> output int[16,24,32]:
385  *      scale it by multiplying filter coefficients by 2^31
386  *  For input int[16, 24, 32] -> output float32
387  *      scale it by multiplying filter coefficients by 2^-15, 2^-23, 2^-31
388  *  input:
389  *      @easrc:  Structure pointer of fsl_asrc
390  *      @infilter : Pointer to non-scaled input filter
391  *      @shift:  The multiply factor
392  *  output:
393  *      @outfilter: scaled filter
394  */
395 static int fsl_easrc_normalize_filter(struct fsl_asrc *easrc,
396 				      u64 *infilter,
397 				      u64 *outfilter,
398 				      int shift)
399 {
400 	struct device *dev = &easrc->pdev->dev;
401 	u64 coef = *infilter;
402 	s64 exp  = (coef & 0x7ff0000000000000ll) >> 52;
403 	u64 outcoef;
404 
405 	/*
406 	 * If exponent is zero (value == 0), or 7ff (value == NaNs)
407 	 * dont touch the content
408 	 */
409 	if (exp == 0 || exp == 0x7ff) {
410 		*outfilter = coef;
411 		return 0;
412 	}
413 
414 	/* coef * 2^shift ==> exp + shift */
415 	exp += shift;
416 
417 	if ((shift > 0 && exp >= 0x7ff) || (shift < 0 && exp <= 0)) {
418 		dev_err(dev, "coef out of range\n");
419 		return -EINVAL;
420 	}
421 
422 	outcoef = (u64)(coef & 0x800FFFFFFFFFFFFFll) + ((u64)exp << 52);
423 	*outfilter = outcoef;
424 
425 	return 0;
426 }
427 
428 static int fsl_easrc_write_pf_coeff_mem(struct fsl_asrc *easrc, int ctx_id,
429 					u64 *coef, int n_taps, int shift)
430 {
431 	struct device *dev = &easrc->pdev->dev;
432 	int ret = 0;
433 	int i;
434 	u32 *r;
435 	u64 tmp;
436 
437 	/* If STx_NUM_TAPS is set to 0x0 then return */
438 	if (!n_taps)
439 		return 0;
440 
441 	if (!coef) {
442 		dev_err(dev, "coef table is NULL\n");
443 		return -EINVAL;
444 	}
445 
446 	/*
447 	 * When switching between stages, the address pointer
448 	 * should be reset back to 0x0 before performing a write
449 	 */
450 	ret = fsl_easrc_coeff_mem_ptr_reset(easrc, ctx_id, EASRC_PF_COEFF_MEM);
451 	if (ret)
452 		return ret;
453 
454 	for (i = 0; i < (n_taps + 1) / 2; i++) {
455 		ret = fsl_easrc_normalize_filter(easrc, &coef[i], &tmp, shift);
456 		if (ret)
457 			return ret;
458 
459 		r = (uint32_t *)&tmp;
460 		regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
461 			     EASRC_PCF_CD(r[0]));
462 		regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
463 			     EASRC_PCF_CD(r[1]));
464 	}
465 
466 	return 0;
467 }
468 
469 static int fsl_easrc_prefilter_config(struct fsl_asrc *easrc,
470 				      unsigned int ctx_id)
471 {
472 	struct prefil_params *prefil, *selected_prefil = NULL;
473 	struct fsl_easrc_ctx_priv *ctx_priv;
474 	struct fsl_easrc_priv *easrc_priv;
475 	struct asrc_firmware_hdr *hdr;
476 	struct fsl_asrc_pair *ctx;
477 	struct device *dev;
478 	u32 inrate, outrate, offset = 0;
479 	u32 in_s_rate, out_s_rate, in_s_fmt, out_s_fmt;
480 	int ret, i;
481 
482 	if (!easrc)
483 		return -ENODEV;
484 
485 	dev = &easrc->pdev->dev;
486 
487 	if (ctx_id >= EASRC_CTX_MAX_NUM) {
488 		dev_err(dev, "Invalid context id[%d]\n", ctx_id);
489 		return -EINVAL;
490 	}
491 
492 	easrc_priv = easrc->private;
493 
494 	ctx = easrc->pair[ctx_id];
495 	ctx_priv = ctx->private;
496 
497 	in_s_rate = ctx_priv->in_params.sample_rate;
498 	out_s_rate = ctx_priv->out_params.sample_rate;
499 	in_s_fmt = ctx_priv->in_params.sample_format;
500 	out_s_fmt = ctx_priv->out_params.sample_format;
501 
502 	ctx_priv->in_filled_sample = bits_taps_to_val(easrc_priv->rs_num_taps) / 2;
503 	ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate;
504 
505 	ctx_priv->st1_num_taps = 0;
506 	ctx_priv->st2_num_taps = 0;
507 
508 	regmap_write(easrc->regmap, REG_EASRC_CCE1(ctx_id), 0);
509 	regmap_write(easrc->regmap, REG_EASRC_CCE2(ctx_id), 0);
510 
511 	/*
512 	 * The audio float point data range is (-1, 1), the asrc would output
513 	 * all zero for float point input and integer output case, that is to
514 	 * drop the fractional part of the data directly.
515 	 *
516 	 * In order to support float to int conversion or int to float
517 	 * conversion we need to do special operation on the coefficient to
518 	 * enlarge/reduce the data to the expected range.
519 	 *
520 	 * For float to int case:
521 	 * Up sampling:
522 	 * 1. Create a 1 tap filter with center tap (only tap) of 2^31
523 	 *    in 64 bits floating point.
524 	 *    double value = (double)(((uint64_t)1) << 31)
525 	 * 2. Program 1 tap prefilter with center tap above.
526 	 *
527 	 * Down sampling,
528 	 * 1. If the filter is single stage filter, add "shift" to the exponent
529 	 *    of stage 1 coefficients.
530 	 * 2. If the filter is two stage filter , add "shift" to the exponent
531 	 *    of stage 2 coefficients.
532 	 *
533 	 * The "shift" is 31, same for int16, int24, int32 case.
534 	 *
535 	 * For int to float case:
536 	 * Up sampling:
537 	 * 1. Create a 1 tap filter with center tap (only tap) of 2^-31
538 	 *    in 64 bits floating point.
539 	 * 2. Program 1 tap prefilter with center tap above.
540 	 *
541 	 * Down sampling,
542 	 * 1. If the filter is single stage filter, subtract "shift" to the
543 	 *    exponent of stage 1 coefficients.
544 	 * 2. If the filter is two stage filter , subtract "shift" to the
545 	 *    exponent of stage 2 coefficients.
546 	 *
547 	 * The "shift" is 15,23,31, different for int16, int24, int32 case.
548 	 *
549 	 */
550 	if (out_s_rate >= in_s_rate) {
551 		if (out_s_rate == in_s_rate)
552 			regmap_update_bits(easrc->regmap,
553 					   REG_EASRC_CCE1(ctx_id),
554 					   EASRC_CCE1_RS_BYPASS_MASK,
555 					   EASRC_CCE1_RS_BYPASS);
556 
557 		ctx_priv->st1_num_taps = 1;
558 		ctx_priv->st1_coeff    = &easrc_priv->const_coeff;
559 		ctx_priv->st1_num_exp  = 1;
560 		ctx_priv->st2_num_taps = 0;
561 
562 		if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE &&
563 		    out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE)
564 			ctx_priv->st1_addexp = 31;
565 		else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE &&
566 			 out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE)
567 			ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
568 	} else {
569 		inrate = ctx_priv->in_params.norm_rate;
570 		outrate = ctx_priv->out_params.norm_rate;
571 
572 		hdr = easrc_priv->firmware_hdr;
573 		prefil = easrc_priv->prefil;
574 
575 		for (i = 0; i < hdr->prefil_scen; i++) {
576 			if (inrate == prefil[i].insr &&
577 			    outrate == prefil[i].outsr) {
578 				selected_prefil = &prefil[i];
579 				dev_dbg(dev, "Selected prefilter: %u insr, %u outsr, %u st1_taps, %u st2_taps\n",
580 					selected_prefil->insr,
581 					selected_prefil->outsr,
582 					selected_prefil->st1_taps,
583 					selected_prefil->st2_taps);
584 				break;
585 			}
586 		}
587 
588 		if (!selected_prefil) {
589 			dev_err(dev, "Conversion from in ratio %u(%u) to out ratio %u(%u) is not supported\n",
590 				in_s_rate, inrate,
591 				out_s_rate, outrate);
592 			return -EINVAL;
593 		}
594 
595 		/*
596 		 * In prefilter coeff array, first st1_num_taps represent the
597 		 * stage1 prefilter coefficients followed by next st2_num_taps
598 		 * representing stage 2 coefficients
599 		 */
600 		ctx_priv->st1_num_taps = selected_prefil->st1_taps;
601 		ctx_priv->st1_coeff    = selected_prefil->coeff;
602 		ctx_priv->st1_num_exp  = selected_prefil->st1_exp;
603 
604 		offset = ((selected_prefil->st1_taps + 1) / 2);
605 		ctx_priv->st2_num_taps = selected_prefil->st2_taps;
606 		ctx_priv->st2_coeff    = selected_prefil->coeff + offset;
607 
608 		if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE &&
609 		    out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE) {
610 			/* only change stage2 coefficient for 2 stage case */
611 			if (ctx_priv->st2_num_taps > 0)
612 				ctx_priv->st2_addexp = 31;
613 			else
614 				ctx_priv->st1_addexp = 31;
615 		} else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE &&
616 			   out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE) {
617 			if (ctx_priv->st2_num_taps > 0)
618 				ctx_priv->st2_addexp -= ctx_priv->in_params.fmt.addexp;
619 			else
620 				ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
621 		}
622 	}
623 
624 	ctx_priv->in_filled_sample += (ctx_priv->st1_num_taps / 2) * ctx_priv->st1_num_exp +
625 				  ctx_priv->st2_num_taps / 2;
626 	ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate;
627 
628 	if (ctx_priv->in_filled_sample * out_s_rate % in_s_rate != 0)
629 		ctx_priv->out_missed_sample += 1;
630 	/*
631 	 * To modify the value of a prefilter coefficient, the user must
632 	 * perform a write to the register ASRC_PRE_COEFF_FIFOn[COEFF_DATA]
633 	 * while the respective context RUN_EN bit is set to 0b0
634 	 */
635 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
636 			   EASRC_CC_EN_MASK, 0);
637 
638 	if (ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
639 		dev_err(dev, "ST1 taps [%d] mus be lower than %d\n",
640 			ctx_priv->st1_num_taps, EASRC_MAX_PF_TAPS);
641 		ret = -EINVAL;
642 		goto ctx_error;
643 	}
644 
645 	/* Update ctx ST1_NUM_TAPS in Context Control Extended 2 register */
646 	regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
647 			   EASRC_CCE2_ST1_TAPS_MASK,
648 			   EASRC_CCE2_ST1_TAPS(ctx_priv->st1_num_taps - 1));
649 
650 	/* Prefilter Coefficient Write Select to write in ST1 coeff */
651 	regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
652 			   EASRC_CCE1_COEF_WS_MASK,
653 			   EASRC_PF_ST1_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
654 
655 	ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
656 					   ctx_priv->st1_coeff,
657 					   ctx_priv->st1_num_taps,
658 					   ctx_priv->st1_addexp);
659 	if (ret)
660 		goto ctx_error;
661 
662 	if (ctx_priv->st2_num_taps > 0) {
663 		if (ctx_priv->st2_num_taps + ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
664 			dev_err(dev, "ST2 taps [%d] mus be lower than %d\n",
665 				ctx_priv->st2_num_taps, EASRC_MAX_PF_TAPS);
666 			ret = -EINVAL;
667 			goto ctx_error;
668 		}
669 
670 		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
671 				   EASRC_CCE1_PF_TSEN_MASK,
672 				   EASRC_CCE1_PF_TSEN);
673 		/*
674 		 * Enable prefilter stage1 writeback floating point
675 		 * which is used for FLOAT_LE case
676 		 */
677 		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
678 				   EASRC_CCE1_PF_ST1_WBFP_MASK,
679 				   EASRC_CCE1_PF_ST1_WBFP);
680 
681 		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
682 				   EASRC_CCE1_PF_EXP_MASK,
683 				   EASRC_CCE1_PF_EXP(ctx_priv->st1_num_exp - 1));
684 
685 		/* Update ctx ST2_NUM_TAPS in Context Control Extended 2 reg */
686 		regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
687 				   EASRC_CCE2_ST2_TAPS_MASK,
688 				   EASRC_CCE2_ST2_TAPS(ctx_priv->st2_num_taps - 1));
689 
690 		/* Prefilter Coefficient Write Select to write in ST2 coeff */
691 		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
692 				   EASRC_CCE1_COEF_WS_MASK,
693 				   EASRC_PF_ST2_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
694 
695 		ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
696 						   ctx_priv->st2_coeff,
697 						   ctx_priv->st2_num_taps,
698 						   ctx_priv->st2_addexp);
699 		if (ret)
700 			goto ctx_error;
701 	}
702 
703 	return 0;
704 
705 ctx_error:
706 	return ret;
707 }
708 
709 static int fsl_easrc_max_ch_for_slot(struct fsl_asrc_pair *ctx,
710 				     struct fsl_easrc_slot *slot)
711 {
712 	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
713 	int st1_mem_alloc = 0, st2_mem_alloc = 0;
714 	int pf_mem_alloc = 0;
715 	int max_channels = 8 - slot->num_channel;
716 	int channels = 0;
717 
718 	if (ctx_priv->st1_num_taps > 0) {
719 		if (ctx_priv->st2_num_taps > 0)
720 			st1_mem_alloc =
721 				(ctx_priv->st1_num_taps - 1) * ctx_priv->st1_num_exp + 1;
722 		else
723 			st1_mem_alloc = ctx_priv->st1_num_taps;
724 	}
725 
726 	if (ctx_priv->st2_num_taps > 0)
727 		st2_mem_alloc = ctx_priv->st2_num_taps;
728 
729 	pf_mem_alloc = st1_mem_alloc + st2_mem_alloc;
730 
731 	if (pf_mem_alloc != 0)
732 		channels = (6144 - slot->pf_mem_used) / pf_mem_alloc;
733 	else
734 		channels = 8;
735 
736 	if (channels < max_channels)
737 		max_channels = channels;
738 
739 	return max_channels;
740 }
741 
742 static int fsl_easrc_config_one_slot(struct fsl_asrc_pair *ctx,
743 				     struct fsl_easrc_slot *slot,
744 				     unsigned int slot_ctx_idx,
745 				     unsigned int *req_channels,
746 				     unsigned int *start_channel,
747 				     unsigned int *avail_channel)
748 {
749 	struct fsl_asrc *easrc = ctx->asrc;
750 	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
751 	int st1_chanxexp, st1_mem_alloc = 0, st2_mem_alloc;
752 	unsigned int reg0, reg1, reg2, reg3;
753 	unsigned int addr;
754 
755 	if (slot->slot_index == 0) {
756 		reg0 = REG_EASRC_DPCS0R0(slot_ctx_idx);
757 		reg1 = REG_EASRC_DPCS0R1(slot_ctx_idx);
758 		reg2 = REG_EASRC_DPCS0R2(slot_ctx_idx);
759 		reg3 = REG_EASRC_DPCS0R3(slot_ctx_idx);
760 	} else {
761 		reg0 = REG_EASRC_DPCS1R0(slot_ctx_idx);
762 		reg1 = REG_EASRC_DPCS1R1(slot_ctx_idx);
763 		reg2 = REG_EASRC_DPCS1R2(slot_ctx_idx);
764 		reg3 = REG_EASRC_DPCS1R3(slot_ctx_idx);
765 	}
766 
767 	if (*req_channels <= *avail_channel) {
768 		slot->num_channel = *req_channels;
769 		*req_channels = 0;
770 	} else {
771 		slot->num_channel = *avail_channel;
772 		*req_channels -= *avail_channel;
773 	}
774 
775 	slot->min_channel = *start_channel;
776 	slot->max_channel = *start_channel + slot->num_channel - 1;
777 	slot->ctx_index = ctx->index;
778 	slot->busy = true;
779 	*start_channel += slot->num_channel;
780 
781 	regmap_update_bits(easrc->regmap, reg0,
782 			   EASRC_DPCS0R0_MAXCH_MASK,
783 			   EASRC_DPCS0R0_MAXCH(slot->max_channel));
784 
785 	regmap_update_bits(easrc->regmap, reg0,
786 			   EASRC_DPCS0R0_MINCH_MASK,
787 			   EASRC_DPCS0R0_MINCH(slot->min_channel));
788 
789 	regmap_update_bits(easrc->regmap, reg0,
790 			   EASRC_DPCS0R0_NUMCH_MASK,
791 			   EASRC_DPCS0R0_NUMCH(slot->num_channel - 1));
792 
793 	regmap_update_bits(easrc->regmap, reg0,
794 			   EASRC_DPCS0R0_CTXNUM_MASK,
795 			   EASRC_DPCS0R0_CTXNUM(slot->ctx_index));
796 
797 	if (ctx_priv->st1_num_taps > 0) {
798 		if (ctx_priv->st2_num_taps > 0)
799 			st1_mem_alloc =
800 				(ctx_priv->st1_num_taps - 1) * slot->num_channel *
801 				ctx_priv->st1_num_exp + slot->num_channel;
802 		else
803 			st1_mem_alloc = ctx_priv->st1_num_taps * slot->num_channel;
804 
805 		slot->pf_mem_used = st1_mem_alloc;
806 		regmap_update_bits(easrc->regmap, reg2,
807 				   EASRC_DPCS0R2_ST1_MA_MASK,
808 				   EASRC_DPCS0R2_ST1_MA(st1_mem_alloc));
809 
810 		if (slot->slot_index == 1)
811 			addr = PREFILTER_MEM_LEN - st1_mem_alloc;
812 		else
813 			addr = 0;
814 
815 		regmap_update_bits(easrc->regmap, reg2,
816 				   EASRC_DPCS0R2_ST1_SA_MASK,
817 				   EASRC_DPCS0R2_ST1_SA(addr));
818 	}
819 
820 	if (ctx_priv->st2_num_taps > 0) {
821 		st1_chanxexp = slot->num_channel * (ctx_priv->st1_num_exp - 1);
822 
823 		regmap_update_bits(easrc->regmap, reg1,
824 				   EASRC_DPCS0R1_ST1_EXP_MASK,
825 				   EASRC_DPCS0R1_ST1_EXP(st1_chanxexp));
826 
827 		st2_mem_alloc = slot->num_channel * ctx_priv->st2_num_taps;
828 		slot->pf_mem_used += st2_mem_alloc;
829 		regmap_update_bits(easrc->regmap, reg3,
830 				   EASRC_DPCS0R3_ST2_MA_MASK,
831 				   EASRC_DPCS0R3_ST2_MA(st2_mem_alloc));
832 
833 		if (slot->slot_index == 1)
834 			addr = PREFILTER_MEM_LEN - st1_mem_alloc - st2_mem_alloc;
835 		else
836 			addr = st1_mem_alloc;
837 
838 		regmap_update_bits(easrc->regmap, reg3,
839 				   EASRC_DPCS0R3_ST2_SA_MASK,
840 				   EASRC_DPCS0R3_ST2_SA(addr));
841 	}
842 
843 	regmap_update_bits(easrc->regmap, reg0,
844 			   EASRC_DPCS0R0_EN_MASK, EASRC_DPCS0R0_EN);
845 
846 	return 0;
847 }
848 
849 /*
850  * fsl_easrc_config_slot
851  *
852  * A single context can be split amongst any of the 4 context processing pipes
853  * in the design.
854  * The total number of channels consumed within the context processor must be
855  * less than or equal to 8. if a single context is configured to contain more
856  * than 8 channels then it must be distributed across multiple context
857  * processing pipe slots.
858  *
859  */
860 static int fsl_easrc_config_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
861 {
862 	struct fsl_easrc_priv *easrc_priv = easrc->private;
863 	struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
864 	int req_channels = ctx->channels;
865 	int start_channel = 0, avail_channel;
866 	struct fsl_easrc_slot *slot0, *slot1;
867 	struct fsl_easrc_slot *slota, *slotb;
868 	int i, ret;
869 
870 	if (req_channels <= 0)
871 		return -EINVAL;
872 
873 	for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
874 		slot0 = &easrc_priv->slot[i][0];
875 		slot1 = &easrc_priv->slot[i][1];
876 
877 		if (slot0->busy && slot1->busy) {
878 			continue;
879 		} else if ((slot0->busy && slot0->ctx_index == ctx->index) ||
880 			 (slot1->busy && slot1->ctx_index == ctx->index)) {
881 			continue;
882 		} else if (!slot0->busy) {
883 			slota = slot0;
884 			slotb = slot1;
885 			slota->slot_index = 0;
886 		} else if (!slot1->busy) {
887 			slota = slot1;
888 			slotb = slot0;
889 			slota->slot_index = 1;
890 		}
891 
892 		if (!slota || !slotb)
893 			continue;
894 
895 		avail_channel = fsl_easrc_max_ch_for_slot(ctx, slotb);
896 		if (avail_channel <= 0)
897 			continue;
898 
899 		ret = fsl_easrc_config_one_slot(ctx, slota, i, &req_channels,
900 						&start_channel, &avail_channel);
901 		if (ret)
902 			return ret;
903 
904 		if (req_channels > 0)
905 			continue;
906 		else
907 			break;
908 	}
909 
910 	if (req_channels > 0) {
911 		dev_err(&easrc->pdev->dev, "no avail slot.\n");
912 		return -EINVAL;
913 	}
914 
915 	return 0;
916 }
917 
918 /*
919  * fsl_easrc_release_slot
920  *
921  * Clear the slot configuration
922  */
923 static int fsl_easrc_release_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
924 {
925 	struct fsl_easrc_priv *easrc_priv = easrc->private;
926 	struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
927 	int i;
928 
929 	for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
930 		if (easrc_priv->slot[i][0].busy &&
931 		    easrc_priv->slot[i][0].ctx_index == ctx->index) {
932 			easrc_priv->slot[i][0].busy = false;
933 			easrc_priv->slot[i][0].num_channel = 0;
934 			easrc_priv->slot[i][0].pf_mem_used = 0;
935 			/* set registers */
936 			regmap_write(easrc->regmap, REG_EASRC_DPCS0R0(i), 0);
937 			regmap_write(easrc->regmap, REG_EASRC_DPCS0R1(i), 0);
938 			regmap_write(easrc->regmap, REG_EASRC_DPCS0R2(i), 0);
939 			regmap_write(easrc->regmap, REG_EASRC_DPCS0R3(i), 0);
940 		}
941 
942 		if (easrc_priv->slot[i][1].busy &&
943 		    easrc_priv->slot[i][1].ctx_index == ctx->index) {
944 			easrc_priv->slot[i][1].busy = false;
945 			easrc_priv->slot[i][1].num_channel = 0;
946 			easrc_priv->slot[i][1].pf_mem_used = 0;
947 			/* set registers */
948 			regmap_write(easrc->regmap, REG_EASRC_DPCS1R0(i), 0);
949 			regmap_write(easrc->regmap, REG_EASRC_DPCS1R1(i), 0);
950 			regmap_write(easrc->regmap, REG_EASRC_DPCS1R2(i), 0);
951 			regmap_write(easrc->regmap, REG_EASRC_DPCS1R3(i), 0);
952 		}
953 	}
954 
955 	return 0;
956 }
957 
958 /*
959  * fsl_easrc_config_context
960  *
961  * Configure the register relate with context.
962  */
963 static int fsl_easrc_config_context(struct fsl_asrc *easrc, unsigned int ctx_id)
964 {
965 	struct fsl_easrc_ctx_priv *ctx_priv;
966 	struct fsl_asrc_pair *ctx;
967 	struct device *dev;
968 	unsigned long lock_flags;
969 	int ret;
970 
971 	if (!easrc)
972 		return -ENODEV;
973 
974 	dev = &easrc->pdev->dev;
975 
976 	if (ctx_id >= EASRC_CTX_MAX_NUM) {
977 		dev_err(dev, "Invalid context id[%d]\n", ctx_id);
978 		return -EINVAL;
979 	}
980 
981 	ctx = easrc->pair[ctx_id];
982 
983 	ctx_priv = ctx->private;
984 
985 	fsl_easrc_normalize_rates(ctx);
986 
987 	ret = fsl_easrc_set_rs_ratio(ctx);
988 	if (ret)
989 		return ret;
990 
991 	/* Initialize the context coeficients */
992 	ret = fsl_easrc_prefilter_config(easrc, ctx->index);
993 	if (ret)
994 		return ret;
995 
996 	spin_lock_irqsave(&easrc->lock, lock_flags);
997 	ret = fsl_easrc_config_slot(easrc, ctx->index);
998 	spin_unlock_irqrestore(&easrc->lock, lock_flags);
999 	if (ret)
1000 		return ret;
1001 
1002 	/*
1003 	 * Both prefilter and resampling filters can use following
1004 	 * initialization modes:
1005 	 * 2 - zero-fil mode
1006 	 * 1 - replication mode
1007 	 * 0 - software control
1008 	 */
1009 	regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
1010 			   EASRC_CCE1_RS_INIT_MASK,
1011 			   EASRC_CCE1_RS_INIT(ctx_priv->rs_init_mode));
1012 
1013 	regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
1014 			   EASRC_CCE1_PF_INIT_MASK,
1015 			   EASRC_CCE1_PF_INIT(ctx_priv->pf_init_mode));
1016 
1017 	/*
1018 	 * Context Input FIFO Watermark
1019 	 * DMA request is generated when input FIFO < FIFO_WTMK
1020 	 */
1021 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
1022 			   EASRC_CC_FIFO_WTMK_MASK,
1023 			   EASRC_CC_FIFO_WTMK(ctx_priv->in_params.fifo_wtmk));
1024 
1025 	/*
1026 	 * Context Output FIFO Watermark
1027 	 * DMA request is generated when output FIFO > FIFO_WTMK
1028 	 * So we set fifo_wtmk -1 to register.
1029 	 */
1030 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx_id),
1031 			   EASRC_COC_FIFO_WTMK_MASK,
1032 			   EASRC_COC_FIFO_WTMK(ctx_priv->out_params.fifo_wtmk - 1));
1033 
1034 	/* Number of channels */
1035 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
1036 			   EASRC_CC_CHEN_MASK,
1037 			   EASRC_CC_CHEN(ctx->channels - 1));
1038 	return 0;
1039 }
1040 
1041 static int fsl_easrc_process_format(struct fsl_asrc_pair *ctx,
1042 				    struct fsl_easrc_data_fmt *fmt,
1043 				    snd_pcm_format_t raw_fmt)
1044 {
1045 	struct fsl_asrc *easrc = ctx->asrc;
1046 	struct fsl_easrc_priv *easrc_priv = easrc->private;
1047 	int ret;
1048 
1049 	if (!fmt)
1050 		return -EINVAL;
1051 
1052 	/*
1053 	 * Context Input Floating Point Format
1054 	 * 0 - Integer Format
1055 	 * 1 - Single Precision FP Format
1056 	 */
1057 	fmt->floating_point = !snd_pcm_format_linear(raw_fmt);
1058 	fmt->sample_pos = 0;
1059 	fmt->iec958 = 0;
1060 
1061 	/* Get the data width */
1062 	switch (snd_pcm_format_width(raw_fmt)) {
1063 	case 16:
1064 		fmt->width = EASRC_WIDTH_16_BIT;
1065 		fmt->addexp = 15;
1066 		break;
1067 	case 20:
1068 		fmt->width = EASRC_WIDTH_20_BIT;
1069 		fmt->addexp = 19;
1070 		break;
1071 	case 24:
1072 		fmt->width = EASRC_WIDTH_24_BIT;
1073 		fmt->addexp = 23;
1074 		break;
1075 	case 32:
1076 		fmt->width = EASRC_WIDTH_32_BIT;
1077 		fmt->addexp = 31;
1078 		break;
1079 	default:
1080 		return -EINVAL;
1081 	}
1082 
1083 	switch (raw_fmt) {
1084 	case SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE:
1085 		fmt->width = easrc_priv->bps_iec958[ctx->index];
1086 		fmt->iec958 = 1;
1087 		fmt->floating_point = 0;
1088 		if (fmt->width == EASRC_WIDTH_16_BIT) {
1089 			fmt->sample_pos = 12;
1090 			fmt->addexp = 15;
1091 		} else if (fmt->width == EASRC_WIDTH_20_BIT) {
1092 			fmt->sample_pos = 8;
1093 			fmt->addexp = 19;
1094 		} else if (fmt->width == EASRC_WIDTH_24_BIT) {
1095 			fmt->sample_pos = 4;
1096 			fmt->addexp = 23;
1097 		}
1098 		break;
1099 	default:
1100 		break;
1101 	}
1102 
1103 	/*
1104 	 * Data Endianness
1105 	 * 0 - Little-Endian
1106 	 * 1 - Big-Endian
1107 	 */
1108 	ret = snd_pcm_format_big_endian(raw_fmt);
1109 	if (ret < 0)
1110 		return ret;
1111 
1112 	fmt->endianness = ret;
1113 
1114 	/*
1115 	 * Input Data sign
1116 	 * 0b - Signed Format
1117 	 * 1b - Unsigned Format
1118 	 */
1119 	fmt->unsign = snd_pcm_format_unsigned(raw_fmt) > 0 ? 1 : 0;
1120 
1121 	return 0;
1122 }
1123 
1124 static int fsl_easrc_set_ctx_format(struct fsl_asrc_pair *ctx,
1125 				    snd_pcm_format_t *in_raw_format,
1126 				    snd_pcm_format_t *out_raw_format)
1127 {
1128 	struct fsl_asrc *easrc = ctx->asrc;
1129 	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
1130 	struct fsl_easrc_data_fmt *in_fmt = &ctx_priv->in_params.fmt;
1131 	struct fsl_easrc_data_fmt *out_fmt = &ctx_priv->out_params.fmt;
1132 	int ret = 0;
1133 
1134 	/* Get the bitfield values for input data format */
1135 	if (in_raw_format && out_raw_format) {
1136 		ret = fsl_easrc_process_format(ctx, in_fmt, *in_raw_format);
1137 		if (ret)
1138 			return ret;
1139 	}
1140 
1141 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1142 			   EASRC_CC_BPS_MASK,
1143 			   EASRC_CC_BPS(in_fmt->width));
1144 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1145 			   EASRC_CC_ENDIANNESS_MASK,
1146 			   in_fmt->endianness << EASRC_CC_ENDIANNESS_SHIFT);
1147 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1148 			   EASRC_CC_FMT_MASK,
1149 			   in_fmt->floating_point << EASRC_CC_FMT_SHIFT);
1150 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1151 			   EASRC_CC_INSIGN_MASK,
1152 			   in_fmt->unsign << EASRC_CC_INSIGN_SHIFT);
1153 
1154 	/* In Sample Position */
1155 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1156 			   EASRC_CC_SAMPLE_POS_MASK,
1157 			   EASRC_CC_SAMPLE_POS(in_fmt->sample_pos));
1158 
1159 	/* Get the bitfield values for input data format */
1160 	if (in_raw_format && out_raw_format) {
1161 		ret = fsl_easrc_process_format(ctx, out_fmt, *out_raw_format);
1162 		if (ret)
1163 			return ret;
1164 	}
1165 
1166 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1167 			   EASRC_COC_BPS_MASK,
1168 			   EASRC_COC_BPS(out_fmt->width));
1169 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1170 			   EASRC_COC_ENDIANNESS_MASK,
1171 			   out_fmt->endianness << EASRC_COC_ENDIANNESS_SHIFT);
1172 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1173 			   EASRC_COC_FMT_MASK,
1174 			   out_fmt->floating_point << EASRC_COC_FMT_SHIFT);
1175 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1176 			   EASRC_COC_OUTSIGN_MASK,
1177 			   out_fmt->unsign << EASRC_COC_OUTSIGN_SHIFT);
1178 
1179 	/* Out Sample Position */
1180 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1181 			   EASRC_COC_SAMPLE_POS_MASK,
1182 			   EASRC_COC_SAMPLE_POS(out_fmt->sample_pos));
1183 
1184 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1185 			   EASRC_COC_IEC_EN_MASK,
1186 			   out_fmt->iec958 << EASRC_COC_IEC_EN_SHIFT);
1187 
1188 	return ret;
1189 }
1190 
1191 /*
1192  * The ASRC provides interleaving support in hardware to ensure that a
1193  * variety of sample sources can be internally combined
1194  * to conform with this format. Interleaving parameters are accessed
1195  * through the ASRC_CTRL_IN_ACCESSa and ASRC_CTRL_OUT_ACCESSa registers
1196  */
1197 static int fsl_easrc_set_ctx_organziation(struct fsl_asrc_pair *ctx)
1198 {
1199 	struct fsl_easrc_ctx_priv *ctx_priv;
1200 	struct fsl_asrc *easrc;
1201 
1202 	if (!ctx)
1203 		return -ENODEV;
1204 
1205 	easrc = ctx->asrc;
1206 	ctx_priv = ctx->private;
1207 
1208 	/* input interleaving parameters */
1209 	regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1210 			   EASRC_CIA_ITER_MASK,
1211 			   EASRC_CIA_ITER(ctx_priv->in_params.iterations));
1212 	regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1213 			   EASRC_CIA_GRLEN_MASK,
1214 			   EASRC_CIA_GRLEN(ctx_priv->in_params.group_len));
1215 	regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1216 			   EASRC_CIA_ACCLEN_MASK,
1217 			   EASRC_CIA_ACCLEN(ctx_priv->in_params.access_len));
1218 
1219 	/* output interleaving parameters */
1220 	regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1221 			   EASRC_COA_ITER_MASK,
1222 			   EASRC_COA_ITER(ctx_priv->out_params.iterations));
1223 	regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1224 			   EASRC_COA_GRLEN_MASK,
1225 			   EASRC_COA_GRLEN(ctx_priv->out_params.group_len));
1226 	regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1227 			   EASRC_COA_ACCLEN_MASK,
1228 			   EASRC_COA_ACCLEN(ctx_priv->out_params.access_len));
1229 
1230 	return 0;
1231 }
1232 
1233 /*
1234  * Request one of the available contexts
1235  *
1236  * Returns a negative number on error and >=0 as context id
1237  * on success
1238  */
1239 static int fsl_easrc_request_context(int channels, struct fsl_asrc_pair *ctx)
1240 {
1241 	enum asrc_pair_index index = ASRC_INVALID_PAIR;
1242 	struct fsl_asrc *easrc = ctx->asrc;
1243 	struct device *dev;
1244 	unsigned long lock_flags;
1245 	int ret = 0;
1246 	int i;
1247 
1248 	dev = &easrc->pdev->dev;
1249 
1250 	spin_lock_irqsave(&easrc->lock, lock_flags);
1251 
1252 	for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
1253 		if (easrc->pair[i])
1254 			continue;
1255 
1256 		index = i;
1257 		break;
1258 	}
1259 
1260 	if (index == ASRC_INVALID_PAIR) {
1261 		dev_err(dev, "all contexts are busy\n");
1262 		ret = -EBUSY;
1263 	} else if (channels > easrc->channel_avail) {
1264 		dev_err(dev, "can't give the required channels: %d\n",
1265 			channels);
1266 		ret = -EINVAL;
1267 	} else {
1268 		ctx->index = index;
1269 		ctx->channels = channels;
1270 		easrc->pair[index] = ctx;
1271 		easrc->channel_avail -= channels;
1272 	}
1273 
1274 	spin_unlock_irqrestore(&easrc->lock, lock_flags);
1275 
1276 	return ret;
1277 }
1278 
1279 /*
1280  * Release the context
1281  *
1282  * This funciton is mainly doing the revert thing in request context
1283  */
1284 static void fsl_easrc_release_context(struct fsl_asrc_pair *ctx)
1285 {
1286 	unsigned long lock_flags;
1287 	struct fsl_asrc *easrc;
1288 
1289 	if (!ctx)
1290 		return;
1291 
1292 	easrc = ctx->asrc;
1293 
1294 	spin_lock_irqsave(&easrc->lock, lock_flags);
1295 
1296 	fsl_easrc_release_slot(easrc, ctx->index);
1297 
1298 	easrc->channel_avail += ctx->channels;
1299 	easrc->pair[ctx->index] = NULL;
1300 
1301 	spin_unlock_irqrestore(&easrc->lock, lock_flags);
1302 }
1303 
1304 /*
1305  * Start the context
1306  *
1307  * Enable the DMA request and context
1308  */
1309 static int fsl_easrc_start_context(struct fsl_asrc_pair *ctx)
1310 {
1311 	struct fsl_asrc *easrc = ctx->asrc;
1312 
1313 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1314 			   EASRC_CC_FWMDE_MASK, EASRC_CC_FWMDE);
1315 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1316 			   EASRC_COC_FWMDE_MASK, EASRC_COC_FWMDE);
1317 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1318 			   EASRC_CC_EN_MASK, EASRC_CC_EN);
1319 	return 0;
1320 }
1321 
1322 /*
1323  * Stop the context
1324  *
1325  * Disable the DMA request and context
1326  */
1327 static int fsl_easrc_stop_context(struct fsl_asrc_pair *ctx)
1328 {
1329 	struct fsl_asrc *easrc = ctx->asrc;
1330 	int val, i;
1331 	int size;
1332 	int retry = 200;
1333 
1334 	regmap_read(easrc->regmap, REG_EASRC_CC(ctx->index), &val);
1335 
1336 	if (val & EASRC_CC_EN_MASK) {
1337 		regmap_update_bits(easrc->regmap,
1338 				   REG_EASRC_CC(ctx->index),
1339 				   EASRC_CC_STOP_MASK, EASRC_CC_STOP);
1340 		do {
1341 			regmap_read(easrc->regmap, REG_EASRC_SFS(ctx->index), &val);
1342 			val &= EASRC_SFS_NSGO_MASK;
1343 			size = val >> EASRC_SFS_NSGO_SHIFT;
1344 
1345 			/* Read FIFO, drop the data */
1346 			for (i = 0; i < size * ctx->channels; i++)
1347 				regmap_read(easrc->regmap, REG_EASRC_RDFIFO(ctx->index), &val);
1348 			/* Check RUN_STOP_DONE */
1349 			regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
1350 			if (val & EASRC_IRQF_RSD(1 << ctx->index)) {
1351 				/*Clear RUN_STOP_DONE*/
1352 				regmap_write_bits(easrc->regmap,
1353 						  REG_EASRC_IRQF,
1354 						  EASRC_IRQF_RSD(1 << ctx->index),
1355 						  EASRC_IRQF_RSD(1 << ctx->index));
1356 				break;
1357 			}
1358 			udelay(100);
1359 		} while (--retry);
1360 
1361 		if (retry == 0)
1362 			dev_warn(&easrc->pdev->dev, "RUN STOP fail\n");
1363 	}
1364 
1365 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1366 			   EASRC_CC_EN_MASK | EASRC_CC_STOP_MASK, 0);
1367 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1368 			   EASRC_CC_FWMDE_MASK, 0);
1369 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1370 			   EASRC_COC_FWMDE_MASK, 0);
1371 	return 0;
1372 }
1373 
1374 static struct dma_chan *fsl_easrc_get_dma_channel(struct fsl_asrc_pair *ctx,
1375 						  bool dir)
1376 {
1377 	struct fsl_asrc *easrc = ctx->asrc;
1378 	enum asrc_pair_index index = ctx->index;
1379 	char name[8];
1380 
1381 	/* Example of dma name: ctx0_rx */
1382 	sprintf(name, "ctx%c_%cx", index + '0', dir == IN ? 'r' : 't');
1383 
1384 	return dma_request_slave_channel(&easrc->pdev->dev, name);
1385 };
1386 
1387 static const unsigned int easrc_rates[] = {
1388 	8000, 11025, 12000, 16000,
1389 	22050, 24000, 32000, 44100,
1390 	48000, 64000, 88200, 96000,
1391 	128000, 176400, 192000, 256000,
1392 	352800, 384000, 705600, 768000,
1393 };
1394 
1395 static const struct snd_pcm_hw_constraint_list easrc_rate_constraints = {
1396 	.count = ARRAY_SIZE(easrc_rates),
1397 	.list = easrc_rates,
1398 };
1399 
1400 static int fsl_easrc_startup(struct snd_pcm_substream *substream,
1401 			     struct snd_soc_dai *dai)
1402 {
1403 	return snd_pcm_hw_constraint_list(substream->runtime, 0,
1404 					  SNDRV_PCM_HW_PARAM_RATE,
1405 					  &easrc_rate_constraints);
1406 }
1407 
1408 static int fsl_easrc_trigger(struct snd_pcm_substream *substream,
1409 			     int cmd, struct snd_soc_dai *dai)
1410 {
1411 	struct snd_pcm_runtime *runtime = substream->runtime;
1412 	struct fsl_asrc_pair *ctx = runtime->private_data;
1413 	int ret;
1414 
1415 	switch (cmd) {
1416 	case SNDRV_PCM_TRIGGER_START:
1417 	case SNDRV_PCM_TRIGGER_RESUME:
1418 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1419 		ret = fsl_easrc_start_context(ctx);
1420 		if (ret)
1421 			return ret;
1422 		break;
1423 	case SNDRV_PCM_TRIGGER_STOP:
1424 	case SNDRV_PCM_TRIGGER_SUSPEND:
1425 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1426 		ret = fsl_easrc_stop_context(ctx);
1427 		if (ret)
1428 			return ret;
1429 		break;
1430 	default:
1431 		return -EINVAL;
1432 	}
1433 
1434 	return 0;
1435 }
1436 
1437 static int fsl_easrc_hw_params(struct snd_pcm_substream *substream,
1438 			       struct snd_pcm_hw_params *params,
1439 			       struct snd_soc_dai *dai)
1440 {
1441 	struct fsl_asrc *easrc = snd_soc_dai_get_drvdata(dai);
1442 	struct snd_pcm_runtime *runtime = substream->runtime;
1443 	struct device *dev = &easrc->pdev->dev;
1444 	struct fsl_asrc_pair *ctx = runtime->private_data;
1445 	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
1446 	unsigned int channels = params_channels(params);
1447 	unsigned int rate = params_rate(params);
1448 	snd_pcm_format_t format = params_format(params);
1449 	int ret;
1450 
1451 	ret = fsl_easrc_request_context(channels, ctx);
1452 	if (ret) {
1453 		dev_err(dev, "failed to request context\n");
1454 		return ret;
1455 	}
1456 
1457 	ctx_priv->ctx_streams |= BIT(substream->stream);
1458 
1459 	/*
1460 	 * Set the input and output ratio so we can compute
1461 	 * the resampling ratio in RS_LOW/HIGH
1462 	 */
1463 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1464 		ctx_priv->in_params.sample_rate = rate;
1465 		ctx_priv->in_params.sample_format = format;
1466 		ctx_priv->out_params.sample_rate = easrc->asrc_rate;
1467 		ctx_priv->out_params.sample_format = easrc->asrc_format;
1468 	} else {
1469 		ctx_priv->out_params.sample_rate = rate;
1470 		ctx_priv->out_params.sample_format = format;
1471 		ctx_priv->in_params.sample_rate = easrc->asrc_rate;
1472 		ctx_priv->in_params.sample_format = easrc->asrc_format;
1473 	}
1474 
1475 	ctx->channels = channels;
1476 	ctx_priv->in_params.fifo_wtmk  = 0x20;
1477 	ctx_priv->out_params.fifo_wtmk = 0x20;
1478 
1479 	/*
1480 	 * Do only rate conversion and keep the same format for input
1481 	 * and output data
1482 	 */
1483 	ret = fsl_easrc_set_ctx_format(ctx,
1484 				       &ctx_priv->in_params.sample_format,
1485 				       &ctx_priv->out_params.sample_format);
1486 	if (ret) {
1487 		dev_err(dev, "failed to set format %d", ret);
1488 		return ret;
1489 	}
1490 
1491 	ret = fsl_easrc_config_context(easrc, ctx->index);
1492 	if (ret) {
1493 		dev_err(dev, "failed to config context\n");
1494 		return ret;
1495 	}
1496 
1497 	ctx_priv->in_params.iterations = 1;
1498 	ctx_priv->in_params.group_len = ctx->channels;
1499 	ctx_priv->in_params.access_len = ctx->channels;
1500 	ctx_priv->out_params.iterations = 1;
1501 	ctx_priv->out_params.group_len = ctx->channels;
1502 	ctx_priv->out_params.access_len = ctx->channels;
1503 
1504 	ret = fsl_easrc_set_ctx_organziation(ctx);
1505 	if (ret) {
1506 		dev_err(dev, "failed to set fifo organization\n");
1507 		return ret;
1508 	}
1509 
1510 	return 0;
1511 }
1512 
1513 static int fsl_easrc_hw_free(struct snd_pcm_substream *substream,
1514 			     struct snd_soc_dai *dai)
1515 {
1516 	struct snd_pcm_runtime *runtime = substream->runtime;
1517 	struct fsl_asrc_pair *ctx = runtime->private_data;
1518 	struct fsl_easrc_ctx_priv *ctx_priv;
1519 
1520 	if (!ctx)
1521 		return -EINVAL;
1522 
1523 	ctx_priv = ctx->private;
1524 
1525 	if (ctx_priv->ctx_streams & BIT(substream->stream)) {
1526 		ctx_priv->ctx_streams &= ~BIT(substream->stream);
1527 		fsl_easrc_release_context(ctx);
1528 	}
1529 
1530 	return 0;
1531 }
1532 
1533 static const struct snd_soc_dai_ops fsl_easrc_dai_ops = {
1534 	.startup = fsl_easrc_startup,
1535 	.trigger = fsl_easrc_trigger,
1536 	.hw_params = fsl_easrc_hw_params,
1537 	.hw_free = fsl_easrc_hw_free,
1538 };
1539 
1540 static int fsl_easrc_dai_probe(struct snd_soc_dai *cpu_dai)
1541 {
1542 	struct fsl_asrc *easrc = dev_get_drvdata(cpu_dai->dev);
1543 
1544 	snd_soc_dai_init_dma_data(cpu_dai,
1545 				  &easrc->dma_params_tx,
1546 				  &easrc->dma_params_rx);
1547 	return 0;
1548 }
1549 
1550 static struct snd_soc_dai_driver fsl_easrc_dai = {
1551 	.probe = fsl_easrc_dai_probe,
1552 	.playback = {
1553 		.stream_name = "ASRC-Playback",
1554 		.channels_min = 1,
1555 		.channels_max = 32,
1556 		.rate_min = 8000,
1557 		.rate_max = 768000,
1558 		.rates = SNDRV_PCM_RATE_KNOT,
1559 		.formats = FSL_EASRC_FORMATS,
1560 	},
1561 	.capture = {
1562 		.stream_name = "ASRC-Capture",
1563 		.channels_min = 1,
1564 		.channels_max = 32,
1565 		.rate_min = 8000,
1566 		.rate_max = 768000,
1567 		.rates = SNDRV_PCM_RATE_KNOT,
1568 		.formats = FSL_EASRC_FORMATS |
1569 			   SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1570 	},
1571 	.ops = &fsl_easrc_dai_ops,
1572 };
1573 
1574 static const struct snd_soc_component_driver fsl_easrc_component = {
1575 	.name		= "fsl-easrc-dai",
1576 	.controls       = fsl_easrc_snd_controls,
1577 	.num_controls   = ARRAY_SIZE(fsl_easrc_snd_controls),
1578 };
1579 
1580 static const struct reg_default fsl_easrc_reg_defaults[] = {
1581 	{REG_EASRC_WRFIFO(0),	0x00000000},
1582 	{REG_EASRC_WRFIFO(1),	0x00000000},
1583 	{REG_EASRC_WRFIFO(2),	0x00000000},
1584 	{REG_EASRC_WRFIFO(3),	0x00000000},
1585 	{REG_EASRC_RDFIFO(0),	0x00000000},
1586 	{REG_EASRC_RDFIFO(1),	0x00000000},
1587 	{REG_EASRC_RDFIFO(2),	0x00000000},
1588 	{REG_EASRC_RDFIFO(3),	0x00000000},
1589 	{REG_EASRC_CC(0),	0x00000000},
1590 	{REG_EASRC_CC(1),	0x00000000},
1591 	{REG_EASRC_CC(2),	0x00000000},
1592 	{REG_EASRC_CC(3),	0x00000000},
1593 	{REG_EASRC_CCE1(0),	0x00000000},
1594 	{REG_EASRC_CCE1(1),	0x00000000},
1595 	{REG_EASRC_CCE1(2),	0x00000000},
1596 	{REG_EASRC_CCE1(3),	0x00000000},
1597 	{REG_EASRC_CCE2(0),	0x00000000},
1598 	{REG_EASRC_CCE2(1),	0x00000000},
1599 	{REG_EASRC_CCE2(2),	0x00000000},
1600 	{REG_EASRC_CCE2(3),	0x00000000},
1601 	{REG_EASRC_CIA(0),	0x00000000},
1602 	{REG_EASRC_CIA(1),	0x00000000},
1603 	{REG_EASRC_CIA(2),	0x00000000},
1604 	{REG_EASRC_CIA(3),	0x00000000},
1605 	{REG_EASRC_DPCS0R0(0),	0x00000000},
1606 	{REG_EASRC_DPCS0R0(1),	0x00000000},
1607 	{REG_EASRC_DPCS0R0(2),	0x00000000},
1608 	{REG_EASRC_DPCS0R0(3),	0x00000000},
1609 	{REG_EASRC_DPCS0R1(0),	0x00000000},
1610 	{REG_EASRC_DPCS0R1(1),	0x00000000},
1611 	{REG_EASRC_DPCS0R1(2),	0x00000000},
1612 	{REG_EASRC_DPCS0R1(3),	0x00000000},
1613 	{REG_EASRC_DPCS0R2(0),	0x00000000},
1614 	{REG_EASRC_DPCS0R2(1),	0x00000000},
1615 	{REG_EASRC_DPCS0R2(2),	0x00000000},
1616 	{REG_EASRC_DPCS0R2(3),	0x00000000},
1617 	{REG_EASRC_DPCS0R3(0),	0x00000000},
1618 	{REG_EASRC_DPCS0R3(1),	0x00000000},
1619 	{REG_EASRC_DPCS0R3(2),	0x00000000},
1620 	{REG_EASRC_DPCS0R3(3),	0x00000000},
1621 	{REG_EASRC_DPCS1R0(0),	0x00000000},
1622 	{REG_EASRC_DPCS1R0(1),	0x00000000},
1623 	{REG_EASRC_DPCS1R0(2),	0x00000000},
1624 	{REG_EASRC_DPCS1R0(3),	0x00000000},
1625 	{REG_EASRC_DPCS1R1(0),	0x00000000},
1626 	{REG_EASRC_DPCS1R1(1),	0x00000000},
1627 	{REG_EASRC_DPCS1R1(2),	0x00000000},
1628 	{REG_EASRC_DPCS1R1(3),	0x00000000},
1629 	{REG_EASRC_DPCS1R2(0),	0x00000000},
1630 	{REG_EASRC_DPCS1R2(1),	0x00000000},
1631 	{REG_EASRC_DPCS1R2(2),	0x00000000},
1632 	{REG_EASRC_DPCS1R2(3),	0x00000000},
1633 	{REG_EASRC_DPCS1R3(0),	0x00000000},
1634 	{REG_EASRC_DPCS1R3(1),	0x00000000},
1635 	{REG_EASRC_DPCS1R3(2),	0x00000000},
1636 	{REG_EASRC_DPCS1R3(3),	0x00000000},
1637 	{REG_EASRC_COC(0),	0x00000000},
1638 	{REG_EASRC_COC(1),	0x00000000},
1639 	{REG_EASRC_COC(2),	0x00000000},
1640 	{REG_EASRC_COC(3),	0x00000000},
1641 	{REG_EASRC_COA(0),	0x00000000},
1642 	{REG_EASRC_COA(1),	0x00000000},
1643 	{REG_EASRC_COA(2),	0x00000000},
1644 	{REG_EASRC_COA(3),	0x00000000},
1645 	{REG_EASRC_SFS(0),	0x00000000},
1646 	{REG_EASRC_SFS(1),	0x00000000},
1647 	{REG_EASRC_SFS(2),	0x00000000},
1648 	{REG_EASRC_SFS(3),	0x00000000},
1649 	{REG_EASRC_RRL(0),	0x00000000},
1650 	{REG_EASRC_RRL(1),	0x00000000},
1651 	{REG_EASRC_RRL(2),	0x00000000},
1652 	{REG_EASRC_RRL(3),	0x00000000},
1653 	{REG_EASRC_RRH(0),	0x00000000},
1654 	{REG_EASRC_RRH(1),	0x00000000},
1655 	{REG_EASRC_RRH(2),	0x00000000},
1656 	{REG_EASRC_RRH(3),	0x00000000},
1657 	{REG_EASRC_RUC(0),	0x00000000},
1658 	{REG_EASRC_RUC(1),	0x00000000},
1659 	{REG_EASRC_RUC(2),	0x00000000},
1660 	{REG_EASRC_RUC(3),	0x00000000},
1661 	{REG_EASRC_RUR(0),	0x7FFFFFFF},
1662 	{REG_EASRC_RUR(1),	0x7FFFFFFF},
1663 	{REG_EASRC_RUR(2),	0x7FFFFFFF},
1664 	{REG_EASRC_RUR(3),	0x7FFFFFFF},
1665 	{REG_EASRC_RCTCL,	0x00000000},
1666 	{REG_EASRC_RCTCH,	0x00000000},
1667 	{REG_EASRC_PCF(0),	0x00000000},
1668 	{REG_EASRC_PCF(1),	0x00000000},
1669 	{REG_EASRC_PCF(2),	0x00000000},
1670 	{REG_EASRC_PCF(3),	0x00000000},
1671 	{REG_EASRC_CRCM,	0x00000000},
1672 	{REG_EASRC_CRCC,	0x00000000},
1673 	{REG_EASRC_IRQC,	0x00000FFF},
1674 	{REG_EASRC_IRQF,	0x00000000},
1675 	{REG_EASRC_CS0(0),	0x00000000},
1676 	{REG_EASRC_CS0(1),	0x00000000},
1677 	{REG_EASRC_CS0(2),	0x00000000},
1678 	{REG_EASRC_CS0(3),	0x00000000},
1679 	{REG_EASRC_CS1(0),	0x00000000},
1680 	{REG_EASRC_CS1(1),	0x00000000},
1681 	{REG_EASRC_CS1(2),	0x00000000},
1682 	{REG_EASRC_CS1(3),	0x00000000},
1683 	{REG_EASRC_CS2(0),	0x00000000},
1684 	{REG_EASRC_CS2(1),	0x00000000},
1685 	{REG_EASRC_CS2(2),	0x00000000},
1686 	{REG_EASRC_CS2(3),	0x00000000},
1687 	{REG_EASRC_CS3(0),	0x00000000},
1688 	{REG_EASRC_CS3(1),	0x00000000},
1689 	{REG_EASRC_CS3(2),	0x00000000},
1690 	{REG_EASRC_CS3(3),	0x00000000},
1691 	{REG_EASRC_CS4(0),	0x00000000},
1692 	{REG_EASRC_CS4(1),	0x00000000},
1693 	{REG_EASRC_CS4(2),	0x00000000},
1694 	{REG_EASRC_CS4(3),	0x00000000},
1695 	{REG_EASRC_CS5(0),	0x00000000},
1696 	{REG_EASRC_CS5(1),	0x00000000},
1697 	{REG_EASRC_CS5(2),	0x00000000},
1698 	{REG_EASRC_CS5(3),	0x00000000},
1699 	{REG_EASRC_DBGC,	0x00000000},
1700 	{REG_EASRC_DBGS,	0x00000000},
1701 };
1702 
1703 static const struct regmap_range fsl_easrc_readable_ranges[] = {
1704 	regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RCTCH),
1705 	regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_PCF(3)),
1706 	regmap_reg_range(REG_EASRC_CRCC, REG_EASRC_DBGS),
1707 };
1708 
1709 static const struct regmap_access_table fsl_easrc_readable_table = {
1710 	.yes_ranges = fsl_easrc_readable_ranges,
1711 	.n_yes_ranges = ARRAY_SIZE(fsl_easrc_readable_ranges),
1712 };
1713 
1714 static const struct regmap_range fsl_easrc_writeable_ranges[] = {
1715 	regmap_reg_range(REG_EASRC_WRFIFO(0), REG_EASRC_WRFIFO(3)),
1716 	regmap_reg_range(REG_EASRC_CC(0), REG_EASRC_COA(3)),
1717 	regmap_reg_range(REG_EASRC_RRL(0), REG_EASRC_RCTCH),
1718 	regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_DBGC),
1719 };
1720 
1721 static const struct regmap_access_table fsl_easrc_writeable_table = {
1722 	.yes_ranges = fsl_easrc_writeable_ranges,
1723 	.n_yes_ranges = ARRAY_SIZE(fsl_easrc_writeable_ranges),
1724 };
1725 
1726 static const struct regmap_range fsl_easrc_volatileable_ranges[] = {
1727 	regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RDFIFO(3)),
1728 	regmap_reg_range(REG_EASRC_SFS(0), REG_EASRC_SFS(3)),
1729 	regmap_reg_range(REG_EASRC_IRQF, REG_EASRC_IRQF),
1730 	regmap_reg_range(REG_EASRC_DBGS, REG_EASRC_DBGS),
1731 };
1732 
1733 static const struct regmap_access_table fsl_easrc_volatileable_table = {
1734 	.yes_ranges = fsl_easrc_volatileable_ranges,
1735 	.n_yes_ranges = ARRAY_SIZE(fsl_easrc_volatileable_ranges),
1736 };
1737 
1738 static const struct regmap_config fsl_easrc_regmap_config = {
1739 	.reg_bits = 32,
1740 	.reg_stride = 4,
1741 	.val_bits = 32,
1742 
1743 	.max_register = REG_EASRC_DBGS,
1744 	.reg_defaults = fsl_easrc_reg_defaults,
1745 	.num_reg_defaults = ARRAY_SIZE(fsl_easrc_reg_defaults),
1746 	.rd_table = &fsl_easrc_readable_table,
1747 	.wr_table = &fsl_easrc_writeable_table,
1748 	.volatile_table = &fsl_easrc_volatileable_table,
1749 	.cache_type = REGCACHE_RBTREE,
1750 };
1751 
1752 #ifdef DEBUG
1753 static void fsl_easrc_dump_firmware(struct fsl_asrc *easrc)
1754 {
1755 	struct fsl_easrc_priv *easrc_priv = easrc->private;
1756 	struct asrc_firmware_hdr *firm = easrc_priv->firmware_hdr;
1757 	struct interp_params *interp = easrc_priv->interp;
1758 	struct prefil_params *prefil = easrc_priv->prefil;
1759 	struct device *dev = &easrc->pdev->dev;
1760 	int i;
1761 
1762 	if (firm->magic != FIRMWARE_MAGIC) {
1763 		dev_err(dev, "Wrong magic. Something went wrong!");
1764 		return;
1765 	}
1766 
1767 	dev_dbg(dev, "Firmware v%u dump:\n", firm->firmware_version);
1768 	dev_dbg(dev, "Num prefilter scenarios: %u\n", firm->prefil_scen);
1769 	dev_dbg(dev, "Num interpolation scenarios: %u\n", firm->interp_scen);
1770 	dev_dbg(dev, "\nInterpolation scenarios:\n");
1771 
1772 	for (i = 0; i < firm->interp_scen; i++) {
1773 		if (interp[i].magic != FIRMWARE_MAGIC) {
1774 			dev_dbg(dev, "%d. wrong interp magic: %x\n",
1775 				i, interp[i].magic);
1776 			continue;
1777 		}
1778 		dev_dbg(dev, "%d. taps: %u, phases: %u, center: %llu\n", i,
1779 			interp[i].num_taps, interp[i].num_phases,
1780 			interp[i].center_tap);
1781 	}
1782 
1783 	for (i = 0; i < firm->prefil_scen; i++) {
1784 		if (prefil[i].magic != FIRMWARE_MAGIC) {
1785 			dev_dbg(dev, "%d. wrong prefil magic: %x\n",
1786 				i, prefil[i].magic);
1787 			continue;
1788 		}
1789 		dev_dbg(dev, "%d. insr: %u, outsr: %u, st1: %u, st2: %u\n", i,
1790 			prefil[i].insr, prefil[i].outsr,
1791 			prefil[i].st1_taps, prefil[i].st2_taps);
1792 	}
1793 
1794 	dev_dbg(dev, "end of firmware dump\n");
1795 }
1796 #endif
1797 
1798 static int fsl_easrc_get_firmware(struct fsl_asrc *easrc)
1799 {
1800 	struct fsl_easrc_priv *easrc_priv;
1801 	const struct firmware **fw_p;
1802 	u32 pnum, inum, offset;
1803 	const u8 *data;
1804 	int ret;
1805 
1806 	if (!easrc)
1807 		return -EINVAL;
1808 
1809 	easrc_priv = easrc->private;
1810 	fw_p = &easrc_priv->fw;
1811 
1812 	ret = request_firmware(fw_p, easrc_priv->fw_name, &easrc->pdev->dev);
1813 	if (ret)
1814 		return ret;
1815 
1816 	data = easrc_priv->fw->data;
1817 
1818 	easrc_priv->firmware_hdr = (struct asrc_firmware_hdr *)data;
1819 	pnum = easrc_priv->firmware_hdr->prefil_scen;
1820 	inum = easrc_priv->firmware_hdr->interp_scen;
1821 
1822 	if (inum) {
1823 		offset = sizeof(struct asrc_firmware_hdr);
1824 		easrc_priv->interp = (struct interp_params *)(data + offset);
1825 	}
1826 
1827 	if (pnum) {
1828 		offset = sizeof(struct asrc_firmware_hdr) +
1829 				inum * sizeof(struct interp_params);
1830 		easrc_priv->prefil = (struct prefil_params *)(data + offset);
1831 	}
1832 
1833 #ifdef DEBUG
1834 	fsl_easrc_dump_firmware(easrc);
1835 #endif
1836 
1837 	return 0;
1838 }
1839 
1840 static irqreturn_t fsl_easrc_isr(int irq, void *dev_id)
1841 {
1842 	struct fsl_asrc *easrc = (struct fsl_asrc *)dev_id;
1843 	struct device *dev = &easrc->pdev->dev;
1844 	int val;
1845 
1846 	regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
1847 
1848 	if (val & EASRC_IRQF_OER_MASK)
1849 		dev_dbg(dev, "output FIFO underflow\n");
1850 
1851 	if (val & EASRC_IRQF_IFO_MASK)
1852 		dev_dbg(dev, "input FIFO overflow\n");
1853 
1854 	return IRQ_HANDLED;
1855 }
1856 
1857 static int fsl_easrc_get_fifo_addr(u8 dir, enum asrc_pair_index index)
1858 {
1859 	return REG_EASRC_FIFO(dir, index);
1860 }
1861 
1862 static const struct of_device_id fsl_easrc_dt_ids[] = {
1863 	{ .compatible = "fsl,imx8mn-easrc",},
1864 	{}
1865 };
1866 MODULE_DEVICE_TABLE(of, fsl_easrc_dt_ids);
1867 
1868 static int fsl_easrc_probe(struct platform_device *pdev)
1869 {
1870 	struct fsl_easrc_priv *easrc_priv;
1871 	struct device *dev = &pdev->dev;
1872 	struct fsl_asrc *easrc;
1873 	struct resource *res;
1874 	struct device_node *np;
1875 	void __iomem *regs;
1876 	int ret, irq;
1877 
1878 	easrc = devm_kzalloc(dev, sizeof(*easrc), GFP_KERNEL);
1879 	if (!easrc)
1880 		return -ENOMEM;
1881 
1882 	easrc_priv = devm_kzalloc(dev, sizeof(*easrc_priv), GFP_KERNEL);
1883 	if (!easrc_priv)
1884 		return -ENOMEM;
1885 
1886 	easrc->pdev = pdev;
1887 	easrc->private = easrc_priv;
1888 	np = dev->of_node;
1889 
1890 	regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1891 	if (IS_ERR(regs))
1892 		return PTR_ERR(regs);
1893 
1894 	easrc->paddr = res->start;
1895 
1896 	easrc->regmap = devm_regmap_init_mmio(dev, regs, &fsl_easrc_regmap_config);
1897 	if (IS_ERR(easrc->regmap)) {
1898 		dev_err(dev, "failed to init regmap");
1899 		return PTR_ERR(easrc->regmap);
1900 	}
1901 
1902 	irq = platform_get_irq(pdev, 0);
1903 	if (irq < 0)
1904 		return irq;
1905 
1906 	ret = devm_request_irq(&pdev->dev, irq, fsl_easrc_isr, 0,
1907 			       dev_name(dev), easrc);
1908 	if (ret) {
1909 		dev_err(dev, "failed to claim irq %u: %d\n", irq, ret);
1910 		return ret;
1911 	}
1912 
1913 	easrc->mem_clk = devm_clk_get(dev, "mem");
1914 	if (IS_ERR(easrc->mem_clk)) {
1915 		dev_err(dev, "failed to get mem clock\n");
1916 		return PTR_ERR(easrc->mem_clk);
1917 	}
1918 
1919 	/* Set default value */
1920 	easrc->channel_avail = 32;
1921 	easrc->get_dma_channel = fsl_easrc_get_dma_channel;
1922 	easrc->request_pair = fsl_easrc_request_context;
1923 	easrc->release_pair = fsl_easrc_release_context;
1924 	easrc->get_fifo_addr = fsl_easrc_get_fifo_addr;
1925 	easrc->pair_priv_size = sizeof(struct fsl_easrc_ctx_priv);
1926 
1927 	easrc_priv->rs_num_taps = EASRC_RS_32_TAPS;
1928 	easrc_priv->const_coeff = 0x3FF0000000000000;
1929 
1930 	ret = of_property_read_u32(np, "fsl,asrc-rate", &easrc->asrc_rate);
1931 	if (ret) {
1932 		dev_err(dev, "failed to asrc rate\n");
1933 		return ret;
1934 	}
1935 
1936 	ret = of_property_read_u32(np, "fsl,asrc-format", &easrc->asrc_format);
1937 	if (ret) {
1938 		dev_err(dev, "failed to asrc format\n");
1939 		return ret;
1940 	}
1941 
1942 	if (!(FSL_EASRC_FORMATS & (1ULL << easrc->asrc_format))) {
1943 		dev_warn(dev, "unsupported format, switching to S24_LE\n");
1944 		easrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE;
1945 	}
1946 
1947 	ret = of_property_read_string(np, "firmware-name",
1948 				      &easrc_priv->fw_name);
1949 	if (ret) {
1950 		dev_err(dev, "failed to get firmware name\n");
1951 		return ret;
1952 	}
1953 
1954 	platform_set_drvdata(pdev, easrc);
1955 	pm_runtime_enable(dev);
1956 
1957 	spin_lock_init(&easrc->lock);
1958 
1959 	regcache_cache_only(easrc->regmap, true);
1960 
1961 	ret = devm_snd_soc_register_component(dev, &fsl_easrc_component,
1962 					      &fsl_easrc_dai, 1);
1963 	if (ret) {
1964 		dev_err(dev, "failed to register ASoC DAI\n");
1965 		return ret;
1966 	}
1967 
1968 	ret = devm_snd_soc_register_component(dev, &fsl_asrc_component,
1969 					      NULL, 0);
1970 	if (ret) {
1971 		dev_err(&pdev->dev, "failed to register ASoC platform\n");
1972 		return ret;
1973 	}
1974 
1975 	return 0;
1976 }
1977 
1978 static int fsl_easrc_remove(struct platform_device *pdev)
1979 {
1980 	pm_runtime_disable(&pdev->dev);
1981 
1982 	return 0;
1983 }
1984 
1985 static __maybe_unused int fsl_easrc_runtime_suspend(struct device *dev)
1986 {
1987 	struct fsl_asrc *easrc = dev_get_drvdata(dev);
1988 	struct fsl_easrc_priv *easrc_priv = easrc->private;
1989 	unsigned long lock_flags;
1990 
1991 	regcache_cache_only(easrc->regmap, true);
1992 
1993 	clk_disable_unprepare(easrc->mem_clk);
1994 
1995 	spin_lock_irqsave(&easrc->lock, lock_flags);
1996 	easrc_priv->firmware_loaded = 0;
1997 	spin_unlock_irqrestore(&easrc->lock, lock_flags);
1998 
1999 	return 0;
2000 }
2001 
2002 static __maybe_unused int fsl_easrc_runtime_resume(struct device *dev)
2003 {
2004 	struct fsl_asrc *easrc = dev_get_drvdata(dev);
2005 	struct fsl_easrc_priv *easrc_priv = easrc->private;
2006 	struct fsl_easrc_ctx_priv *ctx_priv;
2007 	struct fsl_asrc_pair *ctx;
2008 	unsigned long lock_flags;
2009 	int ret;
2010 	int i;
2011 
2012 	ret = clk_prepare_enable(easrc->mem_clk);
2013 	if (ret)
2014 		return ret;
2015 
2016 	regcache_cache_only(easrc->regmap, false);
2017 	regcache_mark_dirty(easrc->regmap);
2018 	regcache_sync(easrc->regmap);
2019 
2020 	spin_lock_irqsave(&easrc->lock, lock_flags);
2021 	if (easrc_priv->firmware_loaded) {
2022 		spin_unlock_irqrestore(&easrc->lock, lock_flags);
2023 		goto skip_load;
2024 	}
2025 	easrc_priv->firmware_loaded = 1;
2026 	spin_unlock_irqrestore(&easrc->lock, lock_flags);
2027 
2028 	ret = fsl_easrc_get_firmware(easrc);
2029 	if (ret) {
2030 		dev_err(dev, "failed to get firmware\n");
2031 		goto disable_mem_clk;
2032 	}
2033 
2034 	/*
2035 	 * Write Resampling Coefficients
2036 	 * The coefficient RAM must be configured prior to beginning of
2037 	 * any context processing within the ASRC
2038 	 */
2039 	ret = fsl_easrc_resampler_config(easrc);
2040 	if (ret) {
2041 		dev_err(dev, "resampler config failed\n");
2042 		goto disable_mem_clk;
2043 	}
2044 
2045 	for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
2046 		ctx = easrc->pair[i];
2047 		if (!ctx)
2048 			continue;
2049 
2050 		ctx_priv = ctx->private;
2051 		fsl_easrc_set_rs_ratio(ctx);
2052 		ctx_priv->out_missed_sample = ctx_priv->in_filled_sample *
2053 					      ctx_priv->out_params.sample_rate /
2054 					      ctx_priv->in_params.sample_rate;
2055 		if (ctx_priv->in_filled_sample * ctx_priv->out_params.sample_rate
2056 		    % ctx_priv->in_params.sample_rate != 0)
2057 			ctx_priv->out_missed_sample += 1;
2058 
2059 		ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
2060 						   ctx_priv->st1_coeff,
2061 						   ctx_priv->st1_num_taps,
2062 						   ctx_priv->st1_addexp);
2063 		if (ret)
2064 			goto disable_mem_clk;
2065 
2066 		ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
2067 						   ctx_priv->st2_coeff,
2068 						   ctx_priv->st2_num_taps,
2069 						   ctx_priv->st2_addexp);
2070 		if (ret)
2071 			goto disable_mem_clk;
2072 	}
2073 
2074 skip_load:
2075 	return 0;
2076 
2077 disable_mem_clk:
2078 	clk_disable_unprepare(easrc->mem_clk);
2079 	return ret;
2080 }
2081 
2082 static const struct dev_pm_ops fsl_easrc_pm_ops = {
2083 	SET_RUNTIME_PM_OPS(fsl_easrc_runtime_suspend,
2084 			   fsl_easrc_runtime_resume,
2085 			   NULL)
2086 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2087 				pm_runtime_force_resume)
2088 };
2089 
2090 static struct platform_driver fsl_easrc_driver = {
2091 	.probe = fsl_easrc_probe,
2092 	.remove = fsl_easrc_remove,
2093 	.driver = {
2094 		.name = "fsl-easrc",
2095 		.pm = &fsl_easrc_pm_ops,
2096 		.of_match_table = fsl_easrc_dt_ids,
2097 	},
2098 };
2099 module_platform_driver(fsl_easrc_driver);
2100 
2101 MODULE_DESCRIPTION("NXP Enhanced Asynchronous Sample Rate (eASRC) driver");
2102 MODULE_LICENSE("GPL v2");
2103