xref: /linux/sound/soc/fsl/fsl_dma.c (revision f0fba2ad1b6b53d5360125c41953b7afcd6deff0)
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  * This driver implements ASoC support for the Elo DMA controller, which is
13  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14  * the PCM driver is what handles the DMA buffer.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/gfp.h>
24 #include <linux/of_platform.h>
25 #include <linux/list.h>
26 
27 #include <sound/core.h>
28 #include <sound/pcm.h>
29 #include <sound/pcm_params.h>
30 #include <sound/soc.h>
31 
32 #include <asm/io.h>
33 
34 #include "fsl_dma.h"
35 #include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
36 
37 /*
38  * The formats that the DMA controller supports, which is anything
39  * that is 8, 16, or 32 bits.
40  */
41 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
42 			    SNDRV_PCM_FMTBIT_U8 	| \
43 			    SNDRV_PCM_FMTBIT_S16_LE     | \
44 			    SNDRV_PCM_FMTBIT_S16_BE     | \
45 			    SNDRV_PCM_FMTBIT_U16_LE     | \
46 			    SNDRV_PCM_FMTBIT_U16_BE     | \
47 			    SNDRV_PCM_FMTBIT_S24_LE     | \
48 			    SNDRV_PCM_FMTBIT_S24_BE     | \
49 			    SNDRV_PCM_FMTBIT_U24_LE     | \
50 			    SNDRV_PCM_FMTBIT_U24_BE     | \
51 			    SNDRV_PCM_FMTBIT_S32_LE     | \
52 			    SNDRV_PCM_FMTBIT_S32_BE     | \
53 			    SNDRV_PCM_FMTBIT_U32_LE     | \
54 			    SNDRV_PCM_FMTBIT_U32_BE)
55 
56 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
57 			  SNDRV_PCM_RATE_CONTINUOUS)
58 
59 struct dma_object {
60 	struct list_head list;
61 	struct snd_soc_platform_driver dai;
62 	dma_addr_t ssi_stx_phys;
63 	dma_addr_t ssi_srx_phys;
64 	struct ccsr_dma_channel __iomem *channel;
65 	unsigned int irq;
66 	bool assigned;
67 	char path[1];
68 };
69 
70 /*
71  * The number of DMA links to use.  Two is the bare minimum, but if you
72  * have really small links you might need more.
73  */
74 #define NUM_DMA_LINKS   2
75 
76 /** fsl_dma_private: p-substream DMA data
77  *
78  * Each substream has a 1-to-1 association with a DMA channel.
79  *
80  * The link[] array is first because it needs to be aligned on a 32-byte
81  * boundary, so putting it first will ensure alignment without padding the
82  * structure.
83  *
84  * @link[]: array of link descriptors
85  * @dma_channel: pointer to the DMA channel's registers
86  * @irq: IRQ for this DMA channel
87  * @substream: pointer to the substream object, needed by the ISR
88  * @ssi_sxx_phys: bus address of the STX or SRX register to use
89  * @ld_buf_phys: physical address of the LD buffer
90  * @current_link: index into link[] of the link currently being processed
91  * @dma_buf_phys: physical address of the DMA buffer
92  * @dma_buf_next: physical address of the next period to process
93  * @dma_buf_end: physical address of the byte after the end of the DMA
94  * @buffer period_size: the size of a single period
95  * @num_periods: the number of periods in the DMA buffer
96  */
97 struct fsl_dma_private {
98 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
99 	struct ccsr_dma_channel __iomem *dma_channel;
100 	unsigned int irq;
101 	struct snd_pcm_substream *substream;
102 	dma_addr_t ssi_sxx_phys;
103 	dma_addr_t ld_buf_phys;
104 	unsigned int current_link;
105 	dma_addr_t dma_buf_phys;
106 	dma_addr_t dma_buf_next;
107 	dma_addr_t dma_buf_end;
108 	size_t period_size;
109 	unsigned int num_periods;
110 };
111 
112 /**
113  * fsl_dma_hardare: define characteristics of the PCM hardware.
114  *
115  * The PCM hardware is the Freescale DMA controller.  This structure defines
116  * the capabilities of that hardware.
117  *
118  * Since the sampling rate and data format are not controlled by the DMA
119  * controller, we specify no limits for those values.  The only exception is
120  * period_bytes_min, which is set to a reasonably low value to prevent the
121  * DMA controller from generating too many interrupts per second.
122  *
123  * Since each link descriptor has a 32-bit byte count field, we set
124  * period_bytes_max to the largest 32-bit number.  We also have no maximum
125  * number of periods.
126  *
127  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
128  * limitation in the SSI driver requires the sample rates for playback and
129  * capture to be the same.
130  */
131 static const struct snd_pcm_hardware fsl_dma_hardware = {
132 
133 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
134 				  SNDRV_PCM_INFO_MMAP |
135 				  SNDRV_PCM_INFO_MMAP_VALID |
136 				  SNDRV_PCM_INFO_JOINT_DUPLEX |
137 				  SNDRV_PCM_INFO_PAUSE,
138 	.formats		= FSLDMA_PCM_FORMATS,
139 	.rates  		= FSLDMA_PCM_RATES,
140 	.rate_min       	= 5512,
141 	.rate_max       	= 192000,
142 	.period_bytes_min       = 512,  	/* A reasonable limit */
143 	.period_bytes_max       = (u32) -1,
144 	.periods_min    	= NUM_DMA_LINKS,
145 	.periods_max    	= (unsigned int) -1,
146 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
147 };
148 
149 /**
150  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
151  *
152  * This function should be called by the ISR whenever the DMA controller
153  * halts data transfer.
154  */
155 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
156 {
157 	unsigned long flags;
158 
159 	snd_pcm_stream_lock_irqsave(substream, flags);
160 
161 	if (snd_pcm_running(substream))
162 		snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
163 
164 	snd_pcm_stream_unlock_irqrestore(substream, flags);
165 }
166 
167 /**
168  * fsl_dma_update_pointers - update LD pointers to point to the next period
169  *
170  * As each period is completed, this function changes the the link
171  * descriptor pointers for that period to point to the next period.
172  */
173 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
174 {
175 	struct fsl_dma_link_descriptor *link =
176 		&dma_private->link[dma_private->current_link];
177 
178 	/* Update our link descriptors to point to the next period */
179 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
180 		link->source_addr =
181 			cpu_to_be32(dma_private->dma_buf_next);
182 	else
183 		link->dest_addr =
184 			cpu_to_be32(dma_private->dma_buf_next);
185 
186 	/* Update our variables for next time */
187 	dma_private->dma_buf_next += dma_private->period_size;
188 
189 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
190 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
191 
192 	if (++dma_private->current_link >= NUM_DMA_LINKS)
193 		dma_private->current_link = 0;
194 }
195 
196 /**
197  * fsl_dma_isr: interrupt handler for the DMA controller
198  *
199  * @irq: IRQ of the DMA channel
200  * @dev_id: pointer to the dma_private structure for this DMA channel
201  */
202 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
203 {
204 	struct fsl_dma_private *dma_private = dev_id;
205 	struct snd_pcm_substream *substream = dma_private->substream;
206 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
207 	struct device *dev = rtd->platform->dev;
208 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
209 	irqreturn_t ret = IRQ_NONE;
210 	u32 sr, sr2 = 0;
211 
212 	/* We got an interrupt, so read the status register to see what we
213 	   were interrupted for.
214 	 */
215 	sr = in_be32(&dma_channel->sr);
216 
217 	if (sr & CCSR_DMA_SR_TE) {
218 		dev_err(dev, "dma transmit error\n");
219 		fsl_dma_abort_stream(substream);
220 		sr2 |= CCSR_DMA_SR_TE;
221 		ret = IRQ_HANDLED;
222 	}
223 
224 	if (sr & CCSR_DMA_SR_CH)
225 		ret = IRQ_HANDLED;
226 
227 	if (sr & CCSR_DMA_SR_PE) {
228 		dev_err(dev, "dma programming error\n");
229 		fsl_dma_abort_stream(substream);
230 		sr2 |= CCSR_DMA_SR_PE;
231 		ret = IRQ_HANDLED;
232 	}
233 
234 	if (sr & CCSR_DMA_SR_EOLNI) {
235 		sr2 |= CCSR_DMA_SR_EOLNI;
236 		ret = IRQ_HANDLED;
237 	}
238 
239 	if (sr & CCSR_DMA_SR_CB)
240 		ret = IRQ_HANDLED;
241 
242 	if (sr & CCSR_DMA_SR_EOSI) {
243 		/* Tell ALSA we completed a period. */
244 		snd_pcm_period_elapsed(substream);
245 
246 		/*
247 		 * Update our link descriptors to point to the next period. We
248 		 * only need to do this if the number of periods is not equal to
249 		 * the number of links.
250 		 */
251 		if (dma_private->num_periods != NUM_DMA_LINKS)
252 			fsl_dma_update_pointers(dma_private);
253 
254 		sr2 |= CCSR_DMA_SR_EOSI;
255 		ret = IRQ_HANDLED;
256 	}
257 
258 	if (sr & CCSR_DMA_SR_EOLSI) {
259 		sr2 |= CCSR_DMA_SR_EOLSI;
260 		ret = IRQ_HANDLED;
261 	}
262 
263 	/* Clear the bits that we set */
264 	if (sr2)
265 		out_be32(&dma_channel->sr, sr2);
266 
267 	return ret;
268 }
269 
270 /**
271  * fsl_dma_new: initialize this PCM driver.
272  *
273  * This function is called when the codec driver calls snd_soc_new_pcms(),
274  * once for each .dai_link in the machine driver's snd_soc_card
275  * structure.
276  */
277 static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
278 	struct snd_pcm *pcm)
279 {
280 	static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
281 	int ret;
282 
283 	if (!card->dev->dma_mask)
284 		card->dev->dma_mask = &fsl_dma_dmamask;
285 
286 	if (!card->dev->coherent_dma_mask)
287 		card->dev->coherent_dma_mask = fsl_dma_dmamask;
288 
289 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
290 		fsl_dma_hardware.buffer_bytes_max,
291 		&pcm->streams[0].substream->dma_buffer);
292 	if (ret) {
293 		dev_err(card->dev, "can't allocate playback dma buffer\n");
294 		return ret;
295 	}
296 
297 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
298 		fsl_dma_hardware.buffer_bytes_max,
299 		&pcm->streams[1].substream->dma_buffer);
300 	if (ret) {
301 		snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
302 		dev_err(card->dev, "can't allocate capture dma buffer\n");
303 		return ret;
304 	}
305 
306 	return 0;
307 }
308 
309 /**
310  * fsl_dma_open: open a new substream.
311  *
312  * Each substream has its own DMA buffer.
313  *
314  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
315  * descriptors that ping-pong from one period to the next.  For example, if
316  * there are six periods and two link descriptors, this is how they look
317  * before playback starts:
318  *
319  *      	   The last link descriptor
320  *   ____________  points back to the first
321  *  |   	 |
322  *  V   	 |
323  *  ___    ___   |
324  * |   |->|   |->|
325  * |___|  |___|
326  *   |      |
327  *   |      |
328  *   V      V
329  *  _________________________________________
330  * |      |      |      |      |      |      |  The DMA buffer is
331  * |      |      |      |      |      |      |    divided into 6 parts
332  * |______|______|______|______|______|______|
333  *
334  * and here's how they look after the first period is finished playing:
335  *
336  *   ____________
337  *  |   	 |
338  *  V   	 |
339  *  ___    ___   |
340  * |   |->|   |->|
341  * |___|  |___|
342  *   |      |
343  *   |______________
344  *          |       |
345  *          V       V
346  *  _________________________________________
347  * |      |      |      |      |      |      |
348  * |      |      |      |      |      |      |
349  * |______|______|______|______|______|______|
350  *
351  * The first link descriptor now points to the third period.  The DMA
352  * controller is currently playing the second period.  When it finishes, it
353  * will jump back to the first descriptor and play the third period.
354  *
355  * There are four reasons we do this:
356  *
357  * 1. The only way to get the DMA controller to automatically restart the
358  *    transfer when it gets to the end of the buffer is to use chaining
359  *    mode.  Basic direct mode doesn't offer that feature.
360  * 2. We need to receive an interrupt at the end of every period.  The DMA
361  *    controller can generate an interrupt at the end of every link transfer
362  *    (aka segment).  Making each period into a DMA segment will give us the
363  *    interrupts we need.
364  * 3. By creating only two link descriptors, regardless of the number of
365  *    periods, we do not need to reallocate the link descriptors if the
366  *    number of periods changes.
367  * 4. All of the audio data is still stored in a single, contiguous DMA
368  *    buffer, which is what ALSA expects.  We're just dividing it into
369  *    contiguous parts, and creating a link descriptor for each one.
370  */
371 static int fsl_dma_open(struct snd_pcm_substream *substream)
372 {
373 	struct snd_pcm_runtime *runtime = substream->runtime;
374 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
375 	struct device *dev = rtd->platform->dev;
376 	struct dma_object *dma =
377 		container_of(rtd->platform->driver, struct dma_object, dai);
378 	struct fsl_dma_private *dma_private;
379 	struct ccsr_dma_channel __iomem *dma_channel;
380 	dma_addr_t ld_buf_phys;
381 	u64 temp_link;  	/* Pointer to next link descriptor */
382 	u32 mr;
383 	unsigned int channel;
384 	int ret = 0;
385 	unsigned int i;
386 
387 	/*
388 	 * Reject any DMA buffer whose size is not a multiple of the period
389 	 * size.  We need to make sure that the DMA buffer can be evenly divided
390 	 * into periods.
391 	 */
392 	ret = snd_pcm_hw_constraint_integer(runtime,
393 		SNDRV_PCM_HW_PARAM_PERIODS);
394 	if (ret < 0) {
395 		dev_err(dev, "invalid buffer size\n");
396 		return ret;
397 	}
398 
399 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
400 
401 	if (dma->assigned) {
402 		dev_err(dev, "dma channel already assigned\n");
403 		return -EBUSY;
404 	}
405 
406 	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
407 					 &ld_buf_phys, GFP_KERNEL);
408 	if (!dma_private) {
409 		dev_err(dev, "can't allocate dma private data\n");
410 		return -ENOMEM;
411 	}
412 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
413 		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
414 	else
415 		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
416 
417 	dma_private->dma_channel = dma->channel;
418 	dma_private->irq = dma->irq;
419 	dma_private->substream = substream;
420 	dma_private->ld_buf_phys = ld_buf_phys;
421 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
422 
423 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
424 	if (ret) {
425 		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
426 			dma_private->irq, ret);
427 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
428 			dma_private, dma_private->ld_buf_phys);
429 		return ret;
430 	}
431 
432 	dma->assigned = 1;
433 
434 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
435 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
436 	runtime->private_data = dma_private;
437 
438 	/* Program the fixed DMA controller parameters */
439 
440 	dma_channel = dma_private->dma_channel;
441 
442 	temp_link = dma_private->ld_buf_phys +
443 		sizeof(struct fsl_dma_link_descriptor);
444 
445 	for (i = 0; i < NUM_DMA_LINKS; i++) {
446 		dma_private->link[i].next = cpu_to_be64(temp_link);
447 
448 		temp_link += sizeof(struct fsl_dma_link_descriptor);
449 	}
450 	/* The last link descriptor points to the first */
451 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
452 
453 	/* Tell the DMA controller where the first link descriptor is */
454 	out_be32(&dma_channel->clndar,
455 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
456 	out_be32(&dma_channel->eclndar,
457 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
458 
459 	/* The manual says the BCR must be clear before enabling EMP */
460 	out_be32(&dma_channel->bcr, 0);
461 
462 	/*
463 	 * Program the mode register for interrupts, external master control,
464 	 * and source/destination hold.  Also clear the Channel Abort bit.
465 	 */
466 	mr = in_be32(&dma_channel->mr) &
467 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
468 
469 	/*
470 	 * We want External Master Start and External Master Pause enabled,
471 	 * because the SSI is controlling the DMA controller.  We want the DMA
472 	 * controller to be set up in advance, and then we signal only the SSI
473 	 * to start transferring.
474 	 *
475 	 * We want End-Of-Segment Interrupts enabled, because this will generate
476 	 * an interrupt at the end of each segment (each link descriptor
477 	 * represents one segment).  Each DMA segment is the same thing as an
478 	 * ALSA period, so this is how we get an interrupt at the end of every
479 	 * period.
480 	 *
481 	 * We want Error Interrupt enabled, so that we can get an error if
482 	 * the DMA controller is mis-programmed somehow.
483 	 */
484 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
485 		CCSR_DMA_MR_EMS_EN;
486 
487 	/* For playback, we want the destination address to be held.  For
488 	   capture, set the source address to be held. */
489 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
490 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
491 
492 	out_be32(&dma_channel->mr, mr);
493 
494 	return 0;
495 }
496 
497 /**
498  * fsl_dma_hw_params: continue initializing the DMA links
499  *
500  * This function obtains hardware parameters about the opened stream and
501  * programs the DMA controller accordingly.
502  *
503  * One drawback of big-endian is that when copying integers of different
504  * sizes to a fixed-sized register, the address to which the integer must be
505  * copied is dependent on the size of the integer.
506  *
507  * For example, if P is the address of a 32-bit register, and X is a 32-bit
508  * integer, then X should be copied to address P.  However, if X is a 16-bit
509  * integer, then it should be copied to P+2.  If X is an 8-bit register,
510  * then it should be copied to P+3.
511  *
512  * So for playback of 8-bit samples, the DMA controller must transfer single
513  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
514  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
515  *
516  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
517  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
518  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
519  * 24-bit data must be padded to 32 bits.
520  */
521 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
522 	struct snd_pcm_hw_params *hw_params)
523 {
524 	struct snd_pcm_runtime *runtime = substream->runtime;
525 	struct fsl_dma_private *dma_private = runtime->private_data;
526 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
527 	struct device *dev = rtd->platform->dev;
528 
529 	/* Number of bits per sample */
530 	unsigned int sample_size =
531 		snd_pcm_format_physical_width(params_format(hw_params));
532 
533 	/* Number of bytes per frame */
534 	unsigned int frame_size = 2 * (sample_size / 8);
535 
536 	/* Bus address of SSI STX register */
537 	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
538 
539 	/* Size of the DMA buffer, in bytes */
540 	size_t buffer_size = params_buffer_bytes(hw_params);
541 
542 	/* Number of bytes per period */
543 	size_t period_size = params_period_bytes(hw_params);
544 
545 	/* Pointer to next period */
546 	dma_addr_t temp_addr = substream->dma_buffer.addr;
547 
548 	/* Pointer to DMA controller */
549 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
550 
551 	u32 mr; /* DMA Mode Register */
552 
553 	unsigned int i;
554 
555 	/* Initialize our DMA tracking variables */
556 	dma_private->period_size = period_size;
557 	dma_private->num_periods = params_periods(hw_params);
558 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
559 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
560 		(NUM_DMA_LINKS * period_size);
561 
562 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
563 		/* This happens if the number of periods == NUM_DMA_LINKS */
564 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
565 
566 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
567 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
568 
569 	/* Due to a quirk of the SSI's STX register, the target address
570 	 * for the DMA operations depends on the sample size.  So we calculate
571 	 * that offset here.  While we're at it, also tell the DMA controller
572 	 * how much data to transfer per sample.
573 	 */
574 	switch (sample_size) {
575 	case 8:
576 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
577 		ssi_sxx_phys += 3;
578 		break;
579 	case 16:
580 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
581 		ssi_sxx_phys += 2;
582 		break;
583 	case 32:
584 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
585 		break;
586 	default:
587 		/* We should never get here */
588 		dev_err(dev, "unsupported sample size %u\n", sample_size);
589 		return -EINVAL;
590 	}
591 
592 	/*
593 	 * BWC should always be a multiple of the frame size.  BWC determines
594 	 * how many bytes are sent/received before the DMA controller checks the
595 	 * SSI to see if it needs to stop.  For playback, the transmit FIFO can
596 	 * hold three frames, so we want to send two frames at a time. For
597 	 * capture, the receive FIFO is triggered when it contains one frame, so
598 	 * we want to receive one frame at a time.
599 	 */
600 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
601 		mr |= CCSR_DMA_MR_BWC(2 * frame_size);
602 	else
603 		mr |= CCSR_DMA_MR_BWC(frame_size);
604 
605 	out_be32(&dma_channel->mr, mr);
606 
607 	for (i = 0; i < NUM_DMA_LINKS; i++) {
608 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
609 
610 		link->count = cpu_to_be32(period_size);
611 
612 		/* Even though the DMA controller supports 36-bit addressing,
613 		 * for simplicity we allow only 32-bit addresses for the audio
614 		 * buffer itself.  This was enforced in fsl_dma_new() with the
615 		 * DMA mask.
616 		 *
617 		 * The snoop bit tells the DMA controller whether it should tell
618 		 * the ECM to snoop during a read or write to an address. For
619 		 * audio, we use DMA to transfer data between memory and an I/O
620 		 * device (the SSI's STX0 or SRX0 register). Snooping is only
621 		 * needed if there is a cache, so we need to snoop memory
622 		 * addresses only.  For playback, that means we snoop the source
623 		 * but not the destination.  For capture, we snoop the
624 		 * destination but not the source.
625 		 *
626 		 * Note that failing to snoop properly is unlikely to cause
627 		 * cache incoherency if the period size is larger than the
628 		 * size of L1 cache.  This is because filling in one period will
629 		 * flush out the data for the previous period.  So if you
630 		 * increased period_bytes_min to a large enough size, you might
631 		 * get more performance by not snooping, and you'll still be
632 		 * okay.
633 		 */
634 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
635 			link->source_addr = cpu_to_be32(temp_addr);
636 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
637 
638 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
639 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
640 		} else {
641 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
642 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
643 
644 			link->dest_addr = cpu_to_be32(temp_addr);
645 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
646 		}
647 
648 		temp_addr += period_size;
649 	}
650 
651 	return 0;
652 }
653 
654 /**
655  * fsl_dma_pointer: determine the current position of the DMA transfer
656  *
657  * This function is called by ALSA when ALSA wants to know where in the
658  * stream buffer the hardware currently is.
659  *
660  * For playback, the SAR register contains the physical address of the most
661  * recent DMA transfer.  For capture, the value is in the DAR register.
662  *
663  * The base address of the buffer is stored in the source_addr field of the
664  * first link descriptor.
665  */
666 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
667 {
668 	struct snd_pcm_runtime *runtime = substream->runtime;
669 	struct fsl_dma_private *dma_private = runtime->private_data;
670 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
671 	struct device *dev = rtd->platform->dev;
672 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
673 	dma_addr_t position;
674 	snd_pcm_uframes_t frames;
675 
676 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
677 		position = in_be32(&dma_channel->sar);
678 	else
679 		position = in_be32(&dma_channel->dar);
680 
681 	/*
682 	 * When capture is started, the SSI immediately starts to fill its FIFO.
683 	 * This means that the DMA controller is not started until the FIFO is
684 	 * full.  However, ALSA calls this function before that happens, when
685 	 * MR.DAR is still zero.  In this case, just return zero to indicate
686 	 * that nothing has been received yet.
687 	 */
688 	if (!position)
689 		return 0;
690 
691 	if ((position < dma_private->dma_buf_phys) ||
692 	    (position > dma_private->dma_buf_end)) {
693 		dev_err(dev, "dma pointer is out of range, halting stream\n");
694 		return SNDRV_PCM_POS_XRUN;
695 	}
696 
697 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
698 
699 	/*
700 	 * If the current address is just past the end of the buffer, wrap it
701 	 * around.
702 	 */
703 	if (frames == runtime->buffer_size)
704 		frames = 0;
705 
706 	return frames;
707 }
708 
709 /**
710  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
711  *
712  * Release the resources allocated in fsl_dma_hw_params() and de-program the
713  * registers.
714  *
715  * This function can be called multiple times.
716  */
717 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
718 {
719 	struct snd_pcm_runtime *runtime = substream->runtime;
720 	struct fsl_dma_private *dma_private = runtime->private_data;
721 
722 	if (dma_private) {
723 		struct ccsr_dma_channel __iomem *dma_channel;
724 
725 		dma_channel = dma_private->dma_channel;
726 
727 		/* Stop the DMA */
728 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
729 		out_be32(&dma_channel->mr, 0);
730 
731 		/* Reset all the other registers */
732 		out_be32(&dma_channel->sr, -1);
733 		out_be32(&dma_channel->clndar, 0);
734 		out_be32(&dma_channel->eclndar, 0);
735 		out_be32(&dma_channel->satr, 0);
736 		out_be32(&dma_channel->sar, 0);
737 		out_be32(&dma_channel->datr, 0);
738 		out_be32(&dma_channel->dar, 0);
739 		out_be32(&dma_channel->bcr, 0);
740 		out_be32(&dma_channel->nlndar, 0);
741 		out_be32(&dma_channel->enlndar, 0);
742 	}
743 
744 	return 0;
745 }
746 
747 /**
748  * fsl_dma_close: close the stream.
749  */
750 static int fsl_dma_close(struct snd_pcm_substream *substream)
751 {
752 	struct snd_pcm_runtime *runtime = substream->runtime;
753 	struct fsl_dma_private *dma_private = runtime->private_data;
754 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
755 	struct device *dev = rtd->platform->dev;
756 	struct dma_object *dma =
757 		container_of(rtd->platform->driver, struct dma_object, dai);
758 
759 	if (dma_private) {
760 		if (dma_private->irq)
761 			free_irq(dma_private->irq, dma_private);
762 
763 		if (dma_private->ld_buf_phys) {
764 			dma_unmap_single(dev, dma_private->ld_buf_phys,
765 					 sizeof(dma_private->link),
766 					 DMA_TO_DEVICE);
767 		}
768 
769 		/* Deallocate the fsl_dma_private structure */
770 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
771 				  dma_private, dma_private->ld_buf_phys);
772 		substream->runtime->private_data = NULL;
773 	}
774 
775 	dma->assigned = 0;
776 
777 	return 0;
778 }
779 
780 /*
781  * Remove this PCM driver.
782  */
783 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
784 {
785 	struct snd_pcm_substream *substream;
786 	unsigned int i;
787 
788 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
789 		substream = pcm->streams[i].substream;
790 		if (substream) {
791 			snd_dma_free_pages(&substream->dma_buffer);
792 			substream->dma_buffer.area = NULL;
793 			substream->dma_buffer.addr = 0;
794 		}
795 	}
796 }
797 
798 /* List of DMA nodes that we've probed */
799 static LIST_HEAD(dma_list);
800 
801 /**
802  * find_ssi_node -- returns the SSI node that points to his DMA channel node
803  *
804  * Although this DMA driver attempts to operate independently of the other
805  * devices, it still needs to determine some information about the SSI device
806  * that it's working with.  Unfortunately, the device tree does not contain
807  * a pointer from the DMA channel node to the SSI node -- the pointer goes the
808  * other way.  So we need to scan the device tree for SSI nodes until we find
809  * the one that points to the given DMA channel node.  It's ugly, but at least
810  * it's contained in this one function.
811  */
812 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
813 {
814 	struct device_node *ssi_np, *np;
815 
816 	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
817 		/* Check each DMA phandle to see if it points to us.  We
818 		 * assume that device_node pointers are a valid comparison.
819 		 */
820 		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
821 		if (np == dma_channel_np)
822 			return ssi_np;
823 
824 		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
825 		if (np == dma_channel_np)
826 			return ssi_np;
827 	}
828 
829 	return NULL;
830 }
831 
832 static struct snd_pcm_ops fsl_dma_ops = {
833 	.open   	= fsl_dma_open,
834 	.close  	= fsl_dma_close,
835 	.ioctl  	= snd_pcm_lib_ioctl,
836 	.hw_params      = fsl_dma_hw_params,
837 	.hw_free	= fsl_dma_hw_free,
838 	.pointer	= fsl_dma_pointer,
839 };
840 
841 static int __devinit fsl_soc_dma_probe(struct of_device *of_dev,
842 				       const struct of_device_id *match)
843  {
844 	struct dma_object *dma;
845 	struct device_node *np = of_dev->dev.of_node;
846 	struct device_node *ssi_np;
847 	struct resource res;
848 	int ret;
849 
850 	/* Find the SSI node that points to us. */
851 	ssi_np = find_ssi_node(np);
852 	if (!ssi_np) {
853 		dev_err(&of_dev->dev, "cannot find parent SSI node\n");
854 		return -ENODEV;
855 	}
856 
857 	ret = of_address_to_resource(ssi_np, 0, &res);
858 	of_node_put(ssi_np);
859 	if (ret) {
860 		dev_err(&of_dev->dev, "could not determine device resources\n");
861 		return ret;
862 	}
863 
864 	dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
865 	if (!dma) {
866 		dev_err(&of_dev->dev, "could not allocate dma object\n");
867 		return -ENOMEM;
868 	}
869 
870 	strcpy(dma->path, np->full_name);
871 	dma->dai.ops = &fsl_dma_ops;
872 	dma->dai.pcm_new = fsl_dma_new;
873 	dma->dai.pcm_free = fsl_dma_free_dma_buffers;
874 
875 	/* Store the SSI-specific information that we need */
876 	dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
877 	dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
878 
879 	ret = snd_soc_register_platform(&of_dev->dev, &dma->dai);
880 	if (ret) {
881 		dev_err(&of_dev->dev, "could not register platform\n");
882 		kfree(dma);
883 		return ret;
884 	}
885 
886 	dma->channel = of_iomap(np, 0);
887 	dma->irq = irq_of_parse_and_map(np, 0);
888 	list_add(&dma->list, &dma_list);
889 
890 	return 0;
891 }
892 
893 static int __devexit fsl_soc_dma_remove(struct of_device *of_dev)
894 {
895 	struct list_head *n, *ptr;
896 	struct dma_object *dma;
897 
898 	list_for_each_safe(ptr, n, &dma_list) {
899 		dma = list_entry(ptr, struct dma_object, list);
900 		list_del_init(ptr);
901 
902 		snd_soc_unregister_platform(&of_dev->dev);
903 		iounmap(dma->channel);
904 		irq_dispose_mapping(dma->irq);
905 		kfree(dma);
906 	}
907 
908 	return 0;
909 }
910 
911 static const struct of_device_id fsl_soc_dma_ids[] = {
912 	{ .compatible = "fsl,ssi-dma-channel", },
913 	{}
914 };
915 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
916 
917 static struct of_platform_driver fsl_soc_dma_driver = {
918 	.driver = {
919 		.name = "fsl-pcm-audio",
920 		.owner = THIS_MODULE,
921 		.of_match_table = fsl_soc_dma_ids,
922 	},
923 	.probe = fsl_soc_dma_probe,
924 	.remove = __devexit_p(fsl_soc_dma_remove),
925 };
926 
927 static int __init fsl_soc_dma_init(void)
928 {
929 	pr_info("Freescale Elo DMA ASoC PCM Driver\n");
930 
931 	return of_register_platform_driver(&fsl_soc_dma_driver);
932 }
933 
934 static void __exit fsl_soc_dma_exit(void)
935 {
936 	of_unregister_platform_driver(&fsl_soc_dma_driver);
937 }
938 
939 /* We want the DMA driver to be initialized before the SSI driver, so that
940  * when the SSI driver calls fsl_soc_dma_dai_from_node(), the DMA driver
941  * will already have been probed.  The easiest way to do that is to make the
942  * __init function called via arch_initcall().
943  */
944 module_init(fsl_soc_dma_init);
945 module_exit(fsl_soc_dma_exit);
946 
947 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
948 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
949 MODULE_LICENSE("GPL v2");
950