xref: /linux/sound/soc/fsl/fsl_dma.c (revision cf7af01aa77ec1b17687f5328ce0a598709efd59)
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  * This driver implements ASoC support for the Elo DMA controller, which is
13  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14  * the PCM driver is what handles the DMA buffer.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/gfp.h>
24 #include <linux/of_platform.h>
25 #include <linux/list.h>
26 
27 #include <sound/core.h>
28 #include <sound/pcm.h>
29 #include <sound/pcm_params.h>
30 #include <sound/soc.h>
31 
32 #include <asm/io.h>
33 
34 #include "fsl_dma.h"
35 #include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
36 
37 /*
38  * The formats that the DMA controller supports, which is anything
39  * that is 8, 16, or 32 bits.
40  */
41 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
42 			    SNDRV_PCM_FMTBIT_U8 	| \
43 			    SNDRV_PCM_FMTBIT_S16_LE     | \
44 			    SNDRV_PCM_FMTBIT_S16_BE     | \
45 			    SNDRV_PCM_FMTBIT_U16_LE     | \
46 			    SNDRV_PCM_FMTBIT_U16_BE     | \
47 			    SNDRV_PCM_FMTBIT_S24_LE     | \
48 			    SNDRV_PCM_FMTBIT_S24_BE     | \
49 			    SNDRV_PCM_FMTBIT_U24_LE     | \
50 			    SNDRV_PCM_FMTBIT_U24_BE     | \
51 			    SNDRV_PCM_FMTBIT_S32_LE     | \
52 			    SNDRV_PCM_FMTBIT_S32_BE     | \
53 			    SNDRV_PCM_FMTBIT_U32_LE     | \
54 			    SNDRV_PCM_FMTBIT_U32_BE)
55 
56 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
57 			  SNDRV_PCM_RATE_CONTINUOUS)
58 
59 struct dma_object {
60 	struct snd_soc_platform_driver dai;
61 	dma_addr_t ssi_stx_phys;
62 	dma_addr_t ssi_srx_phys;
63 	struct ccsr_dma_channel __iomem *channel;
64 	unsigned int irq;
65 	bool assigned;
66 	char path[1];
67 };
68 
69 /*
70  * The number of DMA links to use.  Two is the bare minimum, but if you
71  * have really small links you might need more.
72  */
73 #define NUM_DMA_LINKS   2
74 
75 /** fsl_dma_private: p-substream DMA data
76  *
77  * Each substream has a 1-to-1 association with a DMA channel.
78  *
79  * The link[] array is first because it needs to be aligned on a 32-byte
80  * boundary, so putting it first will ensure alignment without padding the
81  * structure.
82  *
83  * @link[]: array of link descriptors
84  * @dma_channel: pointer to the DMA channel's registers
85  * @irq: IRQ for this DMA channel
86  * @substream: pointer to the substream object, needed by the ISR
87  * @ssi_sxx_phys: bus address of the STX or SRX register to use
88  * @ld_buf_phys: physical address of the LD buffer
89  * @current_link: index into link[] of the link currently being processed
90  * @dma_buf_phys: physical address of the DMA buffer
91  * @dma_buf_next: physical address of the next period to process
92  * @dma_buf_end: physical address of the byte after the end of the DMA
93  * @buffer period_size: the size of a single period
94  * @num_periods: the number of periods in the DMA buffer
95  */
96 struct fsl_dma_private {
97 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
98 	struct ccsr_dma_channel __iomem *dma_channel;
99 	unsigned int irq;
100 	struct snd_pcm_substream *substream;
101 	dma_addr_t ssi_sxx_phys;
102 	dma_addr_t ld_buf_phys;
103 	unsigned int current_link;
104 	dma_addr_t dma_buf_phys;
105 	dma_addr_t dma_buf_next;
106 	dma_addr_t dma_buf_end;
107 	size_t period_size;
108 	unsigned int num_periods;
109 };
110 
111 /**
112  * fsl_dma_hardare: define characteristics of the PCM hardware.
113  *
114  * The PCM hardware is the Freescale DMA controller.  This structure defines
115  * the capabilities of that hardware.
116  *
117  * Since the sampling rate and data format are not controlled by the DMA
118  * controller, we specify no limits for those values.  The only exception is
119  * period_bytes_min, which is set to a reasonably low value to prevent the
120  * DMA controller from generating too many interrupts per second.
121  *
122  * Since each link descriptor has a 32-bit byte count field, we set
123  * period_bytes_max to the largest 32-bit number.  We also have no maximum
124  * number of periods.
125  *
126  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
127  * limitation in the SSI driver requires the sample rates for playback and
128  * capture to be the same.
129  */
130 static const struct snd_pcm_hardware fsl_dma_hardware = {
131 
132 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
133 				  SNDRV_PCM_INFO_MMAP |
134 				  SNDRV_PCM_INFO_MMAP_VALID |
135 				  SNDRV_PCM_INFO_JOINT_DUPLEX |
136 				  SNDRV_PCM_INFO_PAUSE,
137 	.formats		= FSLDMA_PCM_FORMATS,
138 	.rates  		= FSLDMA_PCM_RATES,
139 	.rate_min       	= 5512,
140 	.rate_max       	= 192000,
141 	.period_bytes_min       = 512,  	/* A reasonable limit */
142 	.period_bytes_max       = (u32) -1,
143 	.periods_min    	= NUM_DMA_LINKS,
144 	.periods_max    	= (unsigned int) -1,
145 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
146 };
147 
148 /**
149  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
150  *
151  * This function should be called by the ISR whenever the DMA controller
152  * halts data transfer.
153  */
154 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
155 {
156 	unsigned long flags;
157 
158 	snd_pcm_stream_lock_irqsave(substream, flags);
159 
160 	if (snd_pcm_running(substream))
161 		snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
162 
163 	snd_pcm_stream_unlock_irqrestore(substream, flags);
164 }
165 
166 /**
167  * fsl_dma_update_pointers - update LD pointers to point to the next period
168  *
169  * As each period is completed, this function changes the the link
170  * descriptor pointers for that period to point to the next period.
171  */
172 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
173 {
174 	struct fsl_dma_link_descriptor *link =
175 		&dma_private->link[dma_private->current_link];
176 
177 	/* Update our link descriptors to point to the next period. On a 36-bit
178 	 * system, we also need to update the ESAD bits.  We also set (keep) the
179 	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
180 	 */
181 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
182 		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
183 #ifdef CONFIG_PHYS_64BIT
184 		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
185 			upper_32_bits(dma_private->dma_buf_next));
186 #endif
187 	} else {
188 		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
189 #ifdef CONFIG_PHYS_64BIT
190 		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
191 			upper_32_bits(dma_private->dma_buf_next));
192 #endif
193 	}
194 
195 	/* Update our variables for next time */
196 	dma_private->dma_buf_next += dma_private->period_size;
197 
198 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
199 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
200 
201 	if (++dma_private->current_link >= NUM_DMA_LINKS)
202 		dma_private->current_link = 0;
203 }
204 
205 /**
206  * fsl_dma_isr: interrupt handler for the DMA controller
207  *
208  * @irq: IRQ of the DMA channel
209  * @dev_id: pointer to the dma_private structure for this DMA channel
210  */
211 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
212 {
213 	struct fsl_dma_private *dma_private = dev_id;
214 	struct snd_pcm_substream *substream = dma_private->substream;
215 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
216 	struct device *dev = rtd->platform->dev;
217 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
218 	irqreturn_t ret = IRQ_NONE;
219 	u32 sr, sr2 = 0;
220 
221 	/* We got an interrupt, so read the status register to see what we
222 	   were interrupted for.
223 	 */
224 	sr = in_be32(&dma_channel->sr);
225 
226 	if (sr & CCSR_DMA_SR_TE) {
227 		dev_err(dev, "dma transmit error\n");
228 		fsl_dma_abort_stream(substream);
229 		sr2 |= CCSR_DMA_SR_TE;
230 		ret = IRQ_HANDLED;
231 	}
232 
233 	if (sr & CCSR_DMA_SR_CH)
234 		ret = IRQ_HANDLED;
235 
236 	if (sr & CCSR_DMA_SR_PE) {
237 		dev_err(dev, "dma programming error\n");
238 		fsl_dma_abort_stream(substream);
239 		sr2 |= CCSR_DMA_SR_PE;
240 		ret = IRQ_HANDLED;
241 	}
242 
243 	if (sr & CCSR_DMA_SR_EOLNI) {
244 		sr2 |= CCSR_DMA_SR_EOLNI;
245 		ret = IRQ_HANDLED;
246 	}
247 
248 	if (sr & CCSR_DMA_SR_CB)
249 		ret = IRQ_HANDLED;
250 
251 	if (sr & CCSR_DMA_SR_EOSI) {
252 		/* Tell ALSA we completed a period. */
253 		snd_pcm_period_elapsed(substream);
254 
255 		/*
256 		 * Update our link descriptors to point to the next period. We
257 		 * only need to do this if the number of periods is not equal to
258 		 * the number of links.
259 		 */
260 		if (dma_private->num_periods != NUM_DMA_LINKS)
261 			fsl_dma_update_pointers(dma_private);
262 
263 		sr2 |= CCSR_DMA_SR_EOSI;
264 		ret = IRQ_HANDLED;
265 	}
266 
267 	if (sr & CCSR_DMA_SR_EOLSI) {
268 		sr2 |= CCSR_DMA_SR_EOLSI;
269 		ret = IRQ_HANDLED;
270 	}
271 
272 	/* Clear the bits that we set */
273 	if (sr2)
274 		out_be32(&dma_channel->sr, sr2);
275 
276 	return ret;
277 }
278 
279 /**
280  * fsl_dma_new: initialize this PCM driver.
281  *
282  * This function is called when the codec driver calls snd_soc_new_pcms(),
283  * once for each .dai_link in the machine driver's snd_soc_card
284  * structure.
285  *
286  * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
287  * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
288  * is specified. Therefore, any DMA buffers we allocate will always be in low
289  * memory, but we support for 36-bit physical addresses anyway.
290  *
291  * Regardless of where the memory is actually allocated, since the device can
292  * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
293  */
294 static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
295 	struct snd_pcm *pcm)
296 {
297 	static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
298 	int ret;
299 
300 	if (!card->dev->dma_mask)
301 		card->dev->dma_mask = &fsl_dma_dmamask;
302 
303 	if (!card->dev->coherent_dma_mask)
304 		card->dev->coherent_dma_mask = fsl_dma_dmamask;
305 
306 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
307 		fsl_dma_hardware.buffer_bytes_max,
308 		&pcm->streams[0].substream->dma_buffer);
309 	if (ret) {
310 		dev_err(card->dev, "can't allocate playback dma buffer\n");
311 		return ret;
312 	}
313 
314 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
315 		fsl_dma_hardware.buffer_bytes_max,
316 		&pcm->streams[1].substream->dma_buffer);
317 	if (ret) {
318 		snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
319 		dev_err(card->dev, "can't allocate capture dma buffer\n");
320 		return ret;
321 	}
322 
323 	return 0;
324 }
325 
326 /**
327  * fsl_dma_open: open a new substream.
328  *
329  * Each substream has its own DMA buffer.
330  *
331  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
332  * descriptors that ping-pong from one period to the next.  For example, if
333  * there are six periods and two link descriptors, this is how they look
334  * before playback starts:
335  *
336  *      	   The last link descriptor
337  *   ____________  points back to the first
338  *  |   	 |
339  *  V   	 |
340  *  ___    ___   |
341  * |   |->|   |->|
342  * |___|  |___|
343  *   |      |
344  *   |      |
345  *   V      V
346  *  _________________________________________
347  * |      |      |      |      |      |      |  The DMA buffer is
348  * |      |      |      |      |      |      |    divided into 6 parts
349  * |______|______|______|______|______|______|
350  *
351  * and here's how they look after the first period is finished playing:
352  *
353  *   ____________
354  *  |   	 |
355  *  V   	 |
356  *  ___    ___   |
357  * |   |->|   |->|
358  * |___|  |___|
359  *   |      |
360  *   |______________
361  *          |       |
362  *          V       V
363  *  _________________________________________
364  * |      |      |      |      |      |      |
365  * |      |      |      |      |      |      |
366  * |______|______|______|______|______|______|
367  *
368  * The first link descriptor now points to the third period.  The DMA
369  * controller is currently playing the second period.  When it finishes, it
370  * will jump back to the first descriptor and play the third period.
371  *
372  * There are four reasons we do this:
373  *
374  * 1. The only way to get the DMA controller to automatically restart the
375  *    transfer when it gets to the end of the buffer is to use chaining
376  *    mode.  Basic direct mode doesn't offer that feature.
377  * 2. We need to receive an interrupt at the end of every period.  The DMA
378  *    controller can generate an interrupt at the end of every link transfer
379  *    (aka segment).  Making each period into a DMA segment will give us the
380  *    interrupts we need.
381  * 3. By creating only two link descriptors, regardless of the number of
382  *    periods, we do not need to reallocate the link descriptors if the
383  *    number of periods changes.
384  * 4. All of the audio data is still stored in a single, contiguous DMA
385  *    buffer, which is what ALSA expects.  We're just dividing it into
386  *    contiguous parts, and creating a link descriptor for each one.
387  */
388 static int fsl_dma_open(struct snd_pcm_substream *substream)
389 {
390 	struct snd_pcm_runtime *runtime = substream->runtime;
391 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
392 	struct device *dev = rtd->platform->dev;
393 	struct dma_object *dma =
394 		container_of(rtd->platform->driver, struct dma_object, dai);
395 	struct fsl_dma_private *dma_private;
396 	struct ccsr_dma_channel __iomem *dma_channel;
397 	dma_addr_t ld_buf_phys;
398 	u64 temp_link;  	/* Pointer to next link descriptor */
399 	u32 mr;
400 	unsigned int channel;
401 	int ret = 0;
402 	unsigned int i;
403 
404 	/*
405 	 * Reject any DMA buffer whose size is not a multiple of the period
406 	 * size.  We need to make sure that the DMA buffer can be evenly divided
407 	 * into periods.
408 	 */
409 	ret = snd_pcm_hw_constraint_integer(runtime,
410 		SNDRV_PCM_HW_PARAM_PERIODS);
411 	if (ret < 0) {
412 		dev_err(dev, "invalid buffer size\n");
413 		return ret;
414 	}
415 
416 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
417 
418 	if (dma->assigned) {
419 		dev_err(dev, "dma channel already assigned\n");
420 		return -EBUSY;
421 	}
422 
423 	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
424 					 &ld_buf_phys, GFP_KERNEL);
425 	if (!dma_private) {
426 		dev_err(dev, "can't allocate dma private data\n");
427 		return -ENOMEM;
428 	}
429 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
430 		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
431 	else
432 		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
433 
434 	dma_private->dma_channel = dma->channel;
435 	dma_private->irq = dma->irq;
436 	dma_private->substream = substream;
437 	dma_private->ld_buf_phys = ld_buf_phys;
438 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
439 
440 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
441 	if (ret) {
442 		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
443 			dma_private->irq, ret);
444 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
445 			dma_private, dma_private->ld_buf_phys);
446 		return ret;
447 	}
448 
449 	dma->assigned = 1;
450 
451 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
452 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
453 	runtime->private_data = dma_private;
454 
455 	/* Program the fixed DMA controller parameters */
456 
457 	dma_channel = dma_private->dma_channel;
458 
459 	temp_link = dma_private->ld_buf_phys +
460 		sizeof(struct fsl_dma_link_descriptor);
461 
462 	for (i = 0; i < NUM_DMA_LINKS; i++) {
463 		dma_private->link[i].next = cpu_to_be64(temp_link);
464 
465 		temp_link += sizeof(struct fsl_dma_link_descriptor);
466 	}
467 	/* The last link descriptor points to the first */
468 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
469 
470 	/* Tell the DMA controller where the first link descriptor is */
471 	out_be32(&dma_channel->clndar,
472 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
473 	out_be32(&dma_channel->eclndar,
474 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
475 
476 	/* The manual says the BCR must be clear before enabling EMP */
477 	out_be32(&dma_channel->bcr, 0);
478 
479 	/*
480 	 * Program the mode register for interrupts, external master control,
481 	 * and source/destination hold.  Also clear the Channel Abort bit.
482 	 */
483 	mr = in_be32(&dma_channel->mr) &
484 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
485 
486 	/*
487 	 * We want External Master Start and External Master Pause enabled,
488 	 * because the SSI is controlling the DMA controller.  We want the DMA
489 	 * controller to be set up in advance, and then we signal only the SSI
490 	 * to start transferring.
491 	 *
492 	 * We want End-Of-Segment Interrupts enabled, because this will generate
493 	 * an interrupt at the end of each segment (each link descriptor
494 	 * represents one segment).  Each DMA segment is the same thing as an
495 	 * ALSA period, so this is how we get an interrupt at the end of every
496 	 * period.
497 	 *
498 	 * We want Error Interrupt enabled, so that we can get an error if
499 	 * the DMA controller is mis-programmed somehow.
500 	 */
501 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
502 		CCSR_DMA_MR_EMS_EN;
503 
504 	/* For playback, we want the destination address to be held.  For
505 	   capture, set the source address to be held. */
506 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
507 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
508 
509 	out_be32(&dma_channel->mr, mr);
510 
511 	return 0;
512 }
513 
514 /**
515  * fsl_dma_hw_params: continue initializing the DMA links
516  *
517  * This function obtains hardware parameters about the opened stream and
518  * programs the DMA controller accordingly.
519  *
520  * One drawback of big-endian is that when copying integers of different
521  * sizes to a fixed-sized register, the address to which the integer must be
522  * copied is dependent on the size of the integer.
523  *
524  * For example, if P is the address of a 32-bit register, and X is a 32-bit
525  * integer, then X should be copied to address P.  However, if X is a 16-bit
526  * integer, then it should be copied to P+2.  If X is an 8-bit register,
527  * then it should be copied to P+3.
528  *
529  * So for playback of 8-bit samples, the DMA controller must transfer single
530  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
531  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
532  *
533  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
534  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
535  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
536  * 24-bit data must be padded to 32 bits.
537  */
538 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
539 	struct snd_pcm_hw_params *hw_params)
540 {
541 	struct snd_pcm_runtime *runtime = substream->runtime;
542 	struct fsl_dma_private *dma_private = runtime->private_data;
543 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
544 	struct device *dev = rtd->platform->dev;
545 
546 	/* Number of bits per sample */
547 	unsigned int sample_size =
548 		snd_pcm_format_physical_width(params_format(hw_params));
549 
550 	/* Number of bytes per frame */
551 	unsigned int frame_size = 2 * (sample_size / 8);
552 
553 	/* Bus address of SSI STX register */
554 	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
555 
556 	/* Size of the DMA buffer, in bytes */
557 	size_t buffer_size = params_buffer_bytes(hw_params);
558 
559 	/* Number of bytes per period */
560 	size_t period_size = params_period_bytes(hw_params);
561 
562 	/* Pointer to next period */
563 	dma_addr_t temp_addr = substream->dma_buffer.addr;
564 
565 	/* Pointer to DMA controller */
566 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
567 
568 	u32 mr; /* DMA Mode Register */
569 
570 	unsigned int i;
571 
572 	/* Initialize our DMA tracking variables */
573 	dma_private->period_size = period_size;
574 	dma_private->num_periods = params_periods(hw_params);
575 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
576 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
577 		(NUM_DMA_LINKS * period_size);
578 
579 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
580 		/* This happens if the number of periods == NUM_DMA_LINKS */
581 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
582 
583 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
584 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
585 
586 	/* Due to a quirk of the SSI's STX register, the target address
587 	 * for the DMA operations depends on the sample size.  So we calculate
588 	 * that offset here.  While we're at it, also tell the DMA controller
589 	 * how much data to transfer per sample.
590 	 */
591 	switch (sample_size) {
592 	case 8:
593 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
594 		ssi_sxx_phys += 3;
595 		break;
596 	case 16:
597 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
598 		ssi_sxx_phys += 2;
599 		break;
600 	case 32:
601 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
602 		break;
603 	default:
604 		/* We should never get here */
605 		dev_err(dev, "unsupported sample size %u\n", sample_size);
606 		return -EINVAL;
607 	}
608 
609 	/*
610 	 * BWC should always be a multiple of the frame size.  BWC determines
611 	 * how many bytes are sent/received before the DMA controller checks the
612 	 * SSI to see if it needs to stop.  For playback, the transmit FIFO can
613 	 * hold three frames, so we want to send two frames at a time. For
614 	 * capture, the receive FIFO is triggered when it contains one frame, so
615 	 * we want to receive one frame at a time.
616 	 */
617 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
618 		mr |= CCSR_DMA_MR_BWC(2 * frame_size);
619 	else
620 		mr |= CCSR_DMA_MR_BWC(frame_size);
621 
622 	out_be32(&dma_channel->mr, mr);
623 
624 	for (i = 0; i < NUM_DMA_LINKS; i++) {
625 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
626 
627 		link->count = cpu_to_be32(period_size);
628 
629 		/* The snoop bit tells the DMA controller whether it should tell
630 		 * the ECM to snoop during a read or write to an address. For
631 		 * audio, we use DMA to transfer data between memory and an I/O
632 		 * device (the SSI's STX0 or SRX0 register). Snooping is only
633 		 * needed if there is a cache, so we need to snoop memory
634 		 * addresses only.  For playback, that means we snoop the source
635 		 * but not the destination.  For capture, we snoop the
636 		 * destination but not the source.
637 		 *
638 		 * Note that failing to snoop properly is unlikely to cause
639 		 * cache incoherency if the period size is larger than the
640 		 * size of L1 cache.  This is because filling in one period will
641 		 * flush out the data for the previous period.  So if you
642 		 * increased period_bytes_min to a large enough size, you might
643 		 * get more performance by not snooping, and you'll still be
644 		 * okay.  You'll need to update fsl_dma_update_pointers() also.
645 		 */
646 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
647 			link->source_addr = cpu_to_be32(temp_addr);
648 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
649 				upper_32_bits(temp_addr));
650 
651 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
652 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
653 				upper_32_bits(ssi_sxx_phys));
654 		} else {
655 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
656 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
657 				upper_32_bits(ssi_sxx_phys));
658 
659 			link->dest_addr = cpu_to_be32(temp_addr);
660 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
661 				upper_32_bits(temp_addr));
662 		}
663 
664 		temp_addr += period_size;
665 	}
666 
667 	return 0;
668 }
669 
670 /**
671  * fsl_dma_pointer: determine the current position of the DMA transfer
672  *
673  * This function is called by ALSA when ALSA wants to know where in the
674  * stream buffer the hardware currently is.
675  *
676  * For playback, the SAR register contains the physical address of the most
677  * recent DMA transfer.  For capture, the value is in the DAR register.
678  *
679  * The base address of the buffer is stored in the source_addr field of the
680  * first link descriptor.
681  */
682 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
683 {
684 	struct snd_pcm_runtime *runtime = substream->runtime;
685 	struct fsl_dma_private *dma_private = runtime->private_data;
686 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
687 	struct device *dev = rtd->platform->dev;
688 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
689 	dma_addr_t position;
690 	snd_pcm_uframes_t frames;
691 
692 	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
693 	 * only have 32-bit DMA addresses.  This function is typically called
694 	 * in interrupt context, so we need to optimize it.
695 	 */
696 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
697 		position = in_be32(&dma_channel->sar);
698 #ifdef CONFIG_PHYS_64BIT
699 		position |= (u64)(in_be32(&dma_channel->satr) &
700 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
701 #endif
702 	} else {
703 		position = in_be32(&dma_channel->dar);
704 #ifdef CONFIG_PHYS_64BIT
705 		position |= (u64)(in_be32(&dma_channel->datr) &
706 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
707 #endif
708 	}
709 
710 	/*
711 	 * When capture is started, the SSI immediately starts to fill its FIFO.
712 	 * This means that the DMA controller is not started until the FIFO is
713 	 * full.  However, ALSA calls this function before that happens, when
714 	 * MR.DAR is still zero.  In this case, just return zero to indicate
715 	 * that nothing has been received yet.
716 	 */
717 	if (!position)
718 		return 0;
719 
720 	if ((position < dma_private->dma_buf_phys) ||
721 	    (position > dma_private->dma_buf_end)) {
722 		dev_err(dev, "dma pointer is out of range, halting stream\n");
723 		return SNDRV_PCM_POS_XRUN;
724 	}
725 
726 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
727 
728 	/*
729 	 * If the current address is just past the end of the buffer, wrap it
730 	 * around.
731 	 */
732 	if (frames == runtime->buffer_size)
733 		frames = 0;
734 
735 	return frames;
736 }
737 
738 /**
739  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
740  *
741  * Release the resources allocated in fsl_dma_hw_params() and de-program the
742  * registers.
743  *
744  * This function can be called multiple times.
745  */
746 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
747 {
748 	struct snd_pcm_runtime *runtime = substream->runtime;
749 	struct fsl_dma_private *dma_private = runtime->private_data;
750 
751 	if (dma_private) {
752 		struct ccsr_dma_channel __iomem *dma_channel;
753 
754 		dma_channel = dma_private->dma_channel;
755 
756 		/* Stop the DMA */
757 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
758 		out_be32(&dma_channel->mr, 0);
759 
760 		/* Reset all the other registers */
761 		out_be32(&dma_channel->sr, -1);
762 		out_be32(&dma_channel->clndar, 0);
763 		out_be32(&dma_channel->eclndar, 0);
764 		out_be32(&dma_channel->satr, 0);
765 		out_be32(&dma_channel->sar, 0);
766 		out_be32(&dma_channel->datr, 0);
767 		out_be32(&dma_channel->dar, 0);
768 		out_be32(&dma_channel->bcr, 0);
769 		out_be32(&dma_channel->nlndar, 0);
770 		out_be32(&dma_channel->enlndar, 0);
771 	}
772 
773 	return 0;
774 }
775 
776 /**
777  * fsl_dma_close: close the stream.
778  */
779 static int fsl_dma_close(struct snd_pcm_substream *substream)
780 {
781 	struct snd_pcm_runtime *runtime = substream->runtime;
782 	struct fsl_dma_private *dma_private = runtime->private_data;
783 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
784 	struct device *dev = rtd->platform->dev;
785 	struct dma_object *dma =
786 		container_of(rtd->platform->driver, struct dma_object, dai);
787 
788 	if (dma_private) {
789 		if (dma_private->irq)
790 			free_irq(dma_private->irq, dma_private);
791 
792 		if (dma_private->ld_buf_phys) {
793 			dma_unmap_single(dev, dma_private->ld_buf_phys,
794 					 sizeof(dma_private->link),
795 					 DMA_TO_DEVICE);
796 		}
797 
798 		/* Deallocate the fsl_dma_private structure */
799 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
800 				  dma_private, dma_private->ld_buf_phys);
801 		substream->runtime->private_data = NULL;
802 	}
803 
804 	dma->assigned = 0;
805 
806 	return 0;
807 }
808 
809 /*
810  * Remove this PCM driver.
811  */
812 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
813 {
814 	struct snd_pcm_substream *substream;
815 	unsigned int i;
816 
817 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
818 		substream = pcm->streams[i].substream;
819 		if (substream) {
820 			snd_dma_free_pages(&substream->dma_buffer);
821 			substream->dma_buffer.area = NULL;
822 			substream->dma_buffer.addr = 0;
823 		}
824 	}
825 }
826 
827 /**
828  * find_ssi_node -- returns the SSI node that points to his DMA channel node
829  *
830  * Although this DMA driver attempts to operate independently of the other
831  * devices, it still needs to determine some information about the SSI device
832  * that it's working with.  Unfortunately, the device tree does not contain
833  * a pointer from the DMA channel node to the SSI node -- the pointer goes the
834  * other way.  So we need to scan the device tree for SSI nodes until we find
835  * the one that points to the given DMA channel node.  It's ugly, but at least
836  * it's contained in this one function.
837  */
838 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
839 {
840 	struct device_node *ssi_np, *np;
841 
842 	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
843 		/* Check each DMA phandle to see if it points to us.  We
844 		 * assume that device_node pointers are a valid comparison.
845 		 */
846 		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
847 		if (np == dma_channel_np)
848 			return ssi_np;
849 
850 		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
851 		if (np == dma_channel_np)
852 			return ssi_np;
853 	}
854 
855 	return NULL;
856 }
857 
858 static struct snd_pcm_ops fsl_dma_ops = {
859 	.open   	= fsl_dma_open,
860 	.close  	= fsl_dma_close,
861 	.ioctl  	= snd_pcm_lib_ioctl,
862 	.hw_params      = fsl_dma_hw_params,
863 	.hw_free	= fsl_dma_hw_free,
864 	.pointer	= fsl_dma_pointer,
865 };
866 
867 static int __devinit fsl_soc_dma_probe(struct of_device *of_dev,
868 				       const struct of_device_id *match)
869  {
870 	struct dma_object *dma;
871 	struct device_node *np = of_dev->dev.of_node;
872 	struct device_node *ssi_np;
873 	struct resource res;
874 	int ret;
875 
876 	/* Find the SSI node that points to us. */
877 	ssi_np = find_ssi_node(np);
878 	if (!ssi_np) {
879 		dev_err(&of_dev->dev, "cannot find parent SSI node\n");
880 		return -ENODEV;
881 	}
882 
883 	ret = of_address_to_resource(ssi_np, 0, &res);
884 	of_node_put(ssi_np);
885 	if (ret) {
886 		dev_err(&of_dev->dev, "could not determine device resources\n");
887 		return ret;
888 	}
889 
890 	dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
891 	if (!dma) {
892 		dev_err(&of_dev->dev, "could not allocate dma object\n");
893 		return -ENOMEM;
894 	}
895 
896 	strcpy(dma->path, np->full_name);
897 	dma->dai.ops = &fsl_dma_ops;
898 	dma->dai.pcm_new = fsl_dma_new;
899 	dma->dai.pcm_free = fsl_dma_free_dma_buffers;
900 
901 	/* Store the SSI-specific information that we need */
902 	dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
903 	dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
904 
905 	ret = snd_soc_register_platform(&of_dev->dev, &dma->dai);
906 	if (ret) {
907 		dev_err(&of_dev->dev, "could not register platform\n");
908 		kfree(dma);
909 		return ret;
910 	}
911 
912 	dma->channel = of_iomap(np, 0);
913 	dma->irq = irq_of_parse_and_map(np, 0);
914 
915 	dev_set_drvdata(&of_dev->dev, dma);
916 
917 	return 0;
918 }
919 
920 static int __devexit fsl_soc_dma_remove(struct of_device *of_dev)
921 {
922 	struct dma_object *dma = dev_get_drvdata(&of_dev->dev);
923 
924 	snd_soc_unregister_platform(&of_dev->dev);
925 	iounmap(dma->channel);
926 	irq_dispose_mapping(dma->irq);
927 	kfree(dma);
928 
929 	return 0;
930 }
931 
932 static const struct of_device_id fsl_soc_dma_ids[] = {
933 	{ .compatible = "fsl,ssi-dma-channel", },
934 	{}
935 };
936 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
937 
938 static struct of_platform_driver fsl_soc_dma_driver = {
939 	.driver = {
940 		.name = "fsl-pcm-audio",
941 		.owner = THIS_MODULE,
942 		.of_match_table = fsl_soc_dma_ids,
943 	},
944 	.probe = fsl_soc_dma_probe,
945 	.remove = __devexit_p(fsl_soc_dma_remove),
946 };
947 
948 static int __init fsl_soc_dma_init(void)
949 {
950 	pr_info("Freescale Elo DMA ASoC PCM Driver\n");
951 
952 	return of_register_platform_driver(&fsl_soc_dma_driver);
953 }
954 
955 static void __exit fsl_soc_dma_exit(void)
956 {
957 	of_unregister_platform_driver(&fsl_soc_dma_driver);
958 }
959 
960 module_init(fsl_soc_dma_init);
961 module_exit(fsl_soc_dma_exit);
962 
963 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
964 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
965 MODULE_LICENSE("GPL v2");
966