xref: /linux/sound/soc/fsl/fsl_dma.c (revision c04019d450a885a095a2ca38fcd5db8d57cd2718)
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  * This driver implements ASoC support for the Elo DMA controller, which is
13  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14  * the PCM driver is what handles the DMA buffer.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/gfp.h>
24 #include <linux/of_platform.h>
25 #include <linux/list.h>
26 
27 #include <sound/core.h>
28 #include <sound/pcm.h>
29 #include <sound/pcm_params.h>
30 #include <sound/soc.h>
31 
32 #include <asm/io.h>
33 
34 #include "fsl_dma.h"
35 #include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
36 
37 /*
38  * The formats that the DMA controller supports, which is anything
39  * that is 8, 16, or 32 bits.
40  */
41 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
42 			    SNDRV_PCM_FMTBIT_U8 	| \
43 			    SNDRV_PCM_FMTBIT_S16_LE     | \
44 			    SNDRV_PCM_FMTBIT_S16_BE     | \
45 			    SNDRV_PCM_FMTBIT_U16_LE     | \
46 			    SNDRV_PCM_FMTBIT_U16_BE     | \
47 			    SNDRV_PCM_FMTBIT_S24_LE     | \
48 			    SNDRV_PCM_FMTBIT_S24_BE     | \
49 			    SNDRV_PCM_FMTBIT_U24_LE     | \
50 			    SNDRV_PCM_FMTBIT_U24_BE     | \
51 			    SNDRV_PCM_FMTBIT_S32_LE     | \
52 			    SNDRV_PCM_FMTBIT_S32_BE     | \
53 			    SNDRV_PCM_FMTBIT_U32_LE     | \
54 			    SNDRV_PCM_FMTBIT_U32_BE)
55 
56 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
57 			  SNDRV_PCM_RATE_CONTINUOUS)
58 
59 struct dma_object {
60 	struct snd_soc_platform_driver dai;
61 	dma_addr_t ssi_stx_phys;
62 	dma_addr_t ssi_srx_phys;
63 	struct ccsr_dma_channel __iomem *channel;
64 	unsigned int irq;
65 	bool assigned;
66 	char path[1];
67 };
68 
69 /*
70  * The number of DMA links to use.  Two is the bare minimum, but if you
71  * have really small links you might need more.
72  */
73 #define NUM_DMA_LINKS   2
74 
75 /** fsl_dma_private: p-substream DMA data
76  *
77  * Each substream has a 1-to-1 association with a DMA channel.
78  *
79  * The link[] array is first because it needs to be aligned on a 32-byte
80  * boundary, so putting it first will ensure alignment without padding the
81  * structure.
82  *
83  * @link[]: array of link descriptors
84  * @dma_channel: pointer to the DMA channel's registers
85  * @irq: IRQ for this DMA channel
86  * @substream: pointer to the substream object, needed by the ISR
87  * @ssi_sxx_phys: bus address of the STX or SRX register to use
88  * @ld_buf_phys: physical address of the LD buffer
89  * @current_link: index into link[] of the link currently being processed
90  * @dma_buf_phys: physical address of the DMA buffer
91  * @dma_buf_next: physical address of the next period to process
92  * @dma_buf_end: physical address of the byte after the end of the DMA
93  * @buffer period_size: the size of a single period
94  * @num_periods: the number of periods in the DMA buffer
95  */
96 struct fsl_dma_private {
97 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
98 	struct ccsr_dma_channel __iomem *dma_channel;
99 	unsigned int irq;
100 	struct snd_pcm_substream *substream;
101 	dma_addr_t ssi_sxx_phys;
102 	dma_addr_t ld_buf_phys;
103 	unsigned int current_link;
104 	dma_addr_t dma_buf_phys;
105 	dma_addr_t dma_buf_next;
106 	dma_addr_t dma_buf_end;
107 	size_t period_size;
108 	unsigned int num_periods;
109 };
110 
111 /**
112  * fsl_dma_hardare: define characteristics of the PCM hardware.
113  *
114  * The PCM hardware is the Freescale DMA controller.  This structure defines
115  * the capabilities of that hardware.
116  *
117  * Since the sampling rate and data format are not controlled by the DMA
118  * controller, we specify no limits for those values.  The only exception is
119  * period_bytes_min, which is set to a reasonably low value to prevent the
120  * DMA controller from generating too many interrupts per second.
121  *
122  * Since each link descriptor has a 32-bit byte count field, we set
123  * period_bytes_max to the largest 32-bit number.  We also have no maximum
124  * number of periods.
125  *
126  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
127  * limitation in the SSI driver requires the sample rates for playback and
128  * capture to be the same.
129  */
130 static const struct snd_pcm_hardware fsl_dma_hardware = {
131 
132 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
133 				  SNDRV_PCM_INFO_MMAP |
134 				  SNDRV_PCM_INFO_MMAP_VALID |
135 				  SNDRV_PCM_INFO_JOINT_DUPLEX |
136 				  SNDRV_PCM_INFO_PAUSE,
137 	.formats		= FSLDMA_PCM_FORMATS,
138 	.rates  		= FSLDMA_PCM_RATES,
139 	.rate_min       	= 5512,
140 	.rate_max       	= 192000,
141 	.period_bytes_min       = 512,  	/* A reasonable limit */
142 	.period_bytes_max       = (u32) -1,
143 	.periods_min    	= NUM_DMA_LINKS,
144 	.periods_max    	= (unsigned int) -1,
145 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
146 };
147 
148 /**
149  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
150  *
151  * This function should be called by the ISR whenever the DMA controller
152  * halts data transfer.
153  */
154 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
155 {
156 	unsigned long flags;
157 
158 	snd_pcm_stream_lock_irqsave(substream, flags);
159 
160 	if (snd_pcm_running(substream))
161 		snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
162 
163 	snd_pcm_stream_unlock_irqrestore(substream, flags);
164 }
165 
166 /**
167  * fsl_dma_update_pointers - update LD pointers to point to the next period
168  *
169  * As each period is completed, this function changes the the link
170  * descriptor pointers for that period to point to the next period.
171  */
172 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
173 {
174 	struct fsl_dma_link_descriptor *link =
175 		&dma_private->link[dma_private->current_link];
176 
177 	/* Update our link descriptors to point to the next period. On a 36-bit
178 	 * system, we also need to update the ESAD bits.  We also set (keep) the
179 	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
180 	 */
181 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
182 		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
183 #ifdef CONFIG_PHYS_64BIT
184 		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
185 			upper_32_bits(dma_private->dma_buf_next));
186 #endif
187 	} else {
188 		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
189 #ifdef CONFIG_PHYS_64BIT
190 		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
191 			upper_32_bits(dma_private->dma_buf_next));
192 #endif
193 	}
194 
195 	/* Update our variables for next time */
196 	dma_private->dma_buf_next += dma_private->period_size;
197 
198 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
199 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
200 
201 	if (++dma_private->current_link >= NUM_DMA_LINKS)
202 		dma_private->current_link = 0;
203 }
204 
205 /**
206  * fsl_dma_isr: interrupt handler for the DMA controller
207  *
208  * @irq: IRQ of the DMA channel
209  * @dev_id: pointer to the dma_private structure for this DMA channel
210  */
211 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
212 {
213 	struct fsl_dma_private *dma_private = dev_id;
214 	struct snd_pcm_substream *substream = dma_private->substream;
215 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
216 	struct device *dev = rtd->platform->dev;
217 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
218 	irqreturn_t ret = IRQ_NONE;
219 	u32 sr, sr2 = 0;
220 
221 	/* We got an interrupt, so read the status register to see what we
222 	   were interrupted for.
223 	 */
224 	sr = in_be32(&dma_channel->sr);
225 
226 	if (sr & CCSR_DMA_SR_TE) {
227 		dev_err(dev, "dma transmit error\n");
228 		fsl_dma_abort_stream(substream);
229 		sr2 |= CCSR_DMA_SR_TE;
230 		ret = IRQ_HANDLED;
231 	}
232 
233 	if (sr & CCSR_DMA_SR_CH)
234 		ret = IRQ_HANDLED;
235 
236 	if (sr & CCSR_DMA_SR_PE) {
237 		dev_err(dev, "dma programming error\n");
238 		fsl_dma_abort_stream(substream);
239 		sr2 |= CCSR_DMA_SR_PE;
240 		ret = IRQ_HANDLED;
241 	}
242 
243 	if (sr & CCSR_DMA_SR_EOLNI) {
244 		sr2 |= CCSR_DMA_SR_EOLNI;
245 		ret = IRQ_HANDLED;
246 	}
247 
248 	if (sr & CCSR_DMA_SR_CB)
249 		ret = IRQ_HANDLED;
250 
251 	if (sr & CCSR_DMA_SR_EOSI) {
252 		/* Tell ALSA we completed a period. */
253 		snd_pcm_period_elapsed(substream);
254 
255 		/*
256 		 * Update our link descriptors to point to the next period. We
257 		 * only need to do this if the number of periods is not equal to
258 		 * the number of links.
259 		 */
260 		if (dma_private->num_periods != NUM_DMA_LINKS)
261 			fsl_dma_update_pointers(dma_private);
262 
263 		sr2 |= CCSR_DMA_SR_EOSI;
264 		ret = IRQ_HANDLED;
265 	}
266 
267 	if (sr & CCSR_DMA_SR_EOLSI) {
268 		sr2 |= CCSR_DMA_SR_EOLSI;
269 		ret = IRQ_HANDLED;
270 	}
271 
272 	/* Clear the bits that we set */
273 	if (sr2)
274 		out_be32(&dma_channel->sr, sr2);
275 
276 	return ret;
277 }
278 
279 /**
280  * fsl_dma_new: initialize this PCM driver.
281  *
282  * This function is called when the codec driver calls snd_soc_new_pcms(),
283  * once for each .dai_link in the machine driver's snd_soc_card
284  * structure.
285  *
286  * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
287  * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
288  * is specified. Therefore, any DMA buffers we allocate will always be in low
289  * memory, but we support for 36-bit physical addresses anyway.
290  *
291  * Regardless of where the memory is actually allocated, since the device can
292  * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
293  */
294 static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
295 	struct snd_pcm *pcm)
296 {
297 	static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
298 	int ret;
299 
300 	if (!card->dev->dma_mask)
301 		card->dev->dma_mask = &fsl_dma_dmamask;
302 
303 	if (!card->dev->coherent_dma_mask)
304 		card->dev->coherent_dma_mask = fsl_dma_dmamask;
305 
306 	/* Some codecs have separate DAIs for playback and capture, so we
307 	 * should allocate a DMA buffer only for the streams that are valid.
308 	 */
309 
310 	if (dai->driver->playback.channels_min) {
311 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
312 			fsl_dma_hardware.buffer_bytes_max,
313 			&pcm->streams[0].substream->dma_buffer);
314 		if (ret) {
315 			dev_err(card->dev, "can't alloc playback dma buffer\n");
316 			return ret;
317 		}
318 	}
319 
320 	if (dai->driver->capture.channels_min) {
321 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
322 			fsl_dma_hardware.buffer_bytes_max,
323 			&pcm->streams[1].substream->dma_buffer);
324 		if (ret) {
325 			snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
326 			dev_err(card->dev, "can't alloc capture dma buffer\n");
327 			return ret;
328 		}
329 	}
330 
331 	return 0;
332 }
333 
334 /**
335  * fsl_dma_open: open a new substream.
336  *
337  * Each substream has its own DMA buffer.
338  *
339  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
340  * descriptors that ping-pong from one period to the next.  For example, if
341  * there are six periods and two link descriptors, this is how they look
342  * before playback starts:
343  *
344  *      	   The last link descriptor
345  *   ____________  points back to the first
346  *  |   	 |
347  *  V   	 |
348  *  ___    ___   |
349  * |   |->|   |->|
350  * |___|  |___|
351  *   |      |
352  *   |      |
353  *   V      V
354  *  _________________________________________
355  * |      |      |      |      |      |      |  The DMA buffer is
356  * |      |      |      |      |      |      |    divided into 6 parts
357  * |______|______|______|______|______|______|
358  *
359  * and here's how they look after the first period is finished playing:
360  *
361  *   ____________
362  *  |   	 |
363  *  V   	 |
364  *  ___    ___   |
365  * |   |->|   |->|
366  * |___|  |___|
367  *   |      |
368  *   |______________
369  *          |       |
370  *          V       V
371  *  _________________________________________
372  * |      |      |      |      |      |      |
373  * |      |      |      |      |      |      |
374  * |______|______|______|______|______|______|
375  *
376  * The first link descriptor now points to the third period.  The DMA
377  * controller is currently playing the second period.  When it finishes, it
378  * will jump back to the first descriptor and play the third period.
379  *
380  * There are four reasons we do this:
381  *
382  * 1. The only way to get the DMA controller to automatically restart the
383  *    transfer when it gets to the end of the buffer is to use chaining
384  *    mode.  Basic direct mode doesn't offer that feature.
385  * 2. We need to receive an interrupt at the end of every period.  The DMA
386  *    controller can generate an interrupt at the end of every link transfer
387  *    (aka segment).  Making each period into a DMA segment will give us the
388  *    interrupts we need.
389  * 3. By creating only two link descriptors, regardless of the number of
390  *    periods, we do not need to reallocate the link descriptors if the
391  *    number of periods changes.
392  * 4. All of the audio data is still stored in a single, contiguous DMA
393  *    buffer, which is what ALSA expects.  We're just dividing it into
394  *    contiguous parts, and creating a link descriptor for each one.
395  */
396 static int fsl_dma_open(struct snd_pcm_substream *substream)
397 {
398 	struct snd_pcm_runtime *runtime = substream->runtime;
399 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
400 	struct device *dev = rtd->platform->dev;
401 	struct dma_object *dma =
402 		container_of(rtd->platform->driver, struct dma_object, dai);
403 	struct fsl_dma_private *dma_private;
404 	struct ccsr_dma_channel __iomem *dma_channel;
405 	dma_addr_t ld_buf_phys;
406 	u64 temp_link;  	/* Pointer to next link descriptor */
407 	u32 mr;
408 	unsigned int channel;
409 	int ret = 0;
410 	unsigned int i;
411 
412 	/*
413 	 * Reject any DMA buffer whose size is not a multiple of the period
414 	 * size.  We need to make sure that the DMA buffer can be evenly divided
415 	 * into periods.
416 	 */
417 	ret = snd_pcm_hw_constraint_integer(runtime,
418 		SNDRV_PCM_HW_PARAM_PERIODS);
419 	if (ret < 0) {
420 		dev_err(dev, "invalid buffer size\n");
421 		return ret;
422 	}
423 
424 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
425 
426 	if (dma->assigned) {
427 		dev_err(dev, "dma channel already assigned\n");
428 		return -EBUSY;
429 	}
430 
431 	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
432 					 &ld_buf_phys, GFP_KERNEL);
433 	if (!dma_private) {
434 		dev_err(dev, "can't allocate dma private data\n");
435 		return -ENOMEM;
436 	}
437 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
438 		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
439 	else
440 		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
441 
442 	dma_private->dma_channel = dma->channel;
443 	dma_private->irq = dma->irq;
444 	dma_private->substream = substream;
445 	dma_private->ld_buf_phys = ld_buf_phys;
446 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
447 
448 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
449 	if (ret) {
450 		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
451 			dma_private->irq, ret);
452 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
453 			dma_private, dma_private->ld_buf_phys);
454 		return ret;
455 	}
456 
457 	dma->assigned = 1;
458 
459 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
460 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
461 	runtime->private_data = dma_private;
462 
463 	/* Program the fixed DMA controller parameters */
464 
465 	dma_channel = dma_private->dma_channel;
466 
467 	temp_link = dma_private->ld_buf_phys +
468 		sizeof(struct fsl_dma_link_descriptor);
469 
470 	for (i = 0; i < NUM_DMA_LINKS; i++) {
471 		dma_private->link[i].next = cpu_to_be64(temp_link);
472 
473 		temp_link += sizeof(struct fsl_dma_link_descriptor);
474 	}
475 	/* The last link descriptor points to the first */
476 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
477 
478 	/* Tell the DMA controller where the first link descriptor is */
479 	out_be32(&dma_channel->clndar,
480 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
481 	out_be32(&dma_channel->eclndar,
482 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
483 
484 	/* The manual says the BCR must be clear before enabling EMP */
485 	out_be32(&dma_channel->bcr, 0);
486 
487 	/*
488 	 * Program the mode register for interrupts, external master control,
489 	 * and source/destination hold.  Also clear the Channel Abort bit.
490 	 */
491 	mr = in_be32(&dma_channel->mr) &
492 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
493 
494 	/*
495 	 * We want External Master Start and External Master Pause enabled,
496 	 * because the SSI is controlling the DMA controller.  We want the DMA
497 	 * controller to be set up in advance, and then we signal only the SSI
498 	 * to start transferring.
499 	 *
500 	 * We want End-Of-Segment Interrupts enabled, because this will generate
501 	 * an interrupt at the end of each segment (each link descriptor
502 	 * represents one segment).  Each DMA segment is the same thing as an
503 	 * ALSA period, so this is how we get an interrupt at the end of every
504 	 * period.
505 	 *
506 	 * We want Error Interrupt enabled, so that we can get an error if
507 	 * the DMA controller is mis-programmed somehow.
508 	 */
509 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
510 		CCSR_DMA_MR_EMS_EN;
511 
512 	/* For playback, we want the destination address to be held.  For
513 	   capture, set the source address to be held. */
514 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
515 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
516 
517 	out_be32(&dma_channel->mr, mr);
518 
519 	return 0;
520 }
521 
522 /**
523  * fsl_dma_hw_params: continue initializing the DMA links
524  *
525  * This function obtains hardware parameters about the opened stream and
526  * programs the DMA controller accordingly.
527  *
528  * One drawback of big-endian is that when copying integers of different
529  * sizes to a fixed-sized register, the address to which the integer must be
530  * copied is dependent on the size of the integer.
531  *
532  * For example, if P is the address of a 32-bit register, and X is a 32-bit
533  * integer, then X should be copied to address P.  However, if X is a 16-bit
534  * integer, then it should be copied to P+2.  If X is an 8-bit register,
535  * then it should be copied to P+3.
536  *
537  * So for playback of 8-bit samples, the DMA controller must transfer single
538  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
539  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
540  *
541  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
542  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
543  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
544  * 24-bit data must be padded to 32 bits.
545  */
546 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
547 	struct snd_pcm_hw_params *hw_params)
548 {
549 	struct snd_pcm_runtime *runtime = substream->runtime;
550 	struct fsl_dma_private *dma_private = runtime->private_data;
551 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
552 	struct device *dev = rtd->platform->dev;
553 
554 	/* Number of bits per sample */
555 	unsigned int sample_size =
556 		snd_pcm_format_physical_width(params_format(hw_params));
557 
558 	/* Number of bytes per frame */
559 	unsigned int frame_size = 2 * (sample_size / 8);
560 
561 	/* Bus address of SSI STX register */
562 	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
563 
564 	/* Size of the DMA buffer, in bytes */
565 	size_t buffer_size = params_buffer_bytes(hw_params);
566 
567 	/* Number of bytes per period */
568 	size_t period_size = params_period_bytes(hw_params);
569 
570 	/* Pointer to next period */
571 	dma_addr_t temp_addr = substream->dma_buffer.addr;
572 
573 	/* Pointer to DMA controller */
574 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
575 
576 	u32 mr; /* DMA Mode Register */
577 
578 	unsigned int i;
579 
580 	/* Initialize our DMA tracking variables */
581 	dma_private->period_size = period_size;
582 	dma_private->num_periods = params_periods(hw_params);
583 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
584 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
585 		(NUM_DMA_LINKS * period_size);
586 
587 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
588 		/* This happens if the number of periods == NUM_DMA_LINKS */
589 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
590 
591 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
592 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
593 
594 	/* Due to a quirk of the SSI's STX register, the target address
595 	 * for the DMA operations depends on the sample size.  So we calculate
596 	 * that offset here.  While we're at it, also tell the DMA controller
597 	 * how much data to transfer per sample.
598 	 */
599 	switch (sample_size) {
600 	case 8:
601 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
602 		ssi_sxx_phys += 3;
603 		break;
604 	case 16:
605 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
606 		ssi_sxx_phys += 2;
607 		break;
608 	case 32:
609 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
610 		break;
611 	default:
612 		/* We should never get here */
613 		dev_err(dev, "unsupported sample size %u\n", sample_size);
614 		return -EINVAL;
615 	}
616 
617 	/*
618 	 * BWC should always be a multiple of the frame size.  BWC determines
619 	 * how many bytes are sent/received before the DMA controller checks the
620 	 * SSI to see if it needs to stop.  For playback, the transmit FIFO can
621 	 * hold three frames, so we want to send two frames at a time. For
622 	 * capture, the receive FIFO is triggered when it contains one frame, so
623 	 * we want to receive one frame at a time.
624 	 */
625 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
626 		mr |= CCSR_DMA_MR_BWC(2 * frame_size);
627 	else
628 		mr |= CCSR_DMA_MR_BWC(frame_size);
629 
630 	out_be32(&dma_channel->mr, mr);
631 
632 	for (i = 0; i < NUM_DMA_LINKS; i++) {
633 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
634 
635 		link->count = cpu_to_be32(period_size);
636 
637 		/* The snoop bit tells the DMA controller whether it should tell
638 		 * the ECM to snoop during a read or write to an address. For
639 		 * audio, we use DMA to transfer data between memory and an I/O
640 		 * device (the SSI's STX0 or SRX0 register). Snooping is only
641 		 * needed if there is a cache, so we need to snoop memory
642 		 * addresses only.  For playback, that means we snoop the source
643 		 * but not the destination.  For capture, we snoop the
644 		 * destination but not the source.
645 		 *
646 		 * Note that failing to snoop properly is unlikely to cause
647 		 * cache incoherency if the period size is larger than the
648 		 * size of L1 cache.  This is because filling in one period will
649 		 * flush out the data for the previous period.  So if you
650 		 * increased period_bytes_min to a large enough size, you might
651 		 * get more performance by not snooping, and you'll still be
652 		 * okay.  You'll need to update fsl_dma_update_pointers() also.
653 		 */
654 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
655 			link->source_addr = cpu_to_be32(temp_addr);
656 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
657 				upper_32_bits(temp_addr));
658 
659 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
660 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
661 				upper_32_bits(ssi_sxx_phys));
662 		} else {
663 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
664 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
665 				upper_32_bits(ssi_sxx_phys));
666 
667 			link->dest_addr = cpu_to_be32(temp_addr);
668 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
669 				upper_32_bits(temp_addr));
670 		}
671 
672 		temp_addr += period_size;
673 	}
674 
675 	return 0;
676 }
677 
678 /**
679  * fsl_dma_pointer: determine the current position of the DMA transfer
680  *
681  * This function is called by ALSA when ALSA wants to know where in the
682  * stream buffer the hardware currently is.
683  *
684  * For playback, the SAR register contains the physical address of the most
685  * recent DMA transfer.  For capture, the value is in the DAR register.
686  *
687  * The base address of the buffer is stored in the source_addr field of the
688  * first link descriptor.
689  */
690 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
691 {
692 	struct snd_pcm_runtime *runtime = substream->runtime;
693 	struct fsl_dma_private *dma_private = runtime->private_data;
694 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
695 	struct device *dev = rtd->platform->dev;
696 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
697 	dma_addr_t position;
698 	snd_pcm_uframes_t frames;
699 
700 	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
701 	 * only have 32-bit DMA addresses.  This function is typically called
702 	 * in interrupt context, so we need to optimize it.
703 	 */
704 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
705 		position = in_be32(&dma_channel->sar);
706 #ifdef CONFIG_PHYS_64BIT
707 		position |= (u64)(in_be32(&dma_channel->satr) &
708 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
709 #endif
710 	} else {
711 		position = in_be32(&dma_channel->dar);
712 #ifdef CONFIG_PHYS_64BIT
713 		position |= (u64)(in_be32(&dma_channel->datr) &
714 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
715 #endif
716 	}
717 
718 	/*
719 	 * When capture is started, the SSI immediately starts to fill its FIFO.
720 	 * This means that the DMA controller is not started until the FIFO is
721 	 * full.  However, ALSA calls this function before that happens, when
722 	 * MR.DAR is still zero.  In this case, just return zero to indicate
723 	 * that nothing has been received yet.
724 	 */
725 	if (!position)
726 		return 0;
727 
728 	if ((position < dma_private->dma_buf_phys) ||
729 	    (position > dma_private->dma_buf_end)) {
730 		dev_err(dev, "dma pointer is out of range, halting stream\n");
731 		return SNDRV_PCM_POS_XRUN;
732 	}
733 
734 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
735 
736 	/*
737 	 * If the current address is just past the end of the buffer, wrap it
738 	 * around.
739 	 */
740 	if (frames == runtime->buffer_size)
741 		frames = 0;
742 
743 	return frames;
744 }
745 
746 /**
747  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
748  *
749  * Release the resources allocated in fsl_dma_hw_params() and de-program the
750  * registers.
751  *
752  * This function can be called multiple times.
753  */
754 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
755 {
756 	struct snd_pcm_runtime *runtime = substream->runtime;
757 	struct fsl_dma_private *dma_private = runtime->private_data;
758 
759 	if (dma_private) {
760 		struct ccsr_dma_channel __iomem *dma_channel;
761 
762 		dma_channel = dma_private->dma_channel;
763 
764 		/* Stop the DMA */
765 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
766 		out_be32(&dma_channel->mr, 0);
767 
768 		/* Reset all the other registers */
769 		out_be32(&dma_channel->sr, -1);
770 		out_be32(&dma_channel->clndar, 0);
771 		out_be32(&dma_channel->eclndar, 0);
772 		out_be32(&dma_channel->satr, 0);
773 		out_be32(&dma_channel->sar, 0);
774 		out_be32(&dma_channel->datr, 0);
775 		out_be32(&dma_channel->dar, 0);
776 		out_be32(&dma_channel->bcr, 0);
777 		out_be32(&dma_channel->nlndar, 0);
778 		out_be32(&dma_channel->enlndar, 0);
779 	}
780 
781 	return 0;
782 }
783 
784 /**
785  * fsl_dma_close: close the stream.
786  */
787 static int fsl_dma_close(struct snd_pcm_substream *substream)
788 {
789 	struct snd_pcm_runtime *runtime = substream->runtime;
790 	struct fsl_dma_private *dma_private = runtime->private_data;
791 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
792 	struct device *dev = rtd->platform->dev;
793 	struct dma_object *dma =
794 		container_of(rtd->platform->driver, struct dma_object, dai);
795 
796 	if (dma_private) {
797 		if (dma_private->irq)
798 			free_irq(dma_private->irq, dma_private);
799 
800 		if (dma_private->ld_buf_phys) {
801 			dma_unmap_single(dev, dma_private->ld_buf_phys,
802 					 sizeof(dma_private->link),
803 					 DMA_TO_DEVICE);
804 		}
805 
806 		/* Deallocate the fsl_dma_private structure */
807 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
808 				  dma_private, dma_private->ld_buf_phys);
809 		substream->runtime->private_data = NULL;
810 	}
811 
812 	dma->assigned = 0;
813 
814 	return 0;
815 }
816 
817 /*
818  * Remove this PCM driver.
819  */
820 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
821 {
822 	struct snd_pcm_substream *substream;
823 	unsigned int i;
824 
825 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
826 		substream = pcm->streams[i].substream;
827 		if (substream) {
828 			snd_dma_free_pages(&substream->dma_buffer);
829 			substream->dma_buffer.area = NULL;
830 			substream->dma_buffer.addr = 0;
831 		}
832 	}
833 }
834 
835 /**
836  * find_ssi_node -- returns the SSI node that points to his DMA channel node
837  *
838  * Although this DMA driver attempts to operate independently of the other
839  * devices, it still needs to determine some information about the SSI device
840  * that it's working with.  Unfortunately, the device tree does not contain
841  * a pointer from the DMA channel node to the SSI node -- the pointer goes the
842  * other way.  So we need to scan the device tree for SSI nodes until we find
843  * the one that points to the given DMA channel node.  It's ugly, but at least
844  * it's contained in this one function.
845  */
846 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
847 {
848 	struct device_node *ssi_np, *np;
849 
850 	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
851 		/* Check each DMA phandle to see if it points to us.  We
852 		 * assume that device_node pointers are a valid comparison.
853 		 */
854 		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
855 		if (np == dma_channel_np)
856 			return ssi_np;
857 
858 		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
859 		if (np == dma_channel_np)
860 			return ssi_np;
861 	}
862 
863 	return NULL;
864 }
865 
866 static struct snd_pcm_ops fsl_dma_ops = {
867 	.open   	= fsl_dma_open,
868 	.close  	= fsl_dma_close,
869 	.ioctl  	= snd_pcm_lib_ioctl,
870 	.hw_params      = fsl_dma_hw_params,
871 	.hw_free	= fsl_dma_hw_free,
872 	.pointer	= fsl_dma_pointer,
873 };
874 
875 static int __devinit fsl_soc_dma_probe(struct of_device *of_dev,
876 				       const struct of_device_id *match)
877  {
878 	struct dma_object *dma;
879 	struct device_node *np = of_dev->dev.of_node;
880 	struct device_node *ssi_np;
881 	struct resource res;
882 	int ret;
883 
884 	/* Find the SSI node that points to us. */
885 	ssi_np = find_ssi_node(np);
886 	if (!ssi_np) {
887 		dev_err(&of_dev->dev, "cannot find parent SSI node\n");
888 		return -ENODEV;
889 	}
890 
891 	ret = of_address_to_resource(ssi_np, 0, &res);
892 	of_node_put(ssi_np);
893 	if (ret) {
894 		dev_err(&of_dev->dev, "could not determine device resources\n");
895 		return ret;
896 	}
897 
898 	dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
899 	if (!dma) {
900 		dev_err(&of_dev->dev, "could not allocate dma object\n");
901 		return -ENOMEM;
902 	}
903 
904 	strcpy(dma->path, np->full_name);
905 	dma->dai.ops = &fsl_dma_ops;
906 	dma->dai.pcm_new = fsl_dma_new;
907 	dma->dai.pcm_free = fsl_dma_free_dma_buffers;
908 
909 	/* Store the SSI-specific information that we need */
910 	dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
911 	dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
912 
913 	ret = snd_soc_register_platform(&of_dev->dev, &dma->dai);
914 	if (ret) {
915 		dev_err(&of_dev->dev, "could not register platform\n");
916 		kfree(dma);
917 		return ret;
918 	}
919 
920 	dma->channel = of_iomap(np, 0);
921 	dma->irq = irq_of_parse_and_map(np, 0);
922 
923 	dev_set_drvdata(&of_dev->dev, dma);
924 
925 	return 0;
926 }
927 
928 static int __devexit fsl_soc_dma_remove(struct of_device *of_dev)
929 {
930 	struct dma_object *dma = dev_get_drvdata(&of_dev->dev);
931 
932 	snd_soc_unregister_platform(&of_dev->dev);
933 	iounmap(dma->channel);
934 	irq_dispose_mapping(dma->irq);
935 	kfree(dma);
936 
937 	return 0;
938 }
939 
940 static const struct of_device_id fsl_soc_dma_ids[] = {
941 	{ .compatible = "fsl,ssi-dma-channel", },
942 	{}
943 };
944 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
945 
946 static struct of_platform_driver fsl_soc_dma_driver = {
947 	.driver = {
948 		.name = "fsl-pcm-audio",
949 		.owner = THIS_MODULE,
950 		.of_match_table = fsl_soc_dma_ids,
951 	},
952 	.probe = fsl_soc_dma_probe,
953 	.remove = __devexit_p(fsl_soc_dma_remove),
954 };
955 
956 static int __init fsl_soc_dma_init(void)
957 {
958 	pr_info("Freescale Elo DMA ASoC PCM Driver\n");
959 
960 	return of_register_platform_driver(&fsl_soc_dma_driver);
961 }
962 
963 static void __exit fsl_soc_dma_exit(void)
964 {
965 	of_unregister_platform_driver(&fsl_soc_dma_driver);
966 }
967 
968 module_init(fsl_soc_dma_init);
969 module_exit(fsl_soc_dma_exit);
970 
971 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
972 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
973 MODULE_LICENSE("GPL v2");
974