xref: /linux/sound/soc/fsl/fsl_dma.c (revision bf557a50f59fc62dfd89fa5bf08c6f5d96fb2f45)
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  * This driver implements ASoC support for the Elo DMA controller, which is
13  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14  * the PCM driver is what handles the DMA buffer.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/gfp.h>
24 #include <linux/of_platform.h>
25 #include <linux/list.h>
26 
27 #include <sound/core.h>
28 #include <sound/pcm.h>
29 #include <sound/pcm_params.h>
30 #include <sound/soc.h>
31 
32 #include <asm/io.h>
33 
34 #include "fsl_dma.h"
35 #include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
36 
37 /*
38  * The formats that the DMA controller supports, which is anything
39  * that is 8, 16, or 32 bits.
40  */
41 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
42 			    SNDRV_PCM_FMTBIT_U8 	| \
43 			    SNDRV_PCM_FMTBIT_S16_LE     | \
44 			    SNDRV_PCM_FMTBIT_S16_BE     | \
45 			    SNDRV_PCM_FMTBIT_U16_LE     | \
46 			    SNDRV_PCM_FMTBIT_U16_BE     | \
47 			    SNDRV_PCM_FMTBIT_S24_LE     | \
48 			    SNDRV_PCM_FMTBIT_S24_BE     | \
49 			    SNDRV_PCM_FMTBIT_U24_LE     | \
50 			    SNDRV_PCM_FMTBIT_U24_BE     | \
51 			    SNDRV_PCM_FMTBIT_S32_LE     | \
52 			    SNDRV_PCM_FMTBIT_S32_BE     | \
53 			    SNDRV_PCM_FMTBIT_U32_LE     | \
54 			    SNDRV_PCM_FMTBIT_U32_BE)
55 
56 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
57 			  SNDRV_PCM_RATE_CONTINUOUS)
58 
59 struct dma_object {
60 	struct snd_soc_platform_driver dai;
61 	dma_addr_t ssi_stx_phys;
62 	dma_addr_t ssi_srx_phys;
63 	unsigned int ssi_fifo_depth;
64 	struct ccsr_dma_channel __iomem *channel;
65 	unsigned int irq;
66 	bool assigned;
67 	char path[1];
68 };
69 
70 /*
71  * The number of DMA links to use.  Two is the bare minimum, but if you
72  * have really small links you might need more.
73  */
74 #define NUM_DMA_LINKS   2
75 
76 /** fsl_dma_private: p-substream DMA data
77  *
78  * Each substream has a 1-to-1 association with a DMA channel.
79  *
80  * The link[] array is first because it needs to be aligned on a 32-byte
81  * boundary, so putting it first will ensure alignment without padding the
82  * structure.
83  *
84  * @link[]: array of link descriptors
85  * @dma_channel: pointer to the DMA channel's registers
86  * @irq: IRQ for this DMA channel
87  * @substream: pointer to the substream object, needed by the ISR
88  * @ssi_sxx_phys: bus address of the STX or SRX register to use
89  * @ld_buf_phys: physical address of the LD buffer
90  * @current_link: index into link[] of the link currently being processed
91  * @dma_buf_phys: physical address of the DMA buffer
92  * @dma_buf_next: physical address of the next period to process
93  * @dma_buf_end: physical address of the byte after the end of the DMA
94  * @buffer period_size: the size of a single period
95  * @num_periods: the number of periods in the DMA buffer
96  */
97 struct fsl_dma_private {
98 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
99 	struct ccsr_dma_channel __iomem *dma_channel;
100 	unsigned int irq;
101 	struct snd_pcm_substream *substream;
102 	dma_addr_t ssi_sxx_phys;
103 	unsigned int ssi_fifo_depth;
104 	dma_addr_t ld_buf_phys;
105 	unsigned int current_link;
106 	dma_addr_t dma_buf_phys;
107 	dma_addr_t dma_buf_next;
108 	dma_addr_t dma_buf_end;
109 	size_t period_size;
110 	unsigned int num_periods;
111 };
112 
113 /**
114  * fsl_dma_hardare: define characteristics of the PCM hardware.
115  *
116  * The PCM hardware is the Freescale DMA controller.  This structure defines
117  * the capabilities of that hardware.
118  *
119  * Since the sampling rate and data format are not controlled by the DMA
120  * controller, we specify no limits for those values.  The only exception is
121  * period_bytes_min, which is set to a reasonably low value to prevent the
122  * DMA controller from generating too many interrupts per second.
123  *
124  * Since each link descriptor has a 32-bit byte count field, we set
125  * period_bytes_max to the largest 32-bit number.  We also have no maximum
126  * number of periods.
127  *
128  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
129  * limitation in the SSI driver requires the sample rates for playback and
130  * capture to be the same.
131  */
132 static const struct snd_pcm_hardware fsl_dma_hardware = {
133 
134 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
135 				  SNDRV_PCM_INFO_MMAP |
136 				  SNDRV_PCM_INFO_MMAP_VALID |
137 				  SNDRV_PCM_INFO_JOINT_DUPLEX |
138 				  SNDRV_PCM_INFO_PAUSE,
139 	.formats		= FSLDMA_PCM_FORMATS,
140 	.rates  		= FSLDMA_PCM_RATES,
141 	.rate_min       	= 5512,
142 	.rate_max       	= 192000,
143 	.period_bytes_min       = 512,  	/* A reasonable limit */
144 	.period_bytes_max       = (u32) -1,
145 	.periods_min    	= NUM_DMA_LINKS,
146 	.periods_max    	= (unsigned int) -1,
147 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
148 };
149 
150 /**
151  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
152  *
153  * This function should be called by the ISR whenever the DMA controller
154  * halts data transfer.
155  */
156 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
157 {
158 	unsigned long flags;
159 
160 	snd_pcm_stream_lock_irqsave(substream, flags);
161 
162 	if (snd_pcm_running(substream))
163 		snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
164 
165 	snd_pcm_stream_unlock_irqrestore(substream, flags);
166 }
167 
168 /**
169  * fsl_dma_update_pointers - update LD pointers to point to the next period
170  *
171  * As each period is completed, this function changes the the link
172  * descriptor pointers for that period to point to the next period.
173  */
174 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
175 {
176 	struct fsl_dma_link_descriptor *link =
177 		&dma_private->link[dma_private->current_link];
178 
179 	/* Update our link descriptors to point to the next period. On a 36-bit
180 	 * system, we also need to update the ESAD bits.  We also set (keep) the
181 	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
182 	 */
183 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
184 		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
185 #ifdef CONFIG_PHYS_64BIT
186 		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
187 			upper_32_bits(dma_private->dma_buf_next));
188 #endif
189 	} else {
190 		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
191 #ifdef CONFIG_PHYS_64BIT
192 		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
193 			upper_32_bits(dma_private->dma_buf_next));
194 #endif
195 	}
196 
197 	/* Update our variables for next time */
198 	dma_private->dma_buf_next += dma_private->period_size;
199 
200 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
201 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
202 
203 	if (++dma_private->current_link >= NUM_DMA_LINKS)
204 		dma_private->current_link = 0;
205 }
206 
207 /**
208  * fsl_dma_isr: interrupt handler for the DMA controller
209  *
210  * @irq: IRQ of the DMA channel
211  * @dev_id: pointer to the dma_private structure for this DMA channel
212  */
213 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
214 {
215 	struct fsl_dma_private *dma_private = dev_id;
216 	struct snd_pcm_substream *substream = dma_private->substream;
217 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
218 	struct device *dev = rtd->platform->dev;
219 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
220 	irqreturn_t ret = IRQ_NONE;
221 	u32 sr, sr2 = 0;
222 
223 	/* We got an interrupt, so read the status register to see what we
224 	   were interrupted for.
225 	 */
226 	sr = in_be32(&dma_channel->sr);
227 
228 	if (sr & CCSR_DMA_SR_TE) {
229 		dev_err(dev, "dma transmit error\n");
230 		fsl_dma_abort_stream(substream);
231 		sr2 |= CCSR_DMA_SR_TE;
232 		ret = IRQ_HANDLED;
233 	}
234 
235 	if (sr & CCSR_DMA_SR_CH)
236 		ret = IRQ_HANDLED;
237 
238 	if (sr & CCSR_DMA_SR_PE) {
239 		dev_err(dev, "dma programming error\n");
240 		fsl_dma_abort_stream(substream);
241 		sr2 |= CCSR_DMA_SR_PE;
242 		ret = IRQ_HANDLED;
243 	}
244 
245 	if (sr & CCSR_DMA_SR_EOLNI) {
246 		sr2 |= CCSR_DMA_SR_EOLNI;
247 		ret = IRQ_HANDLED;
248 	}
249 
250 	if (sr & CCSR_DMA_SR_CB)
251 		ret = IRQ_HANDLED;
252 
253 	if (sr & CCSR_DMA_SR_EOSI) {
254 		/* Tell ALSA we completed a period. */
255 		snd_pcm_period_elapsed(substream);
256 
257 		/*
258 		 * Update our link descriptors to point to the next period. We
259 		 * only need to do this if the number of periods is not equal to
260 		 * the number of links.
261 		 */
262 		if (dma_private->num_periods != NUM_DMA_LINKS)
263 			fsl_dma_update_pointers(dma_private);
264 
265 		sr2 |= CCSR_DMA_SR_EOSI;
266 		ret = IRQ_HANDLED;
267 	}
268 
269 	if (sr & CCSR_DMA_SR_EOLSI) {
270 		sr2 |= CCSR_DMA_SR_EOLSI;
271 		ret = IRQ_HANDLED;
272 	}
273 
274 	/* Clear the bits that we set */
275 	if (sr2)
276 		out_be32(&dma_channel->sr, sr2);
277 
278 	return ret;
279 }
280 
281 /**
282  * fsl_dma_new: initialize this PCM driver.
283  *
284  * This function is called when the codec driver calls snd_soc_new_pcms(),
285  * once for each .dai_link in the machine driver's snd_soc_card
286  * structure.
287  *
288  * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
289  * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
290  * is specified. Therefore, any DMA buffers we allocate will always be in low
291  * memory, but we support for 36-bit physical addresses anyway.
292  *
293  * Regardless of where the memory is actually allocated, since the device can
294  * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
295  */
296 static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
297 	struct snd_pcm *pcm)
298 {
299 	static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
300 	int ret;
301 
302 	if (!card->dev->dma_mask)
303 		card->dev->dma_mask = &fsl_dma_dmamask;
304 
305 	if (!card->dev->coherent_dma_mask)
306 		card->dev->coherent_dma_mask = fsl_dma_dmamask;
307 
308 	/* Some codecs have separate DAIs for playback and capture, so we
309 	 * should allocate a DMA buffer only for the streams that are valid.
310 	 */
311 
312 	if (dai->driver->playback.channels_min) {
313 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
314 			fsl_dma_hardware.buffer_bytes_max,
315 			&pcm->streams[0].substream->dma_buffer);
316 		if (ret) {
317 			dev_err(card->dev, "can't alloc playback dma buffer\n");
318 			return ret;
319 		}
320 	}
321 
322 	if (dai->driver->capture.channels_min) {
323 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
324 			fsl_dma_hardware.buffer_bytes_max,
325 			&pcm->streams[1].substream->dma_buffer);
326 		if (ret) {
327 			snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
328 			dev_err(card->dev, "can't alloc capture dma buffer\n");
329 			return ret;
330 		}
331 	}
332 
333 	return 0;
334 }
335 
336 /**
337  * fsl_dma_open: open a new substream.
338  *
339  * Each substream has its own DMA buffer.
340  *
341  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
342  * descriptors that ping-pong from one period to the next.  For example, if
343  * there are six periods and two link descriptors, this is how they look
344  * before playback starts:
345  *
346  *      	   The last link descriptor
347  *   ____________  points back to the first
348  *  |   	 |
349  *  V   	 |
350  *  ___    ___   |
351  * |   |->|   |->|
352  * |___|  |___|
353  *   |      |
354  *   |      |
355  *   V      V
356  *  _________________________________________
357  * |      |      |      |      |      |      |  The DMA buffer is
358  * |      |      |      |      |      |      |    divided into 6 parts
359  * |______|______|______|______|______|______|
360  *
361  * and here's how they look after the first period is finished playing:
362  *
363  *   ____________
364  *  |   	 |
365  *  V   	 |
366  *  ___    ___   |
367  * |   |->|   |->|
368  * |___|  |___|
369  *   |      |
370  *   |______________
371  *          |       |
372  *          V       V
373  *  _________________________________________
374  * |      |      |      |      |      |      |
375  * |      |      |      |      |      |      |
376  * |______|______|______|______|______|______|
377  *
378  * The first link descriptor now points to the third period.  The DMA
379  * controller is currently playing the second period.  When it finishes, it
380  * will jump back to the first descriptor and play the third period.
381  *
382  * There are four reasons we do this:
383  *
384  * 1. The only way to get the DMA controller to automatically restart the
385  *    transfer when it gets to the end of the buffer is to use chaining
386  *    mode.  Basic direct mode doesn't offer that feature.
387  * 2. We need to receive an interrupt at the end of every period.  The DMA
388  *    controller can generate an interrupt at the end of every link transfer
389  *    (aka segment).  Making each period into a DMA segment will give us the
390  *    interrupts we need.
391  * 3. By creating only two link descriptors, regardless of the number of
392  *    periods, we do not need to reallocate the link descriptors if the
393  *    number of periods changes.
394  * 4. All of the audio data is still stored in a single, contiguous DMA
395  *    buffer, which is what ALSA expects.  We're just dividing it into
396  *    contiguous parts, and creating a link descriptor for each one.
397  */
398 static int fsl_dma_open(struct snd_pcm_substream *substream)
399 {
400 	struct snd_pcm_runtime *runtime = substream->runtime;
401 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
402 	struct device *dev = rtd->platform->dev;
403 	struct dma_object *dma =
404 		container_of(rtd->platform->driver, struct dma_object, dai);
405 	struct fsl_dma_private *dma_private;
406 	struct ccsr_dma_channel __iomem *dma_channel;
407 	dma_addr_t ld_buf_phys;
408 	u64 temp_link;  	/* Pointer to next link descriptor */
409 	u32 mr;
410 	unsigned int channel;
411 	int ret = 0;
412 	unsigned int i;
413 
414 	/*
415 	 * Reject any DMA buffer whose size is not a multiple of the period
416 	 * size.  We need to make sure that the DMA buffer can be evenly divided
417 	 * into periods.
418 	 */
419 	ret = snd_pcm_hw_constraint_integer(runtime,
420 		SNDRV_PCM_HW_PARAM_PERIODS);
421 	if (ret < 0) {
422 		dev_err(dev, "invalid buffer size\n");
423 		return ret;
424 	}
425 
426 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
427 
428 	if (dma->assigned) {
429 		dev_err(dev, "dma channel already assigned\n");
430 		return -EBUSY;
431 	}
432 
433 	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
434 					 &ld_buf_phys, GFP_KERNEL);
435 	if (!dma_private) {
436 		dev_err(dev, "can't allocate dma private data\n");
437 		return -ENOMEM;
438 	}
439 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
440 		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
441 	else
442 		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
443 
444 	dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
445 	dma_private->dma_channel = dma->channel;
446 	dma_private->irq = dma->irq;
447 	dma_private->substream = substream;
448 	dma_private->ld_buf_phys = ld_buf_phys;
449 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
450 
451 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
452 	if (ret) {
453 		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
454 			dma_private->irq, ret);
455 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
456 			dma_private, dma_private->ld_buf_phys);
457 		return ret;
458 	}
459 
460 	dma->assigned = 1;
461 
462 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
463 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
464 	runtime->private_data = dma_private;
465 
466 	/* Program the fixed DMA controller parameters */
467 
468 	dma_channel = dma_private->dma_channel;
469 
470 	temp_link = dma_private->ld_buf_phys +
471 		sizeof(struct fsl_dma_link_descriptor);
472 
473 	for (i = 0; i < NUM_DMA_LINKS; i++) {
474 		dma_private->link[i].next = cpu_to_be64(temp_link);
475 
476 		temp_link += sizeof(struct fsl_dma_link_descriptor);
477 	}
478 	/* The last link descriptor points to the first */
479 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
480 
481 	/* Tell the DMA controller where the first link descriptor is */
482 	out_be32(&dma_channel->clndar,
483 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
484 	out_be32(&dma_channel->eclndar,
485 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
486 
487 	/* The manual says the BCR must be clear before enabling EMP */
488 	out_be32(&dma_channel->bcr, 0);
489 
490 	/*
491 	 * Program the mode register for interrupts, external master control,
492 	 * and source/destination hold.  Also clear the Channel Abort bit.
493 	 */
494 	mr = in_be32(&dma_channel->mr) &
495 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
496 
497 	/*
498 	 * We want External Master Start and External Master Pause enabled,
499 	 * because the SSI is controlling the DMA controller.  We want the DMA
500 	 * controller to be set up in advance, and then we signal only the SSI
501 	 * to start transferring.
502 	 *
503 	 * We want End-Of-Segment Interrupts enabled, because this will generate
504 	 * an interrupt at the end of each segment (each link descriptor
505 	 * represents one segment).  Each DMA segment is the same thing as an
506 	 * ALSA period, so this is how we get an interrupt at the end of every
507 	 * period.
508 	 *
509 	 * We want Error Interrupt enabled, so that we can get an error if
510 	 * the DMA controller is mis-programmed somehow.
511 	 */
512 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
513 		CCSR_DMA_MR_EMS_EN;
514 
515 	/* For playback, we want the destination address to be held.  For
516 	   capture, set the source address to be held. */
517 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
518 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
519 
520 	out_be32(&dma_channel->mr, mr);
521 
522 	return 0;
523 }
524 
525 /**
526  * fsl_dma_hw_params: continue initializing the DMA links
527  *
528  * This function obtains hardware parameters about the opened stream and
529  * programs the DMA controller accordingly.
530  *
531  * One drawback of big-endian is that when copying integers of different
532  * sizes to a fixed-sized register, the address to which the integer must be
533  * copied is dependent on the size of the integer.
534  *
535  * For example, if P is the address of a 32-bit register, and X is a 32-bit
536  * integer, then X should be copied to address P.  However, if X is a 16-bit
537  * integer, then it should be copied to P+2.  If X is an 8-bit register,
538  * then it should be copied to P+3.
539  *
540  * So for playback of 8-bit samples, the DMA controller must transfer single
541  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
542  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
543  *
544  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
545  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
546  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
547  * 24-bit data must be padded to 32 bits.
548  */
549 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
550 	struct snd_pcm_hw_params *hw_params)
551 {
552 	struct snd_pcm_runtime *runtime = substream->runtime;
553 	struct fsl_dma_private *dma_private = runtime->private_data;
554 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
555 	struct device *dev = rtd->platform->dev;
556 
557 	/* Number of bits per sample */
558 	unsigned int sample_bits =
559 		snd_pcm_format_physical_width(params_format(hw_params));
560 
561 	/* Number of bytes per frame */
562 	unsigned int sample_bytes = sample_bits / 8;
563 
564 	/* Bus address of SSI STX register */
565 	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
566 
567 	/* Size of the DMA buffer, in bytes */
568 	size_t buffer_size = params_buffer_bytes(hw_params);
569 
570 	/* Number of bytes per period */
571 	size_t period_size = params_period_bytes(hw_params);
572 
573 	/* Pointer to next period */
574 	dma_addr_t temp_addr = substream->dma_buffer.addr;
575 
576 	/* Pointer to DMA controller */
577 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
578 
579 	u32 mr; /* DMA Mode Register */
580 
581 	unsigned int i;
582 
583 	/* Initialize our DMA tracking variables */
584 	dma_private->period_size = period_size;
585 	dma_private->num_periods = params_periods(hw_params);
586 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
587 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
588 		(NUM_DMA_LINKS * period_size);
589 
590 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
591 		/* This happens if the number of periods == NUM_DMA_LINKS */
592 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
593 
594 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
595 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
596 
597 	/* Due to a quirk of the SSI's STX register, the target address
598 	 * for the DMA operations depends on the sample size.  So we calculate
599 	 * that offset here.  While we're at it, also tell the DMA controller
600 	 * how much data to transfer per sample.
601 	 */
602 	switch (sample_bits) {
603 	case 8:
604 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
605 		ssi_sxx_phys += 3;
606 		break;
607 	case 16:
608 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
609 		ssi_sxx_phys += 2;
610 		break;
611 	case 32:
612 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
613 		break;
614 	default:
615 		/* We should never get here */
616 		dev_err(dev, "unsupported sample size %u\n", sample_bits);
617 		return -EINVAL;
618 	}
619 
620 	/*
621 	 * BWC determines how many bytes are sent/received before the DMA
622 	 * controller checks the SSI to see if it needs to stop. BWC should
623 	 * always be a multiple of the frame size, so that we always transmit
624 	 * whole frames.  Each frame occupies two slots in the FIFO.  The
625 	 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
626 	 * (MR[BWC] can only represent even powers of two).
627 	 *
628 	 * To simplify the process, we set BWC to the largest value that is
629 	 * less than or equal to the FIFO watermark.  For playback, this ensures
630 	 * that we transfer the maximum amount without overrunning the FIFO.
631 	 * For capture, this ensures that we transfer the maximum amount without
632 	 * underrunning the FIFO.
633 	 *
634 	 * f = SSI FIFO depth
635 	 * w = SSI watermark value (which equals f - 2)
636 	 * b = DMA bandwidth count (in bytes)
637 	 * s = sample size (in bytes, which equals frame_size * 2)
638 	 *
639 	 * For playback, we never transmit more than the transmit FIFO
640 	 * watermark, otherwise we might write more data than the FIFO can hold.
641 	 * The watermark is equal to the FIFO depth minus two.
642 	 *
643 	 * For capture, two equations must hold:
644 	 *	w > f - (b / s)
645 	 *	w >= b / s
646 	 *
647 	 * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
648 	 * b = s * w, which is equal to
649 	 *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
650 	 */
651 	mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
652 
653 	out_be32(&dma_channel->mr, mr);
654 
655 	for (i = 0; i < NUM_DMA_LINKS; i++) {
656 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
657 
658 		link->count = cpu_to_be32(period_size);
659 
660 		/* The snoop bit tells the DMA controller whether it should tell
661 		 * the ECM to snoop during a read or write to an address. For
662 		 * audio, we use DMA to transfer data between memory and an I/O
663 		 * device (the SSI's STX0 or SRX0 register). Snooping is only
664 		 * needed if there is a cache, so we need to snoop memory
665 		 * addresses only.  For playback, that means we snoop the source
666 		 * but not the destination.  For capture, we snoop the
667 		 * destination but not the source.
668 		 *
669 		 * Note that failing to snoop properly is unlikely to cause
670 		 * cache incoherency if the period size is larger than the
671 		 * size of L1 cache.  This is because filling in one period will
672 		 * flush out the data for the previous period.  So if you
673 		 * increased period_bytes_min to a large enough size, you might
674 		 * get more performance by not snooping, and you'll still be
675 		 * okay.  You'll need to update fsl_dma_update_pointers() also.
676 		 */
677 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
678 			link->source_addr = cpu_to_be32(temp_addr);
679 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
680 				upper_32_bits(temp_addr));
681 
682 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
683 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
684 				upper_32_bits(ssi_sxx_phys));
685 		} else {
686 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
687 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
688 				upper_32_bits(ssi_sxx_phys));
689 
690 			link->dest_addr = cpu_to_be32(temp_addr);
691 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
692 				upper_32_bits(temp_addr));
693 		}
694 
695 		temp_addr += period_size;
696 	}
697 
698 	return 0;
699 }
700 
701 /**
702  * fsl_dma_pointer: determine the current position of the DMA transfer
703  *
704  * This function is called by ALSA when ALSA wants to know where in the
705  * stream buffer the hardware currently is.
706  *
707  * For playback, the SAR register contains the physical address of the most
708  * recent DMA transfer.  For capture, the value is in the DAR register.
709  *
710  * The base address of the buffer is stored in the source_addr field of the
711  * first link descriptor.
712  */
713 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
714 {
715 	struct snd_pcm_runtime *runtime = substream->runtime;
716 	struct fsl_dma_private *dma_private = runtime->private_data;
717 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
718 	struct device *dev = rtd->platform->dev;
719 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
720 	dma_addr_t position;
721 	snd_pcm_uframes_t frames;
722 
723 	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
724 	 * only have 32-bit DMA addresses.  This function is typically called
725 	 * in interrupt context, so we need to optimize it.
726 	 */
727 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
728 		position = in_be32(&dma_channel->sar);
729 #ifdef CONFIG_PHYS_64BIT
730 		position |= (u64)(in_be32(&dma_channel->satr) &
731 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
732 #endif
733 	} else {
734 		position = in_be32(&dma_channel->dar);
735 #ifdef CONFIG_PHYS_64BIT
736 		position |= (u64)(in_be32(&dma_channel->datr) &
737 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
738 #endif
739 	}
740 
741 	/*
742 	 * When capture is started, the SSI immediately starts to fill its FIFO.
743 	 * This means that the DMA controller is not started until the FIFO is
744 	 * full.  However, ALSA calls this function before that happens, when
745 	 * MR.DAR is still zero.  In this case, just return zero to indicate
746 	 * that nothing has been received yet.
747 	 */
748 	if (!position)
749 		return 0;
750 
751 	if ((position < dma_private->dma_buf_phys) ||
752 	    (position > dma_private->dma_buf_end)) {
753 		dev_err(dev, "dma pointer is out of range, halting stream\n");
754 		return SNDRV_PCM_POS_XRUN;
755 	}
756 
757 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
758 
759 	/*
760 	 * If the current address is just past the end of the buffer, wrap it
761 	 * around.
762 	 */
763 	if (frames == runtime->buffer_size)
764 		frames = 0;
765 
766 	return frames;
767 }
768 
769 /**
770  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
771  *
772  * Release the resources allocated in fsl_dma_hw_params() and de-program the
773  * registers.
774  *
775  * This function can be called multiple times.
776  */
777 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
778 {
779 	struct snd_pcm_runtime *runtime = substream->runtime;
780 	struct fsl_dma_private *dma_private = runtime->private_data;
781 
782 	if (dma_private) {
783 		struct ccsr_dma_channel __iomem *dma_channel;
784 
785 		dma_channel = dma_private->dma_channel;
786 
787 		/* Stop the DMA */
788 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
789 		out_be32(&dma_channel->mr, 0);
790 
791 		/* Reset all the other registers */
792 		out_be32(&dma_channel->sr, -1);
793 		out_be32(&dma_channel->clndar, 0);
794 		out_be32(&dma_channel->eclndar, 0);
795 		out_be32(&dma_channel->satr, 0);
796 		out_be32(&dma_channel->sar, 0);
797 		out_be32(&dma_channel->datr, 0);
798 		out_be32(&dma_channel->dar, 0);
799 		out_be32(&dma_channel->bcr, 0);
800 		out_be32(&dma_channel->nlndar, 0);
801 		out_be32(&dma_channel->enlndar, 0);
802 	}
803 
804 	return 0;
805 }
806 
807 /**
808  * fsl_dma_close: close the stream.
809  */
810 static int fsl_dma_close(struct snd_pcm_substream *substream)
811 {
812 	struct snd_pcm_runtime *runtime = substream->runtime;
813 	struct fsl_dma_private *dma_private = runtime->private_data;
814 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
815 	struct device *dev = rtd->platform->dev;
816 	struct dma_object *dma =
817 		container_of(rtd->platform->driver, struct dma_object, dai);
818 
819 	if (dma_private) {
820 		if (dma_private->irq)
821 			free_irq(dma_private->irq, dma_private);
822 
823 		if (dma_private->ld_buf_phys) {
824 			dma_unmap_single(dev, dma_private->ld_buf_phys,
825 					 sizeof(dma_private->link),
826 					 DMA_TO_DEVICE);
827 		}
828 
829 		/* Deallocate the fsl_dma_private structure */
830 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
831 				  dma_private, dma_private->ld_buf_phys);
832 		substream->runtime->private_data = NULL;
833 	}
834 
835 	dma->assigned = 0;
836 
837 	return 0;
838 }
839 
840 /*
841  * Remove this PCM driver.
842  */
843 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
844 {
845 	struct snd_pcm_substream *substream;
846 	unsigned int i;
847 
848 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
849 		substream = pcm->streams[i].substream;
850 		if (substream) {
851 			snd_dma_free_pages(&substream->dma_buffer);
852 			substream->dma_buffer.area = NULL;
853 			substream->dma_buffer.addr = 0;
854 		}
855 	}
856 }
857 
858 /**
859  * find_ssi_node -- returns the SSI node that points to his DMA channel node
860  *
861  * Although this DMA driver attempts to operate independently of the other
862  * devices, it still needs to determine some information about the SSI device
863  * that it's working with.  Unfortunately, the device tree does not contain
864  * a pointer from the DMA channel node to the SSI node -- the pointer goes the
865  * other way.  So we need to scan the device tree for SSI nodes until we find
866  * the one that points to the given DMA channel node.  It's ugly, but at least
867  * it's contained in this one function.
868  */
869 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
870 {
871 	struct device_node *ssi_np, *np;
872 
873 	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
874 		/* Check each DMA phandle to see if it points to us.  We
875 		 * assume that device_node pointers are a valid comparison.
876 		 */
877 		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
878 		if (np == dma_channel_np)
879 			return ssi_np;
880 
881 		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
882 		if (np == dma_channel_np)
883 			return ssi_np;
884 	}
885 
886 	return NULL;
887 }
888 
889 static struct snd_pcm_ops fsl_dma_ops = {
890 	.open   	= fsl_dma_open,
891 	.close  	= fsl_dma_close,
892 	.ioctl  	= snd_pcm_lib_ioctl,
893 	.hw_params      = fsl_dma_hw_params,
894 	.hw_free	= fsl_dma_hw_free,
895 	.pointer	= fsl_dma_pointer,
896 };
897 
898 static int __devinit fsl_soc_dma_probe(struct of_device *of_dev,
899 				       const struct of_device_id *match)
900  {
901 	struct dma_object *dma;
902 	struct device_node *np = of_dev->dev.of_node;
903 	struct device_node *ssi_np;
904 	struct resource res;
905 	const uint32_t *iprop;
906 	int ret;
907 
908 	/* Find the SSI node that points to us. */
909 	ssi_np = find_ssi_node(np);
910 	if (!ssi_np) {
911 		dev_err(&of_dev->dev, "cannot find parent SSI node\n");
912 		return -ENODEV;
913 	}
914 
915 	ret = of_address_to_resource(ssi_np, 0, &res);
916 	if (ret) {
917 		dev_err(&of_dev->dev, "could not determine resources for %s\n",
918 			ssi_np->full_name);
919 		of_node_put(ssi_np);
920 		return ret;
921 	}
922 
923 	dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
924 	if (!dma) {
925 		dev_err(&of_dev->dev, "could not allocate dma object\n");
926 		of_node_put(ssi_np);
927 		return -ENOMEM;
928 	}
929 
930 	strcpy(dma->path, np->full_name);
931 	dma->dai.ops = &fsl_dma_ops;
932 	dma->dai.pcm_new = fsl_dma_new;
933 	dma->dai.pcm_free = fsl_dma_free_dma_buffers;
934 
935 	/* Store the SSI-specific information that we need */
936 	dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
937 	dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
938 
939 	iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
940 	if (iprop)
941 		dma->ssi_fifo_depth = *iprop;
942 	else
943                 /* Older 8610 DTs didn't have the fifo-depth property */
944 		dma->ssi_fifo_depth = 8;
945 
946 	of_node_put(ssi_np);
947 
948 	ret = snd_soc_register_platform(&of_dev->dev, &dma->dai);
949 	if (ret) {
950 		dev_err(&of_dev->dev, "could not register platform\n");
951 		kfree(dma);
952 		return ret;
953 	}
954 
955 	dma->channel = of_iomap(np, 0);
956 	dma->irq = irq_of_parse_and_map(np, 0);
957 
958 	dev_set_drvdata(&of_dev->dev, dma);
959 
960 	return 0;
961 }
962 
963 static int __devexit fsl_soc_dma_remove(struct of_device *of_dev)
964 {
965 	struct dma_object *dma = dev_get_drvdata(&of_dev->dev);
966 
967 	snd_soc_unregister_platform(&of_dev->dev);
968 	iounmap(dma->channel);
969 	irq_dispose_mapping(dma->irq);
970 	kfree(dma);
971 
972 	return 0;
973 }
974 
975 static const struct of_device_id fsl_soc_dma_ids[] = {
976 	{ .compatible = "fsl,ssi-dma-channel", },
977 	{}
978 };
979 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
980 
981 static struct of_platform_driver fsl_soc_dma_driver = {
982 	.driver = {
983 		.name = "fsl-pcm-audio",
984 		.owner = THIS_MODULE,
985 		.of_match_table = fsl_soc_dma_ids,
986 	},
987 	.probe = fsl_soc_dma_probe,
988 	.remove = __devexit_p(fsl_soc_dma_remove),
989 };
990 
991 static int __init fsl_soc_dma_init(void)
992 {
993 	pr_info("Freescale Elo DMA ASoC PCM Driver\n");
994 
995 	return of_register_platform_driver(&fsl_soc_dma_driver);
996 }
997 
998 static void __exit fsl_soc_dma_exit(void)
999 {
1000 	of_unregister_platform_driver(&fsl_soc_dma_driver);
1001 }
1002 
1003 module_init(fsl_soc_dma_init);
1004 module_exit(fsl_soc_dma_exit);
1005 
1006 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1007 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
1008 MODULE_LICENSE("GPL v2");
1009