xref: /linux/sound/soc/fsl/fsl_dma.c (revision 876355014ce3a7ba8ca299522b215365b4a3fb61)
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  * This driver implements ASoC support for the Elo DMA controller, which is
13  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14  * the PCM driver is what handles the DMA buffer.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/gfp.h>
24 #include <linux/of_platform.h>
25 #include <linux/list.h>
26 #include <linux/slab.h>
27 
28 #include <sound/core.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/soc.h>
32 
33 #include <asm/io.h>
34 
35 #include "fsl_dma.h"
36 #include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
37 
38 /*
39  * The formats that the DMA controller supports, which is anything
40  * that is 8, 16, or 32 bits.
41  */
42 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
43 			    SNDRV_PCM_FMTBIT_U8 	| \
44 			    SNDRV_PCM_FMTBIT_S16_LE     | \
45 			    SNDRV_PCM_FMTBIT_S16_BE     | \
46 			    SNDRV_PCM_FMTBIT_U16_LE     | \
47 			    SNDRV_PCM_FMTBIT_U16_BE     | \
48 			    SNDRV_PCM_FMTBIT_S24_LE     | \
49 			    SNDRV_PCM_FMTBIT_S24_BE     | \
50 			    SNDRV_PCM_FMTBIT_U24_LE     | \
51 			    SNDRV_PCM_FMTBIT_U24_BE     | \
52 			    SNDRV_PCM_FMTBIT_S32_LE     | \
53 			    SNDRV_PCM_FMTBIT_S32_BE     | \
54 			    SNDRV_PCM_FMTBIT_U32_LE     | \
55 			    SNDRV_PCM_FMTBIT_U32_BE)
56 
57 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
58 			  SNDRV_PCM_RATE_CONTINUOUS)
59 
60 struct dma_object {
61 	struct snd_soc_platform_driver dai;
62 	dma_addr_t ssi_stx_phys;
63 	dma_addr_t ssi_srx_phys;
64 	unsigned int ssi_fifo_depth;
65 	struct ccsr_dma_channel __iomem *channel;
66 	unsigned int irq;
67 	bool assigned;
68 	char path[1];
69 };
70 
71 /*
72  * The number of DMA links to use.  Two is the bare minimum, but if you
73  * have really small links you might need more.
74  */
75 #define NUM_DMA_LINKS   2
76 
77 /** fsl_dma_private: p-substream DMA data
78  *
79  * Each substream has a 1-to-1 association with a DMA channel.
80  *
81  * The link[] array is first because it needs to be aligned on a 32-byte
82  * boundary, so putting it first will ensure alignment without padding the
83  * structure.
84  *
85  * @link[]: array of link descriptors
86  * @dma_channel: pointer to the DMA channel's registers
87  * @irq: IRQ for this DMA channel
88  * @substream: pointer to the substream object, needed by the ISR
89  * @ssi_sxx_phys: bus address of the STX or SRX register to use
90  * @ld_buf_phys: physical address of the LD buffer
91  * @current_link: index into link[] of the link currently being processed
92  * @dma_buf_phys: physical address of the DMA buffer
93  * @dma_buf_next: physical address of the next period to process
94  * @dma_buf_end: physical address of the byte after the end of the DMA
95  * @buffer period_size: the size of a single period
96  * @num_periods: the number of periods in the DMA buffer
97  */
98 struct fsl_dma_private {
99 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
100 	struct ccsr_dma_channel __iomem *dma_channel;
101 	unsigned int irq;
102 	struct snd_pcm_substream *substream;
103 	dma_addr_t ssi_sxx_phys;
104 	unsigned int ssi_fifo_depth;
105 	dma_addr_t ld_buf_phys;
106 	unsigned int current_link;
107 	dma_addr_t dma_buf_phys;
108 	dma_addr_t dma_buf_next;
109 	dma_addr_t dma_buf_end;
110 	size_t period_size;
111 	unsigned int num_periods;
112 };
113 
114 /**
115  * fsl_dma_hardare: define characteristics of the PCM hardware.
116  *
117  * The PCM hardware is the Freescale DMA controller.  This structure defines
118  * the capabilities of that hardware.
119  *
120  * Since the sampling rate and data format are not controlled by the DMA
121  * controller, we specify no limits for those values.  The only exception is
122  * period_bytes_min, which is set to a reasonably low value to prevent the
123  * DMA controller from generating too many interrupts per second.
124  *
125  * Since each link descriptor has a 32-bit byte count field, we set
126  * period_bytes_max to the largest 32-bit number.  We also have no maximum
127  * number of periods.
128  *
129  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
130  * limitation in the SSI driver requires the sample rates for playback and
131  * capture to be the same.
132  */
133 static const struct snd_pcm_hardware fsl_dma_hardware = {
134 
135 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
136 				  SNDRV_PCM_INFO_MMAP |
137 				  SNDRV_PCM_INFO_MMAP_VALID |
138 				  SNDRV_PCM_INFO_JOINT_DUPLEX |
139 				  SNDRV_PCM_INFO_PAUSE,
140 	.formats		= FSLDMA_PCM_FORMATS,
141 	.rates  		= FSLDMA_PCM_RATES,
142 	.rate_min       	= 5512,
143 	.rate_max       	= 192000,
144 	.period_bytes_min       = 512,  	/* A reasonable limit */
145 	.period_bytes_max       = (u32) -1,
146 	.periods_min    	= NUM_DMA_LINKS,
147 	.periods_max    	= (unsigned int) -1,
148 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
149 };
150 
151 /**
152  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
153  *
154  * This function should be called by the ISR whenever the DMA controller
155  * halts data transfer.
156  */
157 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
158 {
159 	unsigned long flags;
160 
161 	snd_pcm_stream_lock_irqsave(substream, flags);
162 
163 	if (snd_pcm_running(substream))
164 		snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
165 
166 	snd_pcm_stream_unlock_irqrestore(substream, flags);
167 }
168 
169 /**
170  * fsl_dma_update_pointers - update LD pointers to point to the next period
171  *
172  * As each period is completed, this function changes the the link
173  * descriptor pointers for that period to point to the next period.
174  */
175 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
176 {
177 	struct fsl_dma_link_descriptor *link =
178 		&dma_private->link[dma_private->current_link];
179 
180 	/* Update our link descriptors to point to the next period. On a 36-bit
181 	 * system, we also need to update the ESAD bits.  We also set (keep) the
182 	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
183 	 */
184 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
185 		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
186 #ifdef CONFIG_PHYS_64BIT
187 		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
188 			upper_32_bits(dma_private->dma_buf_next));
189 #endif
190 	} else {
191 		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
192 #ifdef CONFIG_PHYS_64BIT
193 		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
194 			upper_32_bits(dma_private->dma_buf_next));
195 #endif
196 	}
197 
198 	/* Update our variables for next time */
199 	dma_private->dma_buf_next += dma_private->period_size;
200 
201 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
202 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
203 
204 	if (++dma_private->current_link >= NUM_DMA_LINKS)
205 		dma_private->current_link = 0;
206 }
207 
208 /**
209  * fsl_dma_isr: interrupt handler for the DMA controller
210  *
211  * @irq: IRQ of the DMA channel
212  * @dev_id: pointer to the dma_private structure for this DMA channel
213  */
214 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
215 {
216 	struct fsl_dma_private *dma_private = dev_id;
217 	struct snd_pcm_substream *substream = dma_private->substream;
218 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
219 	struct device *dev = rtd->platform->dev;
220 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
221 	irqreturn_t ret = IRQ_NONE;
222 	u32 sr, sr2 = 0;
223 
224 	/* We got an interrupt, so read the status register to see what we
225 	   were interrupted for.
226 	 */
227 	sr = in_be32(&dma_channel->sr);
228 
229 	if (sr & CCSR_DMA_SR_TE) {
230 		dev_err(dev, "dma transmit error\n");
231 		fsl_dma_abort_stream(substream);
232 		sr2 |= CCSR_DMA_SR_TE;
233 		ret = IRQ_HANDLED;
234 	}
235 
236 	if (sr & CCSR_DMA_SR_CH)
237 		ret = IRQ_HANDLED;
238 
239 	if (sr & CCSR_DMA_SR_PE) {
240 		dev_err(dev, "dma programming error\n");
241 		fsl_dma_abort_stream(substream);
242 		sr2 |= CCSR_DMA_SR_PE;
243 		ret = IRQ_HANDLED;
244 	}
245 
246 	if (sr & CCSR_DMA_SR_EOLNI) {
247 		sr2 |= CCSR_DMA_SR_EOLNI;
248 		ret = IRQ_HANDLED;
249 	}
250 
251 	if (sr & CCSR_DMA_SR_CB)
252 		ret = IRQ_HANDLED;
253 
254 	if (sr & CCSR_DMA_SR_EOSI) {
255 		/* Tell ALSA we completed a period. */
256 		snd_pcm_period_elapsed(substream);
257 
258 		/*
259 		 * Update our link descriptors to point to the next period. We
260 		 * only need to do this if the number of periods is not equal to
261 		 * the number of links.
262 		 */
263 		if (dma_private->num_periods != NUM_DMA_LINKS)
264 			fsl_dma_update_pointers(dma_private);
265 
266 		sr2 |= CCSR_DMA_SR_EOSI;
267 		ret = IRQ_HANDLED;
268 	}
269 
270 	if (sr & CCSR_DMA_SR_EOLSI) {
271 		sr2 |= CCSR_DMA_SR_EOLSI;
272 		ret = IRQ_HANDLED;
273 	}
274 
275 	/* Clear the bits that we set */
276 	if (sr2)
277 		out_be32(&dma_channel->sr, sr2);
278 
279 	return ret;
280 }
281 
282 /**
283  * fsl_dma_new: initialize this PCM driver.
284  *
285  * This function is called when the codec driver calls snd_soc_new_pcms(),
286  * once for each .dai_link in the machine driver's snd_soc_card
287  * structure.
288  *
289  * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
290  * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
291  * is specified. Therefore, any DMA buffers we allocate will always be in low
292  * memory, but we support for 36-bit physical addresses anyway.
293  *
294  * Regardless of where the memory is actually allocated, since the device can
295  * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
296  */
297 static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
298 {
299 	struct snd_card *card = rtd->card->snd_card;
300 	struct snd_soc_dai *dai = rtd->cpu_dai;
301 	struct snd_pcm *pcm = rtd->pcm;
302 	static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
303 	int ret;
304 
305 	if (!card->dev->dma_mask)
306 		card->dev->dma_mask = &fsl_dma_dmamask;
307 
308 	if (!card->dev->coherent_dma_mask)
309 		card->dev->coherent_dma_mask = fsl_dma_dmamask;
310 
311 	/* Some codecs have separate DAIs for playback and capture, so we
312 	 * should allocate a DMA buffer only for the streams that are valid.
313 	 */
314 
315 	if (pcm->streams[0].substream) {
316 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
317 			fsl_dma_hardware.buffer_bytes_max,
318 			&pcm->streams[0].substream->dma_buffer);
319 		if (ret) {
320 			dev_err(card->dev, "can't alloc playback dma buffer\n");
321 			return ret;
322 		}
323 	}
324 
325 	if (pcm->streams[1].substream) {
326 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
327 			fsl_dma_hardware.buffer_bytes_max,
328 			&pcm->streams[1].substream->dma_buffer);
329 		if (ret) {
330 			dev_err(card->dev, "can't alloc capture dma buffer\n");
331 			snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
332 			return ret;
333 		}
334 	}
335 
336 	return 0;
337 }
338 
339 /**
340  * fsl_dma_open: open a new substream.
341  *
342  * Each substream has its own DMA buffer.
343  *
344  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
345  * descriptors that ping-pong from one period to the next.  For example, if
346  * there are six periods and two link descriptors, this is how they look
347  * before playback starts:
348  *
349  *      	   The last link descriptor
350  *   ____________  points back to the first
351  *  |   	 |
352  *  V   	 |
353  *  ___    ___   |
354  * |   |->|   |->|
355  * |___|  |___|
356  *   |      |
357  *   |      |
358  *   V      V
359  *  _________________________________________
360  * |      |      |      |      |      |      |  The DMA buffer is
361  * |      |      |      |      |      |      |    divided into 6 parts
362  * |______|______|______|______|______|______|
363  *
364  * and here's how they look after the first period is finished playing:
365  *
366  *   ____________
367  *  |   	 |
368  *  V   	 |
369  *  ___    ___   |
370  * |   |->|   |->|
371  * |___|  |___|
372  *   |      |
373  *   |______________
374  *          |       |
375  *          V       V
376  *  _________________________________________
377  * |      |      |      |      |      |      |
378  * |      |      |      |      |      |      |
379  * |______|______|______|______|______|______|
380  *
381  * The first link descriptor now points to the third period.  The DMA
382  * controller is currently playing the second period.  When it finishes, it
383  * will jump back to the first descriptor and play the third period.
384  *
385  * There are four reasons we do this:
386  *
387  * 1. The only way to get the DMA controller to automatically restart the
388  *    transfer when it gets to the end of the buffer is to use chaining
389  *    mode.  Basic direct mode doesn't offer that feature.
390  * 2. We need to receive an interrupt at the end of every period.  The DMA
391  *    controller can generate an interrupt at the end of every link transfer
392  *    (aka segment).  Making each period into a DMA segment will give us the
393  *    interrupts we need.
394  * 3. By creating only two link descriptors, regardless of the number of
395  *    periods, we do not need to reallocate the link descriptors if the
396  *    number of periods changes.
397  * 4. All of the audio data is still stored in a single, contiguous DMA
398  *    buffer, which is what ALSA expects.  We're just dividing it into
399  *    contiguous parts, and creating a link descriptor for each one.
400  */
401 static int fsl_dma_open(struct snd_pcm_substream *substream)
402 {
403 	struct snd_pcm_runtime *runtime = substream->runtime;
404 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
405 	struct device *dev = rtd->platform->dev;
406 	struct dma_object *dma =
407 		container_of(rtd->platform->driver, struct dma_object, dai);
408 	struct fsl_dma_private *dma_private;
409 	struct ccsr_dma_channel __iomem *dma_channel;
410 	dma_addr_t ld_buf_phys;
411 	u64 temp_link;  	/* Pointer to next link descriptor */
412 	u32 mr;
413 	unsigned int channel;
414 	int ret = 0;
415 	unsigned int i;
416 
417 	/*
418 	 * Reject any DMA buffer whose size is not a multiple of the period
419 	 * size.  We need to make sure that the DMA buffer can be evenly divided
420 	 * into periods.
421 	 */
422 	ret = snd_pcm_hw_constraint_integer(runtime,
423 		SNDRV_PCM_HW_PARAM_PERIODS);
424 	if (ret < 0) {
425 		dev_err(dev, "invalid buffer size\n");
426 		return ret;
427 	}
428 
429 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
430 
431 	if (dma->assigned) {
432 		dev_err(dev, "dma channel already assigned\n");
433 		return -EBUSY;
434 	}
435 
436 	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
437 					 &ld_buf_phys, GFP_KERNEL);
438 	if (!dma_private) {
439 		dev_err(dev, "can't allocate dma private data\n");
440 		return -ENOMEM;
441 	}
442 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
443 		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
444 	else
445 		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
446 
447 	dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
448 	dma_private->dma_channel = dma->channel;
449 	dma_private->irq = dma->irq;
450 	dma_private->substream = substream;
451 	dma_private->ld_buf_phys = ld_buf_phys;
452 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
453 
454 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
455 			  dma_private);
456 	if (ret) {
457 		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
458 			dma_private->irq, ret);
459 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
460 			dma_private, dma_private->ld_buf_phys);
461 		return ret;
462 	}
463 
464 	dma->assigned = 1;
465 
466 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
467 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
468 	runtime->private_data = dma_private;
469 
470 	/* Program the fixed DMA controller parameters */
471 
472 	dma_channel = dma_private->dma_channel;
473 
474 	temp_link = dma_private->ld_buf_phys +
475 		sizeof(struct fsl_dma_link_descriptor);
476 
477 	for (i = 0; i < NUM_DMA_LINKS; i++) {
478 		dma_private->link[i].next = cpu_to_be64(temp_link);
479 
480 		temp_link += sizeof(struct fsl_dma_link_descriptor);
481 	}
482 	/* The last link descriptor points to the first */
483 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
484 
485 	/* Tell the DMA controller where the first link descriptor is */
486 	out_be32(&dma_channel->clndar,
487 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
488 	out_be32(&dma_channel->eclndar,
489 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
490 
491 	/* The manual says the BCR must be clear before enabling EMP */
492 	out_be32(&dma_channel->bcr, 0);
493 
494 	/*
495 	 * Program the mode register for interrupts, external master control,
496 	 * and source/destination hold.  Also clear the Channel Abort bit.
497 	 */
498 	mr = in_be32(&dma_channel->mr) &
499 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
500 
501 	/*
502 	 * We want External Master Start and External Master Pause enabled,
503 	 * because the SSI is controlling the DMA controller.  We want the DMA
504 	 * controller to be set up in advance, and then we signal only the SSI
505 	 * to start transferring.
506 	 *
507 	 * We want End-Of-Segment Interrupts enabled, because this will generate
508 	 * an interrupt at the end of each segment (each link descriptor
509 	 * represents one segment).  Each DMA segment is the same thing as an
510 	 * ALSA period, so this is how we get an interrupt at the end of every
511 	 * period.
512 	 *
513 	 * We want Error Interrupt enabled, so that we can get an error if
514 	 * the DMA controller is mis-programmed somehow.
515 	 */
516 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
517 		CCSR_DMA_MR_EMS_EN;
518 
519 	/* For playback, we want the destination address to be held.  For
520 	   capture, set the source address to be held. */
521 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
522 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
523 
524 	out_be32(&dma_channel->mr, mr);
525 
526 	return 0;
527 }
528 
529 /**
530  * fsl_dma_hw_params: continue initializing the DMA links
531  *
532  * This function obtains hardware parameters about the opened stream and
533  * programs the DMA controller accordingly.
534  *
535  * One drawback of big-endian is that when copying integers of different
536  * sizes to a fixed-sized register, the address to which the integer must be
537  * copied is dependent on the size of the integer.
538  *
539  * For example, if P is the address of a 32-bit register, and X is a 32-bit
540  * integer, then X should be copied to address P.  However, if X is a 16-bit
541  * integer, then it should be copied to P+2.  If X is an 8-bit register,
542  * then it should be copied to P+3.
543  *
544  * So for playback of 8-bit samples, the DMA controller must transfer single
545  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
546  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
547  *
548  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
549  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
550  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
551  * 24-bit data must be padded to 32 bits.
552  */
553 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
554 	struct snd_pcm_hw_params *hw_params)
555 {
556 	struct snd_pcm_runtime *runtime = substream->runtime;
557 	struct fsl_dma_private *dma_private = runtime->private_data;
558 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
559 	struct device *dev = rtd->platform->dev;
560 
561 	/* Number of bits per sample */
562 	unsigned int sample_bits =
563 		snd_pcm_format_physical_width(params_format(hw_params));
564 
565 	/* Number of bytes per frame */
566 	unsigned int sample_bytes = sample_bits / 8;
567 
568 	/* Bus address of SSI STX register */
569 	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
570 
571 	/* Size of the DMA buffer, in bytes */
572 	size_t buffer_size = params_buffer_bytes(hw_params);
573 
574 	/* Number of bytes per period */
575 	size_t period_size = params_period_bytes(hw_params);
576 
577 	/* Pointer to next period */
578 	dma_addr_t temp_addr = substream->dma_buffer.addr;
579 
580 	/* Pointer to DMA controller */
581 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
582 
583 	u32 mr; /* DMA Mode Register */
584 
585 	unsigned int i;
586 
587 	/* Initialize our DMA tracking variables */
588 	dma_private->period_size = period_size;
589 	dma_private->num_periods = params_periods(hw_params);
590 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
591 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
592 		(NUM_DMA_LINKS * period_size);
593 
594 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
595 		/* This happens if the number of periods == NUM_DMA_LINKS */
596 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
597 
598 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
599 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
600 
601 	/* Due to a quirk of the SSI's STX register, the target address
602 	 * for the DMA operations depends on the sample size.  So we calculate
603 	 * that offset here.  While we're at it, also tell the DMA controller
604 	 * how much data to transfer per sample.
605 	 */
606 	switch (sample_bits) {
607 	case 8:
608 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
609 		ssi_sxx_phys += 3;
610 		break;
611 	case 16:
612 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
613 		ssi_sxx_phys += 2;
614 		break;
615 	case 32:
616 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
617 		break;
618 	default:
619 		/* We should never get here */
620 		dev_err(dev, "unsupported sample size %u\n", sample_bits);
621 		return -EINVAL;
622 	}
623 
624 	/*
625 	 * BWC determines how many bytes are sent/received before the DMA
626 	 * controller checks the SSI to see if it needs to stop. BWC should
627 	 * always be a multiple of the frame size, so that we always transmit
628 	 * whole frames.  Each frame occupies two slots in the FIFO.  The
629 	 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
630 	 * (MR[BWC] can only represent even powers of two).
631 	 *
632 	 * To simplify the process, we set BWC to the largest value that is
633 	 * less than or equal to the FIFO watermark.  For playback, this ensures
634 	 * that we transfer the maximum amount without overrunning the FIFO.
635 	 * For capture, this ensures that we transfer the maximum amount without
636 	 * underrunning the FIFO.
637 	 *
638 	 * f = SSI FIFO depth
639 	 * w = SSI watermark value (which equals f - 2)
640 	 * b = DMA bandwidth count (in bytes)
641 	 * s = sample size (in bytes, which equals frame_size * 2)
642 	 *
643 	 * For playback, we never transmit more than the transmit FIFO
644 	 * watermark, otherwise we might write more data than the FIFO can hold.
645 	 * The watermark is equal to the FIFO depth minus two.
646 	 *
647 	 * For capture, two equations must hold:
648 	 *	w > f - (b / s)
649 	 *	w >= b / s
650 	 *
651 	 * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
652 	 * b = s * w, which is equal to
653 	 *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
654 	 */
655 	mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
656 
657 	out_be32(&dma_channel->mr, mr);
658 
659 	for (i = 0; i < NUM_DMA_LINKS; i++) {
660 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
661 
662 		link->count = cpu_to_be32(period_size);
663 
664 		/* The snoop bit tells the DMA controller whether it should tell
665 		 * the ECM to snoop during a read or write to an address. For
666 		 * audio, we use DMA to transfer data between memory and an I/O
667 		 * device (the SSI's STX0 or SRX0 register). Snooping is only
668 		 * needed if there is a cache, so we need to snoop memory
669 		 * addresses only.  For playback, that means we snoop the source
670 		 * but not the destination.  For capture, we snoop the
671 		 * destination but not the source.
672 		 *
673 		 * Note that failing to snoop properly is unlikely to cause
674 		 * cache incoherency if the period size is larger than the
675 		 * size of L1 cache.  This is because filling in one period will
676 		 * flush out the data for the previous period.  So if you
677 		 * increased period_bytes_min to a large enough size, you might
678 		 * get more performance by not snooping, and you'll still be
679 		 * okay.  You'll need to update fsl_dma_update_pointers() also.
680 		 */
681 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
682 			link->source_addr = cpu_to_be32(temp_addr);
683 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
684 				upper_32_bits(temp_addr));
685 
686 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
687 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
688 				upper_32_bits(ssi_sxx_phys));
689 		} else {
690 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
691 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
692 				upper_32_bits(ssi_sxx_phys));
693 
694 			link->dest_addr = cpu_to_be32(temp_addr);
695 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
696 				upper_32_bits(temp_addr));
697 		}
698 
699 		temp_addr += period_size;
700 	}
701 
702 	return 0;
703 }
704 
705 /**
706  * fsl_dma_pointer: determine the current position of the DMA transfer
707  *
708  * This function is called by ALSA when ALSA wants to know where in the
709  * stream buffer the hardware currently is.
710  *
711  * For playback, the SAR register contains the physical address of the most
712  * recent DMA transfer.  For capture, the value is in the DAR register.
713  *
714  * The base address of the buffer is stored in the source_addr field of the
715  * first link descriptor.
716  */
717 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
718 {
719 	struct snd_pcm_runtime *runtime = substream->runtime;
720 	struct fsl_dma_private *dma_private = runtime->private_data;
721 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
722 	struct device *dev = rtd->platform->dev;
723 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
724 	dma_addr_t position;
725 	snd_pcm_uframes_t frames;
726 
727 	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
728 	 * only have 32-bit DMA addresses.  This function is typically called
729 	 * in interrupt context, so we need to optimize it.
730 	 */
731 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
732 		position = in_be32(&dma_channel->sar);
733 #ifdef CONFIG_PHYS_64BIT
734 		position |= (u64)(in_be32(&dma_channel->satr) &
735 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
736 #endif
737 	} else {
738 		position = in_be32(&dma_channel->dar);
739 #ifdef CONFIG_PHYS_64BIT
740 		position |= (u64)(in_be32(&dma_channel->datr) &
741 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
742 #endif
743 	}
744 
745 	/*
746 	 * When capture is started, the SSI immediately starts to fill its FIFO.
747 	 * This means that the DMA controller is not started until the FIFO is
748 	 * full.  However, ALSA calls this function before that happens, when
749 	 * MR.DAR is still zero.  In this case, just return zero to indicate
750 	 * that nothing has been received yet.
751 	 */
752 	if (!position)
753 		return 0;
754 
755 	if ((position < dma_private->dma_buf_phys) ||
756 	    (position > dma_private->dma_buf_end)) {
757 		dev_err(dev, "dma pointer is out of range, halting stream\n");
758 		return SNDRV_PCM_POS_XRUN;
759 	}
760 
761 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
762 
763 	/*
764 	 * If the current address is just past the end of the buffer, wrap it
765 	 * around.
766 	 */
767 	if (frames == runtime->buffer_size)
768 		frames = 0;
769 
770 	return frames;
771 }
772 
773 /**
774  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
775  *
776  * Release the resources allocated in fsl_dma_hw_params() and de-program the
777  * registers.
778  *
779  * This function can be called multiple times.
780  */
781 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
782 {
783 	struct snd_pcm_runtime *runtime = substream->runtime;
784 	struct fsl_dma_private *dma_private = runtime->private_data;
785 
786 	if (dma_private) {
787 		struct ccsr_dma_channel __iomem *dma_channel;
788 
789 		dma_channel = dma_private->dma_channel;
790 
791 		/* Stop the DMA */
792 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
793 		out_be32(&dma_channel->mr, 0);
794 
795 		/* Reset all the other registers */
796 		out_be32(&dma_channel->sr, -1);
797 		out_be32(&dma_channel->clndar, 0);
798 		out_be32(&dma_channel->eclndar, 0);
799 		out_be32(&dma_channel->satr, 0);
800 		out_be32(&dma_channel->sar, 0);
801 		out_be32(&dma_channel->datr, 0);
802 		out_be32(&dma_channel->dar, 0);
803 		out_be32(&dma_channel->bcr, 0);
804 		out_be32(&dma_channel->nlndar, 0);
805 		out_be32(&dma_channel->enlndar, 0);
806 	}
807 
808 	return 0;
809 }
810 
811 /**
812  * fsl_dma_close: close the stream.
813  */
814 static int fsl_dma_close(struct snd_pcm_substream *substream)
815 {
816 	struct snd_pcm_runtime *runtime = substream->runtime;
817 	struct fsl_dma_private *dma_private = runtime->private_data;
818 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
819 	struct device *dev = rtd->platform->dev;
820 	struct dma_object *dma =
821 		container_of(rtd->platform->driver, struct dma_object, dai);
822 
823 	if (dma_private) {
824 		if (dma_private->irq)
825 			free_irq(dma_private->irq, dma_private);
826 
827 		if (dma_private->ld_buf_phys) {
828 			dma_unmap_single(dev, dma_private->ld_buf_phys,
829 					 sizeof(dma_private->link),
830 					 DMA_TO_DEVICE);
831 		}
832 
833 		/* Deallocate the fsl_dma_private structure */
834 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
835 				  dma_private, dma_private->ld_buf_phys);
836 		substream->runtime->private_data = NULL;
837 	}
838 
839 	dma->assigned = 0;
840 
841 	return 0;
842 }
843 
844 /*
845  * Remove this PCM driver.
846  */
847 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
848 {
849 	struct snd_pcm_substream *substream;
850 	unsigned int i;
851 
852 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
853 		substream = pcm->streams[i].substream;
854 		if (substream) {
855 			snd_dma_free_pages(&substream->dma_buffer);
856 			substream->dma_buffer.area = NULL;
857 			substream->dma_buffer.addr = 0;
858 		}
859 	}
860 }
861 
862 /**
863  * find_ssi_node -- returns the SSI node that points to his DMA channel node
864  *
865  * Although this DMA driver attempts to operate independently of the other
866  * devices, it still needs to determine some information about the SSI device
867  * that it's working with.  Unfortunately, the device tree does not contain
868  * a pointer from the DMA channel node to the SSI node -- the pointer goes the
869  * other way.  So we need to scan the device tree for SSI nodes until we find
870  * the one that points to the given DMA channel node.  It's ugly, but at least
871  * it's contained in this one function.
872  */
873 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
874 {
875 	struct device_node *ssi_np, *np;
876 
877 	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
878 		/* Check each DMA phandle to see if it points to us.  We
879 		 * assume that device_node pointers are a valid comparison.
880 		 */
881 		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
882 		of_node_put(np);
883 		if (np == dma_channel_np)
884 			return ssi_np;
885 
886 		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
887 		of_node_put(np);
888 		if (np == dma_channel_np)
889 			return ssi_np;
890 	}
891 
892 	return NULL;
893 }
894 
895 static struct snd_pcm_ops fsl_dma_ops = {
896 	.open   	= fsl_dma_open,
897 	.close  	= fsl_dma_close,
898 	.ioctl  	= snd_pcm_lib_ioctl,
899 	.hw_params      = fsl_dma_hw_params,
900 	.hw_free	= fsl_dma_hw_free,
901 	.pointer	= fsl_dma_pointer,
902 };
903 
904 static int __devinit fsl_soc_dma_probe(struct platform_device *pdev)
905  {
906 	struct dma_object *dma;
907 	struct device_node *np = pdev->dev.of_node;
908 	struct device_node *ssi_np;
909 	struct resource res;
910 	const uint32_t *iprop;
911 	int ret;
912 
913 	/* Find the SSI node that points to us. */
914 	ssi_np = find_ssi_node(np);
915 	if (!ssi_np) {
916 		dev_err(&pdev->dev, "cannot find parent SSI node\n");
917 		return -ENODEV;
918 	}
919 
920 	ret = of_address_to_resource(ssi_np, 0, &res);
921 	if (ret) {
922 		dev_err(&pdev->dev, "could not determine resources for %s\n",
923 			ssi_np->full_name);
924 		of_node_put(ssi_np);
925 		return ret;
926 	}
927 
928 	dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
929 	if (!dma) {
930 		dev_err(&pdev->dev, "could not allocate dma object\n");
931 		of_node_put(ssi_np);
932 		return -ENOMEM;
933 	}
934 
935 	strcpy(dma->path, np->full_name);
936 	dma->dai.ops = &fsl_dma_ops;
937 	dma->dai.pcm_new = fsl_dma_new;
938 	dma->dai.pcm_free = fsl_dma_free_dma_buffers;
939 
940 	/* Store the SSI-specific information that we need */
941 	dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
942 	dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
943 
944 	iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
945 	if (iprop)
946 		dma->ssi_fifo_depth = be32_to_cpup(iprop);
947 	else
948                 /* Older 8610 DTs didn't have the fifo-depth property */
949 		dma->ssi_fifo_depth = 8;
950 
951 	of_node_put(ssi_np);
952 
953 	ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
954 	if (ret) {
955 		dev_err(&pdev->dev, "could not register platform\n");
956 		kfree(dma);
957 		return ret;
958 	}
959 
960 	dma->channel = of_iomap(np, 0);
961 	dma->irq = irq_of_parse_and_map(np, 0);
962 
963 	dev_set_drvdata(&pdev->dev, dma);
964 
965 	return 0;
966 }
967 
968 static int __devexit fsl_soc_dma_remove(struct platform_device *pdev)
969 {
970 	struct dma_object *dma = dev_get_drvdata(&pdev->dev);
971 
972 	snd_soc_unregister_platform(&pdev->dev);
973 	iounmap(dma->channel);
974 	irq_dispose_mapping(dma->irq);
975 	kfree(dma);
976 
977 	return 0;
978 }
979 
980 static const struct of_device_id fsl_soc_dma_ids[] = {
981 	{ .compatible = "fsl,ssi-dma-channel", },
982 	{}
983 };
984 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
985 
986 static struct platform_driver fsl_soc_dma_driver = {
987 	.driver = {
988 		.name = "fsl-pcm-audio",
989 		.owner = THIS_MODULE,
990 		.of_match_table = fsl_soc_dma_ids,
991 	},
992 	.probe = fsl_soc_dma_probe,
993 	.remove = __devexit_p(fsl_soc_dma_remove),
994 };
995 
996 static int __init fsl_soc_dma_init(void)
997 {
998 	pr_info("Freescale Elo DMA ASoC PCM Driver\n");
999 
1000 	return platform_driver_register(&fsl_soc_dma_driver);
1001 }
1002 
1003 static void __exit fsl_soc_dma_exit(void)
1004 {
1005 	platform_driver_unregister(&fsl_soc_dma_driver);
1006 }
1007 
1008 module_init(fsl_soc_dma_init);
1009 module_exit(fsl_soc_dma_exit);
1010 
1011 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1012 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
1013 MODULE_LICENSE("GPL v2");
1014