xref: /linux/sound/soc/fsl/fsl_dma.c (revision 38ccc197eb85cad594eb5863ba5a408655da0062)
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2008 Freescale Semiconductor, Inc.  This file is licensed
7  * under the terms of the GNU General Public License version 2.  This
8  * program is licensed "as is" without any warranty of any kind, whether
9  * express or implied.
10  *
11  * This driver implements ASoC support for the Elo DMA controller, which is
12  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
13  * the PCM driver is what handles the DMA buffer.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 
23 #include <sound/core.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 
28 #include <asm/io.h>
29 
30 #include "fsl_dma.h"
31 
32 /*
33  * The formats that the DMA controller supports, which is anything
34  * that is 8, 16, or 32 bits.
35  */
36 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
37 			    SNDRV_PCM_FMTBIT_U8 	| \
38 			    SNDRV_PCM_FMTBIT_S16_LE     | \
39 			    SNDRV_PCM_FMTBIT_S16_BE     | \
40 			    SNDRV_PCM_FMTBIT_U16_LE     | \
41 			    SNDRV_PCM_FMTBIT_U16_BE     | \
42 			    SNDRV_PCM_FMTBIT_S24_LE     | \
43 			    SNDRV_PCM_FMTBIT_S24_BE     | \
44 			    SNDRV_PCM_FMTBIT_U24_LE     | \
45 			    SNDRV_PCM_FMTBIT_U24_BE     | \
46 			    SNDRV_PCM_FMTBIT_S32_LE     | \
47 			    SNDRV_PCM_FMTBIT_S32_BE     | \
48 			    SNDRV_PCM_FMTBIT_U32_LE     | \
49 			    SNDRV_PCM_FMTBIT_U32_BE)
50 
51 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
52 			  SNDRV_PCM_RATE_CONTINUOUS)
53 
54 /* DMA global data.  This structure is used by fsl_dma_open() to determine
55  * which DMA channels to assign to a substream.  Unfortunately, ASoC V1 does
56  * not allow the machine driver to provide this information to the PCM
57  * driver in advance, and there's no way to differentiate between the two
58  * DMA controllers.  So for now, this driver only supports one SSI device
59  * using two DMA channels.  We cannot support multiple DMA devices.
60  *
61  * ssi_stx_phys: bus address of SSI STX register
62  * ssi_srx_phys: bus address of SSI SRX register
63  * dma_channel: pointer to the DMA channel's registers
64  * irq: IRQ for this DMA channel
65  * assigned: set to 1 if that DMA channel is assigned to a substream
66  */
67 static struct {
68 	dma_addr_t ssi_stx_phys;
69 	dma_addr_t ssi_srx_phys;
70 	struct ccsr_dma_channel __iomem *dma_channel[2];
71 	unsigned int irq[2];
72 	unsigned int assigned[2];
73 } dma_global_data;
74 
75 /*
76  * The number of DMA links to use.  Two is the bare minimum, but if you
77  * have really small links you might need more.
78  */
79 #define NUM_DMA_LINKS   2
80 
81 /** fsl_dma_private: p-substream DMA data
82  *
83  * Each substream has a 1-to-1 association with a DMA channel.
84  *
85  * The link[] array is first because it needs to be aligned on a 32-byte
86  * boundary, so putting it first will ensure alignment without padding the
87  * structure.
88  *
89  * @link[]: array of link descriptors
90  * @controller_id: which DMA controller (0, 1, ...)
91  * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
92  * @dma_channel: pointer to the DMA channel's registers
93  * @irq: IRQ for this DMA channel
94  * @substream: pointer to the substream object, needed by the ISR
95  * @ssi_sxx_phys: bus address of the STX or SRX register to use
96  * @ld_buf_phys: physical address of the LD buffer
97  * @current_link: index into link[] of the link currently being processed
98  * @dma_buf_phys: physical address of the DMA buffer
99  * @dma_buf_next: physical address of the next period to process
100  * @dma_buf_end: physical address of the byte after the end of the DMA
101  * @buffer period_size: the size of a single period
102  * @num_periods: the number of periods in the DMA buffer
103  */
104 struct fsl_dma_private {
105 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
106 	unsigned int controller_id;
107 	unsigned int channel_id;
108 	struct ccsr_dma_channel __iomem *dma_channel;
109 	unsigned int irq;
110 	struct snd_pcm_substream *substream;
111 	dma_addr_t ssi_sxx_phys;
112 	dma_addr_t ld_buf_phys;
113 	unsigned int current_link;
114 	dma_addr_t dma_buf_phys;
115 	dma_addr_t dma_buf_next;
116 	dma_addr_t dma_buf_end;
117 	size_t period_size;
118 	unsigned int num_periods;
119 };
120 
121 /**
122  * fsl_dma_hardare: define characteristics of the PCM hardware.
123  *
124  * The PCM hardware is the Freescale DMA controller.  This structure defines
125  * the capabilities of that hardware.
126  *
127  * Since the sampling rate and data format are not controlled by the DMA
128  * controller, we specify no limits for those values.  The only exception is
129  * period_bytes_min, which is set to a reasonably low value to prevent the
130  * DMA controller from generating too many interrupts per second.
131  *
132  * Since each link descriptor has a 32-bit byte count field, we set
133  * period_bytes_max to the largest 32-bit number.  We also have no maximum
134  * number of periods.
135  */
136 static const struct snd_pcm_hardware fsl_dma_hardware = {
137 
138 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
139 				  SNDRV_PCM_INFO_MMAP |
140 				  SNDRV_PCM_INFO_MMAP_VALID,
141 	.formats		= FSLDMA_PCM_FORMATS,
142 	.rates  		= FSLDMA_PCM_RATES,
143 	.rate_min       	= 5512,
144 	.rate_max       	= 192000,
145 	.period_bytes_min       = 512,  	/* A reasonable limit */
146 	.period_bytes_max       = (u32) -1,
147 	.periods_min    	= NUM_DMA_LINKS,
148 	.periods_max    	= (unsigned int) -1,
149 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
150 };
151 
152 /**
153  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
154  *
155  * This function should be called by the ISR whenever the DMA controller
156  * halts data transfer.
157  */
158 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
159 {
160 	unsigned long flags;
161 
162 	snd_pcm_stream_lock_irqsave(substream, flags);
163 
164 	if (snd_pcm_running(substream))
165 		snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
166 
167 	snd_pcm_stream_unlock_irqrestore(substream, flags);
168 }
169 
170 /**
171  * fsl_dma_update_pointers - update LD pointers to point to the next period
172  *
173  * As each period is completed, this function changes the the link
174  * descriptor pointers for that period to point to the next period.
175  */
176 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
177 {
178 	struct fsl_dma_link_descriptor *link =
179 		&dma_private->link[dma_private->current_link];
180 
181 	/* Update our link descriptors to point to the next period */
182 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
183 		link->source_addr =
184 			cpu_to_be32(dma_private->dma_buf_next);
185 	else
186 		link->dest_addr =
187 			cpu_to_be32(dma_private->dma_buf_next);
188 
189 	/* Update our variables for next time */
190 	dma_private->dma_buf_next += dma_private->period_size;
191 
192 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
193 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
194 
195 	if (++dma_private->current_link >= NUM_DMA_LINKS)
196 		dma_private->current_link = 0;
197 }
198 
199 /**
200  * fsl_dma_isr: interrupt handler for the DMA controller
201  *
202  * @irq: IRQ of the DMA channel
203  * @dev_id: pointer to the dma_private structure for this DMA channel
204  */
205 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
206 {
207 	struct fsl_dma_private *dma_private = dev_id;
208 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
209 	irqreturn_t ret = IRQ_NONE;
210 	u32 sr, sr2 = 0;
211 
212 	/* We got an interrupt, so read the status register to see what we
213 	   were interrupted for.
214 	 */
215 	sr = in_be32(&dma_channel->sr);
216 
217 	if (sr & CCSR_DMA_SR_TE) {
218 		dev_err(dma_private->substream->pcm->card->dev,
219 			"DMA transmit error (controller=%u channel=%u irq=%u\n",
220 			dma_private->controller_id,
221 			dma_private->channel_id, irq);
222 		fsl_dma_abort_stream(dma_private->substream);
223 		sr2 |= CCSR_DMA_SR_TE;
224 		ret = IRQ_HANDLED;
225 	}
226 
227 	if (sr & CCSR_DMA_SR_CH)
228 		ret = IRQ_HANDLED;
229 
230 	if (sr & CCSR_DMA_SR_PE) {
231 		dev_err(dma_private->substream->pcm->card->dev,
232 			"DMA%u programming error (channel=%u irq=%u)\n",
233 			dma_private->controller_id,
234 			dma_private->channel_id, irq);
235 		fsl_dma_abort_stream(dma_private->substream);
236 		sr2 |= CCSR_DMA_SR_PE;
237 		ret = IRQ_HANDLED;
238 	}
239 
240 	if (sr & CCSR_DMA_SR_EOLNI) {
241 		sr2 |= CCSR_DMA_SR_EOLNI;
242 		ret = IRQ_HANDLED;
243 	}
244 
245 	if (sr & CCSR_DMA_SR_CB)
246 		ret = IRQ_HANDLED;
247 
248 	if (sr & CCSR_DMA_SR_EOSI) {
249 		struct snd_pcm_substream *substream = dma_private->substream;
250 
251 		/* Tell ALSA we completed a period. */
252 		snd_pcm_period_elapsed(substream);
253 
254 		/*
255 		 * Update our link descriptors to point to the next period. We
256 		 * only need to do this if the number of periods is not equal to
257 		 * the number of links.
258 		 */
259 		if (dma_private->num_periods != NUM_DMA_LINKS)
260 			fsl_dma_update_pointers(dma_private);
261 
262 		sr2 |= CCSR_DMA_SR_EOSI;
263 		ret = IRQ_HANDLED;
264 	}
265 
266 	if (sr & CCSR_DMA_SR_EOLSI) {
267 		sr2 |= CCSR_DMA_SR_EOLSI;
268 		ret = IRQ_HANDLED;
269 	}
270 
271 	/* Clear the bits that we set */
272 	if (sr2)
273 		out_be32(&dma_channel->sr, sr2);
274 
275 	return ret;
276 }
277 
278 /**
279  * fsl_dma_new: initialize this PCM driver.
280  *
281  * This function is called when the codec driver calls snd_soc_new_pcms(),
282  * once for each .dai_link in the machine driver's snd_soc_machine
283  * structure.
284  */
285 static int fsl_dma_new(struct snd_card *card, struct snd_soc_codec_dai *dai,
286 	struct snd_pcm *pcm)
287 {
288 	static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
289 	int ret;
290 
291 	if (!card->dev->dma_mask)
292 		card->dev->dma_mask = &fsl_dma_dmamask;
293 
294 	if (!card->dev->coherent_dma_mask)
295 		card->dev->coherent_dma_mask = fsl_dma_dmamask;
296 
297 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
298 		fsl_dma_hardware.buffer_bytes_max,
299 		&pcm->streams[0].substream->dma_buffer);
300 	if (ret) {
301 		dev_err(card->dev,
302 			"Can't allocate playback DMA buffer (size=%u)\n",
303 			fsl_dma_hardware.buffer_bytes_max);
304 		return -ENOMEM;
305 	}
306 
307 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
308 		fsl_dma_hardware.buffer_bytes_max,
309 		&pcm->streams[1].substream->dma_buffer);
310 	if (ret) {
311 		snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
312 		dev_err(card->dev,
313 			"Can't allocate capture DMA buffer (size=%u)\n",
314 			fsl_dma_hardware.buffer_bytes_max);
315 		return -ENOMEM;
316 	}
317 
318 	return 0;
319 }
320 
321 /**
322  * fsl_dma_open: open a new substream.
323  *
324  * Each substream has its own DMA buffer.
325  */
326 static int fsl_dma_open(struct snd_pcm_substream *substream)
327 {
328 	struct snd_pcm_runtime *runtime = substream->runtime;
329 	struct fsl_dma_private *dma_private;
330 	dma_addr_t ld_buf_phys;
331 	unsigned int channel;
332 	int ret = 0;
333 
334 	/*
335 	 * Reject any DMA buffer whose size is not a multiple of the period
336 	 * size.  We need to make sure that the DMA buffer can be evenly divided
337 	 * into periods.
338 	 */
339 	ret = snd_pcm_hw_constraint_integer(runtime,
340 		SNDRV_PCM_HW_PARAM_PERIODS);
341 	if (ret < 0) {
342 		dev_err(substream->pcm->card->dev, "invalid buffer size\n");
343 		return ret;
344 	}
345 
346 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
347 
348 	if (dma_global_data.assigned[channel]) {
349 		dev_err(substream->pcm->card->dev,
350 			"DMA channel already assigned\n");
351 		return -EBUSY;
352 	}
353 
354 	dma_private = dma_alloc_coherent(substream->pcm->dev,
355 		sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
356 	if (!dma_private) {
357 		dev_err(substream->pcm->card->dev,
358 			"can't allocate DMA private data\n");
359 		return -ENOMEM;
360 	}
361 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
362 		dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
363 	else
364 		dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
365 
366 	dma_private->dma_channel = dma_global_data.dma_channel[channel];
367 	dma_private->irq = dma_global_data.irq[channel];
368 	dma_private->substream = substream;
369 	dma_private->ld_buf_phys = ld_buf_phys;
370 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
371 
372 	/* We only support one DMA controller for now */
373 	dma_private->controller_id = 0;
374 	dma_private->channel_id = channel;
375 
376 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
377 	if (ret) {
378 		dev_err(substream->pcm->card->dev,
379 			"can't register ISR for IRQ %u (ret=%i)\n",
380 			dma_private->irq, ret);
381 		dma_free_coherent(substream->pcm->dev,
382 			sizeof(struct fsl_dma_private),
383 			dma_private, dma_private->ld_buf_phys);
384 		return ret;
385 	}
386 
387 	dma_global_data.assigned[channel] = 1;
388 
389 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
390 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
391 	runtime->private_data = dma_private;
392 
393 	return 0;
394 }
395 
396 /**
397  * fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors.
398  *
399  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
400  * descriptors that ping-pong from one period to the next.  For example, if
401  * there are six periods and two link descriptors, this is how they look
402  * before playback starts:
403  *
404  *      	   The last link descriptor
405  *   ____________  points back to the first
406  *  |   	 |
407  *  V   	 |
408  *  ___    ___   |
409  * |   |->|   |->|
410  * |___|  |___|
411  *   |      |
412  *   |      |
413  *   V      V
414  *  _________________________________________
415  * |      |      |      |      |      |      |  The DMA buffer is
416  * |      |      |      |      |      |      |    divided into 6 parts
417  * |______|______|______|______|______|______|
418  *
419  * and here's how they look after the first period is finished playing:
420  *
421  *   ____________
422  *  |   	 |
423  *  V   	 |
424  *  ___    ___   |
425  * |   |->|   |->|
426  * |___|  |___|
427  *   |      |
428  *   |______________
429  *          |       |
430  *          V       V
431  *  _________________________________________
432  * |      |      |      |      |      |      |
433  * |      |      |      |      |      |      |
434  * |______|______|______|______|______|______|
435  *
436  * The first link descriptor now points to the third period.  The DMA
437  * controller is currently playing the second period.  When it finishes, it
438  * will jump back to the first descriptor and play the third period.
439  *
440  * There are four reasons we do this:
441  *
442  * 1. The only way to get the DMA controller to automatically restart the
443  *    transfer when it gets to the end of the buffer is to use chaining
444  *    mode.  Basic direct mode doesn't offer that feature.
445  * 2. We need to receive an interrupt at the end of every period.  The DMA
446  *    controller can generate an interrupt at the end of every link transfer
447  *    (aka segment).  Making each period into a DMA segment will give us the
448  *    interrupts we need.
449  * 3. By creating only two link descriptors, regardless of the number of
450  *    periods, we do not need to reallocate the link descriptors if the
451  *    number of periods changes.
452  * 4. All of the audio data is still stored in a single, contiguous DMA
453  *    buffer, which is what ALSA expects.  We're just dividing it into
454  *    contiguous parts, and creating a link descriptor for each one.
455  *
456  * Note that due to a quirk of the SSI's STX register, the target address
457  * for the DMA operations depends on the sample size.  So we don't program
458  * the dest_addr (for playback -- source_addr for capture) fields in the
459  * link descriptors here.  We do that in fsl_dma_prepare()
460  */
461 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
462 	struct snd_pcm_hw_params *hw_params)
463 {
464 	struct snd_pcm_runtime *runtime = substream->runtime;
465 	struct fsl_dma_private *dma_private = runtime->private_data;
466 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
467 
468 	dma_addr_t temp_addr;   /* Pointer to next period */
469 	u64 temp_link;  	/* Pointer to next link descriptor */
470 	u32 mr; 		/* Temporary variable for MR register */
471 
472 	unsigned int i;
473 
474 	/* Get all the parameters we need */
475 	size_t buffer_size = params_buffer_bytes(hw_params);
476 	size_t period_size = params_period_bytes(hw_params);
477 
478 	/* Initialize our DMA tracking variables */
479 	dma_private->period_size = period_size;
480 	dma_private->num_periods = params_periods(hw_params);
481 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
482 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
483 		(NUM_DMA_LINKS * period_size);
484 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
485 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
486 
487 	/*
488 	 * Initialize each link descriptor.
489 	 *
490 	 * The actual address in STX0 (destination for playback, source for
491 	 * capture) is based on the sample size, but we don't know the sample
492 	 * size in this function, so we'll have to adjust that later.  See
493 	 * comments in fsl_dma_prepare().
494 	 *
495 	 * The DMA controller does not have a cache, so the CPU does not
496 	 * need to tell it to flush its cache.  However, the DMA
497 	 * controller does need to tell the CPU to flush its cache.
498 	 * That's what the SNOOP bit does.
499 	 *
500 	 * Also, even though the DMA controller supports 36-bit addressing, for
501 	 * simplicity we currently support only 32-bit addresses for the audio
502 	 * buffer itself.
503 	 */
504 	temp_addr = substream->dma_buffer.addr;
505 	temp_link = dma_private->ld_buf_phys +
506 		sizeof(struct fsl_dma_link_descriptor);
507 
508 	for (i = 0; i < NUM_DMA_LINKS; i++) {
509 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
510 
511 		link->count = cpu_to_be32(period_size);
512 		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
513 		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
514 		link->next = cpu_to_be64(temp_link);
515 
516 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
517 			link->source_addr = cpu_to_be32(temp_addr);
518 		else
519 			link->dest_addr = cpu_to_be32(temp_addr);
520 
521 		temp_addr += period_size;
522 		temp_link += sizeof(struct fsl_dma_link_descriptor);
523 	}
524 	/* The last link descriptor points to the first */
525 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
526 
527 	/* Tell the DMA controller where the first link descriptor is */
528 	out_be32(&dma_channel->clndar,
529 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
530 	out_be32(&dma_channel->eclndar,
531 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
532 
533 	/* The manual says the BCR must be clear before enabling EMP */
534 	out_be32(&dma_channel->bcr, 0);
535 
536 	/*
537 	 * Program the mode register for interrupts, external master control,
538 	 * and source/destination hold.  Also clear the Channel Abort bit.
539 	 */
540 	mr = in_be32(&dma_channel->mr) &
541 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
542 
543 	/*
544 	 * We want External Master Start and External Master Pause enabled,
545 	 * because the SSI is controlling the DMA controller.  We want the DMA
546 	 * controller to be set up in advance, and then we signal only the SSI
547 	 * to start transfering.
548 	 *
549 	 * We want End-Of-Segment Interrupts enabled, because this will generate
550 	 * an interrupt at the end of each segment (each link descriptor
551 	 * represents one segment).  Each DMA segment is the same thing as an
552 	 * ALSA period, so this is how we get an interrupt at the end of every
553 	 * period.
554 	 *
555 	 * We want Error Interrupt enabled, so that we can get an error if
556 	 * the DMA controller is mis-programmed somehow.
557 	 */
558 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
559 		CCSR_DMA_MR_EMS_EN;
560 
561 	/* For playback, we want the destination address to be held.  For
562 	   capture, set the source address to be held. */
563 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
564 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
565 
566 	out_be32(&dma_channel->mr, mr);
567 
568 	return 0;
569 }
570 
571 /**
572  * fsl_dma_prepare - prepare the DMA registers for playback.
573  *
574  * This function is called after the specifics of the audio data are known,
575  * i.e. snd_pcm_runtime is initialized.
576  *
577  * In this function, we finish programming the registers of the DMA
578  * controller that are dependent on the sample size.
579  *
580  * One of the drawbacks with big-endian is that when copying integers of
581  * different sizes to a fixed-sized register, the address to which the
582  * integer must be copied is dependent on the size of the integer.
583  *
584  * For example, if P is the address of a 32-bit register, and X is a 32-bit
585  * integer, then X should be copied to address P.  However, if X is a 16-bit
586  * integer, then it should be copied to P+2.  If X is an 8-bit register,
587  * then it should be copied to P+3.
588  *
589  * So for playback of 8-bit samples, the DMA controller must transfer single
590  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
591  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
592  *
593  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
594  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
595  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
596  * 24-bit data must be padded to 32 bits.
597  */
598 static int fsl_dma_prepare(struct snd_pcm_substream *substream)
599 {
600 	struct snd_pcm_runtime *runtime = substream->runtime;
601 	struct fsl_dma_private *dma_private = runtime->private_data;
602 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
603 	u32 mr;
604 	unsigned int i;
605 	dma_addr_t ssi_sxx_phys;	/* Bus address of SSI STX register */
606 	unsigned int frame_size;	/* Number of bytes per frame */
607 
608 	ssi_sxx_phys = dma_private->ssi_sxx_phys;
609 
610 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
611 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
612 
613 	switch (runtime->sample_bits) {
614 	case 8:
615 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
616 		ssi_sxx_phys += 3;
617 		break;
618 	case 16:
619 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
620 		ssi_sxx_phys += 2;
621 		break;
622 	case 32:
623 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
624 		break;
625 	default:
626 		dev_err(substream->pcm->card->dev,
627 			"unsupported sample size %u\n", runtime->sample_bits);
628 		return -EINVAL;
629 	}
630 
631 	frame_size = runtime->frame_bits / 8;
632 	/*
633 	 * BWC should always be a multiple of the frame size.  BWC determines
634 	 * how many bytes are sent/received before the DMA controller checks the
635 	 * SSI to see if it needs to stop.  For playback, the transmit FIFO can
636 	 * hold three frames, so we want to send two frames at a time. For
637 	 * capture, the receive FIFO is triggered when it contains one frame, so
638 	 * we want to receive one frame at a time.
639 	 */
640 
641 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
642 		mr |= CCSR_DMA_MR_BWC(2 * frame_size);
643 	else
644 		mr |= CCSR_DMA_MR_BWC(frame_size);
645 
646 	out_be32(&dma_channel->mr, mr);
647 
648 	/*
649 	 * Program the address of the DMA transfer to/from the SSI.
650 	 */
651 	for (i = 0; i < NUM_DMA_LINKS; i++) {
652 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
653 
654 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
655 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
656 		else
657 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
658 	}
659 
660 	return 0;
661 }
662 
663 /**
664  * fsl_dma_pointer: determine the current position of the DMA transfer
665  *
666  * This function is called by ALSA when ALSA wants to know where in the
667  * stream buffer the hardware currently is.
668  *
669  * For playback, the SAR register contains the physical address of the most
670  * recent DMA transfer.  For capture, the value is in the DAR register.
671  *
672  * The base address of the buffer is stored in the source_addr field of the
673  * first link descriptor.
674  */
675 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
676 {
677 	struct snd_pcm_runtime *runtime = substream->runtime;
678 	struct fsl_dma_private *dma_private = runtime->private_data;
679 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
680 	dma_addr_t position;
681 	snd_pcm_uframes_t frames;
682 
683 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
684 		position = in_be32(&dma_channel->sar);
685 	else
686 		position = in_be32(&dma_channel->dar);
687 
688 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
689 
690 	/*
691 	 * If the current address is just past the end of the buffer, wrap it
692 	 * around.
693 	 */
694 	if (frames == runtime->buffer_size)
695 		frames = 0;
696 
697 	return frames;
698 }
699 
700 /**
701  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
702  *
703  * Release the resources allocated in fsl_dma_hw_params() and de-program the
704  * registers.
705  *
706  * This function can be called multiple times.
707  */
708 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
709 {
710 	struct snd_pcm_runtime *runtime = substream->runtime;
711 	struct fsl_dma_private *dma_private = runtime->private_data;
712 
713 	if (dma_private) {
714 		struct ccsr_dma_channel __iomem *dma_channel;
715 
716 		dma_channel = dma_private->dma_channel;
717 
718 		/* Stop the DMA */
719 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
720 		out_be32(&dma_channel->mr, 0);
721 
722 		/* Reset all the other registers */
723 		out_be32(&dma_channel->sr, -1);
724 		out_be32(&dma_channel->clndar, 0);
725 		out_be32(&dma_channel->eclndar, 0);
726 		out_be32(&dma_channel->satr, 0);
727 		out_be32(&dma_channel->sar, 0);
728 		out_be32(&dma_channel->datr, 0);
729 		out_be32(&dma_channel->dar, 0);
730 		out_be32(&dma_channel->bcr, 0);
731 		out_be32(&dma_channel->nlndar, 0);
732 		out_be32(&dma_channel->enlndar, 0);
733 	}
734 
735 	return 0;
736 }
737 
738 /**
739  * fsl_dma_close: close the stream.
740  */
741 static int fsl_dma_close(struct snd_pcm_substream *substream)
742 {
743 	struct snd_pcm_runtime *runtime = substream->runtime;
744 	struct fsl_dma_private *dma_private = runtime->private_data;
745 	int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
746 
747 	if (dma_private) {
748 		if (dma_private->irq)
749 			free_irq(dma_private->irq, dma_private);
750 
751 		if (dma_private->ld_buf_phys) {
752 			dma_unmap_single(substream->pcm->dev,
753 				dma_private->ld_buf_phys,
754 				sizeof(dma_private->link), DMA_TO_DEVICE);
755 		}
756 
757 		/* Deallocate the fsl_dma_private structure */
758 		dma_free_coherent(substream->pcm->dev,
759 			sizeof(struct fsl_dma_private),
760 			dma_private, dma_private->ld_buf_phys);
761 		substream->runtime->private_data = NULL;
762 	}
763 
764 	dma_global_data.assigned[dir] = 0;
765 
766 	return 0;
767 }
768 
769 /*
770  * Remove this PCM driver.
771  */
772 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
773 {
774 	struct snd_pcm_substream *substream;
775 	unsigned int i;
776 
777 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
778 		substream = pcm->streams[i].substream;
779 		if (substream) {
780 			snd_dma_free_pages(&substream->dma_buffer);
781 			substream->dma_buffer.area = NULL;
782 			substream->dma_buffer.addr = 0;
783 		}
784 	}
785 }
786 
787 static struct snd_pcm_ops fsl_dma_ops = {
788 	.open   	= fsl_dma_open,
789 	.close  	= fsl_dma_close,
790 	.ioctl  	= snd_pcm_lib_ioctl,
791 	.hw_params      = fsl_dma_hw_params,
792 	.hw_free	= fsl_dma_hw_free,
793 	.prepare	= fsl_dma_prepare,
794 	.pointer	= fsl_dma_pointer,
795 };
796 
797 struct snd_soc_platform fsl_soc_platform = {
798 	.name   	= "fsl-dma",
799 	.pcm_ops	= &fsl_dma_ops,
800 	.pcm_new	= fsl_dma_new,
801 	.pcm_free       = fsl_dma_free_dma_buffers,
802 };
803 EXPORT_SYMBOL_GPL(fsl_soc_platform);
804 
805 /**
806  * fsl_dma_configure: store the DMA parameters from the fabric driver.
807  *
808  * This function is called by the ASoC fabric driver to give us the DMA and
809  * SSI channel information.
810  *
811  * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
812  * data when a substream is created, so for now we need to store this data
813  * into a global variable.  This means that we can only support one DMA
814  * controller, and hence only one SSI.
815  */
816 int fsl_dma_configure(struct fsl_dma_info *dma_info)
817 {
818 	static int initialized;
819 
820 	/* We only support one DMA controller for now */
821 	if (initialized)
822 		return 0;
823 
824 	dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
825 	dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
826 	dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
827 	dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
828 	dma_global_data.irq[0] = dma_info->dma_irq[0];
829 	dma_global_data.irq[1] = dma_info->dma_irq[1];
830 	dma_global_data.assigned[0] = 0;
831 	dma_global_data.assigned[1] = 0;
832 
833 	initialized = 1;
834 	return 1;
835 }
836 EXPORT_SYMBOL_GPL(fsl_dma_configure);
837 
838 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
839 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
840 MODULE_LICENSE("GPL");
841