xref: /linux/sound/soc/fsl/fsl_dma.c (revision 06be5eefe1192eb8ce8d07497f67595b6bfe9741)
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  * This driver implements ASoC support for the Elo DMA controller, which is
13  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14  * the PCM driver is what handles the DMA buffer.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/gfp.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_platform.h>
27 #include <linux/list.h>
28 #include <linux/slab.h>
29 
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/soc.h>
34 
35 #include <asm/io.h>
36 
37 #include "fsl_dma.h"
38 #include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
39 
40 /*
41  * The formats that the DMA controller supports, which is anything
42  * that is 8, 16, or 32 bits.
43  */
44 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
45 			    SNDRV_PCM_FMTBIT_U8 	| \
46 			    SNDRV_PCM_FMTBIT_S16_LE     | \
47 			    SNDRV_PCM_FMTBIT_S16_BE     | \
48 			    SNDRV_PCM_FMTBIT_U16_LE     | \
49 			    SNDRV_PCM_FMTBIT_U16_BE     | \
50 			    SNDRV_PCM_FMTBIT_S24_LE     | \
51 			    SNDRV_PCM_FMTBIT_S24_BE     | \
52 			    SNDRV_PCM_FMTBIT_U24_LE     | \
53 			    SNDRV_PCM_FMTBIT_U24_BE     | \
54 			    SNDRV_PCM_FMTBIT_S32_LE     | \
55 			    SNDRV_PCM_FMTBIT_S32_BE     | \
56 			    SNDRV_PCM_FMTBIT_U32_LE     | \
57 			    SNDRV_PCM_FMTBIT_U32_BE)
58 struct dma_object {
59 	struct snd_soc_platform_driver dai;
60 	dma_addr_t ssi_stx_phys;
61 	dma_addr_t ssi_srx_phys;
62 	unsigned int ssi_fifo_depth;
63 	struct ccsr_dma_channel __iomem *channel;
64 	unsigned int irq;
65 	bool assigned;
66 	char path[1];
67 };
68 
69 /*
70  * The number of DMA links to use.  Two is the bare minimum, but if you
71  * have really small links you might need more.
72  */
73 #define NUM_DMA_LINKS   2
74 
75 /** fsl_dma_private: p-substream DMA data
76  *
77  * Each substream has a 1-to-1 association with a DMA channel.
78  *
79  * The link[] array is first because it needs to be aligned on a 32-byte
80  * boundary, so putting it first will ensure alignment without padding the
81  * structure.
82  *
83  * @link[]: array of link descriptors
84  * @dma_channel: pointer to the DMA channel's registers
85  * @irq: IRQ for this DMA channel
86  * @substream: pointer to the substream object, needed by the ISR
87  * @ssi_sxx_phys: bus address of the STX or SRX register to use
88  * @ld_buf_phys: physical address of the LD buffer
89  * @current_link: index into link[] of the link currently being processed
90  * @dma_buf_phys: physical address of the DMA buffer
91  * @dma_buf_next: physical address of the next period to process
92  * @dma_buf_end: physical address of the byte after the end of the DMA
93  * @buffer period_size: the size of a single period
94  * @num_periods: the number of periods in the DMA buffer
95  */
96 struct fsl_dma_private {
97 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
98 	struct ccsr_dma_channel __iomem *dma_channel;
99 	unsigned int irq;
100 	struct snd_pcm_substream *substream;
101 	dma_addr_t ssi_sxx_phys;
102 	unsigned int ssi_fifo_depth;
103 	dma_addr_t ld_buf_phys;
104 	unsigned int current_link;
105 	dma_addr_t dma_buf_phys;
106 	dma_addr_t dma_buf_next;
107 	dma_addr_t dma_buf_end;
108 	size_t period_size;
109 	unsigned int num_periods;
110 };
111 
112 /**
113  * fsl_dma_hardare: define characteristics of the PCM hardware.
114  *
115  * The PCM hardware is the Freescale DMA controller.  This structure defines
116  * the capabilities of that hardware.
117  *
118  * Since the sampling rate and data format are not controlled by the DMA
119  * controller, we specify no limits for those values.  The only exception is
120  * period_bytes_min, which is set to a reasonably low value to prevent the
121  * DMA controller from generating too many interrupts per second.
122  *
123  * Since each link descriptor has a 32-bit byte count field, we set
124  * period_bytes_max to the largest 32-bit number.  We also have no maximum
125  * number of periods.
126  *
127  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
128  * limitation in the SSI driver requires the sample rates for playback and
129  * capture to be the same.
130  */
131 static const struct snd_pcm_hardware fsl_dma_hardware = {
132 
133 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
134 				  SNDRV_PCM_INFO_MMAP |
135 				  SNDRV_PCM_INFO_MMAP_VALID |
136 				  SNDRV_PCM_INFO_JOINT_DUPLEX |
137 				  SNDRV_PCM_INFO_PAUSE,
138 	.formats		= FSLDMA_PCM_FORMATS,
139 	.period_bytes_min       = 512,  	/* A reasonable limit */
140 	.period_bytes_max       = (u32) -1,
141 	.periods_min    	= NUM_DMA_LINKS,
142 	.periods_max    	= (unsigned int) -1,
143 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
144 };
145 
146 /**
147  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
148  *
149  * This function should be called by the ISR whenever the DMA controller
150  * halts data transfer.
151  */
152 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
153 {
154 	snd_pcm_stop_xrun(substream);
155 }
156 
157 /**
158  * fsl_dma_update_pointers - update LD pointers to point to the next period
159  *
160  * As each period is completed, this function changes the the link
161  * descriptor pointers for that period to point to the next period.
162  */
163 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
164 {
165 	struct fsl_dma_link_descriptor *link =
166 		&dma_private->link[dma_private->current_link];
167 
168 	/* Update our link descriptors to point to the next period. On a 36-bit
169 	 * system, we also need to update the ESAD bits.  We also set (keep) the
170 	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
171 	 */
172 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
173 		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
174 #ifdef CONFIG_PHYS_64BIT
175 		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
176 			upper_32_bits(dma_private->dma_buf_next));
177 #endif
178 	} else {
179 		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
180 #ifdef CONFIG_PHYS_64BIT
181 		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
182 			upper_32_bits(dma_private->dma_buf_next));
183 #endif
184 	}
185 
186 	/* Update our variables for next time */
187 	dma_private->dma_buf_next += dma_private->period_size;
188 
189 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
190 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
191 
192 	if (++dma_private->current_link >= NUM_DMA_LINKS)
193 		dma_private->current_link = 0;
194 }
195 
196 /**
197  * fsl_dma_isr: interrupt handler for the DMA controller
198  *
199  * @irq: IRQ of the DMA channel
200  * @dev_id: pointer to the dma_private structure for this DMA channel
201  */
202 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
203 {
204 	struct fsl_dma_private *dma_private = dev_id;
205 	struct snd_pcm_substream *substream = dma_private->substream;
206 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
207 	struct device *dev = rtd->platform->dev;
208 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
209 	irqreturn_t ret = IRQ_NONE;
210 	u32 sr, sr2 = 0;
211 
212 	/* We got an interrupt, so read the status register to see what we
213 	   were interrupted for.
214 	 */
215 	sr = in_be32(&dma_channel->sr);
216 
217 	if (sr & CCSR_DMA_SR_TE) {
218 		dev_err(dev, "dma transmit error\n");
219 		fsl_dma_abort_stream(substream);
220 		sr2 |= CCSR_DMA_SR_TE;
221 		ret = IRQ_HANDLED;
222 	}
223 
224 	if (sr & CCSR_DMA_SR_CH)
225 		ret = IRQ_HANDLED;
226 
227 	if (sr & CCSR_DMA_SR_PE) {
228 		dev_err(dev, "dma programming error\n");
229 		fsl_dma_abort_stream(substream);
230 		sr2 |= CCSR_DMA_SR_PE;
231 		ret = IRQ_HANDLED;
232 	}
233 
234 	if (sr & CCSR_DMA_SR_EOLNI) {
235 		sr2 |= CCSR_DMA_SR_EOLNI;
236 		ret = IRQ_HANDLED;
237 	}
238 
239 	if (sr & CCSR_DMA_SR_CB)
240 		ret = IRQ_HANDLED;
241 
242 	if (sr & CCSR_DMA_SR_EOSI) {
243 		/* Tell ALSA we completed a period. */
244 		snd_pcm_period_elapsed(substream);
245 
246 		/*
247 		 * Update our link descriptors to point to the next period. We
248 		 * only need to do this if the number of periods is not equal to
249 		 * the number of links.
250 		 */
251 		if (dma_private->num_periods != NUM_DMA_LINKS)
252 			fsl_dma_update_pointers(dma_private);
253 
254 		sr2 |= CCSR_DMA_SR_EOSI;
255 		ret = IRQ_HANDLED;
256 	}
257 
258 	if (sr & CCSR_DMA_SR_EOLSI) {
259 		sr2 |= CCSR_DMA_SR_EOLSI;
260 		ret = IRQ_HANDLED;
261 	}
262 
263 	/* Clear the bits that we set */
264 	if (sr2)
265 		out_be32(&dma_channel->sr, sr2);
266 
267 	return ret;
268 }
269 
270 /**
271  * fsl_dma_new: initialize this PCM driver.
272  *
273  * This function is called when the codec driver calls snd_soc_new_pcms(),
274  * once for each .dai_link in the machine driver's snd_soc_card
275  * structure.
276  *
277  * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
278  * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
279  * is specified. Therefore, any DMA buffers we allocate will always be in low
280  * memory, but we support for 36-bit physical addresses anyway.
281  *
282  * Regardless of where the memory is actually allocated, since the device can
283  * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
284  */
285 static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
286 {
287 	struct snd_card *card = rtd->card->snd_card;
288 	struct snd_pcm *pcm = rtd->pcm;
289 	int ret;
290 
291 	ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
292 	if (ret)
293 		return ret;
294 
295 	/* Some codecs have separate DAIs for playback and capture, so we
296 	 * should allocate a DMA buffer only for the streams that are valid.
297 	 */
298 
299 	if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
300 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
301 			fsl_dma_hardware.buffer_bytes_max,
302 			&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
303 		if (ret) {
304 			dev_err(card->dev, "can't alloc playback dma buffer\n");
305 			return ret;
306 		}
307 	}
308 
309 	if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
310 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
311 			fsl_dma_hardware.buffer_bytes_max,
312 			&pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
313 		if (ret) {
314 			dev_err(card->dev, "can't alloc capture dma buffer\n");
315 			snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
316 			return ret;
317 		}
318 	}
319 
320 	return 0;
321 }
322 
323 /**
324  * fsl_dma_open: open a new substream.
325  *
326  * Each substream has its own DMA buffer.
327  *
328  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
329  * descriptors that ping-pong from one period to the next.  For example, if
330  * there are six periods and two link descriptors, this is how they look
331  * before playback starts:
332  *
333  *      	   The last link descriptor
334  *   ____________  points back to the first
335  *  |   	 |
336  *  V   	 |
337  *  ___    ___   |
338  * |   |->|   |->|
339  * |___|  |___|
340  *   |      |
341  *   |      |
342  *   V      V
343  *  _________________________________________
344  * |      |      |      |      |      |      |  The DMA buffer is
345  * |      |      |      |      |      |      |    divided into 6 parts
346  * |______|______|______|______|______|______|
347  *
348  * and here's how they look after the first period is finished playing:
349  *
350  *   ____________
351  *  |   	 |
352  *  V   	 |
353  *  ___    ___   |
354  * |   |->|   |->|
355  * |___|  |___|
356  *   |      |
357  *   |______________
358  *          |       |
359  *          V       V
360  *  _________________________________________
361  * |      |      |      |      |      |      |
362  * |      |      |      |      |      |      |
363  * |______|______|______|______|______|______|
364  *
365  * The first link descriptor now points to the third period.  The DMA
366  * controller is currently playing the second period.  When it finishes, it
367  * will jump back to the first descriptor and play the third period.
368  *
369  * There are four reasons we do this:
370  *
371  * 1. The only way to get the DMA controller to automatically restart the
372  *    transfer when it gets to the end of the buffer is to use chaining
373  *    mode.  Basic direct mode doesn't offer that feature.
374  * 2. We need to receive an interrupt at the end of every period.  The DMA
375  *    controller can generate an interrupt at the end of every link transfer
376  *    (aka segment).  Making each period into a DMA segment will give us the
377  *    interrupts we need.
378  * 3. By creating only two link descriptors, regardless of the number of
379  *    periods, we do not need to reallocate the link descriptors if the
380  *    number of periods changes.
381  * 4. All of the audio data is still stored in a single, contiguous DMA
382  *    buffer, which is what ALSA expects.  We're just dividing it into
383  *    contiguous parts, and creating a link descriptor for each one.
384  */
385 static int fsl_dma_open(struct snd_pcm_substream *substream)
386 {
387 	struct snd_pcm_runtime *runtime = substream->runtime;
388 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
389 	struct device *dev = rtd->platform->dev;
390 	struct dma_object *dma =
391 		container_of(rtd->platform->driver, struct dma_object, dai);
392 	struct fsl_dma_private *dma_private;
393 	struct ccsr_dma_channel __iomem *dma_channel;
394 	dma_addr_t ld_buf_phys;
395 	u64 temp_link;  	/* Pointer to next link descriptor */
396 	u32 mr;
397 	unsigned int channel;
398 	int ret = 0;
399 	unsigned int i;
400 
401 	/*
402 	 * Reject any DMA buffer whose size is not a multiple of the period
403 	 * size.  We need to make sure that the DMA buffer can be evenly divided
404 	 * into periods.
405 	 */
406 	ret = snd_pcm_hw_constraint_integer(runtime,
407 		SNDRV_PCM_HW_PARAM_PERIODS);
408 	if (ret < 0) {
409 		dev_err(dev, "invalid buffer size\n");
410 		return ret;
411 	}
412 
413 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
414 
415 	if (dma->assigned) {
416 		dev_err(dev, "dma channel already assigned\n");
417 		return -EBUSY;
418 	}
419 
420 	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
421 					 &ld_buf_phys, GFP_KERNEL);
422 	if (!dma_private) {
423 		dev_err(dev, "can't allocate dma private data\n");
424 		return -ENOMEM;
425 	}
426 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
427 		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
428 	else
429 		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
430 
431 	dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
432 	dma_private->dma_channel = dma->channel;
433 	dma_private->irq = dma->irq;
434 	dma_private->substream = substream;
435 	dma_private->ld_buf_phys = ld_buf_phys;
436 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
437 
438 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
439 			  dma_private);
440 	if (ret) {
441 		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
442 			dma_private->irq, ret);
443 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
444 			dma_private, dma_private->ld_buf_phys);
445 		return ret;
446 	}
447 
448 	dma->assigned = true;
449 
450 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
451 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
452 	runtime->private_data = dma_private;
453 
454 	/* Program the fixed DMA controller parameters */
455 
456 	dma_channel = dma_private->dma_channel;
457 
458 	temp_link = dma_private->ld_buf_phys +
459 		sizeof(struct fsl_dma_link_descriptor);
460 
461 	for (i = 0; i < NUM_DMA_LINKS; i++) {
462 		dma_private->link[i].next = cpu_to_be64(temp_link);
463 
464 		temp_link += sizeof(struct fsl_dma_link_descriptor);
465 	}
466 	/* The last link descriptor points to the first */
467 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
468 
469 	/* Tell the DMA controller where the first link descriptor is */
470 	out_be32(&dma_channel->clndar,
471 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
472 	out_be32(&dma_channel->eclndar,
473 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
474 
475 	/* The manual says the BCR must be clear before enabling EMP */
476 	out_be32(&dma_channel->bcr, 0);
477 
478 	/*
479 	 * Program the mode register for interrupts, external master control,
480 	 * and source/destination hold.  Also clear the Channel Abort bit.
481 	 */
482 	mr = in_be32(&dma_channel->mr) &
483 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
484 
485 	/*
486 	 * We want External Master Start and External Master Pause enabled,
487 	 * because the SSI is controlling the DMA controller.  We want the DMA
488 	 * controller to be set up in advance, and then we signal only the SSI
489 	 * to start transferring.
490 	 *
491 	 * We want End-Of-Segment Interrupts enabled, because this will generate
492 	 * an interrupt at the end of each segment (each link descriptor
493 	 * represents one segment).  Each DMA segment is the same thing as an
494 	 * ALSA period, so this is how we get an interrupt at the end of every
495 	 * period.
496 	 *
497 	 * We want Error Interrupt enabled, so that we can get an error if
498 	 * the DMA controller is mis-programmed somehow.
499 	 */
500 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
501 		CCSR_DMA_MR_EMS_EN;
502 
503 	/* For playback, we want the destination address to be held.  For
504 	   capture, set the source address to be held. */
505 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
506 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
507 
508 	out_be32(&dma_channel->mr, mr);
509 
510 	return 0;
511 }
512 
513 /**
514  * fsl_dma_hw_params: continue initializing the DMA links
515  *
516  * This function obtains hardware parameters about the opened stream and
517  * programs the DMA controller accordingly.
518  *
519  * One drawback of big-endian is that when copying integers of different
520  * sizes to a fixed-sized register, the address to which the integer must be
521  * copied is dependent on the size of the integer.
522  *
523  * For example, if P is the address of a 32-bit register, and X is a 32-bit
524  * integer, then X should be copied to address P.  However, if X is a 16-bit
525  * integer, then it should be copied to P+2.  If X is an 8-bit register,
526  * then it should be copied to P+3.
527  *
528  * So for playback of 8-bit samples, the DMA controller must transfer single
529  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
530  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
531  *
532  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
533  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
534  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
535  * 24-bit data must be padded to 32 bits.
536  */
537 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
538 	struct snd_pcm_hw_params *hw_params)
539 {
540 	struct snd_pcm_runtime *runtime = substream->runtime;
541 	struct fsl_dma_private *dma_private = runtime->private_data;
542 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
543 	struct device *dev = rtd->platform->dev;
544 
545 	/* Number of bits per sample */
546 	unsigned int sample_bits =
547 		snd_pcm_format_physical_width(params_format(hw_params));
548 
549 	/* Number of bytes per frame */
550 	unsigned int sample_bytes = sample_bits / 8;
551 
552 	/* Bus address of SSI STX register */
553 	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
554 
555 	/* Size of the DMA buffer, in bytes */
556 	size_t buffer_size = params_buffer_bytes(hw_params);
557 
558 	/* Number of bytes per period */
559 	size_t period_size = params_period_bytes(hw_params);
560 
561 	/* Pointer to next period */
562 	dma_addr_t temp_addr = substream->dma_buffer.addr;
563 
564 	/* Pointer to DMA controller */
565 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
566 
567 	u32 mr; /* DMA Mode Register */
568 
569 	unsigned int i;
570 
571 	/* Initialize our DMA tracking variables */
572 	dma_private->period_size = period_size;
573 	dma_private->num_periods = params_periods(hw_params);
574 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
575 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
576 		(NUM_DMA_LINKS * period_size);
577 
578 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
579 		/* This happens if the number of periods == NUM_DMA_LINKS */
580 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
581 
582 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
583 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
584 
585 	/* Due to a quirk of the SSI's STX register, the target address
586 	 * for the DMA operations depends on the sample size.  So we calculate
587 	 * that offset here.  While we're at it, also tell the DMA controller
588 	 * how much data to transfer per sample.
589 	 */
590 	switch (sample_bits) {
591 	case 8:
592 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
593 		ssi_sxx_phys += 3;
594 		break;
595 	case 16:
596 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
597 		ssi_sxx_phys += 2;
598 		break;
599 	case 32:
600 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
601 		break;
602 	default:
603 		/* We should never get here */
604 		dev_err(dev, "unsupported sample size %u\n", sample_bits);
605 		return -EINVAL;
606 	}
607 
608 	/*
609 	 * BWC determines how many bytes are sent/received before the DMA
610 	 * controller checks the SSI to see if it needs to stop. BWC should
611 	 * always be a multiple of the frame size, so that we always transmit
612 	 * whole frames.  Each frame occupies two slots in the FIFO.  The
613 	 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
614 	 * (MR[BWC] can only represent even powers of two).
615 	 *
616 	 * To simplify the process, we set BWC to the largest value that is
617 	 * less than or equal to the FIFO watermark.  For playback, this ensures
618 	 * that we transfer the maximum amount without overrunning the FIFO.
619 	 * For capture, this ensures that we transfer the maximum amount without
620 	 * underrunning the FIFO.
621 	 *
622 	 * f = SSI FIFO depth
623 	 * w = SSI watermark value (which equals f - 2)
624 	 * b = DMA bandwidth count (in bytes)
625 	 * s = sample size (in bytes, which equals frame_size * 2)
626 	 *
627 	 * For playback, we never transmit more than the transmit FIFO
628 	 * watermark, otherwise we might write more data than the FIFO can hold.
629 	 * The watermark is equal to the FIFO depth minus two.
630 	 *
631 	 * For capture, two equations must hold:
632 	 *	w > f - (b / s)
633 	 *	w >= b / s
634 	 *
635 	 * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
636 	 * b = s * w, which is equal to
637 	 *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
638 	 */
639 	mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
640 
641 	out_be32(&dma_channel->mr, mr);
642 
643 	for (i = 0; i < NUM_DMA_LINKS; i++) {
644 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
645 
646 		link->count = cpu_to_be32(period_size);
647 
648 		/* The snoop bit tells the DMA controller whether it should tell
649 		 * the ECM to snoop during a read or write to an address. For
650 		 * audio, we use DMA to transfer data between memory and an I/O
651 		 * device (the SSI's STX0 or SRX0 register). Snooping is only
652 		 * needed if there is a cache, so we need to snoop memory
653 		 * addresses only.  For playback, that means we snoop the source
654 		 * but not the destination.  For capture, we snoop the
655 		 * destination but not the source.
656 		 *
657 		 * Note that failing to snoop properly is unlikely to cause
658 		 * cache incoherency if the period size is larger than the
659 		 * size of L1 cache.  This is because filling in one period will
660 		 * flush out the data for the previous period.  So if you
661 		 * increased period_bytes_min to a large enough size, you might
662 		 * get more performance by not snooping, and you'll still be
663 		 * okay.  You'll need to update fsl_dma_update_pointers() also.
664 		 */
665 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
666 			link->source_addr = cpu_to_be32(temp_addr);
667 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
668 				upper_32_bits(temp_addr));
669 
670 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
671 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
672 				upper_32_bits(ssi_sxx_phys));
673 		} else {
674 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
675 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
676 				upper_32_bits(ssi_sxx_phys));
677 
678 			link->dest_addr = cpu_to_be32(temp_addr);
679 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
680 				upper_32_bits(temp_addr));
681 		}
682 
683 		temp_addr += period_size;
684 	}
685 
686 	return 0;
687 }
688 
689 /**
690  * fsl_dma_pointer: determine the current position of the DMA transfer
691  *
692  * This function is called by ALSA when ALSA wants to know where in the
693  * stream buffer the hardware currently is.
694  *
695  * For playback, the SAR register contains the physical address of the most
696  * recent DMA transfer.  For capture, the value is in the DAR register.
697  *
698  * The base address of the buffer is stored in the source_addr field of the
699  * first link descriptor.
700  */
701 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
702 {
703 	struct snd_pcm_runtime *runtime = substream->runtime;
704 	struct fsl_dma_private *dma_private = runtime->private_data;
705 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
706 	struct device *dev = rtd->platform->dev;
707 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
708 	dma_addr_t position;
709 	snd_pcm_uframes_t frames;
710 
711 	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
712 	 * only have 32-bit DMA addresses.  This function is typically called
713 	 * in interrupt context, so we need to optimize it.
714 	 */
715 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
716 		position = in_be32(&dma_channel->sar);
717 #ifdef CONFIG_PHYS_64BIT
718 		position |= (u64)(in_be32(&dma_channel->satr) &
719 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
720 #endif
721 	} else {
722 		position = in_be32(&dma_channel->dar);
723 #ifdef CONFIG_PHYS_64BIT
724 		position |= (u64)(in_be32(&dma_channel->datr) &
725 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
726 #endif
727 	}
728 
729 	/*
730 	 * When capture is started, the SSI immediately starts to fill its FIFO.
731 	 * This means that the DMA controller is not started until the FIFO is
732 	 * full.  However, ALSA calls this function before that happens, when
733 	 * MR.DAR is still zero.  In this case, just return zero to indicate
734 	 * that nothing has been received yet.
735 	 */
736 	if (!position)
737 		return 0;
738 
739 	if ((position < dma_private->dma_buf_phys) ||
740 	    (position > dma_private->dma_buf_end)) {
741 		dev_err(dev, "dma pointer is out of range, halting stream\n");
742 		return SNDRV_PCM_POS_XRUN;
743 	}
744 
745 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
746 
747 	/*
748 	 * If the current address is just past the end of the buffer, wrap it
749 	 * around.
750 	 */
751 	if (frames == runtime->buffer_size)
752 		frames = 0;
753 
754 	return frames;
755 }
756 
757 /**
758  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
759  *
760  * Release the resources allocated in fsl_dma_hw_params() and de-program the
761  * registers.
762  *
763  * This function can be called multiple times.
764  */
765 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
766 {
767 	struct snd_pcm_runtime *runtime = substream->runtime;
768 	struct fsl_dma_private *dma_private = runtime->private_data;
769 
770 	if (dma_private) {
771 		struct ccsr_dma_channel __iomem *dma_channel;
772 
773 		dma_channel = dma_private->dma_channel;
774 
775 		/* Stop the DMA */
776 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
777 		out_be32(&dma_channel->mr, 0);
778 
779 		/* Reset all the other registers */
780 		out_be32(&dma_channel->sr, -1);
781 		out_be32(&dma_channel->clndar, 0);
782 		out_be32(&dma_channel->eclndar, 0);
783 		out_be32(&dma_channel->satr, 0);
784 		out_be32(&dma_channel->sar, 0);
785 		out_be32(&dma_channel->datr, 0);
786 		out_be32(&dma_channel->dar, 0);
787 		out_be32(&dma_channel->bcr, 0);
788 		out_be32(&dma_channel->nlndar, 0);
789 		out_be32(&dma_channel->enlndar, 0);
790 	}
791 
792 	return 0;
793 }
794 
795 /**
796  * fsl_dma_close: close the stream.
797  */
798 static int fsl_dma_close(struct snd_pcm_substream *substream)
799 {
800 	struct snd_pcm_runtime *runtime = substream->runtime;
801 	struct fsl_dma_private *dma_private = runtime->private_data;
802 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
803 	struct device *dev = rtd->platform->dev;
804 	struct dma_object *dma =
805 		container_of(rtd->platform->driver, struct dma_object, dai);
806 
807 	if (dma_private) {
808 		if (dma_private->irq)
809 			free_irq(dma_private->irq, dma_private);
810 
811 		/* Deallocate the fsl_dma_private structure */
812 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
813 				  dma_private, dma_private->ld_buf_phys);
814 		substream->runtime->private_data = NULL;
815 	}
816 
817 	dma->assigned = false;
818 
819 	return 0;
820 }
821 
822 /*
823  * Remove this PCM driver.
824  */
825 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
826 {
827 	struct snd_pcm_substream *substream;
828 	unsigned int i;
829 
830 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
831 		substream = pcm->streams[i].substream;
832 		if (substream) {
833 			snd_dma_free_pages(&substream->dma_buffer);
834 			substream->dma_buffer.area = NULL;
835 			substream->dma_buffer.addr = 0;
836 		}
837 	}
838 }
839 
840 /**
841  * find_ssi_node -- returns the SSI node that points to its DMA channel node
842  *
843  * Although this DMA driver attempts to operate independently of the other
844  * devices, it still needs to determine some information about the SSI device
845  * that it's working with.  Unfortunately, the device tree does not contain
846  * a pointer from the DMA channel node to the SSI node -- the pointer goes the
847  * other way.  So we need to scan the device tree for SSI nodes until we find
848  * the one that points to the given DMA channel node.  It's ugly, but at least
849  * it's contained in this one function.
850  */
851 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
852 {
853 	struct device_node *ssi_np, *np;
854 
855 	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
856 		/* Check each DMA phandle to see if it points to us.  We
857 		 * assume that device_node pointers are a valid comparison.
858 		 */
859 		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
860 		of_node_put(np);
861 		if (np == dma_channel_np)
862 			return ssi_np;
863 
864 		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
865 		of_node_put(np);
866 		if (np == dma_channel_np)
867 			return ssi_np;
868 	}
869 
870 	return NULL;
871 }
872 
873 static struct snd_pcm_ops fsl_dma_ops = {
874 	.open   	= fsl_dma_open,
875 	.close  	= fsl_dma_close,
876 	.ioctl  	= snd_pcm_lib_ioctl,
877 	.hw_params      = fsl_dma_hw_params,
878 	.hw_free	= fsl_dma_hw_free,
879 	.pointer	= fsl_dma_pointer,
880 };
881 
882 static int fsl_soc_dma_probe(struct platform_device *pdev)
883  {
884 	struct dma_object *dma;
885 	struct device_node *np = pdev->dev.of_node;
886 	struct device_node *ssi_np;
887 	struct resource res;
888 	const uint32_t *iprop;
889 	int ret;
890 
891 	/* Find the SSI node that points to us. */
892 	ssi_np = find_ssi_node(np);
893 	if (!ssi_np) {
894 		dev_err(&pdev->dev, "cannot find parent SSI node\n");
895 		return -ENODEV;
896 	}
897 
898 	ret = of_address_to_resource(ssi_np, 0, &res);
899 	if (ret) {
900 		dev_err(&pdev->dev, "could not determine resources for %s\n",
901 			ssi_np->full_name);
902 		of_node_put(ssi_np);
903 		return ret;
904 	}
905 
906 	dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
907 	if (!dma) {
908 		dev_err(&pdev->dev, "could not allocate dma object\n");
909 		of_node_put(ssi_np);
910 		return -ENOMEM;
911 	}
912 
913 	strcpy(dma->path, np->full_name);
914 	dma->dai.ops = &fsl_dma_ops;
915 	dma->dai.pcm_new = fsl_dma_new;
916 	dma->dai.pcm_free = fsl_dma_free_dma_buffers;
917 
918 	/* Store the SSI-specific information that we need */
919 	dma->ssi_stx_phys = res.start + CCSR_SSI_STX0;
920 	dma->ssi_srx_phys = res.start + CCSR_SSI_SRX0;
921 
922 	iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
923 	if (iprop)
924 		dma->ssi_fifo_depth = be32_to_cpup(iprop);
925 	else
926                 /* Older 8610 DTs didn't have the fifo-depth property */
927 		dma->ssi_fifo_depth = 8;
928 
929 	of_node_put(ssi_np);
930 
931 	ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
932 	if (ret) {
933 		dev_err(&pdev->dev, "could not register platform\n");
934 		kfree(dma);
935 		return ret;
936 	}
937 
938 	dma->channel = of_iomap(np, 0);
939 	dma->irq = irq_of_parse_and_map(np, 0);
940 
941 	dev_set_drvdata(&pdev->dev, dma);
942 
943 	return 0;
944 }
945 
946 static int fsl_soc_dma_remove(struct platform_device *pdev)
947 {
948 	struct dma_object *dma = dev_get_drvdata(&pdev->dev);
949 
950 	snd_soc_unregister_platform(&pdev->dev);
951 	iounmap(dma->channel);
952 	irq_dispose_mapping(dma->irq);
953 	kfree(dma);
954 
955 	return 0;
956 }
957 
958 static const struct of_device_id fsl_soc_dma_ids[] = {
959 	{ .compatible = "fsl,ssi-dma-channel", },
960 	{}
961 };
962 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
963 
964 static struct platform_driver fsl_soc_dma_driver = {
965 	.driver = {
966 		.name = "fsl-pcm-audio",
967 		.of_match_table = fsl_soc_dma_ids,
968 	},
969 	.probe = fsl_soc_dma_probe,
970 	.remove = fsl_soc_dma_remove,
971 };
972 
973 module_platform_driver(fsl_soc_dma_driver);
974 
975 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
976 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
977 MODULE_LICENSE("GPL v2");
978