1 /* 2 * Freescale DMA ALSA SoC PCM driver 3 * 4 * Author: Timur Tabi <timur@freescale.com> 5 * 6 * Copyright 2007-2010 Freescale Semiconductor, Inc. 7 * 8 * This file is licensed under the terms of the GNU General Public License 9 * version 2. This program is licensed "as is" without any warranty of any 10 * kind, whether express or implied. 11 * 12 * This driver implements ASoC support for the Elo DMA controller, which is 13 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms, 14 * the PCM driver is what handles the DMA buffer. 15 */ 16 17 #include <linux/module.h> 18 #include <linux/init.h> 19 #include <linux/platform_device.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/interrupt.h> 22 #include <linux/delay.h> 23 #include <linux/gfp.h> 24 #include <linux/of_address.h> 25 #include <linux/of_irq.h> 26 #include <linux/of_platform.h> 27 #include <linux/list.h> 28 #include <linux/slab.h> 29 30 #include <sound/core.h> 31 #include <sound/pcm.h> 32 #include <sound/pcm_params.h> 33 #include <sound/soc.h> 34 35 #include <asm/io.h> 36 37 #include "fsl_dma.h" 38 #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */ 39 40 /* 41 * The formats that the DMA controller supports, which is anything 42 * that is 8, 16, or 32 bits. 43 */ 44 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \ 45 SNDRV_PCM_FMTBIT_U8 | \ 46 SNDRV_PCM_FMTBIT_S16_LE | \ 47 SNDRV_PCM_FMTBIT_S16_BE | \ 48 SNDRV_PCM_FMTBIT_U16_LE | \ 49 SNDRV_PCM_FMTBIT_U16_BE | \ 50 SNDRV_PCM_FMTBIT_S24_LE | \ 51 SNDRV_PCM_FMTBIT_S24_BE | \ 52 SNDRV_PCM_FMTBIT_U24_LE | \ 53 SNDRV_PCM_FMTBIT_U24_BE | \ 54 SNDRV_PCM_FMTBIT_S32_LE | \ 55 SNDRV_PCM_FMTBIT_S32_BE | \ 56 SNDRV_PCM_FMTBIT_U32_LE | \ 57 SNDRV_PCM_FMTBIT_U32_BE) 58 59 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \ 60 SNDRV_PCM_RATE_CONTINUOUS) 61 62 struct dma_object { 63 struct snd_soc_platform_driver dai; 64 dma_addr_t ssi_stx_phys; 65 dma_addr_t ssi_srx_phys; 66 unsigned int ssi_fifo_depth; 67 struct ccsr_dma_channel __iomem *channel; 68 unsigned int irq; 69 bool assigned; 70 char path[1]; 71 }; 72 73 /* 74 * The number of DMA links to use. Two is the bare minimum, but if you 75 * have really small links you might need more. 76 */ 77 #define NUM_DMA_LINKS 2 78 79 /** fsl_dma_private: p-substream DMA data 80 * 81 * Each substream has a 1-to-1 association with a DMA channel. 82 * 83 * The link[] array is first because it needs to be aligned on a 32-byte 84 * boundary, so putting it first will ensure alignment without padding the 85 * structure. 86 * 87 * @link[]: array of link descriptors 88 * @dma_channel: pointer to the DMA channel's registers 89 * @irq: IRQ for this DMA channel 90 * @substream: pointer to the substream object, needed by the ISR 91 * @ssi_sxx_phys: bus address of the STX or SRX register to use 92 * @ld_buf_phys: physical address of the LD buffer 93 * @current_link: index into link[] of the link currently being processed 94 * @dma_buf_phys: physical address of the DMA buffer 95 * @dma_buf_next: physical address of the next period to process 96 * @dma_buf_end: physical address of the byte after the end of the DMA 97 * @buffer period_size: the size of a single period 98 * @num_periods: the number of periods in the DMA buffer 99 */ 100 struct fsl_dma_private { 101 struct fsl_dma_link_descriptor link[NUM_DMA_LINKS]; 102 struct ccsr_dma_channel __iomem *dma_channel; 103 unsigned int irq; 104 struct snd_pcm_substream *substream; 105 dma_addr_t ssi_sxx_phys; 106 unsigned int ssi_fifo_depth; 107 dma_addr_t ld_buf_phys; 108 unsigned int current_link; 109 dma_addr_t dma_buf_phys; 110 dma_addr_t dma_buf_next; 111 dma_addr_t dma_buf_end; 112 size_t period_size; 113 unsigned int num_periods; 114 }; 115 116 /** 117 * fsl_dma_hardare: define characteristics of the PCM hardware. 118 * 119 * The PCM hardware is the Freescale DMA controller. This structure defines 120 * the capabilities of that hardware. 121 * 122 * Since the sampling rate and data format are not controlled by the DMA 123 * controller, we specify no limits for those values. The only exception is 124 * period_bytes_min, which is set to a reasonably low value to prevent the 125 * DMA controller from generating too many interrupts per second. 126 * 127 * Since each link descriptor has a 32-bit byte count field, we set 128 * period_bytes_max to the largest 32-bit number. We also have no maximum 129 * number of periods. 130 * 131 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a 132 * limitation in the SSI driver requires the sample rates for playback and 133 * capture to be the same. 134 */ 135 static const struct snd_pcm_hardware fsl_dma_hardware = { 136 137 .info = SNDRV_PCM_INFO_INTERLEAVED | 138 SNDRV_PCM_INFO_MMAP | 139 SNDRV_PCM_INFO_MMAP_VALID | 140 SNDRV_PCM_INFO_JOINT_DUPLEX | 141 SNDRV_PCM_INFO_PAUSE, 142 .formats = FSLDMA_PCM_FORMATS, 143 .rates = FSLDMA_PCM_RATES, 144 .rate_min = 5512, 145 .rate_max = 192000, 146 .period_bytes_min = 512, /* A reasonable limit */ 147 .period_bytes_max = (u32) -1, 148 .periods_min = NUM_DMA_LINKS, 149 .periods_max = (unsigned int) -1, 150 .buffer_bytes_max = 128 * 1024, /* A reasonable limit */ 151 }; 152 153 /** 154 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted 155 * 156 * This function should be called by the ISR whenever the DMA controller 157 * halts data transfer. 158 */ 159 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream) 160 { 161 unsigned long flags; 162 163 snd_pcm_stream_lock_irqsave(substream, flags); 164 165 if (snd_pcm_running(substream)) 166 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 167 168 snd_pcm_stream_unlock_irqrestore(substream, flags); 169 } 170 171 /** 172 * fsl_dma_update_pointers - update LD pointers to point to the next period 173 * 174 * As each period is completed, this function changes the the link 175 * descriptor pointers for that period to point to the next period. 176 */ 177 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private) 178 { 179 struct fsl_dma_link_descriptor *link = 180 &dma_private->link[dma_private->current_link]; 181 182 /* Update our link descriptors to point to the next period. On a 36-bit 183 * system, we also need to update the ESAD bits. We also set (keep) the 184 * snoop bits. See the comments in fsl_dma_hw_params() about snooping. 185 */ 186 if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 187 link->source_addr = cpu_to_be32(dma_private->dma_buf_next); 188 #ifdef CONFIG_PHYS_64BIT 189 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | 190 upper_32_bits(dma_private->dma_buf_next)); 191 #endif 192 } else { 193 link->dest_addr = cpu_to_be32(dma_private->dma_buf_next); 194 #ifdef CONFIG_PHYS_64BIT 195 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | 196 upper_32_bits(dma_private->dma_buf_next)); 197 #endif 198 } 199 200 /* Update our variables for next time */ 201 dma_private->dma_buf_next += dma_private->period_size; 202 203 if (dma_private->dma_buf_next >= dma_private->dma_buf_end) 204 dma_private->dma_buf_next = dma_private->dma_buf_phys; 205 206 if (++dma_private->current_link >= NUM_DMA_LINKS) 207 dma_private->current_link = 0; 208 } 209 210 /** 211 * fsl_dma_isr: interrupt handler for the DMA controller 212 * 213 * @irq: IRQ of the DMA channel 214 * @dev_id: pointer to the dma_private structure for this DMA channel 215 */ 216 static irqreturn_t fsl_dma_isr(int irq, void *dev_id) 217 { 218 struct fsl_dma_private *dma_private = dev_id; 219 struct snd_pcm_substream *substream = dma_private->substream; 220 struct snd_soc_pcm_runtime *rtd = substream->private_data; 221 struct device *dev = rtd->platform->dev; 222 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; 223 irqreturn_t ret = IRQ_NONE; 224 u32 sr, sr2 = 0; 225 226 /* We got an interrupt, so read the status register to see what we 227 were interrupted for. 228 */ 229 sr = in_be32(&dma_channel->sr); 230 231 if (sr & CCSR_DMA_SR_TE) { 232 dev_err(dev, "dma transmit error\n"); 233 fsl_dma_abort_stream(substream); 234 sr2 |= CCSR_DMA_SR_TE; 235 ret = IRQ_HANDLED; 236 } 237 238 if (sr & CCSR_DMA_SR_CH) 239 ret = IRQ_HANDLED; 240 241 if (sr & CCSR_DMA_SR_PE) { 242 dev_err(dev, "dma programming error\n"); 243 fsl_dma_abort_stream(substream); 244 sr2 |= CCSR_DMA_SR_PE; 245 ret = IRQ_HANDLED; 246 } 247 248 if (sr & CCSR_DMA_SR_EOLNI) { 249 sr2 |= CCSR_DMA_SR_EOLNI; 250 ret = IRQ_HANDLED; 251 } 252 253 if (sr & CCSR_DMA_SR_CB) 254 ret = IRQ_HANDLED; 255 256 if (sr & CCSR_DMA_SR_EOSI) { 257 /* Tell ALSA we completed a period. */ 258 snd_pcm_period_elapsed(substream); 259 260 /* 261 * Update our link descriptors to point to the next period. We 262 * only need to do this if the number of periods is not equal to 263 * the number of links. 264 */ 265 if (dma_private->num_periods != NUM_DMA_LINKS) 266 fsl_dma_update_pointers(dma_private); 267 268 sr2 |= CCSR_DMA_SR_EOSI; 269 ret = IRQ_HANDLED; 270 } 271 272 if (sr & CCSR_DMA_SR_EOLSI) { 273 sr2 |= CCSR_DMA_SR_EOLSI; 274 ret = IRQ_HANDLED; 275 } 276 277 /* Clear the bits that we set */ 278 if (sr2) 279 out_be32(&dma_channel->sr, sr2); 280 281 return ret; 282 } 283 284 /** 285 * fsl_dma_new: initialize this PCM driver. 286 * 287 * This function is called when the codec driver calls snd_soc_new_pcms(), 288 * once for each .dai_link in the machine driver's snd_soc_card 289 * structure. 290 * 291 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which 292 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM 293 * is specified. Therefore, any DMA buffers we allocate will always be in low 294 * memory, but we support for 36-bit physical addresses anyway. 295 * 296 * Regardless of where the memory is actually allocated, since the device can 297 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36. 298 */ 299 static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd) 300 { 301 struct snd_card *card = rtd->card->snd_card; 302 struct snd_pcm *pcm = rtd->pcm; 303 int ret; 304 305 ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36)); 306 if (ret) 307 return ret; 308 309 /* Some codecs have separate DAIs for playback and capture, so we 310 * should allocate a DMA buffer only for the streams that are valid. 311 */ 312 313 if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) { 314 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, 315 fsl_dma_hardware.buffer_bytes_max, 316 &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer); 317 if (ret) { 318 dev_err(card->dev, "can't alloc playback dma buffer\n"); 319 return ret; 320 } 321 } 322 323 if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) { 324 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, 325 fsl_dma_hardware.buffer_bytes_max, 326 &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer); 327 if (ret) { 328 dev_err(card->dev, "can't alloc capture dma buffer\n"); 329 snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer); 330 return ret; 331 } 332 } 333 334 return 0; 335 } 336 337 /** 338 * fsl_dma_open: open a new substream. 339 * 340 * Each substream has its own DMA buffer. 341 * 342 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link 343 * descriptors that ping-pong from one period to the next. For example, if 344 * there are six periods and two link descriptors, this is how they look 345 * before playback starts: 346 * 347 * The last link descriptor 348 * ____________ points back to the first 349 * | | 350 * V | 351 * ___ ___ | 352 * | |->| |->| 353 * |___| |___| 354 * | | 355 * | | 356 * V V 357 * _________________________________________ 358 * | | | | | | | The DMA buffer is 359 * | | | | | | | divided into 6 parts 360 * |______|______|______|______|______|______| 361 * 362 * and here's how they look after the first period is finished playing: 363 * 364 * ____________ 365 * | | 366 * V | 367 * ___ ___ | 368 * | |->| |->| 369 * |___| |___| 370 * | | 371 * |______________ 372 * | | 373 * V V 374 * _________________________________________ 375 * | | | | | | | 376 * | | | | | | | 377 * |______|______|______|______|______|______| 378 * 379 * The first link descriptor now points to the third period. The DMA 380 * controller is currently playing the second period. When it finishes, it 381 * will jump back to the first descriptor and play the third period. 382 * 383 * There are four reasons we do this: 384 * 385 * 1. The only way to get the DMA controller to automatically restart the 386 * transfer when it gets to the end of the buffer is to use chaining 387 * mode. Basic direct mode doesn't offer that feature. 388 * 2. We need to receive an interrupt at the end of every period. The DMA 389 * controller can generate an interrupt at the end of every link transfer 390 * (aka segment). Making each period into a DMA segment will give us the 391 * interrupts we need. 392 * 3. By creating only two link descriptors, regardless of the number of 393 * periods, we do not need to reallocate the link descriptors if the 394 * number of periods changes. 395 * 4. All of the audio data is still stored in a single, contiguous DMA 396 * buffer, which is what ALSA expects. We're just dividing it into 397 * contiguous parts, and creating a link descriptor for each one. 398 */ 399 static int fsl_dma_open(struct snd_pcm_substream *substream) 400 { 401 struct snd_pcm_runtime *runtime = substream->runtime; 402 struct snd_soc_pcm_runtime *rtd = substream->private_data; 403 struct device *dev = rtd->platform->dev; 404 struct dma_object *dma = 405 container_of(rtd->platform->driver, struct dma_object, dai); 406 struct fsl_dma_private *dma_private; 407 struct ccsr_dma_channel __iomem *dma_channel; 408 dma_addr_t ld_buf_phys; 409 u64 temp_link; /* Pointer to next link descriptor */ 410 u32 mr; 411 unsigned int channel; 412 int ret = 0; 413 unsigned int i; 414 415 /* 416 * Reject any DMA buffer whose size is not a multiple of the period 417 * size. We need to make sure that the DMA buffer can be evenly divided 418 * into periods. 419 */ 420 ret = snd_pcm_hw_constraint_integer(runtime, 421 SNDRV_PCM_HW_PARAM_PERIODS); 422 if (ret < 0) { 423 dev_err(dev, "invalid buffer size\n"); 424 return ret; 425 } 426 427 channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1; 428 429 if (dma->assigned) { 430 dev_err(dev, "dma channel already assigned\n"); 431 return -EBUSY; 432 } 433 434 dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private), 435 &ld_buf_phys, GFP_KERNEL); 436 if (!dma_private) { 437 dev_err(dev, "can't allocate dma private data\n"); 438 return -ENOMEM; 439 } 440 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 441 dma_private->ssi_sxx_phys = dma->ssi_stx_phys; 442 else 443 dma_private->ssi_sxx_phys = dma->ssi_srx_phys; 444 445 dma_private->ssi_fifo_depth = dma->ssi_fifo_depth; 446 dma_private->dma_channel = dma->channel; 447 dma_private->irq = dma->irq; 448 dma_private->substream = substream; 449 dma_private->ld_buf_phys = ld_buf_phys; 450 dma_private->dma_buf_phys = substream->dma_buffer.addr; 451 452 ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio", 453 dma_private); 454 if (ret) { 455 dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n", 456 dma_private->irq, ret); 457 dma_free_coherent(dev, sizeof(struct fsl_dma_private), 458 dma_private, dma_private->ld_buf_phys); 459 return ret; 460 } 461 462 dma->assigned = 1; 463 464 snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer); 465 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware); 466 runtime->private_data = dma_private; 467 468 /* Program the fixed DMA controller parameters */ 469 470 dma_channel = dma_private->dma_channel; 471 472 temp_link = dma_private->ld_buf_phys + 473 sizeof(struct fsl_dma_link_descriptor); 474 475 for (i = 0; i < NUM_DMA_LINKS; i++) { 476 dma_private->link[i].next = cpu_to_be64(temp_link); 477 478 temp_link += sizeof(struct fsl_dma_link_descriptor); 479 } 480 /* The last link descriptor points to the first */ 481 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys); 482 483 /* Tell the DMA controller where the first link descriptor is */ 484 out_be32(&dma_channel->clndar, 485 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys)); 486 out_be32(&dma_channel->eclndar, 487 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys)); 488 489 /* The manual says the BCR must be clear before enabling EMP */ 490 out_be32(&dma_channel->bcr, 0); 491 492 /* 493 * Program the mode register for interrupts, external master control, 494 * and source/destination hold. Also clear the Channel Abort bit. 495 */ 496 mr = in_be32(&dma_channel->mr) & 497 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE); 498 499 /* 500 * We want External Master Start and External Master Pause enabled, 501 * because the SSI is controlling the DMA controller. We want the DMA 502 * controller to be set up in advance, and then we signal only the SSI 503 * to start transferring. 504 * 505 * We want End-Of-Segment Interrupts enabled, because this will generate 506 * an interrupt at the end of each segment (each link descriptor 507 * represents one segment). Each DMA segment is the same thing as an 508 * ALSA period, so this is how we get an interrupt at the end of every 509 * period. 510 * 511 * We want Error Interrupt enabled, so that we can get an error if 512 * the DMA controller is mis-programmed somehow. 513 */ 514 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN | 515 CCSR_DMA_MR_EMS_EN; 516 517 /* For playback, we want the destination address to be held. For 518 capture, set the source address to be held. */ 519 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? 520 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE; 521 522 out_be32(&dma_channel->mr, mr); 523 524 return 0; 525 } 526 527 /** 528 * fsl_dma_hw_params: continue initializing the DMA links 529 * 530 * This function obtains hardware parameters about the opened stream and 531 * programs the DMA controller accordingly. 532 * 533 * One drawback of big-endian is that when copying integers of different 534 * sizes to a fixed-sized register, the address to which the integer must be 535 * copied is dependent on the size of the integer. 536 * 537 * For example, if P is the address of a 32-bit register, and X is a 32-bit 538 * integer, then X should be copied to address P. However, if X is a 16-bit 539 * integer, then it should be copied to P+2. If X is an 8-bit register, 540 * then it should be copied to P+3. 541 * 542 * So for playback of 8-bit samples, the DMA controller must transfer single 543 * bytes from the DMA buffer to the last byte of the STX0 register, i.e. 544 * offset by 3 bytes. For 16-bit samples, the offset is two bytes. 545 * 546 * For 24-bit samples, the offset is 1 byte. However, the DMA controller 547 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4, 548 * and 8 bytes at a time). So we do not support packed 24-bit samples. 549 * 24-bit data must be padded to 32 bits. 550 */ 551 static int fsl_dma_hw_params(struct snd_pcm_substream *substream, 552 struct snd_pcm_hw_params *hw_params) 553 { 554 struct snd_pcm_runtime *runtime = substream->runtime; 555 struct fsl_dma_private *dma_private = runtime->private_data; 556 struct snd_soc_pcm_runtime *rtd = substream->private_data; 557 struct device *dev = rtd->platform->dev; 558 559 /* Number of bits per sample */ 560 unsigned int sample_bits = 561 snd_pcm_format_physical_width(params_format(hw_params)); 562 563 /* Number of bytes per frame */ 564 unsigned int sample_bytes = sample_bits / 8; 565 566 /* Bus address of SSI STX register */ 567 dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys; 568 569 /* Size of the DMA buffer, in bytes */ 570 size_t buffer_size = params_buffer_bytes(hw_params); 571 572 /* Number of bytes per period */ 573 size_t period_size = params_period_bytes(hw_params); 574 575 /* Pointer to next period */ 576 dma_addr_t temp_addr = substream->dma_buffer.addr; 577 578 /* Pointer to DMA controller */ 579 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; 580 581 u32 mr; /* DMA Mode Register */ 582 583 unsigned int i; 584 585 /* Initialize our DMA tracking variables */ 586 dma_private->period_size = period_size; 587 dma_private->num_periods = params_periods(hw_params); 588 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size; 589 dma_private->dma_buf_next = dma_private->dma_buf_phys + 590 (NUM_DMA_LINKS * period_size); 591 592 if (dma_private->dma_buf_next >= dma_private->dma_buf_end) 593 /* This happens if the number of periods == NUM_DMA_LINKS */ 594 dma_private->dma_buf_next = dma_private->dma_buf_phys; 595 596 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK | 597 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK); 598 599 /* Due to a quirk of the SSI's STX register, the target address 600 * for the DMA operations depends on the sample size. So we calculate 601 * that offset here. While we're at it, also tell the DMA controller 602 * how much data to transfer per sample. 603 */ 604 switch (sample_bits) { 605 case 8: 606 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1; 607 ssi_sxx_phys += 3; 608 break; 609 case 16: 610 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2; 611 ssi_sxx_phys += 2; 612 break; 613 case 32: 614 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4; 615 break; 616 default: 617 /* We should never get here */ 618 dev_err(dev, "unsupported sample size %u\n", sample_bits); 619 return -EINVAL; 620 } 621 622 /* 623 * BWC determines how many bytes are sent/received before the DMA 624 * controller checks the SSI to see if it needs to stop. BWC should 625 * always be a multiple of the frame size, so that we always transmit 626 * whole frames. Each frame occupies two slots in the FIFO. The 627 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two 628 * (MR[BWC] can only represent even powers of two). 629 * 630 * To simplify the process, we set BWC to the largest value that is 631 * less than or equal to the FIFO watermark. For playback, this ensures 632 * that we transfer the maximum amount without overrunning the FIFO. 633 * For capture, this ensures that we transfer the maximum amount without 634 * underrunning the FIFO. 635 * 636 * f = SSI FIFO depth 637 * w = SSI watermark value (which equals f - 2) 638 * b = DMA bandwidth count (in bytes) 639 * s = sample size (in bytes, which equals frame_size * 2) 640 * 641 * For playback, we never transmit more than the transmit FIFO 642 * watermark, otherwise we might write more data than the FIFO can hold. 643 * The watermark is equal to the FIFO depth minus two. 644 * 645 * For capture, two equations must hold: 646 * w > f - (b / s) 647 * w >= b / s 648 * 649 * So, b > 2 * s, but b must also be <= s * w. To simplify, we set 650 * b = s * w, which is equal to 651 * (dma_private->ssi_fifo_depth - 2) * sample_bytes. 652 */ 653 mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes); 654 655 out_be32(&dma_channel->mr, mr); 656 657 for (i = 0; i < NUM_DMA_LINKS; i++) { 658 struct fsl_dma_link_descriptor *link = &dma_private->link[i]; 659 660 link->count = cpu_to_be32(period_size); 661 662 /* The snoop bit tells the DMA controller whether it should tell 663 * the ECM to snoop during a read or write to an address. For 664 * audio, we use DMA to transfer data between memory and an I/O 665 * device (the SSI's STX0 or SRX0 register). Snooping is only 666 * needed if there is a cache, so we need to snoop memory 667 * addresses only. For playback, that means we snoop the source 668 * but not the destination. For capture, we snoop the 669 * destination but not the source. 670 * 671 * Note that failing to snoop properly is unlikely to cause 672 * cache incoherency if the period size is larger than the 673 * size of L1 cache. This is because filling in one period will 674 * flush out the data for the previous period. So if you 675 * increased period_bytes_min to a large enough size, you might 676 * get more performance by not snooping, and you'll still be 677 * okay. You'll need to update fsl_dma_update_pointers() also. 678 */ 679 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 680 link->source_addr = cpu_to_be32(temp_addr); 681 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | 682 upper_32_bits(temp_addr)); 683 684 link->dest_addr = cpu_to_be32(ssi_sxx_phys); 685 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | 686 upper_32_bits(ssi_sxx_phys)); 687 } else { 688 link->source_addr = cpu_to_be32(ssi_sxx_phys); 689 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | 690 upper_32_bits(ssi_sxx_phys)); 691 692 link->dest_addr = cpu_to_be32(temp_addr); 693 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | 694 upper_32_bits(temp_addr)); 695 } 696 697 temp_addr += period_size; 698 } 699 700 return 0; 701 } 702 703 /** 704 * fsl_dma_pointer: determine the current position of the DMA transfer 705 * 706 * This function is called by ALSA when ALSA wants to know where in the 707 * stream buffer the hardware currently is. 708 * 709 * For playback, the SAR register contains the physical address of the most 710 * recent DMA transfer. For capture, the value is in the DAR register. 711 * 712 * The base address of the buffer is stored in the source_addr field of the 713 * first link descriptor. 714 */ 715 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream) 716 { 717 struct snd_pcm_runtime *runtime = substream->runtime; 718 struct fsl_dma_private *dma_private = runtime->private_data; 719 struct snd_soc_pcm_runtime *rtd = substream->private_data; 720 struct device *dev = rtd->platform->dev; 721 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; 722 dma_addr_t position; 723 snd_pcm_uframes_t frames; 724 725 /* Obtain the current DMA pointer, but don't read the ESAD bits if we 726 * only have 32-bit DMA addresses. This function is typically called 727 * in interrupt context, so we need to optimize it. 728 */ 729 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 730 position = in_be32(&dma_channel->sar); 731 #ifdef CONFIG_PHYS_64BIT 732 position |= (u64)(in_be32(&dma_channel->satr) & 733 CCSR_DMA_ATR_ESAD_MASK) << 32; 734 #endif 735 } else { 736 position = in_be32(&dma_channel->dar); 737 #ifdef CONFIG_PHYS_64BIT 738 position |= (u64)(in_be32(&dma_channel->datr) & 739 CCSR_DMA_ATR_ESAD_MASK) << 32; 740 #endif 741 } 742 743 /* 744 * When capture is started, the SSI immediately starts to fill its FIFO. 745 * This means that the DMA controller is not started until the FIFO is 746 * full. However, ALSA calls this function before that happens, when 747 * MR.DAR is still zero. In this case, just return zero to indicate 748 * that nothing has been received yet. 749 */ 750 if (!position) 751 return 0; 752 753 if ((position < dma_private->dma_buf_phys) || 754 (position > dma_private->dma_buf_end)) { 755 dev_err(dev, "dma pointer is out of range, halting stream\n"); 756 return SNDRV_PCM_POS_XRUN; 757 } 758 759 frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys); 760 761 /* 762 * If the current address is just past the end of the buffer, wrap it 763 * around. 764 */ 765 if (frames == runtime->buffer_size) 766 frames = 0; 767 768 return frames; 769 } 770 771 /** 772 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params() 773 * 774 * Release the resources allocated in fsl_dma_hw_params() and de-program the 775 * registers. 776 * 777 * This function can be called multiple times. 778 */ 779 static int fsl_dma_hw_free(struct snd_pcm_substream *substream) 780 { 781 struct snd_pcm_runtime *runtime = substream->runtime; 782 struct fsl_dma_private *dma_private = runtime->private_data; 783 784 if (dma_private) { 785 struct ccsr_dma_channel __iomem *dma_channel; 786 787 dma_channel = dma_private->dma_channel; 788 789 /* Stop the DMA */ 790 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA); 791 out_be32(&dma_channel->mr, 0); 792 793 /* Reset all the other registers */ 794 out_be32(&dma_channel->sr, -1); 795 out_be32(&dma_channel->clndar, 0); 796 out_be32(&dma_channel->eclndar, 0); 797 out_be32(&dma_channel->satr, 0); 798 out_be32(&dma_channel->sar, 0); 799 out_be32(&dma_channel->datr, 0); 800 out_be32(&dma_channel->dar, 0); 801 out_be32(&dma_channel->bcr, 0); 802 out_be32(&dma_channel->nlndar, 0); 803 out_be32(&dma_channel->enlndar, 0); 804 } 805 806 return 0; 807 } 808 809 /** 810 * fsl_dma_close: close the stream. 811 */ 812 static int fsl_dma_close(struct snd_pcm_substream *substream) 813 { 814 struct snd_pcm_runtime *runtime = substream->runtime; 815 struct fsl_dma_private *dma_private = runtime->private_data; 816 struct snd_soc_pcm_runtime *rtd = substream->private_data; 817 struct device *dev = rtd->platform->dev; 818 struct dma_object *dma = 819 container_of(rtd->platform->driver, struct dma_object, dai); 820 821 if (dma_private) { 822 if (dma_private->irq) 823 free_irq(dma_private->irq, dma_private); 824 825 /* Deallocate the fsl_dma_private structure */ 826 dma_free_coherent(dev, sizeof(struct fsl_dma_private), 827 dma_private, dma_private->ld_buf_phys); 828 substream->runtime->private_data = NULL; 829 } 830 831 dma->assigned = 0; 832 833 return 0; 834 } 835 836 /* 837 * Remove this PCM driver. 838 */ 839 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm) 840 { 841 struct snd_pcm_substream *substream; 842 unsigned int i; 843 844 for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) { 845 substream = pcm->streams[i].substream; 846 if (substream) { 847 snd_dma_free_pages(&substream->dma_buffer); 848 substream->dma_buffer.area = NULL; 849 substream->dma_buffer.addr = 0; 850 } 851 } 852 } 853 854 /** 855 * find_ssi_node -- returns the SSI node that points to its DMA channel node 856 * 857 * Although this DMA driver attempts to operate independently of the other 858 * devices, it still needs to determine some information about the SSI device 859 * that it's working with. Unfortunately, the device tree does not contain 860 * a pointer from the DMA channel node to the SSI node -- the pointer goes the 861 * other way. So we need to scan the device tree for SSI nodes until we find 862 * the one that points to the given DMA channel node. It's ugly, but at least 863 * it's contained in this one function. 864 */ 865 static struct device_node *find_ssi_node(struct device_node *dma_channel_np) 866 { 867 struct device_node *ssi_np, *np; 868 869 for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") { 870 /* Check each DMA phandle to see if it points to us. We 871 * assume that device_node pointers are a valid comparison. 872 */ 873 np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0); 874 of_node_put(np); 875 if (np == dma_channel_np) 876 return ssi_np; 877 878 np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0); 879 of_node_put(np); 880 if (np == dma_channel_np) 881 return ssi_np; 882 } 883 884 return NULL; 885 } 886 887 static struct snd_pcm_ops fsl_dma_ops = { 888 .open = fsl_dma_open, 889 .close = fsl_dma_close, 890 .ioctl = snd_pcm_lib_ioctl, 891 .hw_params = fsl_dma_hw_params, 892 .hw_free = fsl_dma_hw_free, 893 .pointer = fsl_dma_pointer, 894 }; 895 896 static int fsl_soc_dma_probe(struct platform_device *pdev) 897 { 898 struct dma_object *dma; 899 struct device_node *np = pdev->dev.of_node; 900 struct device_node *ssi_np; 901 struct resource res; 902 const uint32_t *iprop; 903 int ret; 904 905 /* Find the SSI node that points to us. */ 906 ssi_np = find_ssi_node(np); 907 if (!ssi_np) { 908 dev_err(&pdev->dev, "cannot find parent SSI node\n"); 909 return -ENODEV; 910 } 911 912 ret = of_address_to_resource(ssi_np, 0, &res); 913 if (ret) { 914 dev_err(&pdev->dev, "could not determine resources for %s\n", 915 ssi_np->full_name); 916 of_node_put(ssi_np); 917 return ret; 918 } 919 920 dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL); 921 if (!dma) { 922 dev_err(&pdev->dev, "could not allocate dma object\n"); 923 of_node_put(ssi_np); 924 return -ENOMEM; 925 } 926 927 strcpy(dma->path, np->full_name); 928 dma->dai.ops = &fsl_dma_ops; 929 dma->dai.pcm_new = fsl_dma_new; 930 dma->dai.pcm_free = fsl_dma_free_dma_buffers; 931 932 /* Store the SSI-specific information that we need */ 933 dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0); 934 dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0); 935 936 iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL); 937 if (iprop) 938 dma->ssi_fifo_depth = be32_to_cpup(iprop); 939 else 940 /* Older 8610 DTs didn't have the fifo-depth property */ 941 dma->ssi_fifo_depth = 8; 942 943 of_node_put(ssi_np); 944 945 ret = snd_soc_register_platform(&pdev->dev, &dma->dai); 946 if (ret) { 947 dev_err(&pdev->dev, "could not register platform\n"); 948 kfree(dma); 949 return ret; 950 } 951 952 dma->channel = of_iomap(np, 0); 953 dma->irq = irq_of_parse_and_map(np, 0); 954 955 dev_set_drvdata(&pdev->dev, dma); 956 957 return 0; 958 } 959 960 static int fsl_soc_dma_remove(struct platform_device *pdev) 961 { 962 struct dma_object *dma = dev_get_drvdata(&pdev->dev); 963 964 snd_soc_unregister_platform(&pdev->dev); 965 iounmap(dma->channel); 966 irq_dispose_mapping(dma->irq); 967 kfree(dma); 968 969 return 0; 970 } 971 972 static const struct of_device_id fsl_soc_dma_ids[] = { 973 { .compatible = "fsl,ssi-dma-channel", }, 974 {} 975 }; 976 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids); 977 978 static struct platform_driver fsl_soc_dma_driver = { 979 .driver = { 980 .name = "fsl-pcm-audio", 981 .owner = THIS_MODULE, 982 .of_match_table = fsl_soc_dma_ids, 983 }, 984 .probe = fsl_soc_dma_probe, 985 .remove = fsl_soc_dma_remove, 986 }; 987 988 module_platform_driver(fsl_soc_dma_driver); 989 990 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 991 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver"); 992 MODULE_LICENSE("GPL v2"); 993