xref: /linux/sound/soc/codecs/tlv320aic3x.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * ALSA SoC TLV320AIC3X codec driver
3  *
4  * Author:      Vladimir Barinov, <vbarinov@embeddedalley.com>
5  * Copyright:   (C) 2007 MontaVista Software, Inc., <source@mvista.com>
6  *
7  * Based on sound/soc/codecs/wm8753.c by Liam Girdwood
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * Notes:
14  *  The AIC3X is a driver for a low power stereo audio
15  *  codecs aic31, aic32, aic33, aic3007.
16  *
17  *  It supports full aic33 codec functionality.
18  *  The compatibility with aic32, aic31 and aic3007 is as follows:
19  *    aic32/aic3007    |        aic31
20  *  ---------------------------------------
21  *   MONO_LOUT -> N/A  |  MONO_LOUT -> N/A
22  *                     |  IN1L -> LINE1L
23  *                     |  IN1R -> LINE1R
24  *                     |  IN2L -> LINE2L
25  *                     |  IN2R -> LINE2R
26  *                     |  MIC3L/R -> N/A
27  *   truncated internal functionality in
28  *   accordance with documentation
29  *  ---------------------------------------
30  *
31  *  Hence the machine layer should disable unsupported inputs/outputs by
32  *  snd_soc_dapm_disable_pin(codec, "MONO_LOUT"), etc.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/pm.h>
40 #include <linux/i2c.h>
41 #include <linux/gpio.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/slab.h>
44 #include <sound/core.h>
45 #include <sound/pcm.h>
46 #include <sound/pcm_params.h>
47 #include <sound/soc.h>
48 #include <sound/initval.h>
49 #include <sound/tlv.h>
50 #include <sound/tlv320aic3x.h>
51 
52 #include "tlv320aic3x.h"
53 
54 #define AIC3X_NUM_SUPPLIES	4
55 static const char *aic3x_supply_names[AIC3X_NUM_SUPPLIES] = {
56 	"IOVDD",	/* I/O Voltage */
57 	"DVDD",		/* Digital Core Voltage */
58 	"AVDD",		/* Analog DAC Voltage */
59 	"DRVDD",	/* ADC Analog and Output Driver Voltage */
60 };
61 
62 static LIST_HEAD(reset_list);
63 
64 struct aic3x_priv;
65 
66 struct aic3x_disable_nb {
67 	struct notifier_block nb;
68 	struct aic3x_priv *aic3x;
69 };
70 
71 /* codec private data */
72 struct aic3x_priv {
73 	struct snd_soc_codec *codec;
74 	struct regulator_bulk_data supplies[AIC3X_NUM_SUPPLIES];
75 	struct aic3x_disable_nb disable_nb[AIC3X_NUM_SUPPLIES];
76 	enum snd_soc_control_type control_type;
77 	struct aic3x_setup_data *setup;
78 	unsigned int sysclk;
79 	struct list_head list;
80 	int master;
81 	int gpio_reset;
82 	int power;
83 #define AIC3X_MODEL_3X 0
84 #define AIC3X_MODEL_33 1
85 #define AIC3X_MODEL_3007 2
86 	u16 model;
87 };
88 
89 /*
90  * AIC3X register cache
91  * We can't read the AIC3X register space when we are
92  * using 2 wire for device control, so we cache them instead.
93  * There is no point in caching the reset register
94  */
95 static const u8 aic3x_reg[AIC3X_CACHEREGNUM] = {
96 	0x00, 0x00, 0x00, 0x10,	/* 0 */
97 	0x04, 0x00, 0x00, 0x00,	/* 4 */
98 	0x00, 0x00, 0x00, 0x01,	/* 8 */
99 	0x00, 0x00, 0x00, 0x80,	/* 12 */
100 	0x80, 0xff, 0xff, 0x78,	/* 16 */
101 	0x78, 0x78, 0x78, 0x78,	/* 20 */
102 	0x78, 0x00, 0x00, 0xfe,	/* 24 */
103 	0x00, 0x00, 0xfe, 0x00,	/* 28 */
104 	0x18, 0x18, 0x00, 0x00,	/* 32 */
105 	0x00, 0x00, 0x00, 0x00,	/* 36 */
106 	0x00, 0x00, 0x00, 0x80,	/* 40 */
107 	0x80, 0x00, 0x00, 0x00,	/* 44 */
108 	0x00, 0x00, 0x00, 0x04,	/* 48 */
109 	0x00, 0x00, 0x00, 0x00,	/* 52 */
110 	0x00, 0x00, 0x04, 0x00,	/* 56 */
111 	0x00, 0x00, 0x00, 0x00,	/* 60 */
112 	0x00, 0x04, 0x00, 0x00,	/* 64 */
113 	0x00, 0x00, 0x00, 0x00,	/* 68 */
114 	0x04, 0x00, 0x00, 0x00,	/* 72 */
115 	0x00, 0x00, 0x00, 0x00,	/* 76 */
116 	0x00, 0x00, 0x00, 0x00,	/* 80 */
117 	0x00, 0x00, 0x00, 0x00,	/* 84 */
118 	0x00, 0x00, 0x00, 0x00,	/* 88 */
119 	0x00, 0x00, 0x00, 0x00,	/* 92 */
120 	0x00, 0x00, 0x00, 0x00,	/* 96 */
121 	0x00, 0x00, 0x02,	/* 100 */
122 };
123 
124 /*
125  * read from the aic3x register space. Only use for this function is if
126  * wanting to read volatile bits from those registers that has both read-only
127  * and read/write bits. All other cases should use snd_soc_read.
128  */
129 static int aic3x_read(struct snd_soc_codec *codec, unsigned int reg,
130 		      u8 *value)
131 {
132 	u8 *cache = codec->reg_cache;
133 
134 	if (codec->cache_only)
135 		return -EINVAL;
136 	if (reg >= AIC3X_CACHEREGNUM)
137 		return -1;
138 
139 	codec->cache_bypass = 1;
140 	*value = snd_soc_read(codec, reg);
141 	codec->cache_bypass = 0;
142 
143 	cache[reg] = *value;
144 
145 	return 0;
146 }
147 
148 #define SOC_DAPM_SINGLE_AIC3X(xname, reg, shift, mask, invert) \
149 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
150 	.info = snd_soc_info_volsw, \
151 	.get = snd_soc_dapm_get_volsw, .put = snd_soc_dapm_put_volsw_aic3x, \
152 	.private_value =  SOC_SINGLE_VALUE(reg, shift, mask, invert) }
153 
154 /*
155  * All input lines are connected when !0xf and disconnected with 0xf bit field,
156  * so we have to use specific dapm_put call for input mixer
157  */
158 static int snd_soc_dapm_put_volsw_aic3x(struct snd_kcontrol *kcontrol,
159 					struct snd_ctl_elem_value *ucontrol)
160 {
161 	struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol);
162 	struct snd_soc_dapm_widget *widget = wlist->widgets[0];
163 	struct soc_mixer_control *mc =
164 		(struct soc_mixer_control *)kcontrol->private_value;
165 	unsigned int reg = mc->reg;
166 	unsigned int shift = mc->shift;
167 	int max = mc->max;
168 	unsigned int mask = (1 << fls(max)) - 1;
169 	unsigned int invert = mc->invert;
170 	unsigned short val, val_mask;
171 	int ret;
172 	struct snd_soc_dapm_path *path;
173 	int found = 0;
174 
175 	val = (ucontrol->value.integer.value[0] & mask);
176 
177 	mask = 0xf;
178 	if (val)
179 		val = mask;
180 
181 	if (invert)
182 		val = mask - val;
183 	val_mask = mask << shift;
184 	val = val << shift;
185 
186 	mutex_lock(&widget->codec->mutex);
187 
188 	if (snd_soc_test_bits(widget->codec, reg, val_mask, val)) {
189 		/* find dapm widget path assoc with kcontrol */
190 		list_for_each_entry(path, &widget->dapm->card->paths, list) {
191 			if (path->kcontrol != kcontrol)
192 				continue;
193 
194 			/* found, now check type */
195 			found = 1;
196 			if (val)
197 				/* new connection */
198 				path->connect = invert ? 0 : 1;
199 			else
200 				/* old connection must be powered down */
201 				path->connect = invert ? 1 : 0;
202 
203 			dapm_mark_dirty(path->source, "tlv320aic3x source");
204 			dapm_mark_dirty(path->sink, "tlv320aic3x sink");
205 
206 			break;
207 		}
208 
209 		if (found)
210 			snd_soc_dapm_sync(widget->dapm);
211 	}
212 
213 	ret = snd_soc_update_bits(widget->codec, reg, val_mask, val);
214 
215 	mutex_unlock(&widget->codec->mutex);
216 	return ret;
217 }
218 
219 static const char *aic3x_left_dac_mux[] = { "DAC_L1", "DAC_L3", "DAC_L2" };
220 static const char *aic3x_right_dac_mux[] = { "DAC_R1", "DAC_R3", "DAC_R2" };
221 static const char *aic3x_left_hpcom_mux[] =
222     { "differential of HPLOUT", "constant VCM", "single-ended" };
223 static const char *aic3x_right_hpcom_mux[] =
224     { "differential of HPROUT", "constant VCM", "single-ended",
225       "differential of HPLCOM", "external feedback" };
226 static const char *aic3x_linein_mode_mux[] = { "single-ended", "differential" };
227 static const char *aic3x_adc_hpf[] =
228     { "Disabled", "0.0045xFs", "0.0125xFs", "0.025xFs" };
229 
230 #define LDAC_ENUM	0
231 #define RDAC_ENUM	1
232 #define LHPCOM_ENUM	2
233 #define RHPCOM_ENUM	3
234 #define LINE1L_2_L_ENUM	4
235 #define LINE1L_2_R_ENUM	5
236 #define LINE1R_2_L_ENUM	6
237 #define LINE1R_2_R_ENUM	7
238 #define LINE2L_ENUM	8
239 #define LINE2R_ENUM	9
240 #define ADC_HPF_ENUM	10
241 
242 static const struct soc_enum aic3x_enum[] = {
243 	SOC_ENUM_SINGLE(DAC_LINE_MUX, 6, 3, aic3x_left_dac_mux),
244 	SOC_ENUM_SINGLE(DAC_LINE_MUX, 4, 3, aic3x_right_dac_mux),
245 	SOC_ENUM_SINGLE(HPLCOM_CFG, 4, 3, aic3x_left_hpcom_mux),
246 	SOC_ENUM_SINGLE(HPRCOM_CFG, 3, 5, aic3x_right_hpcom_mux),
247 	SOC_ENUM_SINGLE(LINE1L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
248 	SOC_ENUM_SINGLE(LINE1L_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
249 	SOC_ENUM_SINGLE(LINE1R_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
250 	SOC_ENUM_SINGLE(LINE1R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
251 	SOC_ENUM_SINGLE(LINE2L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
252 	SOC_ENUM_SINGLE(LINE2R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
253 	SOC_ENUM_DOUBLE(AIC3X_CODEC_DFILT_CTRL, 6, 4, 4, aic3x_adc_hpf),
254 };
255 
256 /*
257  * DAC digital volumes. From -63.5 to 0 dB in 0.5 dB steps
258  */
259 static DECLARE_TLV_DB_SCALE(dac_tlv, -6350, 50, 0);
260 /* ADC PGA gain volumes. From 0 to 59.5 dB in 0.5 dB steps */
261 static DECLARE_TLV_DB_SCALE(adc_tlv, 0, 50, 0);
262 /*
263  * Output stage volumes. From -78.3 to 0 dB. Muted below -78.3 dB.
264  * Step size is approximately 0.5 dB over most of the scale but increasing
265  * near the very low levels.
266  * Define dB scale so that it is mostly correct for range about -55 to 0 dB
267  * but having increasing dB difference below that (and where it doesn't count
268  * so much). This setting shows -50 dB (actual is -50.3 dB) for register
269  * value 100 and -58.5 dB (actual is -78.3 dB) for register value 117.
270  */
271 static DECLARE_TLV_DB_SCALE(output_stage_tlv, -5900, 50, 1);
272 
273 static const struct snd_kcontrol_new aic3x_snd_controls[] = {
274 	/* Output */
275 	SOC_DOUBLE_R_TLV("PCM Playback Volume",
276 			 LDAC_VOL, RDAC_VOL, 0, 0x7f, 1, dac_tlv),
277 
278 	/*
279 	 * Output controls that map to output mixer switches. Note these are
280 	 * only for swapped L-to-R and R-to-L routes. See below stereo controls
281 	 * for direct L-to-L and R-to-R routes.
282 	 */
283 	SOC_SINGLE_TLV("Left Line Mixer Line2R Bypass Volume",
284 		       LINE2R_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
285 	SOC_SINGLE_TLV("Left Line Mixer PGAR Bypass Volume",
286 		       PGAR_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
287 	SOC_SINGLE_TLV("Left Line Mixer DACR1 Playback Volume",
288 		       DACR1_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
289 
290 	SOC_SINGLE_TLV("Right Line Mixer Line2L Bypass Volume",
291 		       LINE2L_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
292 	SOC_SINGLE_TLV("Right Line Mixer PGAL Bypass Volume",
293 		       PGAL_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
294 	SOC_SINGLE_TLV("Right Line Mixer DACL1 Playback Volume",
295 		       DACL1_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
296 
297 	SOC_SINGLE_TLV("Left HP Mixer Line2R Bypass Volume",
298 		       LINE2R_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
299 	SOC_SINGLE_TLV("Left HP Mixer PGAR Bypass Volume",
300 		       PGAR_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
301 	SOC_SINGLE_TLV("Left HP Mixer DACR1 Playback Volume",
302 		       DACR1_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
303 
304 	SOC_SINGLE_TLV("Right HP Mixer Line2L Bypass Volume",
305 		       LINE2L_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
306 	SOC_SINGLE_TLV("Right HP Mixer PGAL Bypass Volume",
307 		       PGAL_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
308 	SOC_SINGLE_TLV("Right HP Mixer DACL1 Playback Volume",
309 		       DACL1_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
310 
311 	SOC_SINGLE_TLV("Left HPCOM Mixer Line2R Bypass Volume",
312 		       LINE2R_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
313 	SOC_SINGLE_TLV("Left HPCOM Mixer PGAR Bypass Volume",
314 		       PGAR_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
315 	SOC_SINGLE_TLV("Left HPCOM Mixer DACR1 Playback Volume",
316 		       DACR1_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
317 
318 	SOC_SINGLE_TLV("Right HPCOM Mixer Line2L Bypass Volume",
319 		       LINE2L_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
320 	SOC_SINGLE_TLV("Right HPCOM Mixer PGAL Bypass Volume",
321 		       PGAL_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
322 	SOC_SINGLE_TLV("Right HPCOM Mixer DACL1 Playback Volume",
323 		       DACL1_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
324 
325 	/* Stereo output controls for direct L-to-L and R-to-R routes */
326 	SOC_DOUBLE_R_TLV("Line Line2 Bypass Volume",
327 			 LINE2L_2_LLOPM_VOL, LINE2R_2_RLOPM_VOL,
328 			 0, 118, 1, output_stage_tlv),
329 	SOC_DOUBLE_R_TLV("Line PGA Bypass Volume",
330 			 PGAL_2_LLOPM_VOL, PGAR_2_RLOPM_VOL,
331 			 0, 118, 1, output_stage_tlv),
332 	SOC_DOUBLE_R_TLV("Line DAC Playback Volume",
333 			 DACL1_2_LLOPM_VOL, DACR1_2_RLOPM_VOL,
334 			 0, 118, 1, output_stage_tlv),
335 
336 	SOC_DOUBLE_R_TLV("Mono Line2 Bypass Volume",
337 			 LINE2L_2_MONOLOPM_VOL, LINE2R_2_MONOLOPM_VOL,
338 			 0, 118, 1, output_stage_tlv),
339 	SOC_DOUBLE_R_TLV("Mono PGA Bypass Volume",
340 			 PGAL_2_MONOLOPM_VOL, PGAR_2_MONOLOPM_VOL,
341 			 0, 118, 1, output_stage_tlv),
342 	SOC_DOUBLE_R_TLV("Mono DAC Playback Volume",
343 			 DACL1_2_MONOLOPM_VOL, DACR1_2_MONOLOPM_VOL,
344 			 0, 118, 1, output_stage_tlv),
345 
346 	SOC_DOUBLE_R_TLV("HP Line2 Bypass Volume",
347 			 LINE2L_2_HPLOUT_VOL, LINE2R_2_HPROUT_VOL,
348 			 0, 118, 1, output_stage_tlv),
349 	SOC_DOUBLE_R_TLV("HP PGA Bypass Volume",
350 			 PGAL_2_HPLOUT_VOL, PGAR_2_HPROUT_VOL,
351 			 0, 118, 1, output_stage_tlv),
352 	SOC_DOUBLE_R_TLV("HP DAC Playback Volume",
353 			 DACL1_2_HPLOUT_VOL, DACR1_2_HPROUT_VOL,
354 			 0, 118, 1, output_stage_tlv),
355 
356 	SOC_DOUBLE_R_TLV("HPCOM Line2 Bypass Volume",
357 			 LINE2L_2_HPLCOM_VOL, LINE2R_2_HPRCOM_VOL,
358 			 0, 118, 1, output_stage_tlv),
359 	SOC_DOUBLE_R_TLV("HPCOM PGA Bypass Volume",
360 			 PGAL_2_HPLCOM_VOL, PGAR_2_HPRCOM_VOL,
361 			 0, 118, 1, output_stage_tlv),
362 	SOC_DOUBLE_R_TLV("HPCOM DAC Playback Volume",
363 			 DACL1_2_HPLCOM_VOL, DACR1_2_HPRCOM_VOL,
364 			 0, 118, 1, output_stage_tlv),
365 
366 	/* Output pin mute controls */
367 	SOC_DOUBLE_R("Line Playback Switch", LLOPM_CTRL, RLOPM_CTRL, 3,
368 		     0x01, 0),
369 	SOC_SINGLE("Mono Playback Switch", MONOLOPM_CTRL, 3, 0x01, 0),
370 	SOC_DOUBLE_R("HP Playback Switch", HPLOUT_CTRL, HPROUT_CTRL, 3,
371 		     0x01, 0),
372 	SOC_DOUBLE_R("HPCOM Playback Switch", HPLCOM_CTRL, HPRCOM_CTRL, 3,
373 		     0x01, 0),
374 
375 	/*
376 	 * Note: enable Automatic input Gain Controller with care. It can
377 	 * adjust PGA to max value when ADC is on and will never go back.
378 	*/
379 	SOC_DOUBLE_R("AGC Switch", LAGC_CTRL_A, RAGC_CTRL_A, 7, 0x01, 0),
380 
381 	/* Input */
382 	SOC_DOUBLE_R_TLV("PGA Capture Volume", LADC_VOL, RADC_VOL,
383 			 0, 119, 0, adc_tlv),
384 	SOC_DOUBLE_R("PGA Capture Switch", LADC_VOL, RADC_VOL, 7, 0x01, 1),
385 
386 	SOC_ENUM("ADC HPF Cut-off", aic3x_enum[ADC_HPF_ENUM]),
387 };
388 
389 /*
390  * Class-D amplifier gain. From 0 to 18 dB in 6 dB steps
391  */
392 static DECLARE_TLV_DB_SCALE(classd_amp_tlv, 0, 600, 0);
393 
394 static const struct snd_kcontrol_new aic3x_classd_amp_gain_ctrl =
395 	SOC_DOUBLE_TLV("Class-D Amplifier Gain", CLASSD_CTRL, 6, 4, 3, 0, classd_amp_tlv);
396 
397 /* Left DAC Mux */
398 static const struct snd_kcontrol_new aic3x_left_dac_mux_controls =
399 SOC_DAPM_ENUM("Route", aic3x_enum[LDAC_ENUM]);
400 
401 /* Right DAC Mux */
402 static const struct snd_kcontrol_new aic3x_right_dac_mux_controls =
403 SOC_DAPM_ENUM("Route", aic3x_enum[RDAC_ENUM]);
404 
405 /* Left HPCOM Mux */
406 static const struct snd_kcontrol_new aic3x_left_hpcom_mux_controls =
407 SOC_DAPM_ENUM("Route", aic3x_enum[LHPCOM_ENUM]);
408 
409 /* Right HPCOM Mux */
410 static const struct snd_kcontrol_new aic3x_right_hpcom_mux_controls =
411 SOC_DAPM_ENUM("Route", aic3x_enum[RHPCOM_ENUM]);
412 
413 /* Left Line Mixer */
414 static const struct snd_kcontrol_new aic3x_left_line_mixer_controls[] = {
415 	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_LLOPM_VOL, 7, 1, 0),
416 	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_LLOPM_VOL, 7, 1, 0),
417 	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_LLOPM_VOL, 7, 1, 0),
418 	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_LLOPM_VOL, 7, 1, 0),
419 	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_LLOPM_VOL, 7, 1, 0),
420 	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_LLOPM_VOL, 7, 1, 0),
421 };
422 
423 /* Right Line Mixer */
424 static const struct snd_kcontrol_new aic3x_right_line_mixer_controls[] = {
425 	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_RLOPM_VOL, 7, 1, 0),
426 	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_RLOPM_VOL, 7, 1, 0),
427 	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_RLOPM_VOL, 7, 1, 0),
428 	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_RLOPM_VOL, 7, 1, 0),
429 	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_RLOPM_VOL, 7, 1, 0),
430 	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_RLOPM_VOL, 7, 1, 0),
431 };
432 
433 /* Mono Mixer */
434 static const struct snd_kcontrol_new aic3x_mono_mixer_controls[] = {
435 	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_MONOLOPM_VOL, 7, 1, 0),
436 	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_MONOLOPM_VOL, 7, 1, 0),
437 	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_MONOLOPM_VOL, 7, 1, 0),
438 	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_MONOLOPM_VOL, 7, 1, 0),
439 	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_MONOLOPM_VOL, 7, 1, 0),
440 	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_MONOLOPM_VOL, 7, 1, 0),
441 };
442 
443 /* Left HP Mixer */
444 static const struct snd_kcontrol_new aic3x_left_hp_mixer_controls[] = {
445 	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLOUT_VOL, 7, 1, 0),
446 	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLOUT_VOL, 7, 1, 0),
447 	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLOUT_VOL, 7, 1, 0),
448 	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLOUT_VOL, 7, 1, 0),
449 	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLOUT_VOL, 7, 1, 0),
450 	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLOUT_VOL, 7, 1, 0),
451 };
452 
453 /* Right HP Mixer */
454 static const struct snd_kcontrol_new aic3x_right_hp_mixer_controls[] = {
455 	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPROUT_VOL, 7, 1, 0),
456 	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPROUT_VOL, 7, 1, 0),
457 	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPROUT_VOL, 7, 1, 0),
458 	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPROUT_VOL, 7, 1, 0),
459 	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPROUT_VOL, 7, 1, 0),
460 	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPROUT_VOL, 7, 1, 0),
461 };
462 
463 /* Left HPCOM Mixer */
464 static const struct snd_kcontrol_new aic3x_left_hpcom_mixer_controls[] = {
465 	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLCOM_VOL, 7, 1, 0),
466 	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLCOM_VOL, 7, 1, 0),
467 	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLCOM_VOL, 7, 1, 0),
468 	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLCOM_VOL, 7, 1, 0),
469 	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLCOM_VOL, 7, 1, 0),
470 	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLCOM_VOL, 7, 1, 0),
471 };
472 
473 /* Right HPCOM Mixer */
474 static const struct snd_kcontrol_new aic3x_right_hpcom_mixer_controls[] = {
475 	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPRCOM_VOL, 7, 1, 0),
476 	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPRCOM_VOL, 7, 1, 0),
477 	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPRCOM_VOL, 7, 1, 0),
478 	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPRCOM_VOL, 7, 1, 0),
479 	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPRCOM_VOL, 7, 1, 0),
480 	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPRCOM_VOL, 7, 1, 0),
481 };
482 
483 /* Left PGA Mixer */
484 static const struct snd_kcontrol_new aic3x_left_pga_mixer_controls[] = {
485 	SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_LADC_CTRL, 3, 1, 1),
486 	SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_LADC_CTRL, 3, 1, 1),
487 	SOC_DAPM_SINGLE_AIC3X("Line2L Switch", LINE2L_2_LADC_CTRL, 3, 1, 1),
488 	SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_LADC_CTRL, 4, 1, 1),
489 	SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_LADC_CTRL, 0, 1, 1),
490 };
491 
492 /* Right PGA Mixer */
493 static const struct snd_kcontrol_new aic3x_right_pga_mixer_controls[] = {
494 	SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_RADC_CTRL, 3, 1, 1),
495 	SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_RADC_CTRL, 3, 1, 1),
496 	SOC_DAPM_SINGLE_AIC3X("Line2R Switch", LINE2R_2_RADC_CTRL, 3, 1, 1),
497 	SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_RADC_CTRL, 4, 1, 1),
498 	SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_RADC_CTRL, 0, 1, 1),
499 };
500 
501 /* Left Line1 Mux */
502 static const struct snd_kcontrol_new aic3x_left_line1l_mux_controls =
503 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_2_L_ENUM]);
504 static const struct snd_kcontrol_new aic3x_right_line1l_mux_controls =
505 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_2_R_ENUM]);
506 
507 /* Right Line1 Mux */
508 static const struct snd_kcontrol_new aic3x_right_line1r_mux_controls =
509 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_2_R_ENUM]);
510 static const struct snd_kcontrol_new aic3x_left_line1r_mux_controls =
511 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_2_L_ENUM]);
512 
513 /* Left Line2 Mux */
514 static const struct snd_kcontrol_new aic3x_left_line2_mux_controls =
515 SOC_DAPM_ENUM("Route", aic3x_enum[LINE2L_ENUM]);
516 
517 /* Right Line2 Mux */
518 static const struct snd_kcontrol_new aic3x_right_line2_mux_controls =
519 SOC_DAPM_ENUM("Route", aic3x_enum[LINE2R_ENUM]);
520 
521 static const struct snd_soc_dapm_widget aic3x_dapm_widgets[] = {
522 	/* Left DAC to Left Outputs */
523 	SND_SOC_DAPM_DAC("Left DAC", "Left Playback", DAC_PWR, 7, 0),
524 	SND_SOC_DAPM_MUX("Left DAC Mux", SND_SOC_NOPM, 0, 0,
525 			 &aic3x_left_dac_mux_controls),
526 	SND_SOC_DAPM_MUX("Left HPCOM Mux", SND_SOC_NOPM, 0, 0,
527 			 &aic3x_left_hpcom_mux_controls),
528 	SND_SOC_DAPM_PGA("Left Line Out", LLOPM_CTRL, 0, 0, NULL, 0),
529 	SND_SOC_DAPM_PGA("Left HP Out", HPLOUT_CTRL, 0, 0, NULL, 0),
530 	SND_SOC_DAPM_PGA("Left HP Com", HPLCOM_CTRL, 0, 0, NULL, 0),
531 
532 	/* Right DAC to Right Outputs */
533 	SND_SOC_DAPM_DAC("Right DAC", "Right Playback", DAC_PWR, 6, 0),
534 	SND_SOC_DAPM_MUX("Right DAC Mux", SND_SOC_NOPM, 0, 0,
535 			 &aic3x_right_dac_mux_controls),
536 	SND_SOC_DAPM_MUX("Right HPCOM Mux", SND_SOC_NOPM, 0, 0,
537 			 &aic3x_right_hpcom_mux_controls),
538 	SND_SOC_DAPM_PGA("Right Line Out", RLOPM_CTRL, 0, 0, NULL, 0),
539 	SND_SOC_DAPM_PGA("Right HP Out", HPROUT_CTRL, 0, 0, NULL, 0),
540 	SND_SOC_DAPM_PGA("Right HP Com", HPRCOM_CTRL, 0, 0, NULL, 0),
541 
542 	/* Mono Output */
543 	SND_SOC_DAPM_PGA("Mono Out", MONOLOPM_CTRL, 0, 0, NULL, 0),
544 
545 	/* Inputs to Left ADC */
546 	SND_SOC_DAPM_ADC("Left ADC", "Left Capture", LINE1L_2_LADC_CTRL, 2, 0),
547 	SND_SOC_DAPM_MIXER("Left PGA Mixer", SND_SOC_NOPM, 0, 0,
548 			   &aic3x_left_pga_mixer_controls[0],
549 			   ARRAY_SIZE(aic3x_left_pga_mixer_controls)),
550 	SND_SOC_DAPM_MUX("Left Line1L Mux", SND_SOC_NOPM, 0, 0,
551 			 &aic3x_left_line1l_mux_controls),
552 	SND_SOC_DAPM_MUX("Left Line1R Mux", SND_SOC_NOPM, 0, 0,
553 			 &aic3x_left_line1r_mux_controls),
554 	SND_SOC_DAPM_MUX("Left Line2L Mux", SND_SOC_NOPM, 0, 0,
555 			 &aic3x_left_line2_mux_controls),
556 
557 	/* Inputs to Right ADC */
558 	SND_SOC_DAPM_ADC("Right ADC", "Right Capture",
559 			 LINE1R_2_RADC_CTRL, 2, 0),
560 	SND_SOC_DAPM_MIXER("Right PGA Mixer", SND_SOC_NOPM, 0, 0,
561 			   &aic3x_right_pga_mixer_controls[0],
562 			   ARRAY_SIZE(aic3x_right_pga_mixer_controls)),
563 	SND_SOC_DAPM_MUX("Right Line1L Mux", SND_SOC_NOPM, 0, 0,
564 			 &aic3x_right_line1l_mux_controls),
565 	SND_SOC_DAPM_MUX("Right Line1R Mux", SND_SOC_NOPM, 0, 0,
566 			 &aic3x_right_line1r_mux_controls),
567 	SND_SOC_DAPM_MUX("Right Line2R Mux", SND_SOC_NOPM, 0, 0,
568 			 &aic3x_right_line2_mux_controls),
569 
570 	/*
571 	 * Not a real mic bias widget but similar function. This is for dynamic
572 	 * control of GPIO1 digital mic modulator clock output function when
573 	 * using digital mic.
574 	 */
575 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "GPIO1 dmic modclk",
576 			 AIC3X_GPIO1_REG, 4, 0xf,
577 			 AIC3X_GPIO1_FUNC_DIGITAL_MIC_MODCLK,
578 			 AIC3X_GPIO1_FUNC_DISABLED),
579 
580 	/*
581 	 * Also similar function like mic bias. Selects digital mic with
582 	 * configurable oversampling rate instead of ADC converter.
583 	 */
584 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 128",
585 			 AIC3X_ASD_INTF_CTRLA, 0, 3, 1, 0),
586 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 64",
587 			 AIC3X_ASD_INTF_CTRLA, 0, 3, 2, 0),
588 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 32",
589 			 AIC3X_ASD_INTF_CTRLA, 0, 3, 3, 0),
590 
591 	/* Mic Bias */
592 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2V",
593 			 MICBIAS_CTRL, 6, 3, 1, 0),
594 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2.5V",
595 			 MICBIAS_CTRL, 6, 3, 2, 0),
596 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias AVDD",
597 			 MICBIAS_CTRL, 6, 3, 3, 0),
598 
599 	/* Output mixers */
600 	SND_SOC_DAPM_MIXER("Left Line Mixer", SND_SOC_NOPM, 0, 0,
601 			   &aic3x_left_line_mixer_controls[0],
602 			   ARRAY_SIZE(aic3x_left_line_mixer_controls)),
603 	SND_SOC_DAPM_MIXER("Right Line Mixer", SND_SOC_NOPM, 0, 0,
604 			   &aic3x_right_line_mixer_controls[0],
605 			   ARRAY_SIZE(aic3x_right_line_mixer_controls)),
606 	SND_SOC_DAPM_MIXER("Mono Mixer", SND_SOC_NOPM, 0, 0,
607 			   &aic3x_mono_mixer_controls[0],
608 			   ARRAY_SIZE(aic3x_mono_mixer_controls)),
609 	SND_SOC_DAPM_MIXER("Left HP Mixer", SND_SOC_NOPM, 0, 0,
610 			   &aic3x_left_hp_mixer_controls[0],
611 			   ARRAY_SIZE(aic3x_left_hp_mixer_controls)),
612 	SND_SOC_DAPM_MIXER("Right HP Mixer", SND_SOC_NOPM, 0, 0,
613 			   &aic3x_right_hp_mixer_controls[0],
614 			   ARRAY_SIZE(aic3x_right_hp_mixer_controls)),
615 	SND_SOC_DAPM_MIXER("Left HPCOM Mixer", SND_SOC_NOPM, 0, 0,
616 			   &aic3x_left_hpcom_mixer_controls[0],
617 			   ARRAY_SIZE(aic3x_left_hpcom_mixer_controls)),
618 	SND_SOC_DAPM_MIXER("Right HPCOM Mixer", SND_SOC_NOPM, 0, 0,
619 			   &aic3x_right_hpcom_mixer_controls[0],
620 			   ARRAY_SIZE(aic3x_right_hpcom_mixer_controls)),
621 
622 	SND_SOC_DAPM_OUTPUT("LLOUT"),
623 	SND_SOC_DAPM_OUTPUT("RLOUT"),
624 	SND_SOC_DAPM_OUTPUT("MONO_LOUT"),
625 	SND_SOC_DAPM_OUTPUT("HPLOUT"),
626 	SND_SOC_DAPM_OUTPUT("HPROUT"),
627 	SND_SOC_DAPM_OUTPUT("HPLCOM"),
628 	SND_SOC_DAPM_OUTPUT("HPRCOM"),
629 
630 	SND_SOC_DAPM_INPUT("MIC3L"),
631 	SND_SOC_DAPM_INPUT("MIC3R"),
632 	SND_SOC_DAPM_INPUT("LINE1L"),
633 	SND_SOC_DAPM_INPUT("LINE1R"),
634 	SND_SOC_DAPM_INPUT("LINE2L"),
635 	SND_SOC_DAPM_INPUT("LINE2R"),
636 
637 	/*
638 	 * Virtual output pin to detection block inside codec. This can be
639 	 * used to keep codec bias on if gpio or detection features are needed.
640 	 * Force pin on or construct a path with an input jack and mic bias
641 	 * widgets.
642 	 */
643 	SND_SOC_DAPM_OUTPUT("Detection"),
644 };
645 
646 static const struct snd_soc_dapm_widget aic3007_dapm_widgets[] = {
647 	/* Class-D outputs */
648 	SND_SOC_DAPM_PGA("Left Class-D Out", CLASSD_CTRL, 3, 0, NULL, 0),
649 	SND_SOC_DAPM_PGA("Right Class-D Out", CLASSD_CTRL, 2, 0, NULL, 0),
650 
651 	SND_SOC_DAPM_OUTPUT("SPOP"),
652 	SND_SOC_DAPM_OUTPUT("SPOM"),
653 };
654 
655 static const struct snd_soc_dapm_route intercon[] = {
656 	/* Left Input */
657 	{"Left Line1L Mux", "single-ended", "LINE1L"},
658 	{"Left Line1L Mux", "differential", "LINE1L"},
659 
660 	{"Left Line2L Mux", "single-ended", "LINE2L"},
661 	{"Left Line2L Mux", "differential", "LINE2L"},
662 
663 	{"Left PGA Mixer", "Line1L Switch", "Left Line1L Mux"},
664 	{"Left PGA Mixer", "Line1R Switch", "Left Line1R Mux"},
665 	{"Left PGA Mixer", "Line2L Switch", "Left Line2L Mux"},
666 	{"Left PGA Mixer", "Mic3L Switch", "MIC3L"},
667 	{"Left PGA Mixer", "Mic3R Switch", "MIC3R"},
668 
669 	{"Left ADC", NULL, "Left PGA Mixer"},
670 	{"Left ADC", NULL, "GPIO1 dmic modclk"},
671 
672 	/* Right Input */
673 	{"Right Line1R Mux", "single-ended", "LINE1R"},
674 	{"Right Line1R Mux", "differential", "LINE1R"},
675 
676 	{"Right Line2R Mux", "single-ended", "LINE2R"},
677 	{"Right Line2R Mux", "differential", "LINE2R"},
678 
679 	{"Right PGA Mixer", "Line1L Switch", "Right Line1L Mux"},
680 	{"Right PGA Mixer", "Line1R Switch", "Right Line1R Mux"},
681 	{"Right PGA Mixer", "Line2R Switch", "Right Line2R Mux"},
682 	{"Right PGA Mixer", "Mic3L Switch", "MIC3L"},
683 	{"Right PGA Mixer", "Mic3R Switch", "MIC3R"},
684 
685 	{"Right ADC", NULL, "Right PGA Mixer"},
686 	{"Right ADC", NULL, "GPIO1 dmic modclk"},
687 
688 	/*
689 	 * Logical path between digital mic enable and GPIO1 modulator clock
690 	 * output function
691 	 */
692 	{"GPIO1 dmic modclk", NULL, "DMic Rate 128"},
693 	{"GPIO1 dmic modclk", NULL, "DMic Rate 64"},
694 	{"GPIO1 dmic modclk", NULL, "DMic Rate 32"},
695 
696 	/* Left DAC Output */
697 	{"Left DAC Mux", "DAC_L1", "Left DAC"},
698 	{"Left DAC Mux", "DAC_L2", "Left DAC"},
699 	{"Left DAC Mux", "DAC_L3", "Left DAC"},
700 
701 	/* Right DAC Output */
702 	{"Right DAC Mux", "DAC_R1", "Right DAC"},
703 	{"Right DAC Mux", "DAC_R2", "Right DAC"},
704 	{"Right DAC Mux", "DAC_R3", "Right DAC"},
705 
706 	/* Left Line Output */
707 	{"Left Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
708 	{"Left Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
709 	{"Left Line Mixer", "DACL1 Switch", "Left DAC Mux"},
710 	{"Left Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
711 	{"Left Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
712 	{"Left Line Mixer", "DACR1 Switch", "Right DAC Mux"},
713 
714 	{"Left Line Out", NULL, "Left Line Mixer"},
715 	{"Left Line Out", NULL, "Left DAC Mux"},
716 	{"LLOUT", NULL, "Left Line Out"},
717 
718 	/* Right Line Output */
719 	{"Right Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
720 	{"Right Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
721 	{"Right Line Mixer", "DACL1 Switch", "Left DAC Mux"},
722 	{"Right Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
723 	{"Right Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
724 	{"Right Line Mixer", "DACR1 Switch", "Right DAC Mux"},
725 
726 	{"Right Line Out", NULL, "Right Line Mixer"},
727 	{"Right Line Out", NULL, "Right DAC Mux"},
728 	{"RLOUT", NULL, "Right Line Out"},
729 
730 	/* Mono Output */
731 	{"Mono Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
732 	{"Mono Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
733 	{"Mono Mixer", "DACL1 Switch", "Left DAC Mux"},
734 	{"Mono Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
735 	{"Mono Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
736 	{"Mono Mixer", "DACR1 Switch", "Right DAC Mux"},
737 
738 	{"Mono Out", NULL, "Mono Mixer"},
739 	{"MONO_LOUT", NULL, "Mono Out"},
740 
741 	/* Left HP Output */
742 	{"Left HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
743 	{"Left HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
744 	{"Left HP Mixer", "DACL1 Switch", "Left DAC Mux"},
745 	{"Left HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
746 	{"Left HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
747 	{"Left HP Mixer", "DACR1 Switch", "Right DAC Mux"},
748 
749 	{"Left HP Out", NULL, "Left HP Mixer"},
750 	{"Left HP Out", NULL, "Left DAC Mux"},
751 	{"HPLOUT", NULL, "Left HP Out"},
752 
753 	/* Right HP Output */
754 	{"Right HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
755 	{"Right HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
756 	{"Right HP Mixer", "DACL1 Switch", "Left DAC Mux"},
757 	{"Right HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
758 	{"Right HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
759 	{"Right HP Mixer", "DACR1 Switch", "Right DAC Mux"},
760 
761 	{"Right HP Out", NULL, "Right HP Mixer"},
762 	{"Right HP Out", NULL, "Right DAC Mux"},
763 	{"HPROUT", NULL, "Right HP Out"},
764 
765 	/* Left HPCOM Output */
766 	{"Left HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
767 	{"Left HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
768 	{"Left HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
769 	{"Left HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
770 	{"Left HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
771 	{"Left HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},
772 
773 	{"Left HPCOM Mux", "differential of HPLOUT", "Left HP Mixer"},
774 	{"Left HPCOM Mux", "constant VCM", "Left HPCOM Mixer"},
775 	{"Left HPCOM Mux", "single-ended", "Left HPCOM Mixer"},
776 	{"Left HP Com", NULL, "Left HPCOM Mux"},
777 	{"HPLCOM", NULL, "Left HP Com"},
778 
779 	/* Right HPCOM Output */
780 	{"Right HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
781 	{"Right HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
782 	{"Right HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
783 	{"Right HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
784 	{"Right HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
785 	{"Right HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},
786 
787 	{"Right HPCOM Mux", "differential of HPROUT", "Right HP Mixer"},
788 	{"Right HPCOM Mux", "constant VCM", "Right HPCOM Mixer"},
789 	{"Right HPCOM Mux", "single-ended", "Right HPCOM Mixer"},
790 	{"Right HPCOM Mux", "differential of HPLCOM", "Left HPCOM Mixer"},
791 	{"Right HPCOM Mux", "external feedback", "Right HPCOM Mixer"},
792 	{"Right HP Com", NULL, "Right HPCOM Mux"},
793 	{"HPRCOM", NULL, "Right HP Com"},
794 };
795 
796 static const struct snd_soc_dapm_route intercon_3007[] = {
797 	/* Class-D outputs */
798 	{"Left Class-D Out", NULL, "Left Line Out"},
799 	{"Right Class-D Out", NULL, "Left Line Out"},
800 	{"SPOP", NULL, "Left Class-D Out"},
801 	{"SPOM", NULL, "Right Class-D Out"},
802 };
803 
804 static int aic3x_add_widgets(struct snd_soc_codec *codec)
805 {
806 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
807 	struct snd_soc_dapm_context *dapm = &codec->dapm;
808 
809 	snd_soc_dapm_new_controls(dapm, aic3x_dapm_widgets,
810 				  ARRAY_SIZE(aic3x_dapm_widgets));
811 
812 	/* set up audio path interconnects */
813 	snd_soc_dapm_add_routes(dapm, intercon, ARRAY_SIZE(intercon));
814 
815 	if (aic3x->model == AIC3X_MODEL_3007) {
816 		snd_soc_dapm_new_controls(dapm, aic3007_dapm_widgets,
817 			ARRAY_SIZE(aic3007_dapm_widgets));
818 		snd_soc_dapm_add_routes(dapm, intercon_3007,
819 					ARRAY_SIZE(intercon_3007));
820 	}
821 
822 	return 0;
823 }
824 
825 static int aic3x_hw_params(struct snd_pcm_substream *substream,
826 			   struct snd_pcm_hw_params *params,
827 			   struct snd_soc_dai *dai)
828 {
829 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
830 	struct snd_soc_codec *codec =rtd->codec;
831 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
832 	int codec_clk = 0, bypass_pll = 0, fsref, last_clk = 0;
833 	u8 data, j, r, p, pll_q, pll_p = 1, pll_r = 1, pll_j = 1;
834 	u16 d, pll_d = 1;
835 	int clk;
836 
837 	/* select data word length */
838 	data = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & (~(0x3 << 4));
839 	switch (params_format(params)) {
840 	case SNDRV_PCM_FORMAT_S16_LE:
841 		break;
842 	case SNDRV_PCM_FORMAT_S20_3LE:
843 		data |= (0x01 << 4);
844 		break;
845 	case SNDRV_PCM_FORMAT_S24_LE:
846 		data |= (0x02 << 4);
847 		break;
848 	case SNDRV_PCM_FORMAT_S32_LE:
849 		data |= (0x03 << 4);
850 		break;
851 	}
852 	snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, data);
853 
854 	/* Fsref can be 44100 or 48000 */
855 	fsref = (params_rate(params) % 11025 == 0) ? 44100 : 48000;
856 
857 	/* Try to find a value for Q which allows us to bypass the PLL and
858 	 * generate CODEC_CLK directly. */
859 	for (pll_q = 2; pll_q < 18; pll_q++)
860 		if (aic3x->sysclk / (128 * pll_q) == fsref) {
861 			bypass_pll = 1;
862 			break;
863 		}
864 
865 	if (bypass_pll) {
866 		pll_q &= 0xf;
867 		snd_soc_write(codec, AIC3X_PLL_PROGA_REG, pll_q << PLLQ_SHIFT);
868 		snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_CLKDIV);
869 		/* disable PLL if it is bypassed */
870 		snd_soc_update_bits(codec, AIC3X_PLL_PROGA_REG, PLL_ENABLE, 0);
871 
872 	} else {
873 		snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_PLLDIV);
874 		/* enable PLL when it is used */
875 		snd_soc_update_bits(codec, AIC3X_PLL_PROGA_REG,
876 				    PLL_ENABLE, PLL_ENABLE);
877 	}
878 
879 	/* Route Left DAC to left channel input and
880 	 * right DAC to right channel input */
881 	data = (LDAC2LCH | RDAC2RCH);
882 	data |= (fsref == 44100) ? FSREF_44100 : FSREF_48000;
883 	if (params_rate(params) >= 64000)
884 		data |= DUAL_RATE_MODE;
885 	snd_soc_write(codec, AIC3X_CODEC_DATAPATH_REG, data);
886 
887 	/* codec sample rate select */
888 	data = (fsref * 20) / params_rate(params);
889 	if (params_rate(params) < 64000)
890 		data /= 2;
891 	data /= 5;
892 	data -= 2;
893 	data |= (data << 4);
894 	snd_soc_write(codec, AIC3X_SAMPLE_RATE_SEL_REG, data);
895 
896 	if (bypass_pll)
897 		return 0;
898 
899 	/* Use PLL, compute appropriate setup for j, d, r and p, the closest
900 	 * one wins the game. Try with d==0 first, next with d!=0.
901 	 * Constraints for j are according to the datasheet.
902 	 * The sysclk is divided by 1000 to prevent integer overflows.
903 	 */
904 
905 	codec_clk = (2048 * fsref) / (aic3x->sysclk / 1000);
906 
907 	for (r = 1; r <= 16; r++)
908 		for (p = 1; p <= 8; p++) {
909 			for (j = 4; j <= 55; j++) {
910 				/* This is actually 1000*((j+(d/10000))*r)/p
911 				 * The term had to be converted to get
912 				 * rid of the division by 10000; d = 0 here
913 				 */
914 				int tmp_clk = (1000 * j * r) / p;
915 
916 				/* Check whether this values get closer than
917 				 * the best ones we had before
918 				 */
919 				if (abs(codec_clk - tmp_clk) <
920 					abs(codec_clk - last_clk)) {
921 					pll_j = j; pll_d = 0;
922 					pll_r = r; pll_p = p;
923 					last_clk = tmp_clk;
924 				}
925 
926 				/* Early exit for exact matches */
927 				if (tmp_clk == codec_clk)
928 					goto found;
929 			}
930 		}
931 
932 	/* try with d != 0 */
933 	for (p = 1; p <= 8; p++) {
934 		j = codec_clk * p / 1000;
935 
936 		if (j < 4 || j > 11)
937 			continue;
938 
939 		/* do not use codec_clk here since we'd loose precision */
940 		d = ((2048 * p * fsref) - j * aic3x->sysclk)
941 			* 100 / (aic3x->sysclk/100);
942 
943 		clk = (10000 * j + d) / (10 * p);
944 
945 		/* check whether this values get closer than the best
946 		 * ones we had before */
947 		if (abs(codec_clk - clk) < abs(codec_clk - last_clk)) {
948 			pll_j = j; pll_d = d; pll_r = 1; pll_p = p;
949 			last_clk = clk;
950 		}
951 
952 		/* Early exit for exact matches */
953 		if (clk == codec_clk)
954 			goto found;
955 	}
956 
957 	if (last_clk == 0) {
958 		printk(KERN_ERR "%s(): unable to setup PLL\n", __func__);
959 		return -EINVAL;
960 	}
961 
962 found:
963 	data = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
964 	snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
965 		      data | (pll_p << PLLP_SHIFT));
966 	snd_soc_write(codec, AIC3X_OVRF_STATUS_AND_PLLR_REG,
967 		      pll_r << PLLR_SHIFT);
968 	snd_soc_write(codec, AIC3X_PLL_PROGB_REG, pll_j << PLLJ_SHIFT);
969 	snd_soc_write(codec, AIC3X_PLL_PROGC_REG,
970 		      (pll_d >> 6) << PLLD_MSB_SHIFT);
971 	snd_soc_write(codec, AIC3X_PLL_PROGD_REG,
972 		      (pll_d & 0x3F) << PLLD_LSB_SHIFT);
973 
974 	return 0;
975 }
976 
977 static int aic3x_mute(struct snd_soc_dai *dai, int mute)
978 {
979 	struct snd_soc_codec *codec = dai->codec;
980 	u8 ldac_reg = snd_soc_read(codec, LDAC_VOL) & ~MUTE_ON;
981 	u8 rdac_reg = snd_soc_read(codec, RDAC_VOL) & ~MUTE_ON;
982 
983 	if (mute) {
984 		snd_soc_write(codec, LDAC_VOL, ldac_reg | MUTE_ON);
985 		snd_soc_write(codec, RDAC_VOL, rdac_reg | MUTE_ON);
986 	} else {
987 		snd_soc_write(codec, LDAC_VOL, ldac_reg);
988 		snd_soc_write(codec, RDAC_VOL, rdac_reg);
989 	}
990 
991 	return 0;
992 }
993 
994 static int aic3x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
995 				int clk_id, unsigned int freq, int dir)
996 {
997 	struct snd_soc_codec *codec = codec_dai->codec;
998 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
999 
1000 	aic3x->sysclk = freq;
1001 	return 0;
1002 }
1003 
1004 static int aic3x_set_dai_fmt(struct snd_soc_dai *codec_dai,
1005 			     unsigned int fmt)
1006 {
1007 	struct snd_soc_codec *codec = codec_dai->codec;
1008 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1009 	u8 iface_areg, iface_breg;
1010 	int delay = 0;
1011 
1012 	iface_areg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLA) & 0x3f;
1013 	iface_breg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & 0x3f;
1014 
1015 	/* set master/slave audio interface */
1016 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1017 	case SND_SOC_DAIFMT_CBM_CFM:
1018 		aic3x->master = 1;
1019 		iface_areg |= BIT_CLK_MASTER | WORD_CLK_MASTER;
1020 		break;
1021 	case SND_SOC_DAIFMT_CBS_CFS:
1022 		aic3x->master = 0;
1023 		iface_areg &= ~(BIT_CLK_MASTER | WORD_CLK_MASTER);
1024 		break;
1025 	default:
1026 		return -EINVAL;
1027 	}
1028 
1029 	/*
1030 	 * match both interface format and signal polarities since they
1031 	 * are fixed
1032 	 */
1033 	switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK |
1034 		       SND_SOC_DAIFMT_INV_MASK)) {
1035 	case (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF):
1036 		break;
1037 	case (SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_IB_NF):
1038 		delay = 1;
1039 	case (SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_IB_NF):
1040 		iface_breg |= (0x01 << 6);
1041 		break;
1042 	case (SND_SOC_DAIFMT_RIGHT_J | SND_SOC_DAIFMT_NB_NF):
1043 		iface_breg |= (0x02 << 6);
1044 		break;
1045 	case (SND_SOC_DAIFMT_LEFT_J | SND_SOC_DAIFMT_NB_NF):
1046 		iface_breg |= (0x03 << 6);
1047 		break;
1048 	default:
1049 		return -EINVAL;
1050 	}
1051 
1052 	/* set iface */
1053 	snd_soc_write(codec, AIC3X_ASD_INTF_CTRLA, iface_areg);
1054 	snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, iface_breg);
1055 	snd_soc_write(codec, AIC3X_ASD_INTF_CTRLC, delay);
1056 
1057 	return 0;
1058 }
1059 
1060 static int aic3x_init_3007(struct snd_soc_codec *codec)
1061 {
1062 	u8 tmp1, tmp2, *cache = codec->reg_cache;
1063 
1064 	/*
1065 	 * There is no need to cache writes to undocumented page 0xD but
1066 	 * respective page 0 register cache entries must be preserved
1067 	 */
1068 	tmp1 = cache[0xD];
1069 	tmp2 = cache[0x8];
1070 	/* Class-D speaker driver init; datasheet p. 46 */
1071 	snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x0D);
1072 	snd_soc_write(codec, 0xD, 0x0D);
1073 	snd_soc_write(codec, 0x8, 0x5C);
1074 	snd_soc_write(codec, 0x8, 0x5D);
1075 	snd_soc_write(codec, 0x8, 0x5C);
1076 	snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x00);
1077 	cache[0xD] = tmp1;
1078 	cache[0x8] = tmp2;
1079 
1080 	return 0;
1081 }
1082 
1083 static int aic3x_regulator_event(struct notifier_block *nb,
1084 				 unsigned long event, void *data)
1085 {
1086 	struct aic3x_disable_nb *disable_nb =
1087 		container_of(nb, struct aic3x_disable_nb, nb);
1088 	struct aic3x_priv *aic3x = disable_nb->aic3x;
1089 
1090 	if (event & REGULATOR_EVENT_DISABLE) {
1091 		/*
1092 		 * Put codec to reset and require cache sync as at least one
1093 		 * of the supplies was disabled
1094 		 */
1095 		if (gpio_is_valid(aic3x->gpio_reset))
1096 			gpio_set_value(aic3x->gpio_reset, 0);
1097 		aic3x->codec->cache_sync = 1;
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 static int aic3x_set_power(struct snd_soc_codec *codec, int power)
1104 {
1105 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1106 	int i, ret;
1107 	u8 *cache = codec->reg_cache;
1108 
1109 	if (power) {
1110 		ret = regulator_bulk_enable(ARRAY_SIZE(aic3x->supplies),
1111 					    aic3x->supplies);
1112 		if (ret)
1113 			goto out;
1114 		aic3x->power = 1;
1115 		/*
1116 		 * Reset release and cache sync is necessary only if some
1117 		 * supply was off or if there were cached writes
1118 		 */
1119 		if (!codec->cache_sync)
1120 			goto out;
1121 
1122 		if (gpio_is_valid(aic3x->gpio_reset)) {
1123 			udelay(1);
1124 			gpio_set_value(aic3x->gpio_reset, 1);
1125 		}
1126 
1127 		/* Sync reg_cache with the hardware */
1128 		codec->cache_only = 0;
1129 		for (i = AIC3X_SAMPLE_RATE_SEL_REG; i < ARRAY_SIZE(aic3x_reg); i++)
1130 			snd_soc_write(codec, i, cache[i]);
1131 		if (aic3x->model == AIC3X_MODEL_3007)
1132 			aic3x_init_3007(codec);
1133 		codec->cache_sync = 0;
1134 	} else {
1135 		/*
1136 		 * Do soft reset to this codec instance in order to clear
1137 		 * possible VDD leakage currents in case the supply regulators
1138 		 * remain on
1139 		 */
1140 		snd_soc_write(codec, AIC3X_RESET, SOFT_RESET);
1141 		codec->cache_sync = 1;
1142 		aic3x->power = 0;
1143 		/* HW writes are needless when bias is off */
1144 		codec->cache_only = 1;
1145 		ret = regulator_bulk_disable(ARRAY_SIZE(aic3x->supplies),
1146 					     aic3x->supplies);
1147 	}
1148 out:
1149 	return ret;
1150 }
1151 
1152 static int aic3x_set_bias_level(struct snd_soc_codec *codec,
1153 				enum snd_soc_bias_level level)
1154 {
1155 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1156 
1157 	switch (level) {
1158 	case SND_SOC_BIAS_ON:
1159 		break;
1160 	case SND_SOC_BIAS_PREPARE:
1161 		if (codec->dapm.bias_level == SND_SOC_BIAS_STANDBY &&
1162 		    aic3x->master) {
1163 			/* enable pll */
1164 			snd_soc_update_bits(codec, AIC3X_PLL_PROGA_REG,
1165 					    PLL_ENABLE, PLL_ENABLE);
1166 		}
1167 		break;
1168 	case SND_SOC_BIAS_STANDBY:
1169 		if (!aic3x->power)
1170 			aic3x_set_power(codec, 1);
1171 		if (codec->dapm.bias_level == SND_SOC_BIAS_PREPARE &&
1172 		    aic3x->master) {
1173 			/* disable pll */
1174 			snd_soc_update_bits(codec, AIC3X_PLL_PROGA_REG,
1175 					    PLL_ENABLE, 0);
1176 		}
1177 		break;
1178 	case SND_SOC_BIAS_OFF:
1179 		if (aic3x->power)
1180 			aic3x_set_power(codec, 0);
1181 		break;
1182 	}
1183 	codec->dapm.bias_level = level;
1184 
1185 	return 0;
1186 }
1187 
1188 void aic3x_set_gpio(struct snd_soc_codec *codec, int gpio, int state)
1189 {
1190 	u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
1191 	u8 bit = gpio ? 3: 0;
1192 	u8 val = snd_soc_read(codec, reg) & ~(1 << bit);
1193 	snd_soc_write(codec, reg, val | (!!state << bit));
1194 }
1195 EXPORT_SYMBOL_GPL(aic3x_set_gpio);
1196 
1197 int aic3x_get_gpio(struct snd_soc_codec *codec, int gpio)
1198 {
1199 	u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
1200 	u8 val = 0, bit = gpio ? 2 : 1;
1201 
1202 	aic3x_read(codec, reg, &val);
1203 	return (val >> bit) & 1;
1204 }
1205 EXPORT_SYMBOL_GPL(aic3x_get_gpio);
1206 
1207 void aic3x_set_headset_detection(struct snd_soc_codec *codec, int detect,
1208 				 int headset_debounce, int button_debounce)
1209 {
1210 	u8 val;
1211 
1212 	val = ((detect & AIC3X_HEADSET_DETECT_MASK)
1213 		<< AIC3X_HEADSET_DETECT_SHIFT) |
1214 	      ((headset_debounce & AIC3X_HEADSET_DEBOUNCE_MASK)
1215 		<< AIC3X_HEADSET_DEBOUNCE_SHIFT) |
1216 	      ((button_debounce & AIC3X_BUTTON_DEBOUNCE_MASK)
1217 		<< AIC3X_BUTTON_DEBOUNCE_SHIFT);
1218 
1219 	if (detect & AIC3X_HEADSET_DETECT_MASK)
1220 		val |= AIC3X_HEADSET_DETECT_ENABLED;
1221 
1222 	snd_soc_write(codec, AIC3X_HEADSET_DETECT_CTRL_A, val);
1223 }
1224 EXPORT_SYMBOL_GPL(aic3x_set_headset_detection);
1225 
1226 int aic3x_headset_detected(struct snd_soc_codec *codec)
1227 {
1228 	u8 val = 0;
1229 	aic3x_read(codec, AIC3X_HEADSET_DETECT_CTRL_B, &val);
1230 	return (val >> 4) & 1;
1231 }
1232 EXPORT_SYMBOL_GPL(aic3x_headset_detected);
1233 
1234 int aic3x_button_pressed(struct snd_soc_codec *codec)
1235 {
1236 	u8 val = 0;
1237 	aic3x_read(codec, AIC3X_HEADSET_DETECT_CTRL_B, &val);
1238 	return (val >> 5) & 1;
1239 }
1240 EXPORT_SYMBOL_GPL(aic3x_button_pressed);
1241 
1242 #define AIC3X_RATES	SNDRV_PCM_RATE_8000_96000
1243 #define AIC3X_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \
1244 			 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1245 
1246 static const struct snd_soc_dai_ops aic3x_dai_ops = {
1247 	.hw_params	= aic3x_hw_params,
1248 	.digital_mute	= aic3x_mute,
1249 	.set_sysclk	= aic3x_set_dai_sysclk,
1250 	.set_fmt	= aic3x_set_dai_fmt,
1251 };
1252 
1253 static struct snd_soc_dai_driver aic3x_dai = {
1254 	.name = "tlv320aic3x-hifi",
1255 	.playback = {
1256 		.stream_name = "Playback",
1257 		.channels_min = 1,
1258 		.channels_max = 2,
1259 		.rates = AIC3X_RATES,
1260 		.formats = AIC3X_FORMATS,},
1261 	.capture = {
1262 		.stream_name = "Capture",
1263 		.channels_min = 1,
1264 		.channels_max = 2,
1265 		.rates = AIC3X_RATES,
1266 		.formats = AIC3X_FORMATS,},
1267 	.ops = &aic3x_dai_ops,
1268 	.symmetric_rates = 1,
1269 };
1270 
1271 static int aic3x_suspend(struct snd_soc_codec *codec)
1272 {
1273 	aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1274 
1275 	return 0;
1276 }
1277 
1278 static int aic3x_resume(struct snd_soc_codec *codec)
1279 {
1280 	aic3x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1281 
1282 	return 0;
1283 }
1284 
1285 /*
1286  * initialise the AIC3X driver
1287  * register the mixer and dsp interfaces with the kernel
1288  */
1289 static int aic3x_init(struct snd_soc_codec *codec)
1290 {
1291 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1292 
1293 	snd_soc_write(codec, AIC3X_PAGE_SELECT, PAGE0_SELECT);
1294 	snd_soc_write(codec, AIC3X_RESET, SOFT_RESET);
1295 
1296 	/* DAC default volume and mute */
1297 	snd_soc_write(codec, LDAC_VOL, DEFAULT_VOL | MUTE_ON);
1298 	snd_soc_write(codec, RDAC_VOL, DEFAULT_VOL | MUTE_ON);
1299 
1300 	/* DAC to HP default volume and route to Output mixer */
1301 	snd_soc_write(codec, DACL1_2_HPLOUT_VOL, DEFAULT_VOL | ROUTE_ON);
1302 	snd_soc_write(codec, DACR1_2_HPROUT_VOL, DEFAULT_VOL | ROUTE_ON);
1303 	snd_soc_write(codec, DACL1_2_HPLCOM_VOL, DEFAULT_VOL | ROUTE_ON);
1304 	snd_soc_write(codec, DACR1_2_HPRCOM_VOL, DEFAULT_VOL | ROUTE_ON);
1305 	/* DAC to Line Out default volume and route to Output mixer */
1306 	snd_soc_write(codec, DACL1_2_LLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1307 	snd_soc_write(codec, DACR1_2_RLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1308 	/* DAC to Mono Line Out default volume and route to Output mixer */
1309 	snd_soc_write(codec, DACL1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1310 	snd_soc_write(codec, DACR1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1311 
1312 	/* unmute all outputs */
1313 	snd_soc_update_bits(codec, LLOPM_CTRL, UNMUTE, UNMUTE);
1314 	snd_soc_update_bits(codec, RLOPM_CTRL, UNMUTE, UNMUTE);
1315 	snd_soc_update_bits(codec, MONOLOPM_CTRL, UNMUTE, UNMUTE);
1316 	snd_soc_update_bits(codec, HPLOUT_CTRL, UNMUTE, UNMUTE);
1317 	snd_soc_update_bits(codec, HPROUT_CTRL, UNMUTE, UNMUTE);
1318 	snd_soc_update_bits(codec, HPLCOM_CTRL, UNMUTE, UNMUTE);
1319 	snd_soc_update_bits(codec, HPRCOM_CTRL, UNMUTE, UNMUTE);
1320 
1321 	/* ADC default volume and unmute */
1322 	snd_soc_write(codec, LADC_VOL, DEFAULT_GAIN);
1323 	snd_soc_write(codec, RADC_VOL, DEFAULT_GAIN);
1324 	/* By default route Line1 to ADC PGA mixer */
1325 	snd_soc_write(codec, LINE1L_2_LADC_CTRL, 0x0);
1326 	snd_soc_write(codec, LINE1R_2_RADC_CTRL, 0x0);
1327 
1328 	/* PGA to HP Bypass default volume, disconnect from Output Mixer */
1329 	snd_soc_write(codec, PGAL_2_HPLOUT_VOL, DEFAULT_VOL);
1330 	snd_soc_write(codec, PGAR_2_HPROUT_VOL, DEFAULT_VOL);
1331 	snd_soc_write(codec, PGAL_2_HPLCOM_VOL, DEFAULT_VOL);
1332 	snd_soc_write(codec, PGAR_2_HPRCOM_VOL, DEFAULT_VOL);
1333 	/* PGA to Line Out default volume, disconnect from Output Mixer */
1334 	snd_soc_write(codec, PGAL_2_LLOPM_VOL, DEFAULT_VOL);
1335 	snd_soc_write(codec, PGAR_2_RLOPM_VOL, DEFAULT_VOL);
1336 	/* PGA to Mono Line Out default volume, disconnect from Output Mixer */
1337 	snd_soc_write(codec, PGAL_2_MONOLOPM_VOL, DEFAULT_VOL);
1338 	snd_soc_write(codec, PGAR_2_MONOLOPM_VOL, DEFAULT_VOL);
1339 
1340 	/* Line2 to HP Bypass default volume, disconnect from Output Mixer */
1341 	snd_soc_write(codec, LINE2L_2_HPLOUT_VOL, DEFAULT_VOL);
1342 	snd_soc_write(codec, LINE2R_2_HPROUT_VOL, DEFAULT_VOL);
1343 	snd_soc_write(codec, LINE2L_2_HPLCOM_VOL, DEFAULT_VOL);
1344 	snd_soc_write(codec, LINE2R_2_HPRCOM_VOL, DEFAULT_VOL);
1345 	/* Line2 Line Out default volume, disconnect from Output Mixer */
1346 	snd_soc_write(codec, LINE2L_2_LLOPM_VOL, DEFAULT_VOL);
1347 	snd_soc_write(codec, LINE2R_2_RLOPM_VOL, DEFAULT_VOL);
1348 	/* Line2 to Mono Out default volume, disconnect from Output Mixer */
1349 	snd_soc_write(codec, LINE2L_2_MONOLOPM_VOL, DEFAULT_VOL);
1350 	snd_soc_write(codec, LINE2R_2_MONOLOPM_VOL, DEFAULT_VOL);
1351 
1352 	if (aic3x->model == AIC3X_MODEL_3007) {
1353 		aic3x_init_3007(codec);
1354 		snd_soc_write(codec, CLASSD_CTRL, 0);
1355 	}
1356 
1357 	return 0;
1358 }
1359 
1360 static bool aic3x_is_shared_reset(struct aic3x_priv *aic3x)
1361 {
1362 	struct aic3x_priv *a;
1363 
1364 	list_for_each_entry(a, &reset_list, list) {
1365 		if (gpio_is_valid(aic3x->gpio_reset) &&
1366 		    aic3x->gpio_reset == a->gpio_reset)
1367 			return true;
1368 	}
1369 
1370 	return false;
1371 }
1372 
1373 static int aic3x_probe(struct snd_soc_codec *codec)
1374 {
1375 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1376 	int ret, i;
1377 
1378 	INIT_LIST_HEAD(&aic3x->list);
1379 	aic3x->codec = codec;
1380 	codec->dapm.idle_bias_off = 1;
1381 
1382 	ret = snd_soc_codec_set_cache_io(codec, 8, 8, aic3x->control_type);
1383 	if (ret != 0) {
1384 		dev_err(codec->dev, "Failed to set cache I/O: %d\n", ret);
1385 		return ret;
1386 	}
1387 
1388 	if (gpio_is_valid(aic3x->gpio_reset) &&
1389 	    !aic3x_is_shared_reset(aic3x)) {
1390 		ret = gpio_request(aic3x->gpio_reset, "tlv320aic3x reset");
1391 		if (ret != 0)
1392 			goto err_gpio;
1393 		gpio_direction_output(aic3x->gpio_reset, 0);
1394 	}
1395 
1396 	for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
1397 		aic3x->supplies[i].supply = aic3x_supply_names[i];
1398 
1399 	ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(aic3x->supplies),
1400 				 aic3x->supplies);
1401 	if (ret != 0) {
1402 		dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
1403 		goto err_get;
1404 	}
1405 	for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++) {
1406 		aic3x->disable_nb[i].nb.notifier_call = aic3x_regulator_event;
1407 		aic3x->disable_nb[i].aic3x = aic3x;
1408 		ret = regulator_register_notifier(aic3x->supplies[i].consumer,
1409 						  &aic3x->disable_nb[i].nb);
1410 		if (ret) {
1411 			dev_err(codec->dev,
1412 				"Failed to request regulator notifier: %d\n",
1413 				 ret);
1414 			goto err_notif;
1415 		}
1416 	}
1417 
1418 	codec->cache_only = 1;
1419 	aic3x_init(codec);
1420 
1421 	if (aic3x->setup) {
1422 		/* setup GPIO functions */
1423 		snd_soc_write(codec, AIC3X_GPIO1_REG,
1424 			      (aic3x->setup->gpio_func[0] & 0xf) << 4);
1425 		snd_soc_write(codec, AIC3X_GPIO2_REG,
1426 			      (aic3x->setup->gpio_func[1] & 0xf) << 4);
1427 	}
1428 
1429 	snd_soc_add_controls(codec, aic3x_snd_controls,
1430 			     ARRAY_SIZE(aic3x_snd_controls));
1431 	if (aic3x->model == AIC3X_MODEL_3007)
1432 		snd_soc_add_controls(codec, &aic3x_classd_amp_gain_ctrl, 1);
1433 
1434 	aic3x_add_widgets(codec);
1435 	list_add(&aic3x->list, &reset_list);
1436 
1437 	return 0;
1438 
1439 err_notif:
1440 	while (i--)
1441 		regulator_unregister_notifier(aic3x->supplies[i].consumer,
1442 					      &aic3x->disable_nb[i].nb);
1443 	regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
1444 err_get:
1445 	if (gpio_is_valid(aic3x->gpio_reset) &&
1446 	    !aic3x_is_shared_reset(aic3x))
1447 		gpio_free(aic3x->gpio_reset);
1448 err_gpio:
1449 	return ret;
1450 }
1451 
1452 static int aic3x_remove(struct snd_soc_codec *codec)
1453 {
1454 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1455 	int i;
1456 
1457 	aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1458 	list_del(&aic3x->list);
1459 	if (gpio_is_valid(aic3x->gpio_reset) &&
1460 	    !aic3x_is_shared_reset(aic3x)) {
1461 		gpio_set_value(aic3x->gpio_reset, 0);
1462 		gpio_free(aic3x->gpio_reset);
1463 	}
1464 	for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
1465 		regulator_unregister_notifier(aic3x->supplies[i].consumer,
1466 					      &aic3x->disable_nb[i].nb);
1467 	regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
1468 
1469 	return 0;
1470 }
1471 
1472 static struct snd_soc_codec_driver soc_codec_dev_aic3x = {
1473 	.set_bias_level = aic3x_set_bias_level,
1474 	.reg_cache_size = ARRAY_SIZE(aic3x_reg),
1475 	.reg_word_size = sizeof(u8),
1476 	.reg_cache_default = aic3x_reg,
1477 	.probe = aic3x_probe,
1478 	.remove = aic3x_remove,
1479 	.suspend = aic3x_suspend,
1480 	.resume = aic3x_resume,
1481 };
1482 
1483 /*
1484  * AIC3X 2 wire address can be up to 4 devices with device addresses
1485  * 0x18, 0x19, 0x1A, 0x1B
1486  */
1487 
1488 static const struct i2c_device_id aic3x_i2c_id[] = {
1489 	{ "tlv320aic3x", AIC3X_MODEL_3X },
1490 	{ "tlv320aic33", AIC3X_MODEL_33 },
1491 	{ "tlv320aic3007", AIC3X_MODEL_3007 },
1492 	{ }
1493 };
1494 MODULE_DEVICE_TABLE(i2c, aic3x_i2c_id);
1495 
1496 /*
1497  * If the i2c layer weren't so broken, we could pass this kind of data
1498  * around
1499  */
1500 static int aic3x_i2c_probe(struct i2c_client *i2c,
1501 			   const struct i2c_device_id *id)
1502 {
1503 	struct aic3x_pdata *pdata = i2c->dev.platform_data;
1504 	struct aic3x_priv *aic3x;
1505 	int ret;
1506 
1507 	aic3x = devm_kzalloc(&i2c->dev, sizeof(struct aic3x_priv), GFP_KERNEL);
1508 	if (aic3x == NULL) {
1509 		dev_err(&i2c->dev, "failed to create private data\n");
1510 		return -ENOMEM;
1511 	}
1512 
1513 	aic3x->control_type = SND_SOC_I2C;
1514 
1515 	i2c_set_clientdata(i2c, aic3x);
1516 	if (pdata) {
1517 		aic3x->gpio_reset = pdata->gpio_reset;
1518 		aic3x->setup = pdata->setup;
1519 	} else {
1520 		aic3x->gpio_reset = -1;
1521 	}
1522 
1523 	aic3x->model = id->driver_data;
1524 
1525 	ret = snd_soc_register_codec(&i2c->dev,
1526 			&soc_codec_dev_aic3x, &aic3x_dai, 1);
1527 	return ret;
1528 }
1529 
1530 static int aic3x_i2c_remove(struct i2c_client *client)
1531 {
1532 	snd_soc_unregister_codec(&client->dev);
1533 	return 0;
1534 }
1535 
1536 /* machine i2c codec control layer */
1537 static struct i2c_driver aic3x_i2c_driver = {
1538 	.driver = {
1539 		.name = "tlv320aic3x-codec",
1540 		.owner = THIS_MODULE,
1541 	},
1542 	.probe	= aic3x_i2c_probe,
1543 	.remove = aic3x_i2c_remove,
1544 	.id_table = aic3x_i2c_id,
1545 };
1546 
1547 static int __init aic3x_modinit(void)
1548 {
1549 	int ret = 0;
1550 	ret = i2c_add_driver(&aic3x_i2c_driver);
1551 	if (ret != 0) {
1552 		printk(KERN_ERR "Failed to register TLV320AIC3x I2C driver: %d\n",
1553 		       ret);
1554 	}
1555 	return ret;
1556 }
1557 module_init(aic3x_modinit);
1558 
1559 static void __exit aic3x_exit(void)
1560 {
1561 	i2c_del_driver(&aic3x_i2c_driver);
1562 }
1563 module_exit(aic3x_exit);
1564 
1565 MODULE_DESCRIPTION("ASoC TLV320AIC3X codec driver");
1566 MODULE_AUTHOR("Vladimir Barinov");
1567 MODULE_LICENSE("GPL");
1568