xref: /linux/sound/soc/codecs/sta32x.c (revision 791d3ef2e11100449837dc0b6fe884e60ca3a484)
1 /*
2  * Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system
3  *
4  * Copyright: 2011 Raumfeld GmbH
5  * Author: Johannes Stezenbach <js@sig21.net>
6  *
7  * based on code from:
8  *	Wolfson Microelectronics PLC.
9  *	  Mark Brown <broonie@opensource.wolfsonmicro.com>
10  *	Freescale Semiconductor, Inc.
11  *	  Timur Tabi <timur@freescale.com>
12  *
13  * This program is free software; you can redistribute  it and/or modify it
14  * under  the terms of  the GNU General  Public License as published by the
15  * Free Software Foundation;  either version 2 of the  License, or (at your
16  * option) any later version.
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
20 
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/pm.h>
26 #include <linux/i2c.h>
27 #include <linux/of_device.h>
28 #include <linux/of_gpio.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <sound/core.h>
35 #include <sound/pcm.h>
36 #include <sound/pcm_params.h>
37 #include <sound/soc.h>
38 #include <sound/soc-dapm.h>
39 #include <sound/initval.h>
40 #include <sound/tlv.h>
41 
42 #include <sound/sta32x.h>
43 #include "sta32x.h"
44 
45 #define STA32X_RATES (SNDRV_PCM_RATE_32000 | \
46 		      SNDRV_PCM_RATE_44100 | \
47 		      SNDRV_PCM_RATE_48000 | \
48 		      SNDRV_PCM_RATE_88200 | \
49 		      SNDRV_PCM_RATE_96000 | \
50 		      SNDRV_PCM_RATE_176400 | \
51 		      SNDRV_PCM_RATE_192000)
52 
53 #define STA32X_FORMATS \
54 	(SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S16_BE  | \
55 	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
56 	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
57 	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
58 	 SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S24_BE  | \
59 	 SNDRV_PCM_FMTBIT_S32_LE  | SNDRV_PCM_FMTBIT_S32_BE)
60 
61 /* Power-up register defaults */
62 static const struct reg_default sta32x_regs[] = {
63 	{  0x0, 0x63 },
64 	{  0x1, 0x80 },
65 	{  0x2, 0xc2 },
66 	{  0x3, 0x40 },
67 	{  0x4, 0xc2 },
68 	{  0x5, 0x5c },
69 	{  0x6, 0x10 },
70 	{  0x7, 0xff },
71 	{  0x8, 0x60 },
72 	{  0x9, 0x60 },
73 	{  0xa, 0x60 },
74 	{  0xb, 0x80 },
75 	{  0xc, 0x00 },
76 	{  0xd, 0x00 },
77 	{  0xe, 0x00 },
78 	{  0xf, 0x40 },
79 	{ 0x10, 0x80 },
80 	{ 0x11, 0x77 },
81 	{ 0x12, 0x6a },
82 	{ 0x13, 0x69 },
83 	{ 0x14, 0x6a },
84 	{ 0x15, 0x69 },
85 	{ 0x16, 0x00 },
86 	{ 0x17, 0x00 },
87 	{ 0x18, 0x00 },
88 	{ 0x19, 0x00 },
89 	{ 0x1a, 0x00 },
90 	{ 0x1b, 0x00 },
91 	{ 0x1c, 0x00 },
92 	{ 0x1d, 0x00 },
93 	{ 0x1e, 0x00 },
94 	{ 0x1f, 0x00 },
95 	{ 0x20, 0x00 },
96 	{ 0x21, 0x00 },
97 	{ 0x22, 0x00 },
98 	{ 0x23, 0x00 },
99 	{ 0x24, 0x00 },
100 	{ 0x25, 0x00 },
101 	{ 0x26, 0x00 },
102 	{ 0x27, 0x2d },
103 	{ 0x28, 0xc0 },
104 	{ 0x2b, 0x00 },
105 	{ 0x2c, 0x0c },
106 };
107 
108 static const struct regmap_range sta32x_write_regs_range[] = {
109 	regmap_reg_range(STA32X_CONFA,  STA32X_FDRC2),
110 };
111 
112 static const struct regmap_range sta32x_read_regs_range[] = {
113 	regmap_reg_range(STA32X_CONFA,  STA32X_FDRC2),
114 };
115 
116 static const struct regmap_range sta32x_volatile_regs_range[] = {
117 	regmap_reg_range(STA32X_CFADDR2, STA32X_CFUD),
118 };
119 
120 static const struct regmap_access_table sta32x_write_regs = {
121 	.yes_ranges =	sta32x_write_regs_range,
122 	.n_yes_ranges =	ARRAY_SIZE(sta32x_write_regs_range),
123 };
124 
125 static const struct regmap_access_table sta32x_read_regs = {
126 	.yes_ranges =	sta32x_read_regs_range,
127 	.n_yes_ranges =	ARRAY_SIZE(sta32x_read_regs_range),
128 };
129 
130 static const struct regmap_access_table sta32x_volatile_regs = {
131 	.yes_ranges =	sta32x_volatile_regs_range,
132 	.n_yes_ranges =	ARRAY_SIZE(sta32x_volatile_regs_range),
133 };
134 
135 /* regulator power supply names */
136 static const char *sta32x_supply_names[] = {
137 	"Vdda",	/* analog supply, 3.3VV */
138 	"Vdd3",	/* digital supply, 3.3V */
139 	"Vcc"	/* power amp spply, 10V - 36V */
140 };
141 
142 /* codec private data */
143 struct sta32x_priv {
144 	struct regmap *regmap;
145 	struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)];
146 	struct snd_soc_component *component;
147 	struct sta32x_platform_data *pdata;
148 
149 	unsigned int mclk;
150 	unsigned int format;
151 
152 	u32 coef_shadow[STA32X_COEF_COUNT];
153 	struct delayed_work watchdog_work;
154 	int shutdown;
155 	struct gpio_desc *gpiod_nreset;
156 	struct mutex coeff_lock;
157 };
158 
159 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1);
160 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
161 static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0);
162 
163 static const char *sta32x_drc_ac[] = {
164 	"Anti-Clipping", "Dynamic Range Compression" };
165 static const char *sta32x_auto_eq_mode[] = {
166 	"User", "Preset", "Loudness" };
167 static const char *sta32x_auto_gc_mode[] = {
168 	"User", "AC no clipping", "AC limited clipping (10%)",
169 	"DRC nighttime listening mode" };
170 static const char *sta32x_auto_xo_mode[] = {
171 	"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz",
172 	"220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" };
173 static const char *sta32x_preset_eq_mode[] = {
174 	"Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft",
175 	"Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1",
176 	"Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2",
177 	"Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7",
178 	"Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12",
179 	"Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" };
180 static const char *sta32x_limiter_select[] = {
181 	"Limiter Disabled", "Limiter #1", "Limiter #2" };
182 static const char *sta32x_limiter_attack_rate[] = {
183 	"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
184 	"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
185 	"0.0645", "0.0564", "0.0501", "0.0451" };
186 static const char *sta32x_limiter_release_rate[] = {
187 	"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
188 	"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
189 	"0.0134", "0.0117", "0.0110", "0.0104" };
190 static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_attack_tlv,
191 	0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
192 	8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
193 );
194 
195 static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_release_tlv,
196 	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
197 	1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
198 	2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
199 	3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
200 	8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
201 );
202 
203 static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_attack_tlv,
204 	0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
205 	8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
206 	14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
207 );
208 
209 static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_release_tlv,
210 	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
211 	1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
212 	3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
213 	5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
214 	13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
215 );
216 
217 static SOC_ENUM_SINGLE_DECL(sta32x_drc_ac_enum,
218 			    STA32X_CONFD, STA32X_CONFD_DRC_SHIFT,
219 			    sta32x_drc_ac);
220 static SOC_ENUM_SINGLE_DECL(sta32x_auto_eq_enum,
221 			    STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT,
222 			    sta32x_auto_eq_mode);
223 static SOC_ENUM_SINGLE_DECL(sta32x_auto_gc_enum,
224 			    STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT,
225 			    sta32x_auto_gc_mode);
226 static SOC_ENUM_SINGLE_DECL(sta32x_auto_xo_enum,
227 			    STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT,
228 			    sta32x_auto_xo_mode);
229 static SOC_ENUM_SINGLE_DECL(sta32x_preset_eq_enum,
230 			    STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT,
231 			    sta32x_preset_eq_mode);
232 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch1_enum,
233 			    STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT,
234 			    sta32x_limiter_select);
235 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch2_enum,
236 			    STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT,
237 			    sta32x_limiter_select);
238 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch3_enum,
239 			    STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT,
240 			    sta32x_limiter_select);
241 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_attack_rate_enum,
242 			    STA32X_L1AR, STA32X_LxA_SHIFT,
243 			    sta32x_limiter_attack_rate);
244 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_attack_rate_enum,
245 			    STA32X_L2AR, STA32X_LxA_SHIFT,
246 			    sta32x_limiter_attack_rate);
247 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_release_rate_enum,
248 			    STA32X_L1AR, STA32X_LxR_SHIFT,
249 			    sta32x_limiter_release_rate);
250 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_release_rate_enum,
251 			    STA32X_L2AR, STA32X_LxR_SHIFT,
252 			    sta32x_limiter_release_rate);
253 
254 /* byte array controls for setting biquad, mixer, scaling coefficients;
255  * for biquads all five coefficients need to be set in one go,
256  * mixer and pre/postscale coefs can be set individually;
257  * each coef is 24bit, the bytes are ordered in the same way
258  * as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0)
259  */
260 
261 static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol,
262 				   struct snd_ctl_elem_info *uinfo)
263 {
264 	int numcoef = kcontrol->private_value >> 16;
265 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
266 	uinfo->count = 3 * numcoef;
267 	return 0;
268 }
269 
270 static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol,
271 				  struct snd_ctl_elem_value *ucontrol)
272 {
273 	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
274 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
275 	int numcoef = kcontrol->private_value >> 16;
276 	int index = kcontrol->private_value & 0xffff;
277 	unsigned int cfud, val;
278 	int i, ret = 0;
279 
280 	mutex_lock(&sta32x->coeff_lock);
281 
282 	/* preserve reserved bits in STA32X_CFUD */
283 	regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
284 	cfud &= 0xf0;
285 	/*
286 	 * chip documentation does not say if the bits are self clearing,
287 	 * so do it explicitly
288 	 */
289 	regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
290 
291 	regmap_write(sta32x->regmap, STA32X_CFADDR2, index);
292 	if (numcoef == 1) {
293 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x04);
294 	} else if (numcoef == 5) {
295 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x08);
296 	} else {
297 		ret = -EINVAL;
298 		goto exit_unlock;
299 	}
300 
301 	for (i = 0; i < 3 * numcoef; i++) {
302 		regmap_read(sta32x->regmap, STA32X_B1CF1 + i, &val);
303 		ucontrol->value.bytes.data[i] = val;
304 	}
305 
306 exit_unlock:
307 	mutex_unlock(&sta32x->coeff_lock);
308 
309 	return ret;
310 }
311 
312 static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol,
313 				  struct snd_ctl_elem_value *ucontrol)
314 {
315 	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
316 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
317 	int numcoef = kcontrol->private_value >> 16;
318 	int index = kcontrol->private_value & 0xffff;
319 	unsigned int cfud;
320 	int i;
321 
322 	/* preserve reserved bits in STA32X_CFUD */
323 	regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
324 	cfud &= 0xf0;
325 	/*
326 	 * chip documentation does not say if the bits are self clearing,
327 	 * so do it explicitly
328 	 */
329 	regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
330 
331 	regmap_write(sta32x->regmap, STA32X_CFADDR2, index);
332 	for (i = 0; i < numcoef && (index + i < STA32X_COEF_COUNT); i++)
333 		sta32x->coef_shadow[index + i] =
334 			  (ucontrol->value.bytes.data[3 * i] << 16)
335 			| (ucontrol->value.bytes.data[3 * i + 1] << 8)
336 			| (ucontrol->value.bytes.data[3 * i + 2]);
337 	for (i = 0; i < 3 * numcoef; i++)
338 		regmap_write(sta32x->regmap, STA32X_B1CF1 + i,
339 			     ucontrol->value.bytes.data[i]);
340 	if (numcoef == 1)
341 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01);
342 	else if (numcoef == 5)
343 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x02);
344 	else
345 		return -EINVAL;
346 
347 	return 0;
348 }
349 
350 static int sta32x_sync_coef_shadow(struct snd_soc_component *component)
351 {
352 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
353 	unsigned int cfud;
354 	int i;
355 
356 	/* preserve reserved bits in STA32X_CFUD */
357 	regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
358 	cfud &= 0xf0;
359 
360 	for (i = 0; i < STA32X_COEF_COUNT; i++) {
361 		regmap_write(sta32x->regmap, STA32X_CFADDR2, i);
362 		regmap_write(sta32x->regmap, STA32X_B1CF1,
363 			     (sta32x->coef_shadow[i] >> 16) & 0xff);
364 		regmap_write(sta32x->regmap, STA32X_B1CF2,
365 			     (sta32x->coef_shadow[i] >> 8) & 0xff);
366 		regmap_write(sta32x->regmap, STA32X_B1CF3,
367 			     (sta32x->coef_shadow[i]) & 0xff);
368 		/*
369 		 * chip documentation does not say if the bits are
370 		 * self-clearing, so do it explicitly
371 		 */
372 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
373 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01);
374 	}
375 	return 0;
376 }
377 
378 static int sta32x_cache_sync(struct snd_soc_component *component)
379 {
380 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
381 	unsigned int mute;
382 	int rc;
383 
384 	/* mute during register sync */
385 	regmap_read(sta32x->regmap, STA32X_MMUTE, &mute);
386 	regmap_write(sta32x->regmap, STA32X_MMUTE, mute | STA32X_MMUTE_MMUTE);
387 	sta32x_sync_coef_shadow(component);
388 	rc = regcache_sync(sta32x->regmap);
389 	regmap_write(sta32x->regmap, STA32X_MMUTE, mute);
390 	return rc;
391 }
392 
393 /* work around ESD issue where sta32x resets and loses all configuration */
394 static void sta32x_watchdog(struct work_struct *work)
395 {
396 	struct sta32x_priv *sta32x = container_of(work, struct sta32x_priv,
397 						  watchdog_work.work);
398 	struct snd_soc_component *component = sta32x->component;
399 	unsigned int confa, confa_cached;
400 
401 	/* check if sta32x has reset itself */
402 	confa_cached = snd_soc_component_read32(component, STA32X_CONFA);
403 	regcache_cache_bypass(sta32x->regmap, true);
404 	confa = snd_soc_component_read32(component, STA32X_CONFA);
405 	regcache_cache_bypass(sta32x->regmap, false);
406 	if (confa != confa_cached) {
407 		regcache_mark_dirty(sta32x->regmap);
408 		sta32x_cache_sync(component);
409 	}
410 
411 	if (!sta32x->shutdown)
412 		queue_delayed_work(system_power_efficient_wq,
413 				   &sta32x->watchdog_work,
414 				   round_jiffies_relative(HZ));
415 }
416 
417 static void sta32x_watchdog_start(struct sta32x_priv *sta32x)
418 {
419 	if (sta32x->pdata->needs_esd_watchdog) {
420 		sta32x->shutdown = 0;
421 		queue_delayed_work(system_power_efficient_wq,
422 				   &sta32x->watchdog_work,
423 				   round_jiffies_relative(HZ));
424 	}
425 }
426 
427 static void sta32x_watchdog_stop(struct sta32x_priv *sta32x)
428 {
429 	if (sta32x->pdata->needs_esd_watchdog) {
430 		sta32x->shutdown = 1;
431 		cancel_delayed_work_sync(&sta32x->watchdog_work);
432 	}
433 }
434 
435 #define SINGLE_COEF(xname, index) \
436 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
437 	.info = sta32x_coefficient_info, \
438 	.get = sta32x_coefficient_get,\
439 	.put = sta32x_coefficient_put, \
440 	.private_value = index | (1 << 16) }
441 
442 #define BIQUAD_COEFS(xname, index) \
443 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
444 	.info = sta32x_coefficient_info, \
445 	.get = sta32x_coefficient_get,\
446 	.put = sta32x_coefficient_put, \
447 	.private_value = index | (5 << 16) }
448 
449 static const struct snd_kcontrol_new sta32x_snd_controls[] = {
450 SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv),
451 SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1),
452 SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1),
453 SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1),
454 SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1),
455 SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv),
456 SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv),
457 SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv),
458 SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0),
459 SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum),
460 SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0),
461 SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0),
462 SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0),
463 SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0),
464 SOC_ENUM("Automode EQ", sta32x_auto_eq_enum),
465 SOC_ENUM("Automode GC", sta32x_auto_gc_enum),
466 SOC_ENUM("Automode XO", sta32x_auto_xo_enum),
467 SOC_ENUM("Preset EQ", sta32x_preset_eq_enum),
468 SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
469 SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
470 SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
471 SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
472 SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
473 SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
474 SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
475 SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum),
476 SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum),
477 SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum),
478 SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv),
479 SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv),
480 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum),
481 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum),
482 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
483 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter2_release_rate_enum),
484 
485 /* depending on mode, the attack/release thresholds have
486  * two different enum definitions; provide both
487  */
488 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
489 	       16, 0, sta32x_limiter_ac_attack_tlv),
490 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
491 	       16, 0, sta32x_limiter_ac_attack_tlv),
492 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
493 	       16, 0, sta32x_limiter_ac_release_tlv),
494 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
495 	       16, 0, sta32x_limiter_ac_release_tlv),
496 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
497 	       16, 0, sta32x_limiter_drc_attack_tlv),
498 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
499 	       16, 0, sta32x_limiter_drc_attack_tlv),
500 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
501 	       16, 0, sta32x_limiter_drc_release_tlv),
502 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
503 	       16, 0, sta32x_limiter_drc_release_tlv),
504 
505 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
506 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
507 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
508 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
509 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
510 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
511 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
512 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
513 BIQUAD_COEFS("High-pass", 40),
514 BIQUAD_COEFS("Low-pass", 45),
515 SINGLE_COEF("Ch1 - Prescale", 50),
516 SINGLE_COEF("Ch2 - Prescale", 51),
517 SINGLE_COEF("Ch1 - Postscale", 52),
518 SINGLE_COEF("Ch2 - Postscale", 53),
519 SINGLE_COEF("Ch3 - Postscale", 54),
520 SINGLE_COEF("Thermal warning - Postscale", 55),
521 SINGLE_COEF("Ch1 - Mix 1", 56),
522 SINGLE_COEF("Ch1 - Mix 2", 57),
523 SINGLE_COEF("Ch2 - Mix 1", 58),
524 SINGLE_COEF("Ch2 - Mix 2", 59),
525 SINGLE_COEF("Ch3 - Mix 1", 60),
526 SINGLE_COEF("Ch3 - Mix 2", 61),
527 };
528 
529 static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = {
530 SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0),
531 SND_SOC_DAPM_OUTPUT("LEFT"),
532 SND_SOC_DAPM_OUTPUT("RIGHT"),
533 SND_SOC_DAPM_OUTPUT("SUB"),
534 };
535 
536 static const struct snd_soc_dapm_route sta32x_dapm_routes[] = {
537 	{ "LEFT", NULL, "DAC" },
538 	{ "RIGHT", NULL, "DAC" },
539 	{ "SUB", NULL, "DAC" },
540 };
541 
542 /* MCLK interpolation ratio per fs */
543 static struct {
544 	int fs;
545 	int ir;
546 } interpolation_ratios[] = {
547 	{ 32000, 0 },
548 	{ 44100, 0 },
549 	{ 48000, 0 },
550 	{ 88200, 1 },
551 	{ 96000, 1 },
552 	{ 176400, 2 },
553 	{ 192000, 2 },
554 };
555 
556 /* MCLK to fs clock ratios */
557 static int mcs_ratio_table[3][7] = {
558 	{ 768, 512, 384, 256, 128, 576, 0 },
559 	{ 384, 256, 192, 128,  64,   0 },
560 	{ 384, 256, 192, 128,  64,   0 },
561 };
562 
563 /**
564  * sta32x_set_dai_sysclk - configure MCLK
565  * @codec_dai: the codec DAI
566  * @clk_id: the clock ID (ignored)
567  * @freq: the MCLK input frequency
568  * @dir: the clock direction (ignored)
569  *
570  * The value of MCLK is used to determine which sample rates are supported
571  * by the STA32X, based on the mclk_ratios table.
572  *
573  * This function must be called by the machine driver's 'startup' function,
574  * otherwise the list of supported sample rates will not be available in
575  * time for ALSA.
576  *
577  * For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause
578  * theoretically possible sample rates to be enabled. Call it again with a
579  * proper value set one the external clock is set (most probably you would do
580  * that from a machine's driver 'hw_param' hook.
581  */
582 static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
583 		int clk_id, unsigned int freq, int dir)
584 {
585 	struct snd_soc_component *component = codec_dai->component;
586 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
587 
588 	dev_dbg(component->dev, "mclk=%u\n", freq);
589 	sta32x->mclk = freq;
590 
591 	return 0;
592 }
593 
594 /**
595  * sta32x_set_dai_fmt - configure the codec for the selected audio format
596  * @codec_dai: the codec DAI
597  * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
598  *
599  * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
600  * codec accordingly.
601  */
602 static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai,
603 			      unsigned int fmt)
604 {
605 	struct snd_soc_component *component = codec_dai->component;
606 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
607 	u8 confb = 0;
608 
609 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
610 	case SND_SOC_DAIFMT_CBS_CFS:
611 		break;
612 	default:
613 		return -EINVAL;
614 	}
615 
616 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
617 	case SND_SOC_DAIFMT_I2S:
618 	case SND_SOC_DAIFMT_RIGHT_J:
619 	case SND_SOC_DAIFMT_LEFT_J:
620 		sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
621 		break;
622 	default:
623 		return -EINVAL;
624 	}
625 
626 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
627 	case SND_SOC_DAIFMT_NB_NF:
628 		confb |= STA32X_CONFB_C2IM;
629 		break;
630 	case SND_SOC_DAIFMT_NB_IF:
631 		confb |= STA32X_CONFB_C1IM;
632 		break;
633 	default:
634 		return -EINVAL;
635 	}
636 
637 	return regmap_update_bits(sta32x->regmap, STA32X_CONFB,
638 				  STA32X_CONFB_C1IM | STA32X_CONFB_C2IM, confb);
639 }
640 
641 /**
642  * sta32x_hw_params - program the STA32X with the given hardware parameters.
643  * @substream: the audio stream
644  * @params: the hardware parameters to set
645  * @dai: the SOC DAI (ignored)
646  *
647  * This function programs the hardware with the values provided.
648  * Specifically, the sample rate and the data format.
649  */
650 static int sta32x_hw_params(struct snd_pcm_substream *substream,
651 			    struct snd_pcm_hw_params *params,
652 			    struct snd_soc_dai *dai)
653 {
654 	struct snd_soc_component *component = dai->component;
655 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
656 	int i, mcs = -EINVAL, ir = -EINVAL;
657 	unsigned int confa, confb;
658 	unsigned int rate, ratio;
659 	int ret;
660 
661 	if (!sta32x->mclk) {
662 		dev_err(component->dev,
663 			"sta32x->mclk is unset. Unable to determine ratio\n");
664 		return -EIO;
665 	}
666 
667 	rate = params_rate(params);
668 	ratio = sta32x->mclk / rate;
669 	dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
670 
671 	for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
672 		if (interpolation_ratios[i].fs == rate) {
673 			ir = interpolation_ratios[i].ir;
674 			break;
675 		}
676 	}
677 
678 	if (ir < 0) {
679 		dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
680 		return -EINVAL;
681 	}
682 
683 	for (i = 0; i < 6; i++) {
684 		if (mcs_ratio_table[ir][i] == ratio) {
685 			mcs = i;
686 			break;
687 		}
688 	}
689 
690 	if (mcs < 0) {
691 		dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
692 		return -EINVAL;
693 	}
694 
695 	confa = (ir << STA32X_CONFA_IR_SHIFT) |
696 		(mcs << STA32X_CONFA_MCS_SHIFT);
697 	confb = 0;
698 
699 	switch (params_width(params)) {
700 	case 24:
701 		dev_dbg(component->dev, "24bit\n");
702 		/* fall through */
703 	case 32:
704 		dev_dbg(component->dev, "24bit or 32bit\n");
705 		switch (sta32x->format) {
706 		case SND_SOC_DAIFMT_I2S:
707 			confb |= 0x0;
708 			break;
709 		case SND_SOC_DAIFMT_LEFT_J:
710 			confb |= 0x1;
711 			break;
712 		case SND_SOC_DAIFMT_RIGHT_J:
713 			confb |= 0x2;
714 			break;
715 		}
716 
717 		break;
718 	case 20:
719 		dev_dbg(component->dev, "20bit\n");
720 		switch (sta32x->format) {
721 		case SND_SOC_DAIFMT_I2S:
722 			confb |= 0x4;
723 			break;
724 		case SND_SOC_DAIFMT_LEFT_J:
725 			confb |= 0x5;
726 			break;
727 		case SND_SOC_DAIFMT_RIGHT_J:
728 			confb |= 0x6;
729 			break;
730 		}
731 
732 		break;
733 	case 18:
734 		dev_dbg(component->dev, "18bit\n");
735 		switch (sta32x->format) {
736 		case SND_SOC_DAIFMT_I2S:
737 			confb |= 0x8;
738 			break;
739 		case SND_SOC_DAIFMT_LEFT_J:
740 			confb |= 0x9;
741 			break;
742 		case SND_SOC_DAIFMT_RIGHT_J:
743 			confb |= 0xa;
744 			break;
745 		}
746 
747 		break;
748 	case 16:
749 		dev_dbg(component->dev, "16bit\n");
750 		switch (sta32x->format) {
751 		case SND_SOC_DAIFMT_I2S:
752 			confb |= 0x0;
753 			break;
754 		case SND_SOC_DAIFMT_LEFT_J:
755 			confb |= 0xd;
756 			break;
757 		case SND_SOC_DAIFMT_RIGHT_J:
758 			confb |= 0xe;
759 			break;
760 		}
761 
762 		break;
763 	default:
764 		return -EINVAL;
765 	}
766 
767 	ret = regmap_update_bits(sta32x->regmap, STA32X_CONFA,
768 				 STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK,
769 				 confa);
770 	if (ret < 0)
771 		return ret;
772 
773 	ret = regmap_update_bits(sta32x->regmap, STA32X_CONFB,
774 				 STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB,
775 				 confb);
776 	if (ret < 0)
777 		return ret;
778 
779 	return 0;
780 }
781 
782 static int sta32x_startup_sequence(struct sta32x_priv *sta32x)
783 {
784 	if (sta32x->gpiod_nreset) {
785 		gpiod_set_value(sta32x->gpiod_nreset, 0);
786 		mdelay(1);
787 		gpiod_set_value(sta32x->gpiod_nreset, 1);
788 		mdelay(1);
789 	}
790 
791 	return 0;
792 }
793 
794 /**
795  * sta32x_set_bias_level - DAPM callback
796  * @component: the component device
797  * @level: DAPM power level
798  *
799  * This is called by ALSA to put the component into low power mode
800  * or to wake it up.  If the component is powered off completely
801  * all registers must be restored after power on.
802  */
803 static int sta32x_set_bias_level(struct snd_soc_component *component,
804 				 enum snd_soc_bias_level level)
805 {
806 	int ret;
807 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
808 
809 	dev_dbg(component->dev, "level = %d\n", level);
810 	switch (level) {
811 	case SND_SOC_BIAS_ON:
812 		break;
813 
814 	case SND_SOC_BIAS_PREPARE:
815 		/* Full power on */
816 		regmap_update_bits(sta32x->regmap, STA32X_CONFF,
817 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
818 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
819 		break;
820 
821 	case SND_SOC_BIAS_STANDBY:
822 		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
823 			ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
824 						    sta32x->supplies);
825 			if (ret != 0) {
826 				dev_err(component->dev,
827 					"Failed to enable supplies: %d\n", ret);
828 				return ret;
829 			}
830 
831 			sta32x_startup_sequence(sta32x);
832 			sta32x_cache_sync(component);
833 			sta32x_watchdog_start(sta32x);
834 		}
835 
836 		/* Power down */
837 		regmap_update_bits(sta32x->regmap, STA32X_CONFF,
838 				   STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
839 				   0);
840 
841 		break;
842 
843 	case SND_SOC_BIAS_OFF:
844 		/* The chip runs through the power down sequence for us. */
845 		regmap_update_bits(sta32x->regmap, STA32X_CONFF,
846 				   STA32X_CONFF_PWDN | STA32X_CONFF_EAPD, 0);
847 		msleep(300);
848 		sta32x_watchdog_stop(sta32x);
849 
850 		gpiod_set_value(sta32x->gpiod_nreset, 0);
851 
852 		regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies),
853 				       sta32x->supplies);
854 		break;
855 	}
856 	return 0;
857 }
858 
859 static const struct snd_soc_dai_ops sta32x_dai_ops = {
860 	.hw_params	= sta32x_hw_params,
861 	.set_sysclk	= sta32x_set_dai_sysclk,
862 	.set_fmt	= sta32x_set_dai_fmt,
863 };
864 
865 static struct snd_soc_dai_driver sta32x_dai = {
866 	.name = "sta32x-hifi",
867 	.playback = {
868 		.stream_name = "Playback",
869 		.channels_min = 2,
870 		.channels_max = 2,
871 		.rates = STA32X_RATES,
872 		.formats = STA32X_FORMATS,
873 	},
874 	.ops = &sta32x_dai_ops,
875 };
876 
877 static int sta32x_probe(struct snd_soc_component *component)
878 {
879 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
880 	struct sta32x_platform_data *pdata = sta32x->pdata;
881 	int i, ret = 0, thermal = 0;
882 	ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
883 				    sta32x->supplies);
884 	if (ret != 0) {
885 		dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
886 		return ret;
887 	}
888 
889 	ret = sta32x_startup_sequence(sta32x);
890 	if (ret < 0) {
891 		dev_err(component->dev, "Failed to startup device\n");
892 		return ret;
893 	}
894 
895 	/* CONFA */
896 	if (!pdata->thermal_warning_recovery)
897 		thermal |= STA32X_CONFA_TWAB;
898 	if (!pdata->thermal_warning_adjustment)
899 		thermal |= STA32X_CONFA_TWRB;
900 	if (!pdata->fault_detect_recovery)
901 		thermal |= STA32X_CONFA_FDRB;
902 	regmap_update_bits(sta32x->regmap, STA32X_CONFA,
903 			   STA32X_CONFA_TWAB | STA32X_CONFA_TWRB |
904 			   STA32X_CONFA_FDRB,
905 			   thermal);
906 
907 	/* CONFC */
908 	regmap_update_bits(sta32x->regmap, STA32X_CONFC,
909 			   STA32X_CONFC_CSZ_MASK,
910 			   pdata->drop_compensation_ns
911 				<< STA32X_CONFC_CSZ_SHIFT);
912 
913 	/* CONFE */
914 	regmap_update_bits(sta32x->regmap, STA32X_CONFE,
915 			   STA32X_CONFE_MPCV,
916 			   pdata->max_power_use_mpcc ?
917 				STA32X_CONFE_MPCV : 0);
918 	regmap_update_bits(sta32x->regmap, STA32X_CONFE,
919 			   STA32X_CONFE_MPC,
920 			   pdata->max_power_correction ?
921 				STA32X_CONFE_MPC : 0);
922 	regmap_update_bits(sta32x->regmap, STA32X_CONFE,
923 			   STA32X_CONFE_AME,
924 			   pdata->am_reduction_mode ?
925 				STA32X_CONFE_AME : 0);
926 	regmap_update_bits(sta32x->regmap, STA32X_CONFE,
927 			   STA32X_CONFE_PWMS,
928 			   pdata->odd_pwm_speed_mode ?
929 				STA32X_CONFE_PWMS : 0);
930 
931 	/*  CONFF */
932 	regmap_update_bits(sta32x->regmap, STA32X_CONFF,
933 			   STA32X_CONFF_IDE,
934 			   pdata->invalid_input_detect_mute ?
935 				STA32X_CONFF_IDE : 0);
936 
937 	/* select output configuration  */
938 	regmap_update_bits(sta32x->regmap, STA32X_CONFF,
939 			   STA32X_CONFF_OCFG_MASK,
940 			   pdata->output_conf
941 				<< STA32X_CONFF_OCFG_SHIFT);
942 
943 	/* channel to output mapping */
944 	regmap_update_bits(sta32x->regmap, STA32X_C1CFG,
945 			   STA32X_CxCFG_OM_MASK,
946 			   pdata->ch1_output_mapping
947 				<< STA32X_CxCFG_OM_SHIFT);
948 	regmap_update_bits(sta32x->regmap, STA32X_C2CFG,
949 			   STA32X_CxCFG_OM_MASK,
950 			   pdata->ch2_output_mapping
951 				<< STA32X_CxCFG_OM_SHIFT);
952 	regmap_update_bits(sta32x->regmap, STA32X_C3CFG,
953 			   STA32X_CxCFG_OM_MASK,
954 			   pdata->ch3_output_mapping
955 				<< STA32X_CxCFG_OM_SHIFT);
956 
957 	/* initialize coefficient shadow RAM with reset values */
958 	for (i = 4; i <= 49; i += 5)
959 		sta32x->coef_shadow[i] = 0x400000;
960 	for (i = 50; i <= 54; i++)
961 		sta32x->coef_shadow[i] = 0x7fffff;
962 	sta32x->coef_shadow[55] = 0x5a9df7;
963 	sta32x->coef_shadow[56] = 0x7fffff;
964 	sta32x->coef_shadow[59] = 0x7fffff;
965 	sta32x->coef_shadow[60] = 0x400000;
966 	sta32x->coef_shadow[61] = 0x400000;
967 
968 	if (sta32x->pdata->needs_esd_watchdog)
969 		INIT_DELAYED_WORK(&sta32x->watchdog_work, sta32x_watchdog);
970 
971 	snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
972 	/* Bias level configuration will have done an extra enable */
973 	regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
974 
975 	return 0;
976 }
977 
978 static void sta32x_remove(struct snd_soc_component *component)
979 {
980 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
981 
982 	sta32x_watchdog_stop(sta32x);
983 	regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
984 }
985 
986 static const struct snd_soc_component_driver sta32x_component = {
987 	.probe			= sta32x_probe,
988 	.remove			= sta32x_remove,
989 	.set_bias_level		= sta32x_set_bias_level,
990 	.controls		= sta32x_snd_controls,
991 	.num_controls		= ARRAY_SIZE(sta32x_snd_controls),
992 	.dapm_widgets		= sta32x_dapm_widgets,
993 	.num_dapm_widgets	= ARRAY_SIZE(sta32x_dapm_widgets),
994 	.dapm_routes		= sta32x_dapm_routes,
995 	.num_dapm_routes	= ARRAY_SIZE(sta32x_dapm_routes),
996 	.suspend_bias_off	= 1,
997 	.idle_bias_on		= 1,
998 	.use_pmdown_time	= 1,
999 	.endianness		= 1,
1000 	.non_legacy_dai_naming	= 1,
1001 };
1002 
1003 static const struct regmap_config sta32x_regmap = {
1004 	.reg_bits =		8,
1005 	.val_bits =		8,
1006 	.max_register =		STA32X_FDRC2,
1007 	.reg_defaults =		sta32x_regs,
1008 	.num_reg_defaults =	ARRAY_SIZE(sta32x_regs),
1009 	.cache_type =		REGCACHE_RBTREE,
1010 	.wr_table =		&sta32x_write_regs,
1011 	.rd_table =		&sta32x_read_regs,
1012 	.volatile_table =	&sta32x_volatile_regs,
1013 };
1014 
1015 #ifdef CONFIG_OF
1016 static const struct of_device_id st32x_dt_ids[] = {
1017 	{ .compatible = "st,sta32x", },
1018 	{ }
1019 };
1020 MODULE_DEVICE_TABLE(of, st32x_dt_ids);
1021 
1022 static int sta32x_probe_dt(struct device *dev, struct sta32x_priv *sta32x)
1023 {
1024 	struct device_node *np = dev->of_node;
1025 	struct sta32x_platform_data *pdata;
1026 	u16 tmp;
1027 
1028 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1029 	if (!pdata)
1030 		return -ENOMEM;
1031 
1032 	of_property_read_u8(np, "st,output-conf",
1033 			    &pdata->output_conf);
1034 	of_property_read_u8(np, "st,ch1-output-mapping",
1035 			    &pdata->ch1_output_mapping);
1036 	of_property_read_u8(np, "st,ch2-output-mapping",
1037 			    &pdata->ch2_output_mapping);
1038 	of_property_read_u8(np, "st,ch3-output-mapping",
1039 			    &pdata->ch3_output_mapping);
1040 
1041 	if (of_get_property(np, "st,thermal-warning-recovery", NULL))
1042 		pdata->thermal_warning_recovery = 1;
1043 	if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
1044 		pdata->thermal_warning_adjustment = 1;
1045 	if (of_get_property(np, "st,needs_esd_watchdog", NULL))
1046 		pdata->needs_esd_watchdog = 1;
1047 
1048 	tmp = 140;
1049 	of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1050 	pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1051 
1052 	/* CONFE */
1053 	if (of_get_property(np, "st,max-power-use-mpcc", NULL))
1054 		pdata->max_power_use_mpcc = 1;
1055 
1056 	if (of_get_property(np, "st,max-power-correction", NULL))
1057 		pdata->max_power_correction = 1;
1058 
1059 	if (of_get_property(np, "st,am-reduction-mode", NULL))
1060 		pdata->am_reduction_mode = 1;
1061 
1062 	if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
1063 		pdata->odd_pwm_speed_mode = 1;
1064 
1065 	/* CONFF */
1066 	if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
1067 		pdata->invalid_input_detect_mute = 1;
1068 
1069 	sta32x->pdata = pdata;
1070 
1071 	return 0;
1072 }
1073 #endif
1074 
1075 static int sta32x_i2c_probe(struct i2c_client *i2c,
1076 			    const struct i2c_device_id *id)
1077 {
1078 	struct device *dev = &i2c->dev;
1079 	struct sta32x_priv *sta32x;
1080 	int ret, i;
1081 
1082 	sta32x = devm_kzalloc(&i2c->dev, sizeof(struct sta32x_priv),
1083 			      GFP_KERNEL);
1084 	if (!sta32x)
1085 		return -ENOMEM;
1086 
1087 	mutex_init(&sta32x->coeff_lock);
1088 	sta32x->pdata = dev_get_platdata(dev);
1089 
1090 #ifdef CONFIG_OF
1091 	if (dev->of_node) {
1092 		ret = sta32x_probe_dt(dev, sta32x);
1093 		if (ret < 0)
1094 			return ret;
1095 	}
1096 #endif
1097 
1098 	/* GPIOs */
1099 	sta32x->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1100 						       GPIOD_OUT_LOW);
1101 	if (IS_ERR(sta32x->gpiod_nreset))
1102 		return PTR_ERR(sta32x->gpiod_nreset);
1103 
1104 	/* regulators */
1105 	for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++)
1106 		sta32x->supplies[i].supply = sta32x_supply_names[i];
1107 
1108 	ret = devm_regulator_bulk_get(&i2c->dev, ARRAY_SIZE(sta32x->supplies),
1109 				      sta32x->supplies);
1110 	if (ret != 0) {
1111 		dev_err(&i2c->dev, "Failed to request supplies: %d\n", ret);
1112 		return ret;
1113 	}
1114 
1115 	sta32x->regmap = devm_regmap_init_i2c(i2c, &sta32x_regmap);
1116 	if (IS_ERR(sta32x->regmap)) {
1117 		ret = PTR_ERR(sta32x->regmap);
1118 		dev_err(dev, "Failed to init regmap: %d\n", ret);
1119 		return ret;
1120 	}
1121 
1122 	i2c_set_clientdata(i2c, sta32x);
1123 
1124 	ret = devm_snd_soc_register_component(dev, &sta32x_component,
1125 					      &sta32x_dai, 1);
1126 	if (ret < 0)
1127 		dev_err(dev, "Failed to register component (%d)\n", ret);
1128 
1129 	return ret;
1130 }
1131 
1132 static const struct i2c_device_id sta32x_i2c_id[] = {
1133 	{ "sta326", 0 },
1134 	{ "sta328", 0 },
1135 	{ "sta329", 0 },
1136 	{ }
1137 };
1138 MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id);
1139 
1140 static struct i2c_driver sta32x_i2c_driver = {
1141 	.driver = {
1142 		.name = "sta32x",
1143 		.of_match_table = of_match_ptr(st32x_dt_ids),
1144 	},
1145 	.probe =    sta32x_i2c_probe,
1146 	.id_table = sta32x_i2c_id,
1147 };
1148 
1149 module_i2c_driver(sta32x_i2c_driver);
1150 
1151 MODULE_DESCRIPTION("ASoC STA32X driver");
1152 MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>");
1153 MODULE_LICENSE("GPL");
1154