1 /* 2 * sgtl5000.c -- SGTL5000 ALSA SoC Audio driver 3 * 4 * Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/moduleparam.h> 13 #include <linux/init.h> 14 #include <linux/delay.h> 15 #include <linux/slab.h> 16 #include <linux/pm.h> 17 #include <linux/i2c.h> 18 #include <linux/clk.h> 19 #include <linux/log2.h> 20 #include <linux/regmap.h> 21 #include <linux/regulator/driver.h> 22 #include <linux/regulator/machine.h> 23 #include <linux/regulator/consumer.h> 24 #include <linux/of_device.h> 25 #include <sound/core.h> 26 #include <sound/tlv.h> 27 #include <sound/pcm.h> 28 #include <sound/pcm_params.h> 29 #include <sound/soc.h> 30 #include <sound/soc-dapm.h> 31 #include <sound/initval.h> 32 33 #include "sgtl5000.h" 34 35 #define SGTL5000_DAP_REG_OFFSET 0x0100 36 #define SGTL5000_MAX_REG_OFFSET 0x013A 37 38 /* default value of sgtl5000 registers */ 39 static const struct reg_default sgtl5000_reg_defaults[] = { 40 { SGTL5000_CHIP_DIG_POWER, 0x0000 }, 41 { SGTL5000_CHIP_CLK_CTRL, 0x0008 }, 42 { SGTL5000_CHIP_I2S_CTRL, 0x0010 }, 43 { SGTL5000_CHIP_SSS_CTRL, 0x0010 }, 44 { SGTL5000_CHIP_ADCDAC_CTRL, 0x020c }, 45 { SGTL5000_CHIP_DAC_VOL, 0x3c3c }, 46 { SGTL5000_CHIP_PAD_STRENGTH, 0x015f }, 47 { SGTL5000_CHIP_ANA_ADC_CTRL, 0x0000 }, 48 { SGTL5000_CHIP_ANA_HP_CTRL, 0x1818 }, 49 { SGTL5000_CHIP_ANA_CTRL, 0x0111 }, 50 { SGTL5000_CHIP_LINREG_CTRL, 0x0000 }, 51 { SGTL5000_CHIP_REF_CTRL, 0x0000 }, 52 { SGTL5000_CHIP_MIC_CTRL, 0x0000 }, 53 { SGTL5000_CHIP_LINE_OUT_CTRL, 0x0000 }, 54 { SGTL5000_CHIP_LINE_OUT_VOL, 0x0404 }, 55 { SGTL5000_CHIP_ANA_POWER, 0x7060 }, 56 { SGTL5000_CHIP_PLL_CTRL, 0x5000 }, 57 { SGTL5000_CHIP_CLK_TOP_CTRL, 0x0000 }, 58 { SGTL5000_CHIP_ANA_STATUS, 0x0000 }, 59 { SGTL5000_CHIP_SHORT_CTRL, 0x0000 }, 60 { SGTL5000_CHIP_ANA_TEST2, 0x0000 }, 61 { SGTL5000_DAP_CTRL, 0x0000 }, 62 { SGTL5000_DAP_PEQ, 0x0000 }, 63 { SGTL5000_DAP_BASS_ENHANCE, 0x0040 }, 64 { SGTL5000_DAP_BASS_ENHANCE_CTRL, 0x051f }, 65 { SGTL5000_DAP_AUDIO_EQ, 0x0000 }, 66 { SGTL5000_DAP_SURROUND, 0x0040 }, 67 { SGTL5000_DAP_EQ_BASS_BAND0, 0x002f }, 68 { SGTL5000_DAP_EQ_BASS_BAND1, 0x002f }, 69 { SGTL5000_DAP_EQ_BASS_BAND2, 0x002f }, 70 { SGTL5000_DAP_EQ_BASS_BAND3, 0x002f }, 71 { SGTL5000_DAP_EQ_BASS_BAND4, 0x002f }, 72 { SGTL5000_DAP_MAIN_CHAN, 0x8000 }, 73 { SGTL5000_DAP_MIX_CHAN, 0x0000 }, 74 { SGTL5000_DAP_AVC_CTRL, 0x0510 }, 75 { SGTL5000_DAP_AVC_THRESHOLD, 0x1473 }, 76 { SGTL5000_DAP_AVC_ATTACK, 0x0028 }, 77 { SGTL5000_DAP_AVC_DECAY, 0x0050 }, 78 }; 79 80 /* regulator supplies for sgtl5000, VDDD is an optional external supply */ 81 enum sgtl5000_regulator_supplies { 82 VDDA, 83 VDDIO, 84 VDDD, 85 SGTL5000_SUPPLY_NUM 86 }; 87 88 /* vddd is optional supply */ 89 static const char *supply_names[SGTL5000_SUPPLY_NUM] = { 90 "VDDA", 91 "VDDIO", 92 "VDDD" 93 }; 94 95 #define LDO_CONSUMER_NAME "VDDD_LDO" 96 #define LDO_VOLTAGE 1200000 97 98 static struct regulator_consumer_supply ldo_consumer[] = { 99 REGULATOR_SUPPLY(LDO_CONSUMER_NAME, NULL), 100 }; 101 102 static struct regulator_init_data ldo_init_data = { 103 .constraints = { 104 .min_uV = 1200000, 105 .max_uV = 1200000, 106 .valid_modes_mask = REGULATOR_MODE_NORMAL, 107 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 108 }, 109 .num_consumer_supplies = 1, 110 .consumer_supplies = &ldo_consumer[0], 111 }; 112 113 /* 114 * sgtl5000 internal ldo regulator, 115 * enabled when VDDD not provided 116 */ 117 struct ldo_regulator { 118 struct regulator_desc desc; 119 struct regulator_dev *dev; 120 int voltage; 121 void *codec_data; 122 bool enabled; 123 }; 124 125 enum sgtl5000_micbias_resistor { 126 SGTL5000_MICBIAS_OFF = 0, 127 SGTL5000_MICBIAS_2K = 2, 128 SGTL5000_MICBIAS_4K = 4, 129 SGTL5000_MICBIAS_8K = 8, 130 }; 131 132 /* sgtl5000 private structure in codec */ 133 struct sgtl5000_priv { 134 int sysclk; /* sysclk rate */ 135 int master; /* i2s master or not */ 136 int fmt; /* i2s data format */ 137 struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM]; 138 struct ldo_regulator *ldo; 139 struct regmap *regmap; 140 struct clk *mclk; 141 int revision; 142 u8 micbias_resistor; 143 u8 micbias_voltage; 144 }; 145 146 /* 147 * mic_bias power on/off share the same register bits with 148 * output impedance of mic bias, when power on mic bias, we 149 * need reclaim it to impedance value. 150 * 0x0 = Powered off 151 * 0x1 = 2Kohm 152 * 0x2 = 4Kohm 153 * 0x3 = 8Kohm 154 */ 155 static int mic_bias_event(struct snd_soc_dapm_widget *w, 156 struct snd_kcontrol *kcontrol, int event) 157 { 158 struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm); 159 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 160 161 switch (event) { 162 case SND_SOC_DAPM_POST_PMU: 163 /* change mic bias resistor */ 164 snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL, 165 SGTL5000_BIAS_R_MASK, 166 sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT); 167 break; 168 169 case SND_SOC_DAPM_PRE_PMD: 170 snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL, 171 SGTL5000_BIAS_R_MASK, 0); 172 break; 173 } 174 return 0; 175 } 176 177 /* 178 * As manual described, ADC/DAC only works when VAG powerup, 179 * So enabled VAG before ADC/DAC up. 180 * In power down case, we need wait 400ms when vag fully ramped down. 181 */ 182 static int power_vag_event(struct snd_soc_dapm_widget *w, 183 struct snd_kcontrol *kcontrol, int event) 184 { 185 struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm); 186 const u32 mask = SGTL5000_DAC_POWERUP | SGTL5000_ADC_POWERUP; 187 188 switch (event) { 189 case SND_SOC_DAPM_POST_PMU: 190 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 191 SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP); 192 msleep(400); 193 break; 194 195 case SND_SOC_DAPM_PRE_PMD: 196 /* 197 * Don't clear VAG_POWERUP, when both DAC and ADC are 198 * operational to prevent inadvertently starving the 199 * other one of them. 200 */ 201 if ((snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER) & 202 mask) != mask) { 203 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 204 SGTL5000_VAG_POWERUP, 0); 205 msleep(400); 206 } 207 break; 208 default: 209 break; 210 } 211 212 return 0; 213 } 214 215 /* input sources for ADC */ 216 static const char *adc_mux_text[] = { 217 "MIC_IN", "LINE_IN" 218 }; 219 220 static SOC_ENUM_SINGLE_DECL(adc_enum, 221 SGTL5000_CHIP_ANA_CTRL, 2, 222 adc_mux_text); 223 224 static const struct snd_kcontrol_new adc_mux = 225 SOC_DAPM_ENUM("Capture Mux", adc_enum); 226 227 /* input sources for DAC */ 228 static const char *dac_mux_text[] = { 229 "DAC", "LINE_IN" 230 }; 231 232 static SOC_ENUM_SINGLE_DECL(dac_enum, 233 SGTL5000_CHIP_ANA_CTRL, 6, 234 dac_mux_text); 235 236 static const struct snd_kcontrol_new dac_mux = 237 SOC_DAPM_ENUM("Headphone Mux", dac_enum); 238 239 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = { 240 SND_SOC_DAPM_INPUT("LINE_IN"), 241 SND_SOC_DAPM_INPUT("MIC_IN"), 242 243 SND_SOC_DAPM_OUTPUT("HP_OUT"), 244 SND_SOC_DAPM_OUTPUT("LINE_OUT"), 245 246 SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0, 247 mic_bias_event, 248 SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), 249 250 SND_SOC_DAPM_PGA("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0), 251 SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0), 252 253 SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux), 254 SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &dac_mux), 255 256 /* aif for i2s input */ 257 SND_SOC_DAPM_AIF_IN("AIFIN", "Playback", 258 0, SGTL5000_CHIP_DIG_POWER, 259 0, 0), 260 261 /* aif for i2s output */ 262 SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture", 263 0, SGTL5000_CHIP_DIG_POWER, 264 1, 0), 265 266 SND_SOC_DAPM_ADC("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0), 267 SND_SOC_DAPM_DAC("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0), 268 269 SND_SOC_DAPM_PRE("VAG_POWER_PRE", power_vag_event), 270 SND_SOC_DAPM_POST("VAG_POWER_POST", power_vag_event), 271 }; 272 273 /* routes for sgtl5000 */ 274 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = { 275 {"Capture Mux", "LINE_IN", "LINE_IN"}, /* line_in --> adc_mux */ 276 {"Capture Mux", "MIC_IN", "MIC_IN"}, /* mic_in --> adc_mux */ 277 278 {"ADC", NULL, "Capture Mux"}, /* adc_mux --> adc */ 279 {"AIFOUT", NULL, "ADC"}, /* adc --> i2s_out */ 280 281 {"DAC", NULL, "AIFIN"}, /* i2s-->dac,skip audio mux */ 282 {"Headphone Mux", "DAC", "DAC"}, /* dac --> hp_mux */ 283 {"LO", NULL, "DAC"}, /* dac --> line_out */ 284 285 {"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */ 286 {"HP", NULL, "Headphone Mux"}, /* hp_mux --> hp */ 287 288 {"LINE_OUT", NULL, "LO"}, 289 {"HP_OUT", NULL, "HP"}, 290 }; 291 292 /* custom function to fetch info of PCM playback volume */ 293 static int dac_info_volsw(struct snd_kcontrol *kcontrol, 294 struct snd_ctl_elem_info *uinfo) 295 { 296 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 297 uinfo->count = 2; 298 uinfo->value.integer.min = 0; 299 uinfo->value.integer.max = 0xfc - 0x3c; 300 return 0; 301 } 302 303 /* 304 * custom function to get of PCM playback volume 305 * 306 * dac volume register 307 * 15-------------8-7--------------0 308 * | R channel vol | L channel vol | 309 * ------------------------------- 310 * 311 * PCM volume with 0.5017 dB steps from 0 to -90 dB 312 * 313 * register values map to dB 314 * 0x3B and less = Reserved 315 * 0x3C = 0 dB 316 * 0x3D = -0.5 dB 317 * 0xF0 = -90 dB 318 * 0xFC and greater = Muted 319 * 320 * register value map to userspace value 321 * 322 * register value 0x3c(0dB) 0xf0(-90dB)0xfc 323 * ------------------------------ 324 * userspace value 0xc0 0 325 */ 326 static int dac_get_volsw(struct snd_kcontrol *kcontrol, 327 struct snd_ctl_elem_value *ucontrol) 328 { 329 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); 330 int reg; 331 int l; 332 int r; 333 334 reg = snd_soc_read(codec, SGTL5000_CHIP_DAC_VOL); 335 336 /* get left channel volume */ 337 l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT; 338 339 /* get right channel volume */ 340 r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT; 341 342 /* make sure value fall in (0x3c,0xfc) */ 343 l = clamp(l, 0x3c, 0xfc); 344 r = clamp(r, 0x3c, 0xfc); 345 346 /* invert it and map to userspace value */ 347 l = 0xfc - l; 348 r = 0xfc - r; 349 350 ucontrol->value.integer.value[0] = l; 351 ucontrol->value.integer.value[1] = r; 352 353 return 0; 354 } 355 356 /* 357 * custom function to put of PCM playback volume 358 * 359 * dac volume register 360 * 15-------------8-7--------------0 361 * | R channel vol | L channel vol | 362 * ------------------------------- 363 * 364 * PCM volume with 0.5017 dB steps from 0 to -90 dB 365 * 366 * register values map to dB 367 * 0x3B and less = Reserved 368 * 0x3C = 0 dB 369 * 0x3D = -0.5 dB 370 * 0xF0 = -90 dB 371 * 0xFC and greater = Muted 372 * 373 * userspace value map to register value 374 * 375 * userspace value 0xc0 0 376 * ------------------------------ 377 * register value 0x3c(0dB) 0xf0(-90dB)0xfc 378 */ 379 static int dac_put_volsw(struct snd_kcontrol *kcontrol, 380 struct snd_ctl_elem_value *ucontrol) 381 { 382 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); 383 int reg; 384 int l; 385 int r; 386 387 l = ucontrol->value.integer.value[0]; 388 r = ucontrol->value.integer.value[1]; 389 390 /* make sure userspace volume fall in (0, 0xfc-0x3c) */ 391 l = clamp(l, 0, 0xfc - 0x3c); 392 r = clamp(r, 0, 0xfc - 0x3c); 393 394 /* invert it, get the value can be set to register */ 395 l = 0xfc - l; 396 r = 0xfc - r; 397 398 /* shift to get the register value */ 399 reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT | 400 r << SGTL5000_DAC_VOL_RIGHT_SHIFT; 401 402 snd_soc_write(codec, SGTL5000_CHIP_DAC_VOL, reg); 403 404 return 0; 405 } 406 407 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0); 408 409 /* tlv for mic gain, 0db 20db 30db 40db */ 410 static const DECLARE_TLV_DB_RANGE(mic_gain_tlv, 411 0, 0, TLV_DB_SCALE_ITEM(0, 0, 0), 412 1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0) 413 ); 414 415 /* tlv for hp volume, -51.5db to 12.0db, step .5db */ 416 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0); 417 418 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = { 419 /* SOC_DOUBLE_S8_TLV with invert */ 420 { 421 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 422 .name = "PCM Playback Volume", 423 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | 424 SNDRV_CTL_ELEM_ACCESS_READWRITE, 425 .info = dac_info_volsw, 426 .get = dac_get_volsw, 427 .put = dac_put_volsw, 428 }, 429 430 SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0), 431 SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)", 432 SGTL5000_CHIP_ANA_ADC_CTRL, 433 8, 1, 0, capture_6db_attenuate), 434 SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0), 435 436 SOC_DOUBLE_TLV("Headphone Playback Volume", 437 SGTL5000_CHIP_ANA_HP_CTRL, 438 0, 8, 439 0x7f, 1, 440 headphone_volume), 441 SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL, 442 5, 1, 0), 443 444 SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL, 445 0, 3, 0, mic_gain_tlv), 446 }; 447 448 /* mute the codec used by alsa core */ 449 static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute) 450 { 451 struct snd_soc_codec *codec = codec_dai->codec; 452 u16 adcdac_ctrl = SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT; 453 454 snd_soc_update_bits(codec, SGTL5000_CHIP_ADCDAC_CTRL, 455 adcdac_ctrl, mute ? adcdac_ctrl : 0); 456 457 return 0; 458 } 459 460 /* set codec format */ 461 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) 462 { 463 struct snd_soc_codec *codec = codec_dai->codec; 464 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 465 u16 i2sctl = 0; 466 467 sgtl5000->master = 0; 468 /* 469 * i2s clock and frame master setting. 470 * ONLY support: 471 * - clock and frame slave, 472 * - clock and frame master 473 */ 474 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 475 case SND_SOC_DAIFMT_CBS_CFS: 476 break; 477 case SND_SOC_DAIFMT_CBM_CFM: 478 i2sctl |= SGTL5000_I2S_MASTER; 479 sgtl5000->master = 1; 480 break; 481 default: 482 return -EINVAL; 483 } 484 485 /* setting i2s data format */ 486 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 487 case SND_SOC_DAIFMT_DSP_A: 488 i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT; 489 break; 490 case SND_SOC_DAIFMT_DSP_B: 491 i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT; 492 i2sctl |= SGTL5000_I2S_LRALIGN; 493 break; 494 case SND_SOC_DAIFMT_I2S: 495 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT; 496 break; 497 case SND_SOC_DAIFMT_RIGHT_J: 498 i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT; 499 i2sctl |= SGTL5000_I2S_LRPOL; 500 break; 501 case SND_SOC_DAIFMT_LEFT_J: 502 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT; 503 i2sctl |= SGTL5000_I2S_LRALIGN; 504 break; 505 default: 506 return -EINVAL; 507 } 508 509 sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK; 510 511 /* Clock inversion */ 512 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 513 case SND_SOC_DAIFMT_NB_NF: 514 break; 515 case SND_SOC_DAIFMT_IB_NF: 516 i2sctl |= SGTL5000_I2S_SCLK_INV; 517 break; 518 default: 519 return -EINVAL; 520 } 521 522 snd_soc_write(codec, SGTL5000_CHIP_I2S_CTRL, i2sctl); 523 524 return 0; 525 } 526 527 /* set codec sysclk */ 528 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai, 529 int clk_id, unsigned int freq, int dir) 530 { 531 struct snd_soc_codec *codec = codec_dai->codec; 532 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 533 534 switch (clk_id) { 535 case SGTL5000_SYSCLK: 536 sgtl5000->sysclk = freq; 537 break; 538 default: 539 return -EINVAL; 540 } 541 542 return 0; 543 } 544 545 /* 546 * set clock according to i2s frame clock, 547 * sgtl5000 provides 2 clock sources: 548 * 1. sys_mclk: sample freq can only be configured to 549 * 1/256, 1/384, 1/512 of sys_mclk. 550 * 2. pll: can derive any audio clocks. 551 * 552 * clock setting rules: 553 * 1. in slave mode, only sys_mclk can be used 554 * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz 555 * and above. 556 * 3. usage of sys_mclk is preferred over pll to save power. 557 */ 558 static int sgtl5000_set_clock(struct snd_soc_codec *codec, int frame_rate) 559 { 560 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 561 int clk_ctl = 0; 562 int sys_fs; /* sample freq */ 563 564 /* 565 * sample freq should be divided by frame clock, 566 * if frame clock is lower than 44.1 kHz, sample freq should be set to 567 * 32 kHz or 44.1 kHz. 568 */ 569 switch (frame_rate) { 570 case 8000: 571 case 16000: 572 sys_fs = 32000; 573 break; 574 case 11025: 575 case 22050: 576 sys_fs = 44100; 577 break; 578 default: 579 sys_fs = frame_rate; 580 break; 581 } 582 583 /* set divided factor of frame clock */ 584 switch (sys_fs / frame_rate) { 585 case 4: 586 clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT; 587 break; 588 case 2: 589 clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT; 590 break; 591 case 1: 592 clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT; 593 break; 594 default: 595 return -EINVAL; 596 } 597 598 /* set the sys_fs according to frame rate */ 599 switch (sys_fs) { 600 case 32000: 601 clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT; 602 break; 603 case 44100: 604 clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT; 605 break; 606 case 48000: 607 clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT; 608 break; 609 case 96000: 610 clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT; 611 break; 612 default: 613 dev_err(codec->dev, "frame rate %d not supported\n", 614 frame_rate); 615 return -EINVAL; 616 } 617 618 /* 619 * calculate the divider of mclk/sample_freq, 620 * factor of freq = 96 kHz can only be 256, since mclk is in the range 621 * of 8 MHz - 27 MHz 622 */ 623 switch (sgtl5000->sysclk / frame_rate) { 624 case 256: 625 clk_ctl |= SGTL5000_MCLK_FREQ_256FS << 626 SGTL5000_MCLK_FREQ_SHIFT; 627 break; 628 case 384: 629 clk_ctl |= SGTL5000_MCLK_FREQ_384FS << 630 SGTL5000_MCLK_FREQ_SHIFT; 631 break; 632 case 512: 633 clk_ctl |= SGTL5000_MCLK_FREQ_512FS << 634 SGTL5000_MCLK_FREQ_SHIFT; 635 break; 636 default: 637 /* if mclk does not satisfy the divider, use pll */ 638 if (sgtl5000->master) { 639 clk_ctl |= SGTL5000_MCLK_FREQ_PLL << 640 SGTL5000_MCLK_FREQ_SHIFT; 641 } else { 642 dev_err(codec->dev, 643 "PLL not supported in slave mode\n"); 644 dev_err(codec->dev, "%d ratio is not supported. " 645 "SYS_MCLK needs to be 256, 384 or 512 * fs\n", 646 sgtl5000->sysclk / frame_rate); 647 return -EINVAL; 648 } 649 } 650 651 /* if using pll, please check manual 6.4.2 for detail */ 652 if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) { 653 u64 out, t; 654 int div2; 655 int pll_ctl; 656 unsigned int in, int_div, frac_div; 657 658 if (sgtl5000->sysclk > 17000000) { 659 div2 = 1; 660 in = sgtl5000->sysclk / 2; 661 } else { 662 div2 = 0; 663 in = sgtl5000->sysclk; 664 } 665 if (sys_fs == 44100) 666 out = 180633600; 667 else 668 out = 196608000; 669 t = do_div(out, in); 670 int_div = out; 671 t *= 2048; 672 do_div(t, in); 673 frac_div = t; 674 pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT | 675 frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT; 676 677 snd_soc_write(codec, SGTL5000_CHIP_PLL_CTRL, pll_ctl); 678 if (div2) 679 snd_soc_update_bits(codec, 680 SGTL5000_CHIP_CLK_TOP_CTRL, 681 SGTL5000_INPUT_FREQ_DIV2, 682 SGTL5000_INPUT_FREQ_DIV2); 683 else 684 snd_soc_update_bits(codec, 685 SGTL5000_CHIP_CLK_TOP_CTRL, 686 SGTL5000_INPUT_FREQ_DIV2, 687 0); 688 689 /* power up pll */ 690 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 691 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP, 692 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP); 693 694 /* if using pll, clk_ctrl must be set after pll power up */ 695 snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl); 696 } else { 697 /* otherwise, clk_ctrl must be set before pll power down */ 698 snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl); 699 700 /* power down pll */ 701 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 702 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP, 703 0); 704 } 705 706 return 0; 707 } 708 709 /* 710 * Set PCM DAI bit size and sample rate. 711 * input: params_rate, params_fmt 712 */ 713 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream, 714 struct snd_pcm_hw_params *params, 715 struct snd_soc_dai *dai) 716 { 717 struct snd_soc_codec *codec = dai->codec; 718 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 719 int channels = params_channels(params); 720 int i2s_ctl = 0; 721 int stereo; 722 int ret; 723 724 /* sysclk should already set */ 725 if (!sgtl5000->sysclk) { 726 dev_err(codec->dev, "%s: set sysclk first!\n", __func__); 727 return -EFAULT; 728 } 729 730 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 731 stereo = SGTL5000_DAC_STEREO; 732 else 733 stereo = SGTL5000_ADC_STEREO; 734 735 /* set mono to save power */ 736 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, stereo, 737 channels == 1 ? 0 : stereo); 738 739 /* set codec clock base on lrclk */ 740 ret = sgtl5000_set_clock(codec, params_rate(params)); 741 if (ret) 742 return ret; 743 744 /* set i2s data format */ 745 switch (params_width(params)) { 746 case 16: 747 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J) 748 return -EINVAL; 749 i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT; 750 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS << 751 SGTL5000_I2S_SCLKFREQ_SHIFT; 752 break; 753 case 20: 754 i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT; 755 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << 756 SGTL5000_I2S_SCLKFREQ_SHIFT; 757 break; 758 case 24: 759 i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT; 760 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << 761 SGTL5000_I2S_SCLKFREQ_SHIFT; 762 break; 763 case 32: 764 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J) 765 return -EINVAL; 766 i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT; 767 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << 768 SGTL5000_I2S_SCLKFREQ_SHIFT; 769 break; 770 default: 771 return -EINVAL; 772 } 773 774 snd_soc_update_bits(codec, SGTL5000_CHIP_I2S_CTRL, 775 SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK, 776 i2s_ctl); 777 778 return 0; 779 } 780 781 #ifdef CONFIG_REGULATOR 782 static int ldo_regulator_is_enabled(struct regulator_dev *dev) 783 { 784 struct ldo_regulator *ldo = rdev_get_drvdata(dev); 785 786 return ldo->enabled; 787 } 788 789 static int ldo_regulator_enable(struct regulator_dev *dev) 790 { 791 struct ldo_regulator *ldo = rdev_get_drvdata(dev); 792 struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data; 793 int reg; 794 795 if (ldo_regulator_is_enabled(dev)) 796 return 0; 797 798 /* set regulator value firstly */ 799 reg = (1600 - ldo->voltage / 1000) / 50; 800 reg = clamp(reg, 0x0, 0xf); 801 802 /* amend the voltage value, unit: uV */ 803 ldo->voltage = (1600 - reg * 50) * 1000; 804 805 /* set voltage to register */ 806 snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL, 807 SGTL5000_LINREG_VDDD_MASK, reg); 808 809 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 810 SGTL5000_LINEREG_D_POWERUP, 811 SGTL5000_LINEREG_D_POWERUP); 812 813 /* when internal ldo is enabled, simple digital power can be disabled */ 814 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 815 SGTL5000_LINREG_SIMPLE_POWERUP, 816 0); 817 818 ldo->enabled = 1; 819 return 0; 820 } 821 822 static int ldo_regulator_disable(struct regulator_dev *dev) 823 { 824 struct ldo_regulator *ldo = rdev_get_drvdata(dev); 825 struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data; 826 827 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 828 SGTL5000_LINEREG_D_POWERUP, 829 0); 830 831 /* clear voltage info */ 832 snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL, 833 SGTL5000_LINREG_VDDD_MASK, 0); 834 835 ldo->enabled = 0; 836 837 return 0; 838 } 839 840 static int ldo_regulator_get_voltage(struct regulator_dev *dev) 841 { 842 struct ldo_regulator *ldo = rdev_get_drvdata(dev); 843 844 return ldo->voltage; 845 } 846 847 static struct regulator_ops ldo_regulator_ops = { 848 .is_enabled = ldo_regulator_is_enabled, 849 .enable = ldo_regulator_enable, 850 .disable = ldo_regulator_disable, 851 .get_voltage = ldo_regulator_get_voltage, 852 }; 853 854 static int ldo_regulator_register(struct snd_soc_codec *codec, 855 struct regulator_init_data *init_data, 856 int voltage) 857 { 858 struct ldo_regulator *ldo; 859 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 860 struct regulator_config config = { }; 861 862 ldo = kzalloc(sizeof(struct ldo_regulator), GFP_KERNEL); 863 864 if (!ldo) 865 return -ENOMEM; 866 867 ldo->desc.name = kstrdup(dev_name(codec->dev), GFP_KERNEL); 868 if (!ldo->desc.name) { 869 kfree(ldo); 870 dev_err(codec->dev, "failed to allocate decs name memory\n"); 871 return -ENOMEM; 872 } 873 874 ldo->desc.type = REGULATOR_VOLTAGE; 875 ldo->desc.owner = THIS_MODULE; 876 ldo->desc.ops = &ldo_regulator_ops; 877 ldo->desc.n_voltages = 1; 878 879 ldo->codec_data = codec; 880 ldo->voltage = voltage; 881 882 config.dev = codec->dev; 883 config.driver_data = ldo; 884 config.init_data = init_data; 885 886 ldo->dev = regulator_register(&ldo->desc, &config); 887 if (IS_ERR(ldo->dev)) { 888 int ret = PTR_ERR(ldo->dev); 889 890 dev_err(codec->dev, "failed to register regulator\n"); 891 kfree(ldo->desc.name); 892 kfree(ldo); 893 894 return ret; 895 } 896 sgtl5000->ldo = ldo; 897 898 return 0; 899 } 900 901 static int ldo_regulator_remove(struct snd_soc_codec *codec) 902 { 903 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 904 struct ldo_regulator *ldo = sgtl5000->ldo; 905 906 if (!ldo) 907 return 0; 908 909 regulator_unregister(ldo->dev); 910 kfree(ldo->desc.name); 911 kfree(ldo); 912 913 return 0; 914 } 915 #else 916 static int ldo_regulator_register(struct snd_soc_codec *codec, 917 struct regulator_init_data *init_data, 918 int voltage) 919 { 920 dev_err(codec->dev, "this setup needs regulator support in the kernel\n"); 921 return -EINVAL; 922 } 923 924 static int ldo_regulator_remove(struct snd_soc_codec *codec) 925 { 926 return 0; 927 } 928 #endif 929 930 /* 931 * set dac bias 932 * common state changes: 933 * startup: 934 * off --> standby --> prepare --> on 935 * standby --> prepare --> on 936 * 937 * stop: 938 * on --> prepare --> standby 939 */ 940 static int sgtl5000_set_bias_level(struct snd_soc_codec *codec, 941 enum snd_soc_bias_level level) 942 { 943 int ret; 944 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 945 946 switch (level) { 947 case SND_SOC_BIAS_ON: 948 case SND_SOC_BIAS_PREPARE: 949 break; 950 case SND_SOC_BIAS_STANDBY: 951 if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) { 952 ret = regulator_bulk_enable( 953 ARRAY_SIZE(sgtl5000->supplies), 954 sgtl5000->supplies); 955 if (ret) 956 return ret; 957 udelay(10); 958 959 regcache_cache_only(sgtl5000->regmap, false); 960 961 ret = regcache_sync(sgtl5000->regmap); 962 if (ret != 0) { 963 dev_err(codec->dev, 964 "Failed to restore cache: %d\n", ret); 965 966 regcache_cache_only(sgtl5000->regmap, true); 967 regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies), 968 sgtl5000->supplies); 969 970 return ret; 971 } 972 } 973 974 break; 975 case SND_SOC_BIAS_OFF: 976 regcache_cache_only(sgtl5000->regmap, true); 977 regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies), 978 sgtl5000->supplies); 979 break; 980 } 981 982 return 0; 983 } 984 985 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\ 986 SNDRV_PCM_FMTBIT_S20_3LE |\ 987 SNDRV_PCM_FMTBIT_S24_LE |\ 988 SNDRV_PCM_FMTBIT_S32_LE) 989 990 static const struct snd_soc_dai_ops sgtl5000_ops = { 991 .hw_params = sgtl5000_pcm_hw_params, 992 .digital_mute = sgtl5000_digital_mute, 993 .set_fmt = sgtl5000_set_dai_fmt, 994 .set_sysclk = sgtl5000_set_dai_sysclk, 995 }; 996 997 static struct snd_soc_dai_driver sgtl5000_dai = { 998 .name = "sgtl5000", 999 .playback = { 1000 .stream_name = "Playback", 1001 .channels_min = 1, 1002 .channels_max = 2, 1003 /* 1004 * only support 8~48K + 96K, 1005 * TODO modify hw_param to support more 1006 */ 1007 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000, 1008 .formats = SGTL5000_FORMATS, 1009 }, 1010 .capture = { 1011 .stream_name = "Capture", 1012 .channels_min = 1, 1013 .channels_max = 2, 1014 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000, 1015 .formats = SGTL5000_FORMATS, 1016 }, 1017 .ops = &sgtl5000_ops, 1018 .symmetric_rates = 1, 1019 }; 1020 1021 static bool sgtl5000_volatile(struct device *dev, unsigned int reg) 1022 { 1023 switch (reg) { 1024 case SGTL5000_CHIP_ID: 1025 case SGTL5000_CHIP_ADCDAC_CTRL: 1026 case SGTL5000_CHIP_ANA_STATUS: 1027 return true; 1028 } 1029 1030 return false; 1031 } 1032 1033 static bool sgtl5000_readable(struct device *dev, unsigned int reg) 1034 { 1035 switch (reg) { 1036 case SGTL5000_CHIP_ID: 1037 case SGTL5000_CHIP_DIG_POWER: 1038 case SGTL5000_CHIP_CLK_CTRL: 1039 case SGTL5000_CHIP_I2S_CTRL: 1040 case SGTL5000_CHIP_SSS_CTRL: 1041 case SGTL5000_CHIP_ADCDAC_CTRL: 1042 case SGTL5000_CHIP_DAC_VOL: 1043 case SGTL5000_CHIP_PAD_STRENGTH: 1044 case SGTL5000_CHIP_ANA_ADC_CTRL: 1045 case SGTL5000_CHIP_ANA_HP_CTRL: 1046 case SGTL5000_CHIP_ANA_CTRL: 1047 case SGTL5000_CHIP_LINREG_CTRL: 1048 case SGTL5000_CHIP_REF_CTRL: 1049 case SGTL5000_CHIP_MIC_CTRL: 1050 case SGTL5000_CHIP_LINE_OUT_CTRL: 1051 case SGTL5000_CHIP_LINE_OUT_VOL: 1052 case SGTL5000_CHIP_ANA_POWER: 1053 case SGTL5000_CHIP_PLL_CTRL: 1054 case SGTL5000_CHIP_CLK_TOP_CTRL: 1055 case SGTL5000_CHIP_ANA_STATUS: 1056 case SGTL5000_CHIP_SHORT_CTRL: 1057 case SGTL5000_CHIP_ANA_TEST2: 1058 case SGTL5000_DAP_CTRL: 1059 case SGTL5000_DAP_PEQ: 1060 case SGTL5000_DAP_BASS_ENHANCE: 1061 case SGTL5000_DAP_BASS_ENHANCE_CTRL: 1062 case SGTL5000_DAP_AUDIO_EQ: 1063 case SGTL5000_DAP_SURROUND: 1064 case SGTL5000_DAP_FLT_COEF_ACCESS: 1065 case SGTL5000_DAP_COEF_WR_B0_MSB: 1066 case SGTL5000_DAP_COEF_WR_B0_LSB: 1067 case SGTL5000_DAP_EQ_BASS_BAND0: 1068 case SGTL5000_DAP_EQ_BASS_BAND1: 1069 case SGTL5000_DAP_EQ_BASS_BAND2: 1070 case SGTL5000_DAP_EQ_BASS_BAND3: 1071 case SGTL5000_DAP_EQ_BASS_BAND4: 1072 case SGTL5000_DAP_MAIN_CHAN: 1073 case SGTL5000_DAP_MIX_CHAN: 1074 case SGTL5000_DAP_AVC_CTRL: 1075 case SGTL5000_DAP_AVC_THRESHOLD: 1076 case SGTL5000_DAP_AVC_ATTACK: 1077 case SGTL5000_DAP_AVC_DECAY: 1078 case SGTL5000_DAP_COEF_WR_B1_MSB: 1079 case SGTL5000_DAP_COEF_WR_B1_LSB: 1080 case SGTL5000_DAP_COEF_WR_B2_MSB: 1081 case SGTL5000_DAP_COEF_WR_B2_LSB: 1082 case SGTL5000_DAP_COEF_WR_A1_MSB: 1083 case SGTL5000_DAP_COEF_WR_A1_LSB: 1084 case SGTL5000_DAP_COEF_WR_A2_MSB: 1085 case SGTL5000_DAP_COEF_WR_A2_LSB: 1086 return true; 1087 1088 default: 1089 return false; 1090 } 1091 } 1092 1093 /* 1094 * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results 1095 * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL 1096 * The calculatation was done for all possible register values which 1097 * is the array index and the following formula: 10^((idx−15)/40) * 100 1098 */ 1099 static const u8 vol_quot_table[] = { 1100 42, 45, 47, 50, 53, 56, 60, 63, 1101 67, 71, 75, 79, 84, 89, 94, 100, 1102 106, 112, 119, 126, 133, 141, 150, 158, 1103 168, 178, 188, 200, 211, 224, 237, 251 1104 }; 1105 1106 /* 1107 * sgtl5000 has 3 internal power supplies: 1108 * 1. VAG, normally set to vdda/2 1109 * 2. charge pump, set to different value 1110 * according to voltage of vdda and vddio 1111 * 3. line out VAG, normally set to vddio/2 1112 * 1113 * and should be set according to: 1114 * 1. vddd provided by external or not 1115 * 2. vdda and vddio voltage value. > 3.1v or not 1116 * 3. chip revision >=0x11 or not. If >=0x11, not use external vddd. 1117 */ 1118 static int sgtl5000_set_power_regs(struct snd_soc_codec *codec) 1119 { 1120 int vddd; 1121 int vdda; 1122 int vddio; 1123 u16 ana_pwr; 1124 u16 lreg_ctrl; 1125 int vag; 1126 int lo_vag; 1127 int vol_quot; 1128 int lo_vol; 1129 size_t i; 1130 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 1131 1132 vdda = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer); 1133 vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer); 1134 vddd = regulator_get_voltage(sgtl5000->supplies[VDDD].consumer); 1135 1136 vdda = vdda / 1000; 1137 vddio = vddio / 1000; 1138 vddd = vddd / 1000; 1139 1140 if (vdda <= 0 || vddio <= 0 || vddd < 0) { 1141 dev_err(codec->dev, "regulator voltage not set correctly\n"); 1142 1143 return -EINVAL; 1144 } 1145 1146 /* according to datasheet, maximum voltage of supplies */ 1147 if (vdda > 3600 || vddio > 3600 || vddd > 1980) { 1148 dev_err(codec->dev, 1149 "exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n", 1150 vdda, vddio, vddd); 1151 1152 return -EINVAL; 1153 } 1154 1155 /* reset value */ 1156 ana_pwr = snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER); 1157 ana_pwr |= SGTL5000_DAC_STEREO | 1158 SGTL5000_ADC_STEREO | 1159 SGTL5000_REFTOP_POWERUP; 1160 lreg_ctrl = snd_soc_read(codec, SGTL5000_CHIP_LINREG_CTRL); 1161 1162 if (vddio < 3100 && vdda < 3100) { 1163 /* enable internal oscillator used for charge pump */ 1164 snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL, 1165 SGTL5000_INT_OSC_EN, 1166 SGTL5000_INT_OSC_EN); 1167 /* Enable VDDC charge pump */ 1168 ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP; 1169 } else if (vddio >= 3100 && vdda >= 3100) { 1170 ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP; 1171 /* VDDC use VDDIO rail */ 1172 lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD; 1173 lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO << 1174 SGTL5000_VDDC_MAN_ASSN_SHIFT; 1175 } 1176 1177 snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl); 1178 1179 snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER, ana_pwr); 1180 1181 /* set voltage to register */ 1182 snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL, 1183 SGTL5000_LINREG_VDDD_MASK, 0x8); 1184 1185 /* 1186 * if vddd linear reg has been enabled, 1187 * simple digital supply should be clear to get 1188 * proper VDDD voltage. 1189 */ 1190 if (ana_pwr & SGTL5000_LINEREG_D_POWERUP) 1191 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 1192 SGTL5000_LINREG_SIMPLE_POWERUP, 1193 0); 1194 else 1195 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 1196 SGTL5000_LINREG_SIMPLE_POWERUP | 1197 SGTL5000_STARTUP_POWERUP, 1198 0); 1199 1200 /* 1201 * set ADC/DAC VAG to vdda / 2, 1202 * should stay in range (0.8v, 1.575v) 1203 */ 1204 vag = vdda / 2; 1205 if (vag <= SGTL5000_ANA_GND_BASE) 1206 vag = 0; 1207 else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP * 1208 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT)) 1209 vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT; 1210 else 1211 vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP; 1212 1213 snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL, 1214 SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT); 1215 1216 /* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */ 1217 lo_vag = vddio / 2; 1218 if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE) 1219 lo_vag = 0; 1220 else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE + 1221 SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX) 1222 lo_vag = SGTL5000_LINE_OUT_GND_MAX; 1223 else 1224 lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) / 1225 SGTL5000_LINE_OUT_GND_STP; 1226 1227 snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_CTRL, 1228 SGTL5000_LINE_OUT_CURRENT_MASK | 1229 SGTL5000_LINE_OUT_GND_MASK, 1230 lo_vag << SGTL5000_LINE_OUT_GND_SHIFT | 1231 SGTL5000_LINE_OUT_CURRENT_360u << 1232 SGTL5000_LINE_OUT_CURRENT_SHIFT); 1233 1234 /* 1235 * Set lineout output level in range (0..31) 1236 * the same value is used for right and left channel 1237 * 1238 * Searching for a suitable index solving this formula: 1239 * idx = 40 * log10(vag_val / lo_cagcntrl) + 15 1240 */ 1241 vol_quot = (vag * 100) / lo_vag; 1242 lo_vol = 0; 1243 for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) { 1244 if (vol_quot >= vol_quot_table[i]) 1245 lo_vol = i; 1246 else 1247 break; 1248 } 1249 1250 snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_VOL, 1251 SGTL5000_LINE_OUT_VOL_RIGHT_MASK | 1252 SGTL5000_LINE_OUT_VOL_LEFT_MASK, 1253 lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT | 1254 lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT); 1255 1256 return 0; 1257 } 1258 1259 static int sgtl5000_replace_vddd_with_ldo(struct snd_soc_codec *codec) 1260 { 1261 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 1262 int ret; 1263 1264 /* set internal ldo to 1.2v */ 1265 ret = ldo_regulator_register(codec, &ldo_init_data, LDO_VOLTAGE); 1266 if (ret) { 1267 dev_err(codec->dev, 1268 "Failed to register vddd internal supplies: %d\n", ret); 1269 return ret; 1270 } 1271 1272 sgtl5000->supplies[VDDD].supply = LDO_CONSUMER_NAME; 1273 1274 dev_info(codec->dev, "Using internal LDO instead of VDDD\n"); 1275 return 0; 1276 } 1277 1278 static int sgtl5000_enable_regulators(struct snd_soc_codec *codec) 1279 { 1280 int ret; 1281 int i; 1282 int external_vddd = 0; 1283 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 1284 struct regulator *vddd; 1285 1286 for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++) 1287 sgtl5000->supplies[i].supply = supply_names[i]; 1288 1289 /* External VDDD only works before revision 0x11 */ 1290 if (sgtl5000->revision < 0x11) { 1291 vddd = regulator_get_optional(codec->dev, "VDDD"); 1292 if (IS_ERR(vddd)) { 1293 /* See if it's just not registered yet */ 1294 if (PTR_ERR(vddd) == -EPROBE_DEFER) 1295 return -EPROBE_DEFER; 1296 } else { 1297 external_vddd = 1; 1298 regulator_put(vddd); 1299 } 1300 } 1301 1302 if (!external_vddd) { 1303 ret = sgtl5000_replace_vddd_with_ldo(codec); 1304 if (ret) 1305 return ret; 1306 } 1307 1308 ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sgtl5000->supplies), 1309 sgtl5000->supplies); 1310 if (ret) 1311 goto err_ldo_remove; 1312 1313 ret = regulator_bulk_enable(ARRAY_SIZE(sgtl5000->supplies), 1314 sgtl5000->supplies); 1315 if (ret) 1316 goto err_regulator_free; 1317 1318 /* wait for all power rails bring up */ 1319 udelay(10); 1320 1321 return 0; 1322 1323 err_regulator_free: 1324 regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies), 1325 sgtl5000->supplies); 1326 err_ldo_remove: 1327 if (!external_vddd) 1328 ldo_regulator_remove(codec); 1329 return ret; 1330 1331 } 1332 1333 static int sgtl5000_probe(struct snd_soc_codec *codec) 1334 { 1335 int ret; 1336 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 1337 1338 ret = sgtl5000_enable_regulators(codec); 1339 if (ret) 1340 return ret; 1341 1342 /* power up sgtl5000 */ 1343 ret = sgtl5000_set_power_regs(codec); 1344 if (ret) 1345 goto err; 1346 1347 /* enable small pop, introduce 400ms delay in turning off */ 1348 snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL, 1349 SGTL5000_SMALL_POP, 1); 1350 1351 /* disable short cut detector */ 1352 snd_soc_write(codec, SGTL5000_CHIP_SHORT_CTRL, 0); 1353 1354 /* 1355 * set i2s as default input of sound switch 1356 * TODO: add sound switch to control and dapm widge. 1357 */ 1358 snd_soc_write(codec, SGTL5000_CHIP_SSS_CTRL, 1359 SGTL5000_DAC_SEL_I2S_IN << SGTL5000_DAC_SEL_SHIFT); 1360 snd_soc_write(codec, SGTL5000_CHIP_DIG_POWER, 1361 SGTL5000_ADC_EN | SGTL5000_DAC_EN); 1362 1363 /* enable dac volume ramp by default */ 1364 snd_soc_write(codec, SGTL5000_CHIP_ADCDAC_CTRL, 1365 SGTL5000_DAC_VOL_RAMP_EN | 1366 SGTL5000_DAC_MUTE_RIGHT | 1367 SGTL5000_DAC_MUTE_LEFT); 1368 1369 snd_soc_write(codec, SGTL5000_CHIP_PAD_STRENGTH, 0x015f); 1370 1371 snd_soc_write(codec, SGTL5000_CHIP_ANA_CTRL, 1372 SGTL5000_HP_ZCD_EN | 1373 SGTL5000_ADC_ZCD_EN); 1374 1375 snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL, 1376 SGTL5000_BIAS_R_MASK, 1377 sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT); 1378 1379 snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL, 1380 SGTL5000_BIAS_VOLT_MASK, 1381 sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT); 1382 /* 1383 * disable DAP 1384 * TODO: 1385 * Enable DAP in kcontrol and dapm. 1386 */ 1387 snd_soc_write(codec, SGTL5000_DAP_CTRL, 0); 1388 1389 return 0; 1390 1391 err: 1392 regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies), 1393 sgtl5000->supplies); 1394 regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies), 1395 sgtl5000->supplies); 1396 ldo_regulator_remove(codec); 1397 1398 return ret; 1399 } 1400 1401 static int sgtl5000_remove(struct snd_soc_codec *codec) 1402 { 1403 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 1404 1405 regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies), 1406 sgtl5000->supplies); 1407 regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies), 1408 sgtl5000->supplies); 1409 ldo_regulator_remove(codec); 1410 1411 return 0; 1412 } 1413 1414 static struct snd_soc_codec_driver sgtl5000_driver = { 1415 .probe = sgtl5000_probe, 1416 .remove = sgtl5000_remove, 1417 .set_bias_level = sgtl5000_set_bias_level, 1418 .suspend_bias_off = true, 1419 .controls = sgtl5000_snd_controls, 1420 .num_controls = ARRAY_SIZE(sgtl5000_snd_controls), 1421 .dapm_widgets = sgtl5000_dapm_widgets, 1422 .num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets), 1423 .dapm_routes = sgtl5000_dapm_routes, 1424 .num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes), 1425 }; 1426 1427 static const struct regmap_config sgtl5000_regmap = { 1428 .reg_bits = 16, 1429 .val_bits = 16, 1430 .reg_stride = 2, 1431 1432 .max_register = SGTL5000_MAX_REG_OFFSET, 1433 .volatile_reg = sgtl5000_volatile, 1434 .readable_reg = sgtl5000_readable, 1435 1436 .cache_type = REGCACHE_RBTREE, 1437 .reg_defaults = sgtl5000_reg_defaults, 1438 .num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults), 1439 }; 1440 1441 /* 1442 * Write all the default values from sgtl5000_reg_defaults[] array into the 1443 * sgtl5000 registers, to make sure we always start with the sane registers 1444 * values as stated in the datasheet. 1445 * 1446 * Since sgtl5000 does not have a reset line, nor a reset command in software, 1447 * we follow this approach to guarantee we always start from the default values 1448 * and avoid problems like, not being able to probe after an audio playback 1449 * followed by a system reset or a 'reboot' command in Linux 1450 */ 1451 static int sgtl5000_fill_defaults(struct sgtl5000_priv *sgtl5000) 1452 { 1453 int i, ret, val, index; 1454 1455 for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) { 1456 val = sgtl5000_reg_defaults[i].def; 1457 index = sgtl5000_reg_defaults[i].reg; 1458 ret = regmap_write(sgtl5000->regmap, index, val); 1459 if (ret) 1460 return ret; 1461 } 1462 1463 return 0; 1464 } 1465 1466 static int sgtl5000_i2c_probe(struct i2c_client *client, 1467 const struct i2c_device_id *id) 1468 { 1469 struct sgtl5000_priv *sgtl5000; 1470 int ret, reg, rev; 1471 struct device_node *np = client->dev.of_node; 1472 u32 value; 1473 1474 sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL); 1475 if (!sgtl5000) 1476 return -ENOMEM; 1477 1478 sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap); 1479 if (IS_ERR(sgtl5000->regmap)) { 1480 ret = PTR_ERR(sgtl5000->regmap); 1481 dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret); 1482 return ret; 1483 } 1484 1485 sgtl5000->mclk = devm_clk_get(&client->dev, NULL); 1486 if (IS_ERR(sgtl5000->mclk)) { 1487 ret = PTR_ERR(sgtl5000->mclk); 1488 dev_err(&client->dev, "Failed to get mclock: %d\n", ret); 1489 /* Defer the probe to see if the clk will be provided later */ 1490 if (ret == -ENOENT) 1491 return -EPROBE_DEFER; 1492 return ret; 1493 } 1494 1495 ret = clk_prepare_enable(sgtl5000->mclk); 1496 if (ret) 1497 return ret; 1498 1499 /* Need 8 clocks before I2C accesses */ 1500 udelay(1); 1501 1502 /* read chip information */ 1503 ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, ®); 1504 if (ret) 1505 goto disable_clk; 1506 1507 if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) != 1508 SGTL5000_PARTID_PART_ID) { 1509 dev_err(&client->dev, 1510 "Device with ID register %x is not a sgtl5000\n", reg); 1511 ret = -ENODEV; 1512 goto disable_clk; 1513 } 1514 1515 rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT; 1516 dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev); 1517 sgtl5000->revision = rev; 1518 1519 if (np) { 1520 if (!of_property_read_u32(np, 1521 "micbias-resistor-k-ohms", &value)) { 1522 switch (value) { 1523 case SGTL5000_MICBIAS_OFF: 1524 sgtl5000->micbias_resistor = 0; 1525 break; 1526 case SGTL5000_MICBIAS_2K: 1527 sgtl5000->micbias_resistor = 1; 1528 break; 1529 case SGTL5000_MICBIAS_4K: 1530 sgtl5000->micbias_resistor = 2; 1531 break; 1532 case SGTL5000_MICBIAS_8K: 1533 sgtl5000->micbias_resistor = 3; 1534 break; 1535 default: 1536 sgtl5000->micbias_resistor = 2; 1537 dev_err(&client->dev, 1538 "Unsuitable MicBias resistor\n"); 1539 } 1540 } else { 1541 /* default is 4Kohms */ 1542 sgtl5000->micbias_resistor = 2; 1543 } 1544 if (!of_property_read_u32(np, 1545 "micbias-voltage-m-volts", &value)) { 1546 /* 1250mV => 0 */ 1547 /* steps of 250mV */ 1548 if ((value >= 1250) && (value <= 3000)) 1549 sgtl5000->micbias_voltage = (value / 250) - 5; 1550 else { 1551 sgtl5000->micbias_voltage = 0; 1552 dev_err(&client->dev, 1553 "Unsuitable MicBias voltage\n"); 1554 } 1555 } else { 1556 sgtl5000->micbias_voltage = 0; 1557 } 1558 } 1559 1560 i2c_set_clientdata(client, sgtl5000); 1561 1562 /* Ensure sgtl5000 will start with sane register values */ 1563 ret = sgtl5000_fill_defaults(sgtl5000); 1564 if (ret) 1565 goto disable_clk; 1566 1567 ret = snd_soc_register_codec(&client->dev, 1568 &sgtl5000_driver, &sgtl5000_dai, 1); 1569 if (ret) 1570 goto disable_clk; 1571 1572 return 0; 1573 1574 disable_clk: 1575 clk_disable_unprepare(sgtl5000->mclk); 1576 return ret; 1577 } 1578 1579 static int sgtl5000_i2c_remove(struct i2c_client *client) 1580 { 1581 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client); 1582 1583 snd_soc_unregister_codec(&client->dev); 1584 clk_disable_unprepare(sgtl5000->mclk); 1585 return 0; 1586 } 1587 1588 static const struct i2c_device_id sgtl5000_id[] = { 1589 {"sgtl5000", 0}, 1590 {}, 1591 }; 1592 1593 MODULE_DEVICE_TABLE(i2c, sgtl5000_id); 1594 1595 static const struct of_device_id sgtl5000_dt_ids[] = { 1596 { .compatible = "fsl,sgtl5000", }, 1597 { /* sentinel */ } 1598 }; 1599 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids); 1600 1601 static struct i2c_driver sgtl5000_i2c_driver = { 1602 .driver = { 1603 .name = "sgtl5000", 1604 .of_match_table = sgtl5000_dt_ids, 1605 }, 1606 .probe = sgtl5000_i2c_probe, 1607 .remove = sgtl5000_i2c_remove, 1608 .id_table = sgtl5000_id, 1609 }; 1610 1611 module_i2c_driver(sgtl5000_i2c_driver); 1612 1613 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver"); 1614 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>"); 1615 MODULE_LICENSE("GPL"); 1616