xref: /linux/sound/soc/codecs/sgtl5000.c (revision 402cb8dda949d9b8c0df20ad2527d139faad7ca1)
1 /*
2  * sgtl5000.c  --  SGTL5000 ALSA SoC Audio driver
3  *
4  * Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/pm.h>
17 #include <linux/i2c.h>
18 #include <linux/clk.h>
19 #include <linux/log2.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/driver.h>
22 #include <linux/regulator/machine.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/of_device.h>
25 #include <sound/core.h>
26 #include <sound/tlv.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/soc.h>
30 #include <sound/soc-dapm.h>
31 #include <sound/initval.h>
32 
33 #include "sgtl5000.h"
34 
35 #define SGTL5000_DAP_REG_OFFSET	0x0100
36 #define SGTL5000_MAX_REG_OFFSET	0x013A
37 
38 /* default value of sgtl5000 registers */
39 static const struct reg_default sgtl5000_reg_defaults[] = {
40 	{ SGTL5000_CHIP_DIG_POWER,		0x0000 },
41 	{ SGTL5000_CHIP_I2S_CTRL,		0x0010 },
42 	{ SGTL5000_CHIP_SSS_CTRL,		0x0010 },
43 	{ SGTL5000_CHIP_ADCDAC_CTRL,		0x020c },
44 	{ SGTL5000_CHIP_DAC_VOL,		0x3c3c },
45 	{ SGTL5000_CHIP_PAD_STRENGTH,		0x015f },
46 	{ SGTL5000_CHIP_ANA_ADC_CTRL,		0x0000 },
47 	{ SGTL5000_CHIP_ANA_HP_CTRL,		0x1818 },
48 	{ SGTL5000_CHIP_ANA_CTRL,		0x0111 },
49 	{ SGTL5000_CHIP_REF_CTRL,		0x0000 },
50 	{ SGTL5000_CHIP_MIC_CTRL,		0x0000 },
51 	{ SGTL5000_CHIP_LINE_OUT_CTRL,		0x0000 },
52 	{ SGTL5000_CHIP_LINE_OUT_VOL,		0x0404 },
53 	{ SGTL5000_CHIP_PLL_CTRL,		0x5000 },
54 	{ SGTL5000_CHIP_CLK_TOP_CTRL,		0x0000 },
55 	{ SGTL5000_CHIP_ANA_STATUS,		0x0000 },
56 	{ SGTL5000_CHIP_SHORT_CTRL,		0x0000 },
57 	{ SGTL5000_CHIP_ANA_TEST2,		0x0000 },
58 	{ SGTL5000_DAP_CTRL,			0x0000 },
59 	{ SGTL5000_DAP_PEQ,			0x0000 },
60 	{ SGTL5000_DAP_BASS_ENHANCE,		0x0040 },
61 	{ SGTL5000_DAP_BASS_ENHANCE_CTRL,	0x051f },
62 	{ SGTL5000_DAP_AUDIO_EQ,		0x0000 },
63 	{ SGTL5000_DAP_SURROUND,		0x0040 },
64 	{ SGTL5000_DAP_EQ_BASS_BAND0,		0x002f },
65 	{ SGTL5000_DAP_EQ_BASS_BAND1,		0x002f },
66 	{ SGTL5000_DAP_EQ_BASS_BAND2,		0x002f },
67 	{ SGTL5000_DAP_EQ_BASS_BAND3,		0x002f },
68 	{ SGTL5000_DAP_EQ_BASS_BAND4,		0x002f },
69 	{ SGTL5000_DAP_MAIN_CHAN,		0x8000 },
70 	{ SGTL5000_DAP_MIX_CHAN,		0x0000 },
71 	{ SGTL5000_DAP_AVC_CTRL,		0x0510 },
72 	{ SGTL5000_DAP_AVC_THRESHOLD,		0x1473 },
73 	{ SGTL5000_DAP_AVC_ATTACK,		0x0028 },
74 	{ SGTL5000_DAP_AVC_DECAY,		0x0050 },
75 };
76 
77 /* AVC: Threshold dB -> register: pre-calculated values */
78 static const u16 avc_thr_db2reg[97] = {
79 	0x5168, 0x488E, 0x40AA, 0x39A1, 0x335D, 0x2DC7, 0x28CC, 0x245D, 0x2068,
80 	0x1CE2, 0x19BE, 0x16F1, 0x1472, 0x1239, 0x103E, 0x0E7A, 0x0CE6, 0x0B7F,
81 	0x0A3F, 0x0922, 0x0824, 0x0741, 0x0677, 0x05C3, 0x0522, 0x0493, 0x0414,
82 	0x03A2, 0x033D, 0x02E3, 0x0293, 0x024B, 0x020B, 0x01D2, 0x019F, 0x0172,
83 	0x014A, 0x0126, 0x0106, 0x00E9, 0x00D0, 0x00B9, 0x00A5, 0x0093, 0x0083,
84 	0x0075, 0x0068, 0x005D, 0x0052, 0x0049, 0x0041, 0x003A, 0x0034, 0x002E,
85 	0x0029, 0x0025, 0x0021, 0x001D, 0x001A, 0x0017, 0x0014, 0x0012, 0x0010,
86 	0x000E, 0x000D, 0x000B, 0x000A, 0x0009, 0x0008, 0x0007, 0x0006, 0x0005,
87 	0x0005, 0x0004, 0x0004, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002,
88 	0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000,
89 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000};
90 
91 /* regulator supplies for sgtl5000, VDDD is an optional external supply */
92 enum sgtl5000_regulator_supplies {
93 	VDDA,
94 	VDDIO,
95 	VDDD,
96 	SGTL5000_SUPPLY_NUM
97 };
98 
99 /* vddd is optional supply */
100 static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
101 	"VDDA",
102 	"VDDIO",
103 	"VDDD"
104 };
105 
106 #define LDO_VOLTAGE		1200000
107 #define LINREG_VDDD	((1600 - LDO_VOLTAGE / 1000) / 50)
108 
109 enum sgtl5000_micbias_resistor {
110 	SGTL5000_MICBIAS_OFF = 0,
111 	SGTL5000_MICBIAS_2K = 2,
112 	SGTL5000_MICBIAS_4K = 4,
113 	SGTL5000_MICBIAS_8K = 8,
114 };
115 
116 enum  {
117 	I2S_LRCLK_STRENGTH_DISABLE,
118 	I2S_LRCLK_STRENGTH_LOW,
119 	I2S_LRCLK_STRENGTH_MEDIUM,
120 	I2S_LRCLK_STRENGTH_HIGH,
121 };
122 
123 /* sgtl5000 private structure in codec */
124 struct sgtl5000_priv {
125 	int sysclk;	/* sysclk rate */
126 	int master;	/* i2s master or not */
127 	int fmt;	/* i2s data format */
128 	struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
129 	int num_supplies;
130 	struct regmap *regmap;
131 	struct clk *mclk;
132 	int revision;
133 	u8 micbias_resistor;
134 	u8 micbias_voltage;
135 	u8 lrclk_strength;
136 };
137 
138 /*
139  * mic_bias power on/off share the same register bits with
140  * output impedance of mic bias, when power on mic bias, we
141  * need reclaim it to impedance value.
142  * 0x0 = Powered off
143  * 0x1 = 2Kohm
144  * 0x2 = 4Kohm
145  * 0x3 = 8Kohm
146  */
147 static int mic_bias_event(struct snd_soc_dapm_widget *w,
148 	struct snd_kcontrol *kcontrol, int event)
149 {
150 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
151 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
152 
153 	switch (event) {
154 	case SND_SOC_DAPM_POST_PMU:
155 		/* change mic bias resistor */
156 		snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
157 			SGTL5000_BIAS_R_MASK,
158 			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
159 		break;
160 
161 	case SND_SOC_DAPM_PRE_PMD:
162 		snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
163 				SGTL5000_BIAS_R_MASK, 0);
164 		break;
165 	}
166 	return 0;
167 }
168 
169 /*
170  * As manual described, ADC/DAC only works when VAG powerup,
171  * So enabled VAG before ADC/DAC up.
172  * In power down case, we need wait 400ms when vag fully ramped down.
173  */
174 static int power_vag_event(struct snd_soc_dapm_widget *w,
175 	struct snd_kcontrol *kcontrol, int event)
176 {
177 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
178 	const u32 mask = SGTL5000_DAC_POWERUP | SGTL5000_ADC_POWERUP;
179 
180 	switch (event) {
181 	case SND_SOC_DAPM_POST_PMU:
182 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
183 			SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
184 		msleep(400);
185 		break;
186 
187 	case SND_SOC_DAPM_PRE_PMD:
188 		/*
189 		 * Don't clear VAG_POWERUP, when both DAC and ADC are
190 		 * operational to prevent inadvertently starving the
191 		 * other one of them.
192 		 */
193 		if ((snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER) &
194 				mask) != mask) {
195 			snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
196 				SGTL5000_VAG_POWERUP, 0);
197 			msleep(400);
198 		}
199 		break;
200 	default:
201 		break;
202 	}
203 
204 	return 0;
205 }
206 
207 /* input sources for ADC */
208 static const char *adc_mux_text[] = {
209 	"MIC_IN", "LINE_IN"
210 };
211 
212 static SOC_ENUM_SINGLE_DECL(adc_enum,
213 			    SGTL5000_CHIP_ANA_CTRL, 2,
214 			    adc_mux_text);
215 
216 static const struct snd_kcontrol_new adc_mux =
217 SOC_DAPM_ENUM("Capture Mux", adc_enum);
218 
219 /* input sources for DAC */
220 static const char *dac_mux_text[] = {
221 	"DAC", "LINE_IN"
222 };
223 
224 static SOC_ENUM_SINGLE_DECL(dac_enum,
225 			    SGTL5000_CHIP_ANA_CTRL, 6,
226 			    dac_mux_text);
227 
228 static const struct snd_kcontrol_new dac_mux =
229 SOC_DAPM_ENUM("Headphone Mux", dac_enum);
230 
231 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
232 	SND_SOC_DAPM_INPUT("LINE_IN"),
233 	SND_SOC_DAPM_INPUT("MIC_IN"),
234 
235 	SND_SOC_DAPM_OUTPUT("HP_OUT"),
236 	SND_SOC_DAPM_OUTPUT("LINE_OUT"),
237 
238 	SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
239 			    mic_bias_event,
240 			    SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
241 
242 	SND_SOC_DAPM_PGA("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0),
243 	SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
244 
245 	SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
246 	SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
247 
248 	/* aif for i2s input */
249 	SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
250 				0, SGTL5000_CHIP_DIG_POWER,
251 				0, 0),
252 
253 	/* aif for i2s output */
254 	SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
255 				0, SGTL5000_CHIP_DIG_POWER,
256 				1, 0),
257 
258 	SND_SOC_DAPM_ADC("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0),
259 	SND_SOC_DAPM_DAC("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0),
260 
261 	SND_SOC_DAPM_PRE("VAG_POWER_PRE", power_vag_event),
262 	SND_SOC_DAPM_POST("VAG_POWER_POST", power_vag_event),
263 };
264 
265 /* routes for sgtl5000 */
266 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
267 	{"Capture Mux", "LINE_IN", "LINE_IN"},	/* line_in --> adc_mux */
268 	{"Capture Mux", "MIC_IN", "MIC_IN"},	/* mic_in --> adc_mux */
269 
270 	{"ADC", NULL, "Capture Mux"},		/* adc_mux --> adc */
271 	{"AIFOUT", NULL, "ADC"},		/* adc --> i2s_out */
272 
273 	{"DAC", NULL, "AIFIN"},			/* i2s-->dac,skip audio mux */
274 	{"Headphone Mux", "DAC", "DAC"},	/* dac --> hp_mux */
275 	{"LO", NULL, "DAC"},			/* dac --> line_out */
276 
277 	{"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
278 	{"HP", NULL, "Headphone Mux"},		/* hp_mux --> hp */
279 
280 	{"LINE_OUT", NULL, "LO"},
281 	{"HP_OUT", NULL, "HP"},
282 };
283 
284 /* custom function to fetch info of PCM playback volume */
285 static int dac_info_volsw(struct snd_kcontrol *kcontrol,
286 			  struct snd_ctl_elem_info *uinfo)
287 {
288 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
289 	uinfo->count = 2;
290 	uinfo->value.integer.min = 0;
291 	uinfo->value.integer.max = 0xfc - 0x3c;
292 	return 0;
293 }
294 
295 /*
296  * custom function to get of PCM playback volume
297  *
298  * dac volume register
299  * 15-------------8-7--------------0
300  * | R channel vol | L channel vol |
301  *  -------------------------------
302  *
303  * PCM volume with 0.5017 dB steps from 0 to -90 dB
304  *
305  * register values map to dB
306  * 0x3B and less = Reserved
307  * 0x3C = 0 dB
308  * 0x3D = -0.5 dB
309  * 0xF0 = -90 dB
310  * 0xFC and greater = Muted
311  *
312  * register value map to userspace value
313  *
314  * register value	0x3c(0dB)	  0xf0(-90dB)0xfc
315  *			------------------------------
316  * userspace value	0xc0			     0
317  */
318 static int dac_get_volsw(struct snd_kcontrol *kcontrol,
319 			 struct snd_ctl_elem_value *ucontrol)
320 {
321 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
322 	int reg;
323 	int l;
324 	int r;
325 
326 	reg = snd_soc_read(codec, SGTL5000_CHIP_DAC_VOL);
327 
328 	/* get left channel volume */
329 	l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
330 
331 	/* get right channel volume */
332 	r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
333 
334 	/* make sure value fall in (0x3c,0xfc) */
335 	l = clamp(l, 0x3c, 0xfc);
336 	r = clamp(r, 0x3c, 0xfc);
337 
338 	/* invert it and map to userspace value */
339 	l = 0xfc - l;
340 	r = 0xfc - r;
341 
342 	ucontrol->value.integer.value[0] = l;
343 	ucontrol->value.integer.value[1] = r;
344 
345 	return 0;
346 }
347 
348 /*
349  * custom function to put of PCM playback volume
350  *
351  * dac volume register
352  * 15-------------8-7--------------0
353  * | R channel vol | L channel vol |
354  *  -------------------------------
355  *
356  * PCM volume with 0.5017 dB steps from 0 to -90 dB
357  *
358  * register values map to dB
359  * 0x3B and less = Reserved
360  * 0x3C = 0 dB
361  * 0x3D = -0.5 dB
362  * 0xF0 = -90 dB
363  * 0xFC and greater = Muted
364  *
365  * userspace value map to register value
366  *
367  * userspace value	0xc0			     0
368  *			------------------------------
369  * register value	0x3c(0dB)	0xf0(-90dB)0xfc
370  */
371 static int dac_put_volsw(struct snd_kcontrol *kcontrol,
372 			 struct snd_ctl_elem_value *ucontrol)
373 {
374 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
375 	int reg;
376 	int l;
377 	int r;
378 
379 	l = ucontrol->value.integer.value[0];
380 	r = ucontrol->value.integer.value[1];
381 
382 	/* make sure userspace volume fall in (0, 0xfc-0x3c) */
383 	l = clamp(l, 0, 0xfc - 0x3c);
384 	r = clamp(r, 0, 0xfc - 0x3c);
385 
386 	/* invert it, get the value can be set to register */
387 	l = 0xfc - l;
388 	r = 0xfc - r;
389 
390 	/* shift to get the register value */
391 	reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
392 		r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
393 
394 	snd_soc_write(codec, SGTL5000_CHIP_DAC_VOL, reg);
395 
396 	return 0;
397 }
398 
399 /*
400  * custom function to get AVC threshold
401  *
402  * The threshold dB is calculated by rearranging the calculation from the
403  * avc_put_threshold function: register_value = 10^(dB/20) * 0.636 * 2^15 ==>
404  * dB = ( fls(register_value) - 14.347 ) * 6.02
405  *
406  * As this calculation is expensive and the threshold dB values may not exeed
407  * 0 to 96 we use pre-calculated values.
408  */
409 static int avc_get_threshold(struct snd_kcontrol *kcontrol,
410 			     struct snd_ctl_elem_value *ucontrol)
411 {
412 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
413 	int db, i;
414 	u16 reg = snd_soc_read(codec, SGTL5000_DAP_AVC_THRESHOLD);
415 
416 	/* register value 0 => -96dB */
417 	if (!reg) {
418 		ucontrol->value.integer.value[0] = 96;
419 		ucontrol->value.integer.value[1] = 96;
420 		return 0;
421 	}
422 
423 	/* get dB from register value (rounded down) */
424 	for (i = 0; avc_thr_db2reg[i] > reg; i++)
425 		;
426 	db = i;
427 
428 	ucontrol->value.integer.value[0] = db;
429 	ucontrol->value.integer.value[1] = db;
430 
431 	return 0;
432 }
433 
434 /*
435  * custom function to put AVC threshold
436  *
437  * The register value is calculated by following formula:
438  *                                    register_value = 10^(dB/20) * 0.636 * 2^15
439  * As this calculation is expensive and the threshold dB values may not exeed
440  * 0 to 96 we use pre-calculated values.
441  */
442 static int avc_put_threshold(struct snd_kcontrol *kcontrol,
443 			     struct snd_ctl_elem_value *ucontrol)
444 {
445 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
446 	int db;
447 	u16 reg;
448 
449 	db = (int)ucontrol->value.integer.value[0];
450 	if (db < 0 || db > 96)
451 		return -EINVAL;
452 	reg = avc_thr_db2reg[db];
453 	snd_soc_write(codec, SGTL5000_DAP_AVC_THRESHOLD, reg);
454 
455 	return 0;
456 }
457 
458 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
459 
460 /* tlv for mic gain, 0db 20db 30db 40db */
461 static const DECLARE_TLV_DB_RANGE(mic_gain_tlv,
462 	0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
463 	1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0)
464 );
465 
466 /* tlv for hp volume, -51.5db to 12.0db, step .5db */
467 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
468 
469 /* tlv for lineout volume, 31 steps of .5db each */
470 static const DECLARE_TLV_DB_SCALE(lineout_volume, -1550, 50, 0);
471 
472 /* tlv for dap avc max gain, 0db, 6db, 12db */
473 static const DECLARE_TLV_DB_SCALE(avc_max_gain, 0, 600, 0);
474 
475 /* tlv for dap avc threshold, */
476 static const DECLARE_TLV_DB_MINMAX(avc_threshold, 0, 9600);
477 
478 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
479 	/* SOC_DOUBLE_S8_TLV with invert */
480 	{
481 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
482 		.name = "PCM Playback Volume",
483 		.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
484 			SNDRV_CTL_ELEM_ACCESS_READWRITE,
485 		.info = dac_info_volsw,
486 		.get = dac_get_volsw,
487 		.put = dac_put_volsw,
488 	},
489 
490 	SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
491 	SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
492 			SGTL5000_CHIP_ANA_ADC_CTRL,
493 			8, 1, 0, capture_6db_attenuate),
494 	SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
495 
496 	SOC_DOUBLE_TLV("Headphone Playback Volume",
497 			SGTL5000_CHIP_ANA_HP_CTRL,
498 			0, 8,
499 			0x7f, 1,
500 			headphone_volume),
501 	SOC_SINGLE("Headphone Playback Switch", SGTL5000_CHIP_ANA_CTRL,
502 			4, 1, 1),
503 	SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
504 			5, 1, 0),
505 
506 	SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
507 			0, 3, 0, mic_gain_tlv),
508 
509 	SOC_DOUBLE_TLV("Lineout Playback Volume",
510 			SGTL5000_CHIP_LINE_OUT_VOL,
511 			SGTL5000_LINE_OUT_VOL_LEFT_SHIFT,
512 			SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT,
513 			0x1f, 1,
514 			lineout_volume),
515 	SOC_SINGLE("Lineout Playback Switch", SGTL5000_CHIP_ANA_CTRL, 8, 1, 1),
516 
517 	/* Automatic Volume Control (DAP AVC) */
518 	SOC_SINGLE("AVC Switch", SGTL5000_DAP_AVC_CTRL, 0, 1, 0),
519 	SOC_SINGLE("AVC Hard Limiter Switch", SGTL5000_DAP_AVC_CTRL, 5, 1, 0),
520 	SOC_SINGLE_TLV("AVC Max Gain Volume", SGTL5000_DAP_AVC_CTRL, 12, 2, 0,
521 			avc_max_gain),
522 	SOC_SINGLE("AVC Integrator Response", SGTL5000_DAP_AVC_CTRL, 8, 3, 0),
523 	SOC_SINGLE_EXT_TLV("AVC Threshold Volume", SGTL5000_DAP_AVC_THRESHOLD,
524 			0, 96, 0, avc_get_threshold, avc_put_threshold,
525 			avc_threshold),
526 };
527 
528 /* mute the codec used by alsa core */
529 static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute)
530 {
531 	struct snd_soc_codec *codec = codec_dai->codec;
532 	u16 i2s_pwr = SGTL5000_I2S_IN_POWERUP;
533 
534 	/*
535 	 * During 'digital mute' do not mute DAC
536 	 * because LINE_IN would be muted aswell. We want to mute
537 	 * only I2S block - this can be done by powering it off
538 	 */
539 	snd_soc_update_bits(codec, SGTL5000_CHIP_DIG_POWER,
540 			i2s_pwr, mute ? 0 : i2s_pwr);
541 
542 	return 0;
543 }
544 
545 /* set codec format */
546 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
547 {
548 	struct snd_soc_codec *codec = codec_dai->codec;
549 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
550 	u16 i2sctl = 0;
551 
552 	sgtl5000->master = 0;
553 	/*
554 	 * i2s clock and frame master setting.
555 	 * ONLY support:
556 	 *  - clock and frame slave,
557 	 *  - clock and frame master
558 	 */
559 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
560 	case SND_SOC_DAIFMT_CBS_CFS:
561 		break;
562 	case SND_SOC_DAIFMT_CBM_CFM:
563 		i2sctl |= SGTL5000_I2S_MASTER;
564 		sgtl5000->master = 1;
565 		break;
566 	default:
567 		return -EINVAL;
568 	}
569 
570 	/* setting i2s data format */
571 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
572 	case SND_SOC_DAIFMT_DSP_A:
573 		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
574 		break;
575 	case SND_SOC_DAIFMT_DSP_B:
576 		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
577 		i2sctl |= SGTL5000_I2S_LRALIGN;
578 		break;
579 	case SND_SOC_DAIFMT_I2S:
580 		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
581 		break;
582 	case SND_SOC_DAIFMT_RIGHT_J:
583 		i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT;
584 		i2sctl |= SGTL5000_I2S_LRPOL;
585 		break;
586 	case SND_SOC_DAIFMT_LEFT_J:
587 		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
588 		i2sctl |= SGTL5000_I2S_LRALIGN;
589 		break;
590 	default:
591 		return -EINVAL;
592 	}
593 
594 	sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
595 
596 	/* Clock inversion */
597 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
598 	case SND_SOC_DAIFMT_NB_NF:
599 		break;
600 	case SND_SOC_DAIFMT_IB_NF:
601 		i2sctl |= SGTL5000_I2S_SCLK_INV;
602 		break;
603 	default:
604 		return -EINVAL;
605 	}
606 
607 	snd_soc_write(codec, SGTL5000_CHIP_I2S_CTRL, i2sctl);
608 
609 	return 0;
610 }
611 
612 /* set codec sysclk */
613 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
614 				   int clk_id, unsigned int freq, int dir)
615 {
616 	struct snd_soc_codec *codec = codec_dai->codec;
617 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
618 
619 	switch (clk_id) {
620 	case SGTL5000_SYSCLK:
621 		sgtl5000->sysclk = freq;
622 		break;
623 	default:
624 		return -EINVAL;
625 	}
626 
627 	return 0;
628 }
629 
630 /*
631  * set clock according to i2s frame clock,
632  * sgtl5000 provides 2 clock sources:
633  * 1. sys_mclk: sample freq can only be configured to
634  *	1/256, 1/384, 1/512 of sys_mclk.
635  * 2. pll: can derive any audio clocks.
636  *
637  * clock setting rules:
638  * 1. in slave mode, only sys_mclk can be used
639  * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz
640  * and above.
641  * 3. usage of sys_mclk is preferred over pll to save power.
642  */
643 static int sgtl5000_set_clock(struct snd_soc_codec *codec, int frame_rate)
644 {
645 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
646 	int clk_ctl = 0;
647 	int sys_fs;	/* sample freq */
648 
649 	/*
650 	 * sample freq should be divided by frame clock,
651 	 * if frame clock is lower than 44.1 kHz, sample freq should be set to
652 	 * 32 kHz or 44.1 kHz.
653 	 */
654 	switch (frame_rate) {
655 	case 8000:
656 	case 16000:
657 		sys_fs = 32000;
658 		break;
659 	case 11025:
660 	case 22050:
661 		sys_fs = 44100;
662 		break;
663 	default:
664 		sys_fs = frame_rate;
665 		break;
666 	}
667 
668 	/* set divided factor of frame clock */
669 	switch (sys_fs / frame_rate) {
670 	case 4:
671 		clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
672 		break;
673 	case 2:
674 		clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
675 		break;
676 	case 1:
677 		clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
678 		break;
679 	default:
680 		return -EINVAL;
681 	}
682 
683 	/* set the sys_fs according to frame rate */
684 	switch (sys_fs) {
685 	case 32000:
686 		clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
687 		break;
688 	case 44100:
689 		clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
690 		break;
691 	case 48000:
692 		clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
693 		break;
694 	case 96000:
695 		clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
696 		break;
697 	default:
698 		dev_err(codec->dev, "frame rate %d not supported\n",
699 			frame_rate);
700 		return -EINVAL;
701 	}
702 
703 	/*
704 	 * calculate the divider of mclk/sample_freq,
705 	 * factor of freq = 96 kHz can only be 256, since mclk is in the range
706 	 * of 8 MHz - 27 MHz
707 	 */
708 	switch (sgtl5000->sysclk / frame_rate) {
709 	case 256:
710 		clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
711 			SGTL5000_MCLK_FREQ_SHIFT;
712 		break;
713 	case 384:
714 		clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
715 			SGTL5000_MCLK_FREQ_SHIFT;
716 		break;
717 	case 512:
718 		clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
719 			SGTL5000_MCLK_FREQ_SHIFT;
720 		break;
721 	default:
722 		/* if mclk does not satisfy the divider, use pll */
723 		if (sgtl5000->master) {
724 			clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
725 				SGTL5000_MCLK_FREQ_SHIFT;
726 		} else {
727 			dev_err(codec->dev,
728 				"PLL not supported in slave mode\n");
729 			dev_err(codec->dev, "%d ratio is not supported. "
730 				"SYS_MCLK needs to be 256, 384 or 512 * fs\n",
731 				sgtl5000->sysclk / frame_rate);
732 			return -EINVAL;
733 		}
734 	}
735 
736 	/* if using pll, please check manual 6.4.2 for detail */
737 	if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
738 		u64 out, t;
739 		int div2;
740 		int pll_ctl;
741 		unsigned int in, int_div, frac_div;
742 
743 		if (sgtl5000->sysclk > 17000000) {
744 			div2 = 1;
745 			in = sgtl5000->sysclk / 2;
746 		} else {
747 			div2 = 0;
748 			in = sgtl5000->sysclk;
749 		}
750 		if (sys_fs == 44100)
751 			out = 180633600;
752 		else
753 			out = 196608000;
754 		t = do_div(out, in);
755 		int_div = out;
756 		t *= 2048;
757 		do_div(t, in);
758 		frac_div = t;
759 		pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
760 		    frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
761 
762 		snd_soc_write(codec, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
763 		if (div2)
764 			snd_soc_update_bits(codec,
765 				SGTL5000_CHIP_CLK_TOP_CTRL,
766 				SGTL5000_INPUT_FREQ_DIV2,
767 				SGTL5000_INPUT_FREQ_DIV2);
768 		else
769 			snd_soc_update_bits(codec,
770 				SGTL5000_CHIP_CLK_TOP_CTRL,
771 				SGTL5000_INPUT_FREQ_DIV2,
772 				0);
773 
774 		/* power up pll */
775 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
776 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
777 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
778 
779 		/* if using pll, clk_ctrl must be set after pll power up */
780 		snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
781 	} else {
782 		/* otherwise, clk_ctrl must be set before pll power down */
783 		snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
784 
785 		/* power down pll */
786 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
787 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
788 			0);
789 	}
790 
791 	return 0;
792 }
793 
794 /*
795  * Set PCM DAI bit size and sample rate.
796  * input: params_rate, params_fmt
797  */
798 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
799 				  struct snd_pcm_hw_params *params,
800 				  struct snd_soc_dai *dai)
801 {
802 	struct snd_soc_codec *codec = dai->codec;
803 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
804 	int channels = params_channels(params);
805 	int i2s_ctl = 0;
806 	int stereo;
807 	int ret;
808 
809 	/* sysclk should already set */
810 	if (!sgtl5000->sysclk) {
811 		dev_err(codec->dev, "%s: set sysclk first!\n", __func__);
812 		return -EFAULT;
813 	}
814 
815 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
816 		stereo = SGTL5000_DAC_STEREO;
817 	else
818 		stereo = SGTL5000_ADC_STEREO;
819 
820 	/* set mono to save power */
821 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, stereo,
822 			channels == 1 ? 0 : stereo);
823 
824 	/* set codec clock base on lrclk */
825 	ret = sgtl5000_set_clock(codec, params_rate(params));
826 	if (ret)
827 		return ret;
828 
829 	/* set i2s data format */
830 	switch (params_width(params)) {
831 	case 16:
832 		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
833 			return -EINVAL;
834 		i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
835 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
836 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
837 		break;
838 	case 20:
839 		i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
840 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
841 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
842 		break;
843 	case 24:
844 		i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
845 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
846 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
847 		break;
848 	case 32:
849 		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
850 			return -EINVAL;
851 		i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
852 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
853 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
854 		break;
855 	default:
856 		return -EINVAL;
857 	}
858 
859 	snd_soc_update_bits(codec, SGTL5000_CHIP_I2S_CTRL,
860 			    SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
861 			    i2s_ctl);
862 
863 	return 0;
864 }
865 
866 /*
867  * set dac bias
868  * common state changes:
869  * startup:
870  * off --> standby --> prepare --> on
871  * standby --> prepare --> on
872  *
873  * stop:
874  * on --> prepare --> standby
875  */
876 static int sgtl5000_set_bias_level(struct snd_soc_codec *codec,
877 				   enum snd_soc_bias_level level)
878 {
879 	struct sgtl5000_priv *sgtl = snd_soc_codec_get_drvdata(codec);
880 	int ret;
881 
882 	switch (level) {
883 	case SND_SOC_BIAS_ON:
884 	case SND_SOC_BIAS_PREPARE:
885 	case SND_SOC_BIAS_STANDBY:
886 		regcache_cache_only(sgtl->regmap, false);
887 		ret = regcache_sync(sgtl->regmap);
888 		if (ret) {
889 			regcache_cache_only(sgtl->regmap, true);
890 			return ret;
891 		}
892 
893 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
894 				    SGTL5000_REFTOP_POWERUP,
895 				    SGTL5000_REFTOP_POWERUP);
896 		break;
897 	case SND_SOC_BIAS_OFF:
898 		regcache_cache_only(sgtl->regmap, true);
899 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
900 				    SGTL5000_REFTOP_POWERUP, 0);
901 		break;
902 	}
903 
904 	return 0;
905 }
906 
907 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
908 			SNDRV_PCM_FMTBIT_S20_3LE |\
909 			SNDRV_PCM_FMTBIT_S24_LE |\
910 			SNDRV_PCM_FMTBIT_S32_LE)
911 
912 static const struct snd_soc_dai_ops sgtl5000_ops = {
913 	.hw_params = sgtl5000_pcm_hw_params,
914 	.digital_mute = sgtl5000_digital_mute,
915 	.set_fmt = sgtl5000_set_dai_fmt,
916 	.set_sysclk = sgtl5000_set_dai_sysclk,
917 };
918 
919 static struct snd_soc_dai_driver sgtl5000_dai = {
920 	.name = "sgtl5000",
921 	.playback = {
922 		.stream_name = "Playback",
923 		.channels_min = 1,
924 		.channels_max = 2,
925 		/*
926 		 * only support 8~48K + 96K,
927 		 * TODO modify hw_param to support more
928 		 */
929 		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
930 		.formats = SGTL5000_FORMATS,
931 	},
932 	.capture = {
933 		.stream_name = "Capture",
934 		.channels_min = 1,
935 		.channels_max = 2,
936 		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
937 		.formats = SGTL5000_FORMATS,
938 	},
939 	.ops = &sgtl5000_ops,
940 	.symmetric_rates = 1,
941 };
942 
943 static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
944 {
945 	switch (reg) {
946 	case SGTL5000_CHIP_ID:
947 	case SGTL5000_CHIP_ADCDAC_CTRL:
948 	case SGTL5000_CHIP_ANA_STATUS:
949 		return true;
950 	}
951 
952 	return false;
953 }
954 
955 static bool sgtl5000_readable(struct device *dev, unsigned int reg)
956 {
957 	switch (reg) {
958 	case SGTL5000_CHIP_ID:
959 	case SGTL5000_CHIP_DIG_POWER:
960 	case SGTL5000_CHIP_CLK_CTRL:
961 	case SGTL5000_CHIP_I2S_CTRL:
962 	case SGTL5000_CHIP_SSS_CTRL:
963 	case SGTL5000_CHIP_ADCDAC_CTRL:
964 	case SGTL5000_CHIP_DAC_VOL:
965 	case SGTL5000_CHIP_PAD_STRENGTH:
966 	case SGTL5000_CHIP_ANA_ADC_CTRL:
967 	case SGTL5000_CHIP_ANA_HP_CTRL:
968 	case SGTL5000_CHIP_ANA_CTRL:
969 	case SGTL5000_CHIP_LINREG_CTRL:
970 	case SGTL5000_CHIP_REF_CTRL:
971 	case SGTL5000_CHIP_MIC_CTRL:
972 	case SGTL5000_CHIP_LINE_OUT_CTRL:
973 	case SGTL5000_CHIP_LINE_OUT_VOL:
974 	case SGTL5000_CHIP_ANA_POWER:
975 	case SGTL5000_CHIP_PLL_CTRL:
976 	case SGTL5000_CHIP_CLK_TOP_CTRL:
977 	case SGTL5000_CHIP_ANA_STATUS:
978 	case SGTL5000_CHIP_SHORT_CTRL:
979 	case SGTL5000_CHIP_ANA_TEST2:
980 	case SGTL5000_DAP_CTRL:
981 	case SGTL5000_DAP_PEQ:
982 	case SGTL5000_DAP_BASS_ENHANCE:
983 	case SGTL5000_DAP_BASS_ENHANCE_CTRL:
984 	case SGTL5000_DAP_AUDIO_EQ:
985 	case SGTL5000_DAP_SURROUND:
986 	case SGTL5000_DAP_FLT_COEF_ACCESS:
987 	case SGTL5000_DAP_COEF_WR_B0_MSB:
988 	case SGTL5000_DAP_COEF_WR_B0_LSB:
989 	case SGTL5000_DAP_EQ_BASS_BAND0:
990 	case SGTL5000_DAP_EQ_BASS_BAND1:
991 	case SGTL5000_DAP_EQ_BASS_BAND2:
992 	case SGTL5000_DAP_EQ_BASS_BAND3:
993 	case SGTL5000_DAP_EQ_BASS_BAND4:
994 	case SGTL5000_DAP_MAIN_CHAN:
995 	case SGTL5000_DAP_MIX_CHAN:
996 	case SGTL5000_DAP_AVC_CTRL:
997 	case SGTL5000_DAP_AVC_THRESHOLD:
998 	case SGTL5000_DAP_AVC_ATTACK:
999 	case SGTL5000_DAP_AVC_DECAY:
1000 	case SGTL5000_DAP_COEF_WR_B1_MSB:
1001 	case SGTL5000_DAP_COEF_WR_B1_LSB:
1002 	case SGTL5000_DAP_COEF_WR_B2_MSB:
1003 	case SGTL5000_DAP_COEF_WR_B2_LSB:
1004 	case SGTL5000_DAP_COEF_WR_A1_MSB:
1005 	case SGTL5000_DAP_COEF_WR_A1_LSB:
1006 	case SGTL5000_DAP_COEF_WR_A2_MSB:
1007 	case SGTL5000_DAP_COEF_WR_A2_LSB:
1008 		return true;
1009 
1010 	default:
1011 		return false;
1012 	}
1013 }
1014 
1015 /*
1016  * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results
1017  * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL
1018  * The calculatation was done for all possible register values which
1019  * is the array index and the following formula: 10^((idx−15)/40) * 100
1020  */
1021 static const u8 vol_quot_table[] = {
1022 	42, 45, 47, 50, 53, 56, 60, 63,
1023 	67, 71, 75, 79, 84, 89, 94, 100,
1024 	106, 112, 119, 126, 133, 141, 150, 158,
1025 	168, 178, 188, 200, 211, 224, 237, 251
1026 };
1027 
1028 /*
1029  * sgtl5000 has 3 internal power supplies:
1030  * 1. VAG, normally set to vdda/2
1031  * 2. charge pump, set to different value
1032  *	according to voltage of vdda and vddio
1033  * 3. line out VAG, normally set to vddio/2
1034  *
1035  * and should be set according to:
1036  * 1. vddd provided by external or not
1037  * 2. vdda and vddio voltage value. > 3.1v or not
1038  */
1039 static int sgtl5000_set_power_regs(struct snd_soc_codec *codec)
1040 {
1041 	int vddd;
1042 	int vdda;
1043 	int vddio;
1044 	u16 ana_pwr;
1045 	u16 lreg_ctrl;
1046 	int vag;
1047 	int lo_vag;
1048 	int vol_quot;
1049 	int lo_vol;
1050 	size_t i;
1051 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1052 
1053 	vdda  = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
1054 	vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
1055 	vddd  = (sgtl5000->num_supplies > VDDD)
1056 		? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer)
1057 		: LDO_VOLTAGE;
1058 
1059 	vdda  = vdda / 1000;
1060 	vddio = vddio / 1000;
1061 	vddd  = vddd / 1000;
1062 
1063 	if (vdda <= 0 || vddio <= 0 || vddd < 0) {
1064 		dev_err(codec->dev, "regulator voltage not set correctly\n");
1065 
1066 		return -EINVAL;
1067 	}
1068 
1069 	/* according to datasheet, maximum voltage of supplies */
1070 	if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
1071 		dev_err(codec->dev,
1072 			"exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
1073 			vdda, vddio, vddd);
1074 
1075 		return -EINVAL;
1076 	}
1077 
1078 	/* reset value */
1079 	ana_pwr = snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER);
1080 	ana_pwr |= SGTL5000_DAC_STEREO |
1081 			SGTL5000_ADC_STEREO |
1082 			SGTL5000_REFTOP_POWERUP;
1083 	lreg_ctrl = snd_soc_read(codec, SGTL5000_CHIP_LINREG_CTRL);
1084 
1085 	if (vddio < 3100 && vdda < 3100) {
1086 		/* enable internal oscillator used for charge pump */
1087 		snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL,
1088 					SGTL5000_INT_OSC_EN,
1089 					SGTL5000_INT_OSC_EN);
1090 		/* Enable VDDC charge pump */
1091 		ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
1092 	} else if (vddio >= 3100 && vdda >= 3100) {
1093 		ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP;
1094 		/* VDDC use VDDIO rail */
1095 		lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
1096 		lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
1097 			    SGTL5000_VDDC_MAN_ASSN_SHIFT;
1098 	}
1099 
1100 	snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
1101 
1102 	snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1103 
1104 	/*
1105 	 * set ADC/DAC VAG to vdda / 2,
1106 	 * should stay in range (0.8v, 1.575v)
1107 	 */
1108 	vag = vdda / 2;
1109 	if (vag <= SGTL5000_ANA_GND_BASE)
1110 		vag = 0;
1111 	else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
1112 		 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
1113 		vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
1114 	else
1115 		vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
1116 
1117 	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1118 			SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1119 
1120 	/* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
1121 	lo_vag = vddio / 2;
1122 	if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE)
1123 		lo_vag = 0;
1124 	else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE +
1125 		SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1126 		lo_vag = SGTL5000_LINE_OUT_GND_MAX;
1127 	else
1128 		lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) /
1129 		    SGTL5000_LINE_OUT_GND_STP;
1130 
1131 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_CTRL,
1132 			SGTL5000_LINE_OUT_CURRENT_MASK |
1133 			SGTL5000_LINE_OUT_GND_MASK,
1134 			lo_vag << SGTL5000_LINE_OUT_GND_SHIFT |
1135 			SGTL5000_LINE_OUT_CURRENT_360u <<
1136 				SGTL5000_LINE_OUT_CURRENT_SHIFT);
1137 
1138 	/*
1139 	 * Set lineout output level in range (0..31)
1140 	 * the same value is used for right and left channel
1141 	 *
1142 	 * Searching for a suitable index solving this formula:
1143 	 * idx = 40 * log10(vag_val / lo_cagcntrl) + 15
1144 	 */
1145 	vol_quot = (vag * 100) / lo_vag;
1146 	lo_vol = 0;
1147 	for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) {
1148 		if (vol_quot >= vol_quot_table[i])
1149 			lo_vol = i;
1150 		else
1151 			break;
1152 	}
1153 
1154 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_VOL,
1155 		SGTL5000_LINE_OUT_VOL_RIGHT_MASK |
1156 		SGTL5000_LINE_OUT_VOL_LEFT_MASK,
1157 		lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT |
1158 		lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT);
1159 
1160 	return 0;
1161 }
1162 
1163 static int sgtl5000_enable_regulators(struct i2c_client *client)
1164 {
1165 	int ret;
1166 	int i;
1167 	int external_vddd = 0;
1168 	struct regulator *vddd;
1169 	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1170 
1171 	for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
1172 		sgtl5000->supplies[i].supply = supply_names[i];
1173 
1174 	vddd = regulator_get_optional(&client->dev, "VDDD");
1175 	if (IS_ERR(vddd)) {
1176 		/* See if it's just not registered yet */
1177 		if (PTR_ERR(vddd) == -EPROBE_DEFER)
1178 			return -EPROBE_DEFER;
1179 	} else {
1180 		external_vddd = 1;
1181 		regulator_put(vddd);
1182 	}
1183 
1184 	sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies)
1185 				 - 1 + external_vddd;
1186 	ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies,
1187 				 sgtl5000->supplies);
1188 	if (ret)
1189 		return ret;
1190 
1191 	ret = regulator_bulk_enable(sgtl5000->num_supplies,
1192 				    sgtl5000->supplies);
1193 	if (!ret)
1194 		usleep_range(10, 20);
1195 	else
1196 		regulator_bulk_free(sgtl5000->num_supplies,
1197 				    sgtl5000->supplies);
1198 
1199 	return ret;
1200 }
1201 
1202 static int sgtl5000_probe(struct snd_soc_codec *codec)
1203 {
1204 	int ret;
1205 	u16 reg;
1206 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1207 
1208 	/* power up sgtl5000 */
1209 	ret = sgtl5000_set_power_regs(codec);
1210 	if (ret)
1211 		goto err;
1212 
1213 	/* enable small pop, introduce 400ms delay in turning off */
1214 	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1215 				SGTL5000_SMALL_POP, 1);
1216 
1217 	/* disable short cut detector */
1218 	snd_soc_write(codec, SGTL5000_CHIP_SHORT_CTRL, 0);
1219 
1220 	/*
1221 	 * set i2s as default input of sound switch
1222 	 * TODO: add sound switch to control and dapm widge.
1223 	 */
1224 	snd_soc_write(codec, SGTL5000_CHIP_SSS_CTRL,
1225 			SGTL5000_DAC_SEL_I2S_IN << SGTL5000_DAC_SEL_SHIFT);
1226 	snd_soc_write(codec, SGTL5000_CHIP_DIG_POWER,
1227 			SGTL5000_ADC_EN | SGTL5000_DAC_EN);
1228 
1229 	/* enable dac volume ramp by default */
1230 	snd_soc_write(codec, SGTL5000_CHIP_ADCDAC_CTRL,
1231 			SGTL5000_DAC_VOL_RAMP_EN |
1232 			SGTL5000_DAC_MUTE_RIGHT |
1233 			SGTL5000_DAC_MUTE_LEFT);
1234 
1235 	reg = ((sgtl5000->lrclk_strength) << SGTL5000_PAD_I2S_LRCLK_SHIFT | 0x5f);
1236 	snd_soc_write(codec, SGTL5000_CHIP_PAD_STRENGTH, reg);
1237 
1238 	snd_soc_write(codec, SGTL5000_CHIP_ANA_CTRL,
1239 			SGTL5000_HP_ZCD_EN |
1240 			SGTL5000_ADC_ZCD_EN);
1241 
1242 	snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
1243 			SGTL5000_BIAS_R_MASK,
1244 			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
1245 
1246 	snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
1247 			SGTL5000_BIAS_VOLT_MASK,
1248 			sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT);
1249 	/*
1250 	 * disable DAP
1251 	 * TODO:
1252 	 * Enable DAP in kcontrol and dapm.
1253 	 */
1254 	snd_soc_write(codec, SGTL5000_DAP_CTRL, 0);
1255 
1256 	/* Unmute DAC after start */
1257 	snd_soc_update_bits(codec, SGTL5000_CHIP_ADCDAC_CTRL,
1258 		SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT, 0);
1259 
1260 	return 0;
1261 
1262 err:
1263 	return ret;
1264 }
1265 
1266 static int sgtl5000_remove(struct snd_soc_codec *codec)
1267 {
1268 	return 0;
1269 }
1270 
1271 static const struct snd_soc_codec_driver sgtl5000_driver = {
1272 	.probe = sgtl5000_probe,
1273 	.remove = sgtl5000_remove,
1274 	.set_bias_level = sgtl5000_set_bias_level,
1275 	.suspend_bias_off = true,
1276 	.component_driver = {
1277 		.controls		= sgtl5000_snd_controls,
1278 		.num_controls		= ARRAY_SIZE(sgtl5000_snd_controls),
1279 		.dapm_widgets		= sgtl5000_dapm_widgets,
1280 		.num_dapm_widgets	= ARRAY_SIZE(sgtl5000_dapm_widgets),
1281 		.dapm_routes		= sgtl5000_dapm_routes,
1282 		.num_dapm_routes	= ARRAY_SIZE(sgtl5000_dapm_routes),
1283 	},
1284 };
1285 
1286 static const struct regmap_config sgtl5000_regmap = {
1287 	.reg_bits = 16,
1288 	.val_bits = 16,
1289 	.reg_stride = 2,
1290 
1291 	.max_register = SGTL5000_MAX_REG_OFFSET,
1292 	.volatile_reg = sgtl5000_volatile,
1293 	.readable_reg = sgtl5000_readable,
1294 
1295 	.cache_type = REGCACHE_RBTREE,
1296 	.reg_defaults = sgtl5000_reg_defaults,
1297 	.num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
1298 };
1299 
1300 /*
1301  * Write all the default values from sgtl5000_reg_defaults[] array into the
1302  * sgtl5000 registers, to make sure we always start with the sane registers
1303  * values as stated in the datasheet.
1304  *
1305  * Since sgtl5000 does not have a reset line, nor a reset command in software,
1306  * we follow this approach to guarantee we always start from the default values
1307  * and avoid problems like, not being able to probe after an audio playback
1308  * followed by a system reset or a 'reboot' command in Linux
1309  */
1310 static void sgtl5000_fill_defaults(struct i2c_client *client)
1311 {
1312 	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1313 	int i, ret, val, index;
1314 
1315 	for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
1316 		val = sgtl5000_reg_defaults[i].def;
1317 		index = sgtl5000_reg_defaults[i].reg;
1318 		ret = regmap_write(sgtl5000->regmap, index, val);
1319 		if (ret)
1320 			dev_err(&client->dev,
1321 				"%s: error %d setting reg 0x%02x to 0x%04x\n",
1322 				__func__, ret, index, val);
1323 	}
1324 }
1325 
1326 static int sgtl5000_i2c_probe(struct i2c_client *client,
1327 			      const struct i2c_device_id *id)
1328 {
1329 	struct sgtl5000_priv *sgtl5000;
1330 	int ret, reg, rev;
1331 	struct device_node *np = client->dev.of_node;
1332 	u32 value;
1333 	u16 ana_pwr;
1334 
1335 	sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL);
1336 	if (!sgtl5000)
1337 		return -ENOMEM;
1338 
1339 	i2c_set_clientdata(client, sgtl5000);
1340 
1341 	ret = sgtl5000_enable_regulators(client);
1342 	if (ret)
1343 		return ret;
1344 
1345 	sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
1346 	if (IS_ERR(sgtl5000->regmap)) {
1347 		ret = PTR_ERR(sgtl5000->regmap);
1348 		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1349 		goto disable_regs;
1350 	}
1351 
1352 	sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
1353 	if (IS_ERR(sgtl5000->mclk)) {
1354 		ret = PTR_ERR(sgtl5000->mclk);
1355 		/* Defer the probe to see if the clk will be provided later */
1356 		if (ret == -ENOENT)
1357 			ret = -EPROBE_DEFER;
1358 
1359 		if (ret != -EPROBE_DEFER)
1360 			dev_err(&client->dev, "Failed to get mclock: %d\n",
1361 				ret);
1362 		goto disable_regs;
1363 	}
1364 
1365 	ret = clk_prepare_enable(sgtl5000->mclk);
1366 	if (ret) {
1367 		dev_err(&client->dev, "Error enabling clock %d\n", ret);
1368 		goto disable_regs;
1369 	}
1370 
1371 	/* Need 8 clocks before I2C accesses */
1372 	udelay(1);
1373 
1374 	/* read chip information */
1375 	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
1376 	if (ret) {
1377 		dev_err(&client->dev, "Error reading chip id %d\n", ret);
1378 		goto disable_clk;
1379 	}
1380 
1381 	if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
1382 	    SGTL5000_PARTID_PART_ID) {
1383 		dev_err(&client->dev,
1384 			"Device with ID register %x is not a sgtl5000\n", reg);
1385 		ret = -ENODEV;
1386 		goto disable_clk;
1387 	}
1388 
1389 	rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1390 	dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
1391 	sgtl5000->revision = rev;
1392 
1393 	/* reconfigure the clocks in case we're using the PLL */
1394 	ret = regmap_write(sgtl5000->regmap,
1395 			   SGTL5000_CHIP_CLK_CTRL,
1396 			   SGTL5000_CHIP_CLK_CTRL_DEFAULT);
1397 	if (ret)
1398 		dev_err(&client->dev,
1399 			"Error %d initializing CHIP_CLK_CTRL\n", ret);
1400 
1401 	/* Follow section 2.2.1.1 of AN3663 */
1402 	ana_pwr = SGTL5000_ANA_POWER_DEFAULT;
1403 	if (sgtl5000->num_supplies <= VDDD) {
1404 		/* internal VDDD at 1.2V */
1405 		ret = regmap_update_bits(sgtl5000->regmap,
1406 					 SGTL5000_CHIP_LINREG_CTRL,
1407 					 SGTL5000_LINREG_VDDD_MASK,
1408 					 LINREG_VDDD);
1409 		if (ret)
1410 			dev_err(&client->dev,
1411 				"Error %d setting LINREG_VDDD\n", ret);
1412 
1413 		ana_pwr |= SGTL5000_LINEREG_D_POWERUP;
1414 		dev_info(&client->dev,
1415 			 "Using internal LDO instead of VDDD: check ER1 erratum\n");
1416 	} else {
1417 		/* using external LDO for VDDD
1418 		 * Clear startup powerup and simple powerup
1419 		 * bits to save power
1420 		 */
1421 		ana_pwr &= ~(SGTL5000_STARTUP_POWERUP
1422 			     | SGTL5000_LINREG_SIMPLE_POWERUP);
1423 		dev_dbg(&client->dev, "Using external VDDD\n");
1424 	}
1425 	ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1426 	if (ret)
1427 		dev_err(&client->dev,
1428 			"Error %d setting CHIP_ANA_POWER to %04x\n",
1429 			ret, ana_pwr);
1430 
1431 	if (np) {
1432 		if (!of_property_read_u32(np,
1433 			"micbias-resistor-k-ohms", &value)) {
1434 			switch (value) {
1435 			case SGTL5000_MICBIAS_OFF:
1436 				sgtl5000->micbias_resistor = 0;
1437 				break;
1438 			case SGTL5000_MICBIAS_2K:
1439 				sgtl5000->micbias_resistor = 1;
1440 				break;
1441 			case SGTL5000_MICBIAS_4K:
1442 				sgtl5000->micbias_resistor = 2;
1443 				break;
1444 			case SGTL5000_MICBIAS_8K:
1445 				sgtl5000->micbias_resistor = 3;
1446 				break;
1447 			default:
1448 				sgtl5000->micbias_resistor = 2;
1449 				dev_err(&client->dev,
1450 					"Unsuitable MicBias resistor\n");
1451 			}
1452 		} else {
1453 			/* default is 4Kohms */
1454 			sgtl5000->micbias_resistor = 2;
1455 		}
1456 		if (!of_property_read_u32(np,
1457 			"micbias-voltage-m-volts", &value)) {
1458 			/* 1250mV => 0 */
1459 			/* steps of 250mV */
1460 			if ((value >= 1250) && (value <= 3000))
1461 				sgtl5000->micbias_voltage = (value / 250) - 5;
1462 			else {
1463 				sgtl5000->micbias_voltage = 0;
1464 				dev_err(&client->dev,
1465 					"Unsuitable MicBias voltage\n");
1466 			}
1467 		} else {
1468 			sgtl5000->micbias_voltage = 0;
1469 		}
1470 	}
1471 
1472 	sgtl5000->lrclk_strength = I2S_LRCLK_STRENGTH_LOW;
1473 	if (!of_property_read_u32(np, "lrclk-strength", &value)) {
1474 		if (value > I2S_LRCLK_STRENGTH_HIGH)
1475 			value = I2S_LRCLK_STRENGTH_LOW;
1476 		sgtl5000->lrclk_strength = value;
1477 	}
1478 
1479 	/* Ensure sgtl5000 will start with sane register values */
1480 	sgtl5000_fill_defaults(client);
1481 
1482 	ret = snd_soc_register_codec(&client->dev,
1483 			&sgtl5000_driver, &sgtl5000_dai, 1);
1484 	if (ret)
1485 		goto disable_clk;
1486 
1487 	return 0;
1488 
1489 disable_clk:
1490 	clk_disable_unprepare(sgtl5000->mclk);
1491 
1492 disable_regs:
1493 	regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1494 	regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1495 
1496 	return ret;
1497 }
1498 
1499 static int sgtl5000_i2c_remove(struct i2c_client *client)
1500 {
1501 	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1502 
1503 	snd_soc_unregister_codec(&client->dev);
1504 	clk_disable_unprepare(sgtl5000->mclk);
1505 	regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1506 	regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1507 
1508 	return 0;
1509 }
1510 
1511 static const struct i2c_device_id sgtl5000_id[] = {
1512 	{"sgtl5000", 0},
1513 	{},
1514 };
1515 
1516 MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
1517 
1518 static const struct of_device_id sgtl5000_dt_ids[] = {
1519 	{ .compatible = "fsl,sgtl5000", },
1520 	{ /* sentinel */ }
1521 };
1522 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1523 
1524 static struct i2c_driver sgtl5000_i2c_driver = {
1525 	.driver = {
1526 		   .name = "sgtl5000",
1527 		   .of_match_table = sgtl5000_dt_ids,
1528 		   },
1529 	.probe = sgtl5000_i2c_probe,
1530 	.remove = sgtl5000_i2c_remove,
1531 	.id_table = sgtl5000_id,
1532 };
1533 
1534 module_i2c_driver(sgtl5000_i2c_driver);
1535 
1536 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1537 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1538 MODULE_LICENSE("GPL");
1539