xref: /linux/sound/soc/codecs/peb2466.c (revision f683c9b134f2b0cb5d917296a142db1211468a78)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // peb2466.c  --  Infineon PEB2466 ALSA SoC driver
4 //
5 // Copyright 2023 CS GROUP France
6 //
7 // Author: Herve Codina <herve.codina@bootlin.com>
8 
9 #include <linux/unaligned.h>
10 #include <linux/clk.h>
11 #include <linux/firmware.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/gpio/driver.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/spi/spi.h>
18 #include <sound/pcm_params.h>
19 #include <sound/soc.h>
20 #include <sound/tlv.h>
21 
22 #define PEB2466_NB_CHANNEL	4
23 
24 struct peb2466_lookup {
25 	u8 (*table)[4];
26 	unsigned int count;
27 };
28 
29 #define PEB2466_TLV_SIZE  (sizeof((unsigned int []){TLV_DB_SCALE_ITEM(0, 0, 0)}) / \
30 			   sizeof(unsigned int))
31 
32 struct peb2466_lkup_ctrl {
33 	int reg;
34 	unsigned int index;
35 	const struct peb2466_lookup *lookup;
36 	unsigned int tlv_array[PEB2466_TLV_SIZE];
37 };
38 
39 struct peb2466 {
40 	struct spi_device *spi;
41 	struct clk *mclk;
42 	struct gpio_desc *reset_gpio;
43 	u8 spi_tx_buf[2 + 8]; /* Cannot use stack area for SPI (dma-safe memory) */
44 	u8 spi_rx_buf[2 + 8]; /* Cannot use stack area for SPI (dma-safe memory) */
45 	struct regmap *regmap;
46 	struct {
47 		struct peb2466_lookup ax_lookup;
48 		struct peb2466_lookup ar_lookup;
49 		struct peb2466_lkup_ctrl ax_lkup_ctrl;
50 		struct peb2466_lkup_ctrl ar_lkup_ctrl;
51 		unsigned int tg1_freq_item;
52 		unsigned int tg2_freq_item;
53 	} ch[PEB2466_NB_CHANNEL];
54 	int max_chan_playback;
55 	int max_chan_capture;
56 	struct {
57 		struct gpio_chip gpio_chip;
58 		struct mutex lock;
59 		struct {
60 			unsigned int xr0;
61 			unsigned int xr1;
62 			unsigned int xr2;
63 			unsigned int xr3;
64 		} cache;
65 	} gpio;
66 };
67 
68 #define PEB2466_CMD_R	(1 << 5)
69 #define PEB2466_CMD_W	(0 << 5)
70 
71 #define PEB2466_CMD_MASK 0x18
72 #define PEB2466_CMD_XOP  0x18  /* XOP is 0bxxx11xxx */
73 #define PEB2466_CMD_SOP  0x10  /* SOP is 0bxxx10xxx */
74 #define PEB2466_CMD_COP  0x00  /* COP is 0bxxx0xxxx, handle 0bxxx00xxx */
75 #define PEB2466_CMD_COP1 0x08  /* COP is 0bxxx0xxxx, handle 0bxxx01xxx */
76 
77 #define PEB2466_MAKE_XOP(_lsel)      (PEB2466_CMD_XOP | (_lsel))
78 #define PEB2466_MAKE_SOP(_ad, _lsel) (PEB2466_CMD_SOP | ((_ad) << 6) | (_lsel))
79 #define PEB2466_MAKE_COP(_ad, _code) (PEB2466_CMD_COP | ((_ad) << 6) | (_code))
80 
81 #define PEB2466_CR0(_ch)	PEB2466_MAKE_SOP(_ch, 0x0)
82 #define   PEB2466_CR0_TH		(1 << 7)
83 #define   PEB2466_CR0_IMR1		(1 << 6)
84 #define   PEB2466_CR0_FRX		(1 << 5)
85 #define   PEB2466_CR0_FRR		(1 << 4)
86 #define   PEB2466_CR0_AX		(1 << 3)
87 #define   PEB2466_CR0_AR		(1 << 2)
88 #define   PEB2466_CR0_THSEL_MASK	(0x3 << 0)
89 #define   PEB2466_CR0_THSEL(_set)	((_set) << 0)
90 
91 #define PEB2466_CR1(_ch)	PEB2466_MAKE_SOP(_ch, 0x1)
92 #define   PEB2466_CR1_ETG2		(1 << 7)
93 #define   PEB2466_CR1_ETG1		(1 << 6)
94 #define   PEB2466_CR1_PTG2		(1 << 5)
95 #define   PEB2466_CR1_PTG1		(1 << 4)
96 #define   PEB2466_CR1_LAW_MASK		(1 << 3)
97 #define   PEB2466_CR1_LAW_ALAW		(0 << 3)
98 #define   PEB2466_CR1_LAW_MULAW		(1 << 3)
99 #define   PEB2466_CR1_PU		(1 << 0)
100 
101 #define PEB2466_CR2(_ch)	PEB2466_MAKE_SOP(_ch, 0x2)
102 #define PEB2466_CR3(_ch)	PEB2466_MAKE_SOP(_ch, 0x3)
103 #define PEB2466_CR4(_ch)	PEB2466_MAKE_SOP(_ch, 0x4)
104 #define PEB2466_CR5(_ch)	PEB2466_MAKE_SOP(_ch, 0x5)
105 
106 #define PEB2466_XR0		PEB2466_MAKE_XOP(0x0)
107 #define PEB2466_XR1		PEB2466_MAKE_XOP(0x1)
108 #define PEB2466_XR2		PEB2466_MAKE_XOP(0x2)
109 #define PEB2466_XR3		PEB2466_MAKE_XOP(0x3)
110 #define PEB2466_XR4		PEB2466_MAKE_XOP(0x4)
111 #define PEB2466_XR5		PEB2466_MAKE_XOP(0x5)
112 #define   PEB2466_XR5_MCLK_1536		(0x0 << 6)
113 #define   PEB2466_XR5_MCLK_2048		(0x1 << 6)
114 #define   PEB2466_XR5_MCLK_4096		(0x2 << 6)
115 #define   PEB2466_XR5_MCLK_8192		(0x3 << 6)
116 
117 #define PEB2466_XR6		PEB2466_MAKE_XOP(0x6)
118 #define   PEB2466_XR6_PCM_OFFSET(_off)	((_off) << 0)
119 
120 #define PEB2466_XR7		PEB2466_MAKE_XOP(0x7)
121 
122 #define PEB2466_TH_FILTER_P1(_ch)	PEB2466_MAKE_COP(_ch, 0x0)
123 #define PEB2466_TH_FILTER_P2(_ch)	PEB2466_MAKE_COP(_ch, 0x1)
124 #define PEB2466_TH_FILTER_P3(_ch)	PEB2466_MAKE_COP(_ch, 0x2)
125 #define PEB2466_IMR1_FILTER_P1(_ch)	PEB2466_MAKE_COP(_ch, 0x4)
126 #define PEB2466_IMR1_FILTER_P2(_ch)	PEB2466_MAKE_COP(_ch, 0x5)
127 #define PEB2466_FRX_FILTER(_ch)		PEB2466_MAKE_COP(_ch, 0x6)
128 #define PEB2466_FRR_FILTER(_ch)		PEB2466_MAKE_COP(_ch, 0x7)
129 #define PEB2466_AX_FILTER(_ch)		PEB2466_MAKE_COP(_ch, 0x8)
130 #define PEB2466_AR_FILTER(_ch)		PEB2466_MAKE_COP(_ch, 0x9)
131 #define PEB2466_TG1(_ch)		PEB2466_MAKE_COP(_ch, 0xc)
132 #define PEB2466_TG2(_ch)		PEB2466_MAKE_COP(_ch, 0xd)
133 
134 static int peb2466_write_byte(struct peb2466 *peb2466, u8 cmd, u8 val)
135 {
136 	struct spi_transfer xfer = {
137 		.tx_buf = &peb2466->spi_tx_buf,
138 		.len = 2,
139 	};
140 
141 	peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_W;
142 	peb2466->spi_tx_buf[1] = val;
143 
144 	dev_dbg(&peb2466->spi->dev, "write byte (cmd %02x) %02x\n",
145 		peb2466->spi_tx_buf[0], peb2466->spi_tx_buf[1]);
146 
147 	return spi_sync_transfer(peb2466->spi, &xfer, 1);
148 }
149 
150 static int peb2466_read_byte(struct peb2466 *peb2466, u8 cmd, u8 *val)
151 {
152 	struct spi_transfer xfer = {
153 		.tx_buf = &peb2466->spi_tx_buf,
154 		.rx_buf = &peb2466->spi_rx_buf,
155 		.len = 3,
156 	};
157 	int ret;
158 
159 	peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_R;
160 
161 	ret = spi_sync_transfer(peb2466->spi, &xfer, 1);
162 	if (ret)
163 		return ret;
164 
165 	if (peb2466->spi_rx_buf[1] != 0x81) {
166 		dev_err(&peb2466->spi->dev,
167 			"spi xfer rd (cmd %02x) invalid ident byte (0x%02x)\n",
168 			peb2466->spi_tx_buf[0], peb2466->spi_rx_buf[1]);
169 		return -EILSEQ;
170 	}
171 
172 	*val = peb2466->spi_rx_buf[2];
173 
174 	dev_dbg(&peb2466->spi->dev, "read byte (cmd %02x) %02x\n",
175 		peb2466->spi_tx_buf[0], *val);
176 
177 	return 0;
178 }
179 
180 static int peb2466_write_buf(struct peb2466 *peb2466, u8 cmd, const u8 *buf, unsigned int len)
181 {
182 	struct spi_transfer xfer = {
183 		.tx_buf = &peb2466->spi_tx_buf,
184 		.len = len + 1,
185 	};
186 
187 	if (len > 8)
188 		return -EINVAL;
189 
190 	peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_W;
191 	memcpy(&peb2466->spi_tx_buf[1], buf, len);
192 
193 	dev_dbg(&peb2466->spi->dev, "write buf (cmd %02x, %u) %*ph\n",
194 		peb2466->spi_tx_buf[0], len, len, &peb2466->spi_tx_buf[1]);
195 
196 	return spi_sync_transfer(peb2466->spi, &xfer, 1);
197 }
198 
199 static int peb2466_reg_write(void *context, unsigned int reg, unsigned int val)
200 {
201 	struct peb2466 *peb2466 = context;
202 	int ret;
203 
204 	/*
205 	 * Only XOP and SOP commands can be handled as registers.
206 	 * COP commands are handled using direct peb2466_write_buf() calls.
207 	 */
208 	switch (reg & PEB2466_CMD_MASK) {
209 	case PEB2466_CMD_XOP:
210 	case PEB2466_CMD_SOP:
211 		ret = peb2466_write_byte(peb2466, reg, val);
212 		break;
213 	default:
214 		dev_err(&peb2466->spi->dev, "Not a XOP or SOP command\n");
215 		ret = -EINVAL;
216 		break;
217 	}
218 	return ret;
219 }
220 
221 static int peb2466_reg_read(void *context, unsigned int reg, unsigned int *val)
222 {
223 	struct peb2466 *peb2466 = context;
224 	int ret;
225 	u8 tmp;
226 
227 	/* Only XOP and SOP commands can be handled as registers */
228 	switch (reg & PEB2466_CMD_MASK) {
229 	case PEB2466_CMD_XOP:
230 	case PEB2466_CMD_SOP:
231 		ret = peb2466_read_byte(peb2466, reg, &tmp);
232 		if (!ret)
233 			*val = tmp;
234 		break;
235 	default:
236 		dev_err(&peb2466->spi->dev, "Not a XOP or SOP command\n");
237 		ret = -EINVAL;
238 		break;
239 	}
240 	return ret;
241 }
242 
243 static const struct regmap_config peb2466_regmap_config = {
244 	.reg_bits = 8,
245 	.val_bits = 8,
246 	.max_register = 0xFF,
247 	.reg_write = peb2466_reg_write,
248 	.reg_read = peb2466_reg_read,
249 	.cache_type = REGCACHE_NONE,
250 };
251 
252 static int peb2466_lkup_ctrl_info(struct snd_kcontrol *kcontrol,
253 				  struct snd_ctl_elem_info *uinfo)
254 {
255 	struct peb2466_lkup_ctrl *lkup_ctrl =
256 		(struct peb2466_lkup_ctrl *)kcontrol->private_value;
257 
258 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
259 	uinfo->count = 1;
260 	uinfo->value.integer.min = 0;
261 	uinfo->value.integer.max = lkup_ctrl->lookup->count - 1;
262 	return 0;
263 }
264 
265 static int peb2466_lkup_ctrl_get(struct snd_kcontrol *kcontrol,
266 				 struct snd_ctl_elem_value *ucontrol)
267 {
268 	struct peb2466_lkup_ctrl *lkup_ctrl =
269 		(struct peb2466_lkup_ctrl *)kcontrol->private_value;
270 
271 	ucontrol->value.integer.value[0] = lkup_ctrl->index;
272 	return 0;
273 }
274 
275 static int peb2466_lkup_ctrl_put(struct snd_kcontrol *kcontrol,
276 				 struct snd_ctl_elem_value *ucontrol)
277 {
278 	struct peb2466_lkup_ctrl *lkup_ctrl =
279 		(struct peb2466_lkup_ctrl *)kcontrol->private_value;
280 	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
281 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
282 	unsigned int index;
283 	int ret;
284 
285 	index = ucontrol->value.integer.value[0];
286 	if (index >= lkup_ctrl->lookup->count)
287 		return -EINVAL;
288 
289 	if (index == lkup_ctrl->index)
290 		return 0;
291 
292 	ret = peb2466_write_buf(peb2466, lkup_ctrl->reg,
293 				lkup_ctrl->lookup->table[index], 4);
294 	if (ret)
295 		return ret;
296 
297 	lkup_ctrl->index = index;
298 	return 1; /* The value changed */
299 }
300 
301 static int peb2466_add_lkup_ctrl(struct snd_soc_component *component,
302 				 struct peb2466_lkup_ctrl *lkup_ctrl,
303 				 const char *name, int min_val, int step)
304 {
305 	DECLARE_TLV_DB_SCALE(tlv_array, min_val, step, 0);
306 	struct snd_kcontrol_new control = {0};
307 
308 	BUILD_BUG_ON(sizeof(lkup_ctrl->tlv_array) < sizeof(tlv_array));
309 	memcpy(lkup_ctrl->tlv_array, tlv_array, sizeof(tlv_array));
310 
311 	control.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
312 	control.name = name;
313 	control.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
314 			 SNDRV_CTL_ELEM_ACCESS_READWRITE;
315 	control.tlv.p = lkup_ctrl->tlv_array;
316 	control.info = peb2466_lkup_ctrl_info;
317 	control.get = peb2466_lkup_ctrl_get;
318 	control.put = peb2466_lkup_ctrl_put;
319 	control.private_value = (unsigned long)lkup_ctrl;
320 
321 	return snd_soc_add_component_controls(component, &control, 1);
322 }
323 
324 enum peb2466_tone_freq {
325 	PEB2466_TONE_697HZ,
326 	PEB2466_TONE_800HZ,
327 	PEB2466_TONE_950HZ,
328 	PEB2466_TONE_1000HZ,
329 	PEB2466_TONE_1008HZ,
330 	PEB2466_TONE_2000HZ,
331 };
332 
333 static const u8 peb2466_tone_lookup[][4] = {
334 	[PEB2466_TONE_697HZ] = {0x0a, 0x33, 0x5a, 0x2c},
335 	[PEB2466_TONE_800HZ] = {0x12, 0xD6, 0x5a, 0xc0},
336 	[PEB2466_TONE_950HZ] = {0x1c, 0xf0, 0x5c, 0xc0},
337 	[PEB2466_TONE_1000HZ] = {0}, /* lookup value not used for 1000Hz */
338 	[PEB2466_TONE_1008HZ] = {0x1a, 0xae, 0x57, 0x70},
339 	[PEB2466_TONE_2000HZ] = {0x00, 0x80, 0x50, 0x09},
340 };
341 
342 static const char * const peb2466_tone_freq_txt[] = {
343 	[PEB2466_TONE_697HZ] = "697Hz",
344 	[PEB2466_TONE_800HZ] = "800Hz",
345 	[PEB2466_TONE_950HZ] = "950Hz",
346 	[PEB2466_TONE_1000HZ] = "1000Hz",
347 	[PEB2466_TONE_1008HZ] = "1008Hz",
348 	[PEB2466_TONE_2000HZ] = "2000Hz"
349 };
350 
351 static const struct soc_enum peb2466_tg_freq[][2] = {
352 	[0] = {
353 		SOC_ENUM_SINGLE(PEB2466_TG1(0), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
354 				peb2466_tone_freq_txt),
355 		SOC_ENUM_SINGLE(PEB2466_TG2(0), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
356 				peb2466_tone_freq_txt)
357 	},
358 	[1] = {
359 		SOC_ENUM_SINGLE(PEB2466_TG1(1), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
360 				peb2466_tone_freq_txt),
361 		SOC_ENUM_SINGLE(PEB2466_TG2(1), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
362 				peb2466_tone_freq_txt)
363 	},
364 	[2] = {
365 		SOC_ENUM_SINGLE(PEB2466_TG1(2), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
366 				peb2466_tone_freq_txt),
367 		SOC_ENUM_SINGLE(PEB2466_TG2(2), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
368 				peb2466_tone_freq_txt)
369 	},
370 	[3] = {
371 		SOC_ENUM_SINGLE(PEB2466_TG1(3), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
372 				peb2466_tone_freq_txt),
373 		SOC_ENUM_SINGLE(PEB2466_TG2(3), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
374 				peb2466_tone_freq_txt)
375 	}
376 };
377 
378 static int peb2466_tg_freq_get(struct snd_kcontrol *kcontrol,
379 			       struct snd_ctl_elem_value *ucontrol)
380 {
381 	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
382 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
383 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
384 
385 	switch (e->reg) {
386 	case PEB2466_TG1(0):
387 		ucontrol->value.enumerated.item[0] = peb2466->ch[0].tg1_freq_item;
388 		break;
389 	case PEB2466_TG2(0):
390 		ucontrol->value.enumerated.item[0] = peb2466->ch[0].tg2_freq_item;
391 		break;
392 	case PEB2466_TG1(1):
393 		ucontrol->value.enumerated.item[0] = peb2466->ch[1].tg1_freq_item;
394 		break;
395 	case PEB2466_TG2(1):
396 		ucontrol->value.enumerated.item[0] = peb2466->ch[1].tg2_freq_item;
397 		break;
398 	case PEB2466_TG1(2):
399 		ucontrol->value.enumerated.item[0] = peb2466->ch[2].tg1_freq_item;
400 		break;
401 	case PEB2466_TG2(2):
402 		ucontrol->value.enumerated.item[0] = peb2466->ch[2].tg2_freq_item;
403 		break;
404 	case PEB2466_TG1(3):
405 		ucontrol->value.enumerated.item[0] = peb2466->ch[3].tg1_freq_item;
406 		break;
407 	case PEB2466_TG2(3):
408 		ucontrol->value.enumerated.item[0] = peb2466->ch[3].tg2_freq_item;
409 		break;
410 	default:
411 		return -EINVAL;
412 	}
413 	return 0;
414 }
415 
416 static int peb2466_tg_freq_put(struct snd_kcontrol *kcontrol,
417 			       struct snd_ctl_elem_value *ucontrol)
418 {
419 	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
420 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
421 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
422 	unsigned int *tg_freq_item;
423 	u8 cr1_reg, cr1_mask;
424 	unsigned int index;
425 	int ret;
426 
427 	index = ucontrol->value.enumerated.item[0];
428 
429 	if (index >= ARRAY_SIZE(peb2466_tone_lookup))
430 		return -EINVAL;
431 
432 	switch (e->reg) {
433 	case PEB2466_TG1(0):
434 		tg_freq_item = &peb2466->ch[0].tg1_freq_item;
435 		cr1_reg = PEB2466_CR1(0);
436 		cr1_mask = PEB2466_CR1_PTG1;
437 		break;
438 	case PEB2466_TG2(0):
439 		tg_freq_item = &peb2466->ch[0].tg2_freq_item;
440 		cr1_reg = PEB2466_CR1(0);
441 		cr1_mask = PEB2466_CR1_PTG2;
442 		break;
443 	case PEB2466_TG1(1):
444 		tg_freq_item = &peb2466->ch[1].tg1_freq_item;
445 		cr1_reg = PEB2466_CR1(1);
446 		cr1_mask = PEB2466_CR1_PTG1;
447 		break;
448 	case PEB2466_TG2(1):
449 		tg_freq_item = &peb2466->ch[1].tg2_freq_item;
450 		cr1_reg = PEB2466_CR1(1);
451 		cr1_mask = PEB2466_CR1_PTG2;
452 		break;
453 	case PEB2466_TG1(2):
454 		tg_freq_item = &peb2466->ch[2].tg1_freq_item;
455 		cr1_reg = PEB2466_CR1(2);
456 		cr1_mask = PEB2466_CR1_PTG1;
457 		break;
458 	case PEB2466_TG2(2):
459 		tg_freq_item = &peb2466->ch[2].tg2_freq_item;
460 		cr1_reg = PEB2466_CR1(2);
461 		cr1_mask = PEB2466_CR1_PTG2;
462 		break;
463 	case PEB2466_TG1(3):
464 		tg_freq_item = &peb2466->ch[3].tg1_freq_item;
465 		cr1_reg = PEB2466_CR1(3);
466 		cr1_mask = PEB2466_CR1_PTG1;
467 		break;
468 	case PEB2466_TG2(3):
469 		tg_freq_item = &peb2466->ch[3].tg2_freq_item;
470 		cr1_reg = PEB2466_CR1(3);
471 		cr1_mask = PEB2466_CR1_PTG2;
472 		break;
473 	default:
474 		return -EINVAL;
475 	}
476 
477 	if (index == *tg_freq_item)
478 		return 0;
479 
480 	if (index == PEB2466_TONE_1000HZ) {
481 		ret = regmap_update_bits(peb2466->regmap, cr1_reg, cr1_mask, 0);
482 		if (ret)
483 			return ret;
484 	} else {
485 		ret = peb2466_write_buf(peb2466, e->reg, peb2466_tone_lookup[index], 4);
486 		if (ret)
487 			return ret;
488 		ret = regmap_update_bits(peb2466->regmap, cr1_reg, cr1_mask, cr1_mask);
489 		if (ret)
490 			return ret;
491 	}
492 
493 	*tg_freq_item = index;
494 	return 1; /* The value changed */
495 }
496 
497 static const struct snd_kcontrol_new peb2466_ch0_out_mix_controls[] = {
498 	SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(0), 6, 1, 0),
499 	SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(0), 7, 1, 0),
500 	SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(0), 0, 1, 0)
501 };
502 
503 static const struct snd_kcontrol_new peb2466_ch1_out_mix_controls[] = {
504 	SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(1), 6, 1, 0),
505 	SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(1), 7, 1, 0),
506 	SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(1), 0, 1, 0)
507 };
508 
509 static const struct snd_kcontrol_new peb2466_ch2_out_mix_controls[] = {
510 	SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(2), 6, 1, 0),
511 	SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(2), 7, 1, 0),
512 	SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(2), 0, 1, 0)
513 };
514 
515 static const struct snd_kcontrol_new peb2466_ch3_out_mix_controls[] = {
516 	SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(3), 6, 1, 0),
517 	SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(3), 7, 1, 0),
518 	SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(3), 0, 1, 0)
519 };
520 
521 static const struct snd_kcontrol_new peb2466_controls[] = {
522 	/* Attenuators */
523 	SOC_SINGLE("DAC0 -6dB Playback Switch", PEB2466_CR3(0), 2, 1, 0),
524 	SOC_SINGLE("DAC1 -6dB Playback Switch", PEB2466_CR3(1), 2, 1, 0),
525 	SOC_SINGLE("DAC2 -6dB Playback Switch", PEB2466_CR3(2), 2, 1, 0),
526 	SOC_SINGLE("DAC3 -6dB Playback Switch", PEB2466_CR3(3), 2, 1, 0),
527 
528 	/* Amplifiers */
529 	SOC_SINGLE("ADC0 +6dB Capture Switch", PEB2466_CR3(0), 3, 1, 0),
530 	SOC_SINGLE("ADC1 +6dB Capture Switch", PEB2466_CR3(1), 3, 1, 0),
531 	SOC_SINGLE("ADC2 +6dB Capture Switch", PEB2466_CR3(2), 3, 1, 0),
532 	SOC_SINGLE("ADC3 +6dB Capture Switch", PEB2466_CR3(3), 3, 1, 0),
533 
534 	/* Tone generators */
535 	SOC_ENUM_EXT("DAC0 TG1 Freq", peb2466_tg_freq[0][0],
536 		     peb2466_tg_freq_get, peb2466_tg_freq_put),
537 	SOC_ENUM_EXT("DAC1 TG1 Freq", peb2466_tg_freq[1][0],
538 		     peb2466_tg_freq_get, peb2466_tg_freq_put),
539 	SOC_ENUM_EXT("DAC2 TG1 Freq", peb2466_tg_freq[2][0],
540 		     peb2466_tg_freq_get, peb2466_tg_freq_put),
541 	SOC_ENUM_EXT("DAC3 TG1 Freq", peb2466_tg_freq[3][0],
542 		     peb2466_tg_freq_get, peb2466_tg_freq_put),
543 
544 	SOC_ENUM_EXT("DAC0 TG2 Freq", peb2466_tg_freq[0][1],
545 		     peb2466_tg_freq_get, peb2466_tg_freq_put),
546 	SOC_ENUM_EXT("DAC1 TG2 Freq", peb2466_tg_freq[1][1],
547 		     peb2466_tg_freq_get, peb2466_tg_freq_put),
548 	SOC_ENUM_EXT("DAC2 TG2 Freq", peb2466_tg_freq[2][1],
549 		     peb2466_tg_freq_get, peb2466_tg_freq_put),
550 	SOC_ENUM_EXT("DAC3 TG2 Freq", peb2466_tg_freq[3][1],
551 		     peb2466_tg_freq_get, peb2466_tg_freq_put),
552 };
553 
554 static const struct snd_soc_dapm_widget peb2466_dapm_widgets[] = {
555 	SND_SOC_DAPM_SUPPLY("CH0 PWR", PEB2466_CR1(0), 0, 0, NULL, 0),
556 	SND_SOC_DAPM_SUPPLY("CH1 PWR", PEB2466_CR1(1), 0, 0, NULL, 0),
557 	SND_SOC_DAPM_SUPPLY("CH2 PWR", PEB2466_CR1(2), 0, 0, NULL, 0),
558 	SND_SOC_DAPM_SUPPLY("CH3 PWR", PEB2466_CR1(3), 0, 0, NULL, 0),
559 
560 	SND_SOC_DAPM_DAC("CH0 DIN", "Playback", SND_SOC_NOPM, 0, 0),
561 	SND_SOC_DAPM_DAC("CH1 DIN", "Playback", SND_SOC_NOPM, 0, 0),
562 	SND_SOC_DAPM_DAC("CH2 DIN", "Playback", SND_SOC_NOPM, 0, 0),
563 	SND_SOC_DAPM_DAC("CH3 DIN", "Playback", SND_SOC_NOPM, 0, 0),
564 
565 	SND_SOC_DAPM_SIGGEN("CH0 TG1"),
566 	SND_SOC_DAPM_SIGGEN("CH1 TG1"),
567 	SND_SOC_DAPM_SIGGEN("CH2 TG1"),
568 	SND_SOC_DAPM_SIGGEN("CH3 TG1"),
569 
570 	SND_SOC_DAPM_SIGGEN("CH0 TG2"),
571 	SND_SOC_DAPM_SIGGEN("CH1 TG2"),
572 	SND_SOC_DAPM_SIGGEN("CH2 TG2"),
573 	SND_SOC_DAPM_SIGGEN("CH3 TG2"),
574 
575 	SND_SOC_DAPM_MIXER("DAC0 Mixer", SND_SOC_NOPM, 0, 0,
576 			   peb2466_ch0_out_mix_controls,
577 			   ARRAY_SIZE(peb2466_ch0_out_mix_controls)),
578 	SND_SOC_DAPM_MIXER("DAC1 Mixer", SND_SOC_NOPM, 0, 0,
579 			   peb2466_ch1_out_mix_controls,
580 			   ARRAY_SIZE(peb2466_ch1_out_mix_controls)),
581 	SND_SOC_DAPM_MIXER("DAC2 Mixer", SND_SOC_NOPM, 0, 0,
582 			   peb2466_ch2_out_mix_controls,
583 			   ARRAY_SIZE(peb2466_ch2_out_mix_controls)),
584 	SND_SOC_DAPM_MIXER("DAC3 Mixer", SND_SOC_NOPM, 0, 0,
585 			   peb2466_ch3_out_mix_controls,
586 			   ARRAY_SIZE(peb2466_ch3_out_mix_controls)),
587 
588 	SND_SOC_DAPM_PGA("DAC0 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
589 	SND_SOC_DAPM_PGA("DAC1 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
590 	SND_SOC_DAPM_PGA("DAC2 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
591 	SND_SOC_DAPM_PGA("DAC3 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
592 
593 	SND_SOC_DAPM_OUTPUT("OUT0"),
594 	SND_SOC_DAPM_OUTPUT("OUT1"),
595 	SND_SOC_DAPM_OUTPUT("OUT2"),
596 	SND_SOC_DAPM_OUTPUT("OUT3"),
597 
598 	SND_SOC_DAPM_INPUT("IN0"),
599 	SND_SOC_DAPM_INPUT("IN1"),
600 	SND_SOC_DAPM_INPUT("IN2"),
601 	SND_SOC_DAPM_INPUT("IN3"),
602 
603 	SND_SOC_DAPM_DAC("ADC0", "Capture", SND_SOC_NOPM, 0, 0),
604 	SND_SOC_DAPM_DAC("ADC1", "Capture", SND_SOC_NOPM, 0, 0),
605 	SND_SOC_DAPM_DAC("ADC2", "Capture", SND_SOC_NOPM, 0, 0),
606 	SND_SOC_DAPM_DAC("ADC3", "Capture", SND_SOC_NOPM, 0, 0),
607 };
608 
609 static const struct snd_soc_dapm_route peb2466_dapm_routes[] = {
610 	{ "CH0 DIN", NULL, "CH0 PWR" },
611 	{ "CH1 DIN", NULL, "CH1 PWR" },
612 	{ "CH2 DIN", NULL, "CH2 PWR" },
613 	{ "CH3 DIN", NULL, "CH3 PWR" },
614 
615 	{ "CH0 TG1", NULL, "CH0 PWR" },
616 	{ "CH1 TG1", NULL, "CH1 PWR" },
617 	{ "CH2 TG1", NULL, "CH2 PWR" },
618 	{ "CH3 TG1", NULL, "CH3 PWR" },
619 
620 	{ "CH0 TG2", NULL, "CH0 PWR" },
621 	{ "CH1 TG2", NULL, "CH1 PWR" },
622 	{ "CH2 TG2", NULL, "CH2 PWR" },
623 	{ "CH3 TG2", NULL, "CH3 PWR" },
624 
625 	{ "DAC0 Mixer", "TG1 Switch", "CH0 TG1" },
626 	{ "DAC0 Mixer", "TG2 Switch", "CH0 TG2" },
627 	{ "DAC0 Mixer", "Voice Switch", "CH0 DIN" },
628 	{ "DAC0 Mixer", NULL, "CH0 DIN" },
629 
630 	{ "DAC1 Mixer", "TG1 Switch", "CH1 TG1" },
631 	{ "DAC1 Mixer", "TG2 Switch", "CH1 TG2" },
632 	{ "DAC1 Mixer", "Voice Switch", "CH1 DIN" },
633 	{ "DAC1 Mixer", NULL, "CH1 DIN" },
634 
635 	{ "DAC2 Mixer", "TG1 Switch", "CH2 TG1" },
636 	{ "DAC2 Mixer", "TG2 Switch", "CH2 TG2" },
637 	{ "DAC2 Mixer", "Voice Switch", "CH2 DIN" },
638 	{ "DAC2 Mixer", NULL, "CH2 DIN" },
639 
640 	{ "DAC3 Mixer", "TG1 Switch", "CH3 TG1" },
641 	{ "DAC3 Mixer", "TG2 Switch", "CH3 TG2" },
642 	{ "DAC3 Mixer", "Voice Switch", "CH3 DIN" },
643 	{ "DAC3 Mixer", NULL, "CH3 DIN" },
644 
645 	{ "DAC0 PGA", NULL, "DAC0 Mixer" },
646 	{ "DAC1 PGA", NULL, "DAC1 Mixer" },
647 	{ "DAC2 PGA", NULL, "DAC2 Mixer" },
648 	{ "DAC3 PGA", NULL, "DAC3 Mixer" },
649 
650 	{ "OUT0", NULL, "DAC0 PGA" },
651 	{ "OUT1", NULL, "DAC1 PGA" },
652 	{ "OUT2", NULL, "DAC2 PGA" },
653 	{ "OUT3", NULL, "DAC3 PGA" },
654 
655 	{ "ADC0", NULL, "IN0" },
656 	{ "ADC1", NULL, "IN1" },
657 	{ "ADC2", NULL, "IN2" },
658 	{ "ADC3", NULL, "IN3" },
659 
660 	{ "ADC0", NULL, "CH0 PWR" },
661 	{ "ADC1", NULL, "CH1 PWR" },
662 	{ "ADC2", NULL, "CH2 PWR" },
663 	{ "ADC3", NULL, "CH3 PWR" },
664 };
665 
666 static int peb2466_dai_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
667 				    unsigned int rx_mask, int slots, int width)
668 {
669 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
670 	unsigned int chan;
671 	unsigned int mask;
672 	u8 slot;
673 	int ret;
674 
675 	switch (width) {
676 	case 0:
677 		/* Not set -> default 8 */
678 	case 8:
679 		break;
680 	default:
681 		dev_err(dai->dev, "tdm slot width %d not supported\n", width);
682 		return -EINVAL;
683 	}
684 
685 	mask = tx_mask;
686 	slot = 0;
687 	chan = 0;
688 	while (mask && chan < PEB2466_NB_CHANNEL) {
689 		if (mask & 0x1) {
690 			ret = regmap_write(peb2466->regmap, PEB2466_CR5(chan), slot);
691 			if (ret) {
692 				dev_err(dai->dev, "chan %d set tx tdm slot failed (%d)\n",
693 					chan, ret);
694 				return ret;
695 			}
696 			chan++;
697 		}
698 		mask >>= 1;
699 		slot++;
700 	}
701 	if (mask) {
702 		dev_err(dai->dev, "too much tx slots defined (mask = 0x%x) support max %d\n",
703 			tx_mask, PEB2466_NB_CHANNEL);
704 		return -EINVAL;
705 	}
706 	peb2466->max_chan_playback = chan;
707 
708 	mask = rx_mask;
709 	slot = 0;
710 	chan = 0;
711 	while (mask && chan < PEB2466_NB_CHANNEL) {
712 		if (mask & 0x1) {
713 			ret = regmap_write(peb2466->regmap, PEB2466_CR4(chan), slot);
714 			if (ret) {
715 				dev_err(dai->dev, "chan %d set rx tdm slot failed (%d)\n",
716 					chan, ret);
717 				return ret;
718 			}
719 			chan++;
720 		}
721 		mask >>= 1;
722 		slot++;
723 	}
724 	if (mask) {
725 		dev_err(dai->dev, "too much rx slots defined (mask = 0x%x) support max %d\n",
726 			rx_mask, PEB2466_NB_CHANNEL);
727 		return -EINVAL;
728 	}
729 	peb2466->max_chan_capture = chan;
730 
731 	return 0;
732 }
733 
734 static int peb2466_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
735 {
736 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
737 	u8 xr6;
738 
739 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
740 	case SND_SOC_DAIFMT_DSP_A:
741 		xr6 = PEB2466_XR6_PCM_OFFSET(1);
742 		break;
743 	case SND_SOC_DAIFMT_DSP_B:
744 		xr6 = PEB2466_XR6_PCM_OFFSET(0);
745 		break;
746 	default:
747 		dev_err(dai->dev, "Unsupported format 0x%x\n",
748 			fmt & SND_SOC_DAIFMT_FORMAT_MASK);
749 		return -EINVAL;
750 	}
751 	return regmap_write(peb2466->regmap, PEB2466_XR6, xr6);
752 }
753 
754 static int peb2466_dai_hw_params(struct snd_pcm_substream *substream,
755 				 struct snd_pcm_hw_params *params,
756 				 struct snd_soc_dai *dai)
757 {
758 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
759 	unsigned int ch;
760 	int ret;
761 	u8 cr1;
762 
763 	switch (params_format(params)) {
764 	case SNDRV_PCM_FORMAT_MU_LAW:
765 		cr1 = PEB2466_CR1_LAW_MULAW;
766 		break;
767 	case SNDRV_PCM_FORMAT_A_LAW:
768 		cr1 = PEB2466_CR1_LAW_ALAW;
769 		break;
770 	default:
771 		dev_err(&peb2466->spi->dev, "Unsupported format 0x%x\n",
772 			params_format(params));
773 		return -EINVAL;
774 	}
775 
776 	for (ch = 0; ch < PEB2466_NB_CHANNEL; ch++) {
777 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR1(ch),
778 					 PEB2466_CR1_LAW_MASK, cr1);
779 		if (ret)
780 			return ret;
781 	}
782 
783 	return 0;
784 }
785 
786 static const unsigned int peb2466_sample_bits[] = {8};
787 
788 static struct snd_pcm_hw_constraint_list peb2466_sample_bits_constr = {
789 	.list = peb2466_sample_bits,
790 	.count = ARRAY_SIZE(peb2466_sample_bits),
791 };
792 
793 static int peb2466_dai_startup(struct snd_pcm_substream *substream,
794 			       struct snd_soc_dai *dai)
795 {
796 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
797 	unsigned int max_ch;
798 	int ret;
799 
800 	max_ch = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
801 		peb2466->max_chan_playback : peb2466->max_chan_capture;
802 
803 	/*
804 	 * Disable stream support (min = 0, max = 0) if no timeslots were
805 	 * configured.
806 	 */
807 	ret = snd_pcm_hw_constraint_minmax(substream->runtime,
808 					   SNDRV_PCM_HW_PARAM_CHANNELS,
809 					   max_ch ? 1 : 0, max_ch);
810 	if (ret < 0)
811 		return ret;
812 
813 	return snd_pcm_hw_constraint_list(substream->runtime, 0,
814 					  SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
815 					  &peb2466_sample_bits_constr);
816 }
817 
818 static const u64 peb2466_dai_formats[] = {
819 	SND_SOC_POSSIBLE_DAIFMT_DSP_A	|
820 	SND_SOC_POSSIBLE_DAIFMT_DSP_B,
821 };
822 
823 static const struct snd_soc_dai_ops peb2466_dai_ops = {
824 	.startup = peb2466_dai_startup,
825 	.hw_params = peb2466_dai_hw_params,
826 	.set_tdm_slot = peb2466_dai_set_tdm_slot,
827 	.set_fmt = peb2466_dai_set_fmt,
828 	.auto_selectable_formats     = peb2466_dai_formats,
829 	.num_auto_selectable_formats = ARRAY_SIZE(peb2466_dai_formats),
830 };
831 
832 static struct snd_soc_dai_driver peb2466_dai_driver = {
833 	.name = "peb2466",
834 	.playback = {
835 		.stream_name = "Playback",
836 		.channels_min = 1,
837 		.channels_max = PEB2466_NB_CHANNEL,
838 		.rates = SNDRV_PCM_RATE_8000,
839 		.formats = SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
840 	},
841 	.capture = {
842 		.stream_name = "Capture",
843 		.channels_min = 1,
844 		.channels_max = PEB2466_NB_CHANNEL,
845 		.rates = SNDRV_PCM_RATE_8000,
846 		.formats = SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
847 	},
848 	.ops = &peb2466_dai_ops,
849 };
850 
851 static int peb2466_reset_audio(struct peb2466 *peb2466)
852 {
853 	static const struct reg_sequence reg_reset[] = {
854 		{  .reg = PEB2466_XR6,    .def = 0x00 },
855 
856 		{  .reg = PEB2466_CR5(0), .def = 0x00 },
857 		{  .reg = PEB2466_CR4(0), .def = 0x00 },
858 		{  .reg = PEB2466_CR3(0), .def = 0x00 },
859 		{  .reg = PEB2466_CR2(0), .def = 0x00 },
860 		{  .reg = PEB2466_CR1(0), .def = 0x00 },
861 		{  .reg = PEB2466_CR0(0), .def = PEB2466_CR0_IMR1 },
862 
863 		{  .reg = PEB2466_CR5(1), .def = 0x00 },
864 		{  .reg = PEB2466_CR4(1), .def = 0x00 },
865 		{  .reg = PEB2466_CR3(1), .def = 0x00 },
866 		{  .reg = PEB2466_CR2(1), .def = 0x00 },
867 		{  .reg = PEB2466_CR1(1), .def = 0x00 },
868 		{  .reg = PEB2466_CR0(1), .def = PEB2466_CR0_IMR1 },
869 
870 		{  .reg = PEB2466_CR5(2), .def = 0x00 },
871 		{  .reg = PEB2466_CR4(2), .def = 0x00 },
872 		{  .reg = PEB2466_CR3(2), .def = 0x00 },
873 		{  .reg = PEB2466_CR2(2), .def = 0x00 },
874 		{  .reg = PEB2466_CR1(2), .def = 0x00 },
875 		{  .reg = PEB2466_CR0(2), .def = PEB2466_CR0_IMR1 },
876 
877 		{  .reg = PEB2466_CR5(3), .def = 0x00 },
878 		{  .reg = PEB2466_CR4(3), .def = 0x00 },
879 		{  .reg = PEB2466_CR3(3), .def = 0x00 },
880 		{  .reg = PEB2466_CR2(3), .def = 0x00 },
881 		{  .reg = PEB2466_CR1(3), .def = 0x00 },
882 		{  .reg = PEB2466_CR0(3), .def = PEB2466_CR0_IMR1 },
883 	};
884 	static const u8 imr1_p1[8] = {0x00, 0x90, 0x09, 0x00, 0x90, 0x09, 0x00, 0x00};
885 	static const u8 imr1_p2[8] = {0x7F, 0xFF, 0x00, 0x00, 0x90, 0x14, 0x40, 0x08};
886 	static const u8 zero[8] = {0};
887 	int ret;
888 	int i;
889 
890 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
891 		peb2466->ch[i].tg1_freq_item = PEB2466_TONE_1000HZ;
892 		peb2466->ch[i].tg2_freq_item = PEB2466_TONE_1000HZ;
893 
894 		/*
895 		 * Even if not used, disabling IM/R1 filter is not recommended.
896 		 * Instead, we must configure it with default coefficients and
897 		 * enable it.
898 		 * The filter will be enabled right after (in the following
899 		 * regmap_multi_reg_write() call).
900 		 */
901 		ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P1(i), imr1_p1, 8);
902 		if (ret)
903 			return ret;
904 		ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P2(i), imr1_p2, 8);
905 		if (ret)
906 			return ret;
907 
908 		/* Set all other filters coefficients to zero */
909 		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P1(i), zero, 8);
910 		if (ret)
911 			return ret;
912 		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P2(i), zero, 8);
913 		if (ret)
914 			return ret;
915 		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P3(i), zero, 8);
916 		if (ret)
917 			return ret;
918 		ret = peb2466_write_buf(peb2466, PEB2466_FRX_FILTER(i), zero, 8);
919 		if (ret)
920 			return ret;
921 		ret = peb2466_write_buf(peb2466, PEB2466_FRR_FILTER(i), zero, 8);
922 		if (ret)
923 			return ret;
924 		ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i), zero, 4);
925 		if (ret)
926 			return ret;
927 		ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i), zero, 4);
928 		if (ret)
929 			return ret;
930 	}
931 
932 	return regmap_multi_reg_write(peb2466->regmap, reg_reset, ARRAY_SIZE(reg_reset));
933 }
934 
935 static int peb2466_fw_parse_thfilter(struct snd_soc_component *component,
936 				     u16 tag, u32 lng, const u8 *data)
937 {
938 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
939 	u8 mask;
940 	int ret;
941 	int i;
942 
943 	dev_info(component->dev, "fw TH filter: mask %x, %*phN\n", *data,
944 		 lng - 1, data + 1);
945 
946 	/*
947 	 * TH_FILTER TLV data:
948 	 *   - @0  1 byte:  Chan mask (bit set means related channel is concerned)
949 	 *   - @1  8 bytes: TH-Filter coefficients part1
950 	 *   - @9  8 bytes: TH-Filter coefficients part2
951 	 *   - @17 8 bytes: TH-Filter coefficients part3
952 	 */
953 	mask = *data;
954 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
955 		if (!(mask & (1 << i)))
956 			continue;
957 
958 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
959 					 PEB2466_CR0_TH, 0);
960 		if (ret)
961 			return ret;
962 
963 		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P1(i), data + 1, 8);
964 		if (ret)
965 			return ret;
966 
967 		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P2(i), data + 9, 8);
968 		if (ret)
969 			return ret;
970 
971 		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P3(i), data + 17, 8);
972 		if (ret)
973 			return ret;
974 
975 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
976 					 PEB2466_CR0_TH | PEB2466_CR0_THSEL_MASK,
977 					 PEB2466_CR0_TH | PEB2466_CR0_THSEL(i));
978 		if (ret)
979 			return ret;
980 	}
981 	return 0;
982 }
983 
984 static int peb2466_fw_parse_imr1filter(struct snd_soc_component *component,
985 				       u16 tag, u32 lng, const u8 *data)
986 {
987 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
988 	u8 mask;
989 	int ret;
990 	int i;
991 
992 	dev_info(component->dev, "fw IM/R1 filter: mask %x, %*phN\n", *data,
993 		 lng - 1, data + 1);
994 
995 	/*
996 	 * IMR1_FILTER TLV data:
997 	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
998 	 *   - @1 8 bytes: IM/R1-Filter coefficients part1
999 	 *   - @9 8 bytes: IM/R1-Filter coefficients part2
1000 	 */
1001 	mask = *data;
1002 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1003 		if (!(mask & (1 << i)))
1004 			continue;
1005 
1006 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1007 					 PEB2466_CR0_IMR1, 0);
1008 		if (ret)
1009 			return ret;
1010 
1011 		ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P1(i), data + 1, 8);
1012 		if (ret)
1013 			return ret;
1014 
1015 		ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P2(i), data + 9, 8);
1016 		if (ret)
1017 			return ret;
1018 
1019 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1020 					 PEB2466_CR0_IMR1, PEB2466_CR0_IMR1);
1021 		if (ret)
1022 			return ret;
1023 	}
1024 	return 0;
1025 }
1026 
1027 static int peb2466_fw_parse_frxfilter(struct snd_soc_component *component,
1028 				      u16 tag, u32 lng, const u8 *data)
1029 {
1030 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1031 	u8 mask;
1032 	int ret;
1033 	int i;
1034 
1035 	dev_info(component->dev, "fw FRX filter: mask %x, %*phN\n", *data,
1036 		 lng - 1, data + 1);
1037 
1038 	/*
1039 	 * FRX_FILTER TLV data:
1040 	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1041 	 *   - @1 8 bytes: FRX-Filter coefficients
1042 	 */
1043 	mask = *data;
1044 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1045 		if (!(mask & (1 << i)))
1046 			continue;
1047 
1048 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1049 					 PEB2466_CR0_FRX, 0);
1050 		if (ret)
1051 			return ret;
1052 
1053 		ret = peb2466_write_buf(peb2466, PEB2466_FRX_FILTER(i), data + 1, 8);
1054 		if (ret)
1055 			return ret;
1056 
1057 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1058 					 PEB2466_CR0_FRX, PEB2466_CR0_FRX);
1059 		if (ret)
1060 			return ret;
1061 	}
1062 	return 0;
1063 }
1064 
1065 static int peb2466_fw_parse_frrfilter(struct snd_soc_component *component,
1066 				      u16 tag, u32 lng, const u8 *data)
1067 {
1068 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1069 	u8 mask;
1070 	int ret;
1071 	int i;
1072 
1073 	dev_info(component->dev, "fw FRR filter: mask %x, %*phN\n", *data,
1074 		 lng - 1, data + 1);
1075 
1076 	/*
1077 	 * FRR_FILTER TLV data:
1078 	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1079 	 *   - @1 8 bytes: FRR-Filter coefficients
1080 	 */
1081 	mask = *data;
1082 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1083 		if (!(mask & (1 << i)))
1084 			continue;
1085 
1086 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1087 					 PEB2466_CR0_FRR, 0);
1088 		if (ret)
1089 			return ret;
1090 
1091 		ret = peb2466_write_buf(peb2466, PEB2466_FRR_FILTER(i), data + 1, 8);
1092 		if (ret)
1093 			return ret;
1094 
1095 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1096 					 PEB2466_CR0_FRR, PEB2466_CR0_FRR);
1097 		if (ret)
1098 			return ret;
1099 	}
1100 	return 0;
1101 }
1102 
1103 static int peb2466_fw_parse_axfilter(struct snd_soc_component *component,
1104 				     u16 tag, u32 lng, const u8 *data)
1105 {
1106 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1107 	u8 mask;
1108 	int ret;
1109 	int i;
1110 
1111 	dev_info(component->dev, "fw AX filter: mask %x, %*phN\n", *data,
1112 		 lng - 1, data + 1);
1113 
1114 	/*
1115 	 * AX_FILTER TLV data:
1116 	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1117 	 *   - @1 4 bytes: AX-Filter coefficients
1118 	 */
1119 	mask = *data;
1120 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1121 		if (!(mask & (1 << i)))
1122 			continue;
1123 
1124 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1125 					 PEB2466_CR0_AX, 0);
1126 		if (ret)
1127 			return ret;
1128 
1129 		ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i), data + 1, 4);
1130 		if (ret)
1131 			return ret;
1132 
1133 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1134 					 PEB2466_CR0_AX, PEB2466_CR0_AX);
1135 		if (ret)
1136 			return ret;
1137 	}
1138 	return 0;
1139 }
1140 
1141 static int peb2466_fw_parse_arfilter(struct snd_soc_component *component,
1142 				     u16 tag, u32 lng, const u8 *data)
1143 {
1144 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1145 	u8 mask;
1146 	int ret;
1147 	int i;
1148 
1149 	dev_info(component->dev, "fw AR filter: mask %x, %*phN\n", *data,
1150 		 lng - 1, data + 1);
1151 
1152 	/*
1153 	 * AR_FILTER TLV data:
1154 	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1155 	 *   - @1 4 bytes: AR-Filter coefficients
1156 	 */
1157 	mask = *data;
1158 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1159 		if (!(mask & (1 << i)))
1160 			continue;
1161 
1162 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1163 					 PEB2466_CR0_AR, 0);
1164 		if (ret)
1165 			return ret;
1166 
1167 		ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i), data + 1, 4);
1168 		if (ret)
1169 			return ret;
1170 
1171 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1172 					 PEB2466_CR0_AR, PEB2466_CR0_AR);
1173 		if (ret)
1174 			return ret;
1175 	}
1176 	return 0;
1177 }
1178 
1179 static const char * const peb2466_ax_ctrl_names[] = {
1180 	"ADC0 Capture Volume",
1181 	"ADC1 Capture Volume",
1182 	"ADC2 Capture Volume",
1183 	"ADC3 Capture Volume",
1184 };
1185 
1186 static int peb2466_fw_parse_axtable(struct snd_soc_component *component,
1187 				    u16 tag, u32 lng, const u8 *data)
1188 {
1189 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1190 	struct peb2466_lkup_ctrl *lkup_ctrl;
1191 	struct peb2466_lookup *lookup;
1192 	u8 (*table)[4];
1193 	u32 table_size;
1194 	u32 init_index;
1195 	s32 min_val;
1196 	s32 step;
1197 	u8 mask;
1198 	int ret;
1199 	int i;
1200 
1201 	/*
1202 	 * AX_TABLE TLV data:
1203 	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1204 	 *   - @1 32bits signed: Min table value in centi dB (MinVal)
1205 	 *                       ie -300 means -3.0 dB
1206 	 *   - @5 32bits signed: Step from on item to other item in centi dB (Step)
1207 	 *                       ie 25 means 0.25 dB)
1208 	 *   - @9 32bits unsigned: Item index in the table to use for the initial
1209 	 *                         value
1210 	 *   - @13 N*4 bytes: Table composed of 4 bytes items.
1211 	 *                    Each item correspond to an AX filter value.
1212 	 *
1213 	 * The conversion from raw value item in the table to/from the value in
1214 	 * dB is: Raw value at index i <-> (MinVal + i * Step) in centi dB.
1215 	 */
1216 
1217 	/* Check Lng and extract the table size. */
1218 	if (lng < 13 || ((lng - 13) % 4)) {
1219 		dev_err(component->dev, "fw AX table lng %u invalid\n", lng);
1220 		return -EINVAL;
1221 	}
1222 	table_size = lng - 13;
1223 
1224 	min_val = get_unaligned_be32(data + 1);
1225 	step = get_unaligned_be32(data + 5);
1226 	init_index = get_unaligned_be32(data + 9);
1227 	if (init_index >= (table_size / 4)) {
1228 		dev_err(component->dev, "fw AX table index %u out of table[%u]\n",
1229 			init_index, table_size / 4);
1230 		return -EINVAL;
1231 	}
1232 
1233 	dev_info(component->dev,
1234 		 "fw AX table: mask %x, min %d, step %d, %u items, tbl[%u] %*phN\n",
1235 		 *data, min_val, step, table_size / 4, init_index,
1236 		 4, data + 13 + (init_index * 4));
1237 
1238 	BUILD_BUG_ON(sizeof(*table) != 4);
1239 	table = devm_kzalloc(&peb2466->spi->dev, table_size, GFP_KERNEL);
1240 	if (!table)
1241 		return -ENOMEM;
1242 	memcpy(table, data + 13, table_size);
1243 
1244 	mask = *data;
1245 	BUILD_BUG_ON(ARRAY_SIZE(peb2466_ax_ctrl_names) != ARRAY_SIZE(peb2466->ch));
1246 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1247 		if (!(mask & (1 << i)))
1248 			continue;
1249 
1250 		lookup = &peb2466->ch[i].ax_lookup;
1251 		lookup->table = table;
1252 		lookup->count = table_size / 4;
1253 
1254 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1255 					 PEB2466_CR0_AX, 0);
1256 		if (ret)
1257 			return ret;
1258 
1259 		ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i),
1260 					lookup->table[init_index], 4);
1261 		if (ret)
1262 			return ret;
1263 
1264 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1265 					 PEB2466_CR0_AX, PEB2466_CR0_AX);
1266 		if (ret)
1267 			return ret;
1268 
1269 		lkup_ctrl = &peb2466->ch[i].ax_lkup_ctrl;
1270 		lkup_ctrl->lookup = lookup;
1271 		lkup_ctrl->reg = PEB2466_AX_FILTER(i);
1272 		lkup_ctrl->index = init_index;
1273 
1274 		ret = peb2466_add_lkup_ctrl(component, lkup_ctrl,
1275 					    peb2466_ax_ctrl_names[i],
1276 					    min_val, step);
1277 		if (ret)
1278 			return ret;
1279 	}
1280 	return 0;
1281 }
1282 
1283 static const char * const peb2466_ar_ctrl_names[] = {
1284 	"DAC0 Playback Volume",
1285 	"DAC1 Playback Volume",
1286 	"DAC2 Playback Volume",
1287 	"DAC3 Playback Volume",
1288 };
1289 
1290 static int peb2466_fw_parse_artable(struct snd_soc_component *component,
1291 				    u16 tag, u32 lng, const u8 *data)
1292 {
1293 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1294 	struct peb2466_lkup_ctrl *lkup_ctrl;
1295 	struct peb2466_lookup *lookup;
1296 	u8 (*table)[4];
1297 	u32 table_size;
1298 	u32 init_index;
1299 	s32 min_val;
1300 	s32 step;
1301 	u8 mask;
1302 	int ret;
1303 	int i;
1304 
1305 	/*
1306 	 * AR_TABLE TLV data:
1307 	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1308 	 *   - @1 32bits signed: Min table value in centi dB (MinVal)
1309 	 *                       ie -300 means -3.0 dB
1310 	 *   - @5 32bits signed: Step from on item to other item in centi dB (Step)
1311 	 *                       ie 25 means 0.25 dB)
1312 	 *   - @9 32bits unsigned: Item index in the table to use for the initial
1313 	 *                         value
1314 	 *   - @13 N*4 bytes: Table composed of 4 bytes items.
1315 	 *                    Each item correspond to an AR filter value.
1316 	 *
1317 	 * The conversion from raw value item in the table to/from the value in
1318 	 * dB is: Raw value at index i <-> (MinVal + i * Step) in centi dB.
1319 	 */
1320 
1321 	/* Check Lng and extract the table size. */
1322 	if (lng < 13 || ((lng - 13) % 4)) {
1323 		dev_err(component->dev, "fw AR table lng %u invalid\n", lng);
1324 		return -EINVAL;
1325 	}
1326 	table_size = lng - 13;
1327 
1328 	min_val = get_unaligned_be32(data + 1);
1329 	step = get_unaligned_be32(data + 5);
1330 	init_index = get_unaligned_be32(data + 9);
1331 	if (init_index >= (table_size / 4)) {
1332 		dev_err(component->dev, "fw AR table index %u out of table[%u]\n",
1333 			init_index, table_size / 4);
1334 		return -EINVAL;
1335 	}
1336 
1337 	dev_info(component->dev,
1338 		 "fw AR table: mask %x, min %d, step %d, %u items, tbl[%u] %*phN\n",
1339 		 *data, min_val, step, table_size / 4, init_index,
1340 		 4, data + 13 + (init_index * 4));
1341 
1342 	BUILD_BUG_ON(sizeof(*table) != 4);
1343 	table = devm_kzalloc(&peb2466->spi->dev, table_size, GFP_KERNEL);
1344 	if (!table)
1345 		return -ENOMEM;
1346 	memcpy(table, data + 13, table_size);
1347 
1348 	mask = *data;
1349 	BUILD_BUG_ON(ARRAY_SIZE(peb2466_ar_ctrl_names) != ARRAY_SIZE(peb2466->ch));
1350 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1351 		if (!(mask & (1 << i)))
1352 			continue;
1353 
1354 		lookup = &peb2466->ch[i].ar_lookup;
1355 		lookup->table = table;
1356 		lookup->count = table_size / 4;
1357 
1358 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1359 					 PEB2466_CR0_AR, 0);
1360 		if (ret)
1361 			return ret;
1362 
1363 		ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i),
1364 					lookup->table[init_index], 4);
1365 		if (ret)
1366 			return ret;
1367 
1368 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1369 					 PEB2466_CR0_AR, PEB2466_CR0_AR);
1370 		if (ret)
1371 			return ret;
1372 
1373 		lkup_ctrl = &peb2466->ch[i].ar_lkup_ctrl;
1374 		lkup_ctrl->lookup = lookup;
1375 		lkup_ctrl->reg = PEB2466_AR_FILTER(i);
1376 		lkup_ctrl->index = init_index;
1377 
1378 		ret = peb2466_add_lkup_ctrl(component, lkup_ctrl,
1379 					    peb2466_ar_ctrl_names[i],
1380 					    min_val, step);
1381 		if (ret)
1382 			return ret;
1383 	}
1384 	return 0;
1385 }
1386 
1387 struct peb2466_fw_tag_def {
1388 	u16 tag;
1389 	u32 lng_min;
1390 	u32 lng_max;
1391 	int (*parse)(struct snd_soc_component *component,
1392 		     u16 tag, u32 lng, const u8 *data);
1393 };
1394 
1395 #define PEB2466_TAG_DEF_LNG_EQ(__tag, __lng, __parse) { \
1396 	.tag = __tag,		\
1397 	.lng_min = __lng,	\
1398 	.lng_max = __lng,	\
1399 	.parse = __parse,	\
1400 }
1401 
1402 #define PEB2466_TAG_DEF_LNG_MIN(__tag, __lng_min, __parse) { \
1403 	.tag = __tag,		\
1404 	.lng_min = __lng_min,	\
1405 	.lng_max = U32_MAX,	\
1406 	.parse = __parse,	\
1407 }
1408 
1409 static const struct peb2466_fw_tag_def peb2466_fw_tag_defs[] = {
1410 	/* TH FILTER */
1411 	PEB2466_TAG_DEF_LNG_EQ(0x0001, 1 + 3 * 8, peb2466_fw_parse_thfilter),
1412 	/* IMR1 FILTER */
1413 	PEB2466_TAG_DEF_LNG_EQ(0x0002, 1 + 2 * 8, peb2466_fw_parse_imr1filter),
1414 	/* FRX FILTER */
1415 	PEB2466_TAG_DEF_LNG_EQ(0x0003, 1 + 8, peb2466_fw_parse_frxfilter),
1416 	/* FRR FILTER */
1417 	PEB2466_TAG_DEF_LNG_EQ(0x0004, 1 + 8, peb2466_fw_parse_frrfilter),
1418 	/* AX FILTER */
1419 	PEB2466_TAG_DEF_LNG_EQ(0x0005, 1 + 4, peb2466_fw_parse_axfilter),
1420 	/* AR FILTER */
1421 	PEB2466_TAG_DEF_LNG_EQ(0x0006, 1 + 4, peb2466_fw_parse_arfilter),
1422 	/* AX TABLE */
1423 	PEB2466_TAG_DEF_LNG_MIN(0x0105, 1 + 3 * 4, peb2466_fw_parse_axtable),
1424 	/* AR TABLE */
1425 	PEB2466_TAG_DEF_LNG_MIN(0x0106, 1 + 3 * 4, peb2466_fw_parse_artable),
1426 };
1427 
1428 static const struct peb2466_fw_tag_def *peb2466_fw_get_tag_def(u16 tag)
1429 {
1430 	int i;
1431 
1432 	for (i = 0; i < ARRAY_SIZE(peb2466_fw_tag_defs); i++) {
1433 		if (peb2466_fw_tag_defs[i].tag == tag)
1434 			return &peb2466_fw_tag_defs[i];
1435 	}
1436 	return NULL;
1437 }
1438 
1439 static int peb2466_fw_parse(struct snd_soc_component *component,
1440 			    const u8 *data, size_t size)
1441 {
1442 	const struct peb2466_fw_tag_def *tag_def;
1443 	size_t left;
1444 	const u8 *buf;
1445 	u16 val16;
1446 	u16 tag;
1447 	u32 lng;
1448 	int ret;
1449 
1450 	/*
1451 	 * Coefficients firmware binary structure (16bits and 32bits are
1452 	 * big-endian values).
1453 	 *
1454 	 * @0, 16bits: Magic (0x2466)
1455 	 * @2, 16bits: Version (0x0100 for version 1.0)
1456 	 * @4, 2+4+N bytes: TLV block
1457 	 * @4+(2+4+N) bytes: Next TLV block
1458 	 * ...
1459 	 *
1460 	 * Detail of a TLV block:
1461 	 *   @0, 16bits: Tag
1462 	 *   @2, 32bits: Lng
1463 	 *   @6, lng bytes: Data
1464 	 *
1465 	 * The detail the Data for a given TLV Tag is provided in the related
1466 	 * parser.
1467 	 */
1468 
1469 	left = size;
1470 	buf = data;
1471 
1472 	if (left < 4) {
1473 		dev_err(component->dev, "fw size %zu, exp at least 4\n", left);
1474 		return -EINVAL;
1475 	}
1476 
1477 	/* Check magic */
1478 	val16 = get_unaligned_be16(buf);
1479 	if (val16 != 0x2466) {
1480 		dev_err(component->dev, "fw magic 0x%04x exp 0x2466\n", val16);
1481 		return -EINVAL;
1482 	}
1483 	buf += 2;
1484 	left -= 2;
1485 
1486 	/* Check version */
1487 	val16 = get_unaligned_be16(buf);
1488 	if (val16 != 0x0100) {
1489 		dev_err(component->dev, "fw magic 0x%04x exp 0x0100\n", val16);
1490 		return -EINVAL;
1491 	}
1492 	buf += 2;
1493 	left -= 2;
1494 
1495 	while (left) {
1496 		if (left < 6) {
1497 			dev_err(component->dev, "fw %td/%zu left %zu, exp at least 6\n",
1498 				buf - data, size, left);
1499 			return -EINVAL;
1500 		}
1501 		/* Check tag and lng */
1502 		tag = get_unaligned_be16(buf);
1503 		lng = get_unaligned_be32(buf + 2);
1504 		tag_def = peb2466_fw_get_tag_def(tag);
1505 		if (!tag_def) {
1506 			dev_err(component->dev, "fw %td/%zu tag 0x%04x unknown\n",
1507 				buf - data, size, tag);
1508 			return -EINVAL;
1509 		}
1510 		if (lng < tag_def->lng_min || lng > tag_def->lng_max) {
1511 			dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u, exp [%u;%u]\n",
1512 				buf - data, size, tag, lng, tag_def->lng_min, tag_def->lng_max);
1513 			return -EINVAL;
1514 		}
1515 		buf += 6;
1516 		left -= 6;
1517 		if (left < lng) {
1518 			dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u, left %zu\n",
1519 				buf - data, size, tag, lng, left);
1520 			return -EINVAL;
1521 		}
1522 
1523 		/* TLV block is valid -> parse the data part */
1524 		ret = tag_def->parse(component, tag, lng, buf);
1525 		if (ret) {
1526 			dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u parse failed\n",
1527 				buf - data, size, tag, lng);
1528 			return ret;
1529 		}
1530 
1531 		buf += lng;
1532 		left -= lng;
1533 	}
1534 	return 0;
1535 }
1536 
1537 static int peb2466_load_coeffs(struct snd_soc_component *component, const char *fw_name)
1538 {
1539 	const struct firmware *fw;
1540 	int ret;
1541 
1542 	ret = request_firmware(&fw, fw_name, component->dev);
1543 	if (ret)
1544 		return ret;
1545 
1546 	ret = peb2466_fw_parse(component, fw->data, fw->size);
1547 	release_firmware(fw);
1548 
1549 	return ret;
1550 }
1551 
1552 static int peb2466_component_probe(struct snd_soc_component *component)
1553 {
1554 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1555 	const char *firmware_name;
1556 	int ret;
1557 
1558 	/* reset peb2466 audio part */
1559 	ret = peb2466_reset_audio(peb2466);
1560 	if (ret)
1561 		return ret;
1562 
1563 	ret = of_property_read_string(peb2466->spi->dev.of_node,
1564 				      "firmware-name", &firmware_name);
1565 	if (ret)
1566 		return (ret == -EINVAL) ? 0 : ret;
1567 
1568 	return peb2466_load_coeffs(component, firmware_name);
1569 }
1570 
1571 static const struct snd_soc_component_driver peb2466_component_driver = {
1572 	.probe			= peb2466_component_probe,
1573 	.controls		= peb2466_controls,
1574 	.num_controls		= ARRAY_SIZE(peb2466_controls),
1575 	.dapm_widgets		= peb2466_dapm_widgets,
1576 	.num_dapm_widgets	= ARRAY_SIZE(peb2466_dapm_widgets),
1577 	.dapm_routes		= peb2466_dapm_routes,
1578 	.num_dapm_routes	= ARRAY_SIZE(peb2466_dapm_routes),
1579 	.endianness		= 1,
1580 };
1581 
1582 /*
1583  * The mapping used for the relationship between the gpio offset and the
1584  * physical pin is the following:
1585  *
1586  * offset     pin
1587  *      0     SI1_0
1588  *      1     SI1_1
1589  *      2     SI2_0
1590  *      3     SI2_1
1591  *      4     SI3_0
1592  *      5     SI3_1
1593  *      6     SI4_0
1594  *      7     SI4_1
1595  *      8     SO1_0
1596  *      9     SO1_1
1597  *     10     SO2_0
1598  *     11     SO2_1
1599  *     12     SO3_0
1600  *     13     SO3_1
1601  *     14     SO4_0
1602  *     15     SO4_1
1603  *     16     SB1_0
1604  *     17     SB1_1
1605  *     18     SB2_0
1606  *     19     SB2_1
1607  *     20     SB3_0
1608  *     21     SB3_1
1609  *     22     SB4_0
1610  *     23     SB4_1
1611  *     24     SB1_2
1612  *     25     SB2_2
1613  *     26     SB3_2
1614  *     27     SB4_2
1615  */
1616 
1617 static int peb2466_chip_gpio_offset_to_data_regmask(unsigned int offset,
1618 						    unsigned int *xr_reg,
1619 						    unsigned int *mask)
1620 {
1621 	if (offset < 16) {
1622 		/*
1623 		 * SIx_{0,1} and SOx_{0,1}
1624 		 *   Read accesses read SIx_{0,1} values
1625 		 *   Write accesses write SOx_{0,1} values
1626 		 */
1627 		*xr_reg = PEB2466_XR0;
1628 		*mask = (1 << (offset % 8));
1629 		return 0;
1630 	}
1631 	if (offset < 24) {
1632 		/* SBx_{0,1} */
1633 		*xr_reg = PEB2466_XR1;
1634 		*mask = (1 << (offset - 16));
1635 		return 0;
1636 	}
1637 	if (offset < 28) {
1638 		/* SBx_2 */
1639 		*xr_reg = PEB2466_XR3;
1640 		*mask = (1 << (offset - 24 + 4));
1641 		return 0;
1642 	}
1643 	return -EINVAL;
1644 }
1645 
1646 static int peb2466_chip_gpio_offset_to_dir_regmask(unsigned int offset,
1647 						   unsigned int *xr_reg,
1648 						   unsigned int *mask)
1649 {
1650 	if (offset < 16) {
1651 		/* Direction cannot be changed for these GPIOs */
1652 		return -EINVAL;
1653 	}
1654 	if (offset < 24) {
1655 		*xr_reg = PEB2466_XR2;
1656 		*mask = (1 << (offset - 16));
1657 		return 0;
1658 	}
1659 	if (offset < 28) {
1660 		*xr_reg = PEB2466_XR3;
1661 		*mask = (1 << (offset - 24));
1662 		return 0;
1663 	}
1664 	return -EINVAL;
1665 }
1666 
1667 static unsigned int *peb2466_chip_gpio_get_cache(struct peb2466 *peb2466,
1668 						 unsigned int xr_reg)
1669 {
1670 	unsigned int *cache;
1671 
1672 	switch (xr_reg) {
1673 	case PEB2466_XR0:
1674 		cache = &peb2466->gpio.cache.xr0;
1675 		break;
1676 	case PEB2466_XR1:
1677 		cache = &peb2466->gpio.cache.xr1;
1678 		break;
1679 	case PEB2466_XR2:
1680 		cache = &peb2466->gpio.cache.xr2;
1681 		break;
1682 	case PEB2466_XR3:
1683 		cache = &peb2466->gpio.cache.xr3;
1684 		break;
1685 	default:
1686 		cache = NULL;
1687 		break;
1688 	}
1689 	return cache;
1690 }
1691 
1692 static int peb2466_chip_gpio_update_bits(struct peb2466 *peb2466, unsigned int xr_reg,
1693 					 unsigned int mask, unsigned int val)
1694 {
1695 	unsigned int tmp;
1696 	unsigned int *cache;
1697 	int ret;
1698 
1699 	/*
1700 	 * Read and write accesses use different peb2466 internal signals (input
1701 	 * signals on reads and output signals on writes). regmap_update_bits
1702 	 * cannot be used to read/modify/write the value.
1703 	 * So, a specific cache value is used.
1704 	 */
1705 
1706 	mutex_lock(&peb2466->gpio.lock);
1707 
1708 	cache = peb2466_chip_gpio_get_cache(peb2466, xr_reg);
1709 	if (!cache) {
1710 		ret = -EINVAL;
1711 		goto end;
1712 	}
1713 
1714 	tmp = *cache;
1715 	tmp &= ~mask;
1716 	tmp |= val;
1717 
1718 	ret = regmap_write(peb2466->regmap, xr_reg, tmp);
1719 	if (ret)
1720 		goto end;
1721 
1722 	*cache = tmp;
1723 	ret = 0;
1724 
1725 end:
1726 	mutex_unlock(&peb2466->gpio.lock);
1727 	return ret;
1728 }
1729 
1730 static void peb2466_chip_gpio_set(struct gpio_chip *c, unsigned int offset, int val)
1731 {
1732 	struct peb2466 *peb2466 = gpiochip_get_data(c);
1733 	unsigned int xr_reg;
1734 	unsigned int mask;
1735 	int ret;
1736 
1737 	if (offset < 8) {
1738 		/*
1739 		 * SIx_{0,1} signals cannot be set and writing the related
1740 		 * register will change the SOx_{0,1} signals
1741 		 */
1742 		dev_warn(&peb2466->spi->dev, "cannot set gpio %d (read-only)\n",
1743 			 offset);
1744 		return;
1745 	}
1746 
1747 	ret = peb2466_chip_gpio_offset_to_data_regmask(offset, &xr_reg, &mask);
1748 	if (ret) {
1749 		dev_err(&peb2466->spi->dev, "cannot set gpio %d (%d)\n",
1750 			offset, ret);
1751 		return;
1752 	}
1753 
1754 	ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, val ? mask : 0);
1755 	if (ret) {
1756 		dev_err(&peb2466->spi->dev, "set gpio %d (0x%x, 0x%x) failed (%d)\n",
1757 			offset, xr_reg, mask, ret);
1758 	}
1759 }
1760 
1761 static int peb2466_chip_gpio_get(struct gpio_chip *c, unsigned int offset)
1762 {
1763 	struct peb2466 *peb2466 = gpiochip_get_data(c);
1764 	bool use_cache = false;
1765 	unsigned int *cache;
1766 	unsigned int xr_reg;
1767 	unsigned int mask;
1768 	unsigned int val;
1769 	int ret;
1770 
1771 	if (offset >= 8 && offset < 16) {
1772 		/*
1773 		 * SOx_{0,1} signals cannot be read. Reading the related
1774 		 * register will read the SIx_{0,1} signals.
1775 		 * Use the cache to get value;
1776 		 */
1777 		use_cache = true;
1778 	}
1779 
1780 	ret = peb2466_chip_gpio_offset_to_data_regmask(offset, &xr_reg, &mask);
1781 	if (ret) {
1782 		dev_err(&peb2466->spi->dev, "cannot get gpio %d (%d)\n",
1783 			offset, ret);
1784 		return -EINVAL;
1785 	}
1786 
1787 	if (use_cache) {
1788 		cache = peb2466_chip_gpio_get_cache(peb2466, xr_reg);
1789 		if (!cache)
1790 			return -EINVAL;
1791 		val = *cache;
1792 	} else {
1793 		ret = regmap_read(peb2466->regmap, xr_reg, &val);
1794 		if (ret) {
1795 			dev_err(&peb2466->spi->dev, "get gpio %d (0x%x, 0x%x) failed (%d)\n",
1796 				offset, xr_reg, mask, ret);
1797 			return ret;
1798 		}
1799 	}
1800 
1801 	return !!(val & mask);
1802 }
1803 
1804 static int peb2466_chip_get_direction(struct gpio_chip *c, unsigned int offset)
1805 {
1806 	struct peb2466 *peb2466 = gpiochip_get_data(c);
1807 	unsigned int xr_reg;
1808 	unsigned int mask;
1809 	unsigned int val;
1810 	int ret;
1811 
1812 	if (offset < 8) {
1813 		/* SIx_{0,1} */
1814 		return GPIO_LINE_DIRECTION_IN;
1815 	}
1816 	if (offset < 16) {
1817 		/* SOx_{0,1} */
1818 		return GPIO_LINE_DIRECTION_OUT;
1819 	}
1820 
1821 	ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask);
1822 	if (ret) {
1823 		dev_err(&peb2466->spi->dev, "cannot get gpio %d direction (%d)\n",
1824 			offset, ret);
1825 		return ret;
1826 	}
1827 
1828 	ret = regmap_read(peb2466->regmap, xr_reg, &val);
1829 	if (ret) {
1830 		dev_err(&peb2466->spi->dev, "get dir gpio %d (0x%x, 0x%x) failed (%d)\n",
1831 			offset, xr_reg, mask, ret);
1832 		return ret;
1833 	}
1834 
1835 	return val & mask ? GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1836 }
1837 
1838 static int peb2466_chip_direction_input(struct gpio_chip *c, unsigned int offset)
1839 {
1840 	struct peb2466 *peb2466 = gpiochip_get_data(c);
1841 	unsigned int xr_reg;
1842 	unsigned int mask;
1843 	int ret;
1844 
1845 	if (offset < 8) {
1846 		/* SIx_{0,1} */
1847 		return 0;
1848 	}
1849 	if (offset < 16) {
1850 		/* SOx_{0,1} */
1851 		return -EINVAL;
1852 	}
1853 
1854 	ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask);
1855 	if (ret) {
1856 		dev_err(&peb2466->spi->dev, "cannot set gpio %d direction (%d)\n",
1857 			offset, ret);
1858 		return ret;
1859 	}
1860 
1861 	ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, 0);
1862 	if (ret) {
1863 		dev_err(&peb2466->spi->dev, "Set dir in gpio %d (0x%x, 0x%x) failed (%d)\n",
1864 			offset, xr_reg, mask, ret);
1865 		return ret;
1866 	}
1867 
1868 	return 0;
1869 }
1870 
1871 static int peb2466_chip_direction_output(struct gpio_chip *c, unsigned int offset, int val)
1872 {
1873 	struct peb2466 *peb2466 = gpiochip_get_data(c);
1874 	unsigned int xr_reg;
1875 	unsigned int mask;
1876 	int ret;
1877 
1878 	if (offset < 8) {
1879 		/* SIx_{0,1} */
1880 		return -EINVAL;
1881 	}
1882 
1883 	peb2466_chip_gpio_set(c, offset, val);
1884 
1885 	if (offset < 16) {
1886 		/* SOx_{0,1} */
1887 		return 0;
1888 	}
1889 
1890 	ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask);
1891 	if (ret) {
1892 		dev_err(&peb2466->spi->dev, "cannot set gpio %d direction (%d)\n",
1893 			offset, ret);
1894 		return ret;
1895 	}
1896 
1897 	ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, mask);
1898 	if (ret) {
1899 		dev_err(&peb2466->spi->dev, "Set dir in gpio %d (0x%x, 0x%x) failed (%d)\n",
1900 			offset, xr_reg, mask, ret);
1901 		return ret;
1902 	}
1903 
1904 	return 0;
1905 }
1906 
1907 static int peb2466_reset_gpio(struct peb2466 *peb2466)
1908 {
1909 	static const struct reg_sequence reg_reset[] = {
1910 		/* Output pins at 0, input/output pins as input */
1911 		{  .reg = PEB2466_XR0, .def = 0 },
1912 		{  .reg = PEB2466_XR1, .def = 0 },
1913 		{  .reg = PEB2466_XR2, .def = 0 },
1914 		{  .reg = PEB2466_XR3, .def = 0 },
1915 	};
1916 
1917 	peb2466->gpio.cache.xr0 = 0;
1918 	peb2466->gpio.cache.xr1 = 0;
1919 	peb2466->gpio.cache.xr2 = 0;
1920 	peb2466->gpio.cache.xr3 = 0;
1921 
1922 	return regmap_multi_reg_write(peb2466->regmap, reg_reset, ARRAY_SIZE(reg_reset));
1923 }
1924 
1925 static int peb2466_gpio_init(struct peb2466 *peb2466)
1926 {
1927 	int ret;
1928 
1929 	mutex_init(&peb2466->gpio.lock);
1930 
1931 	ret = peb2466_reset_gpio(peb2466);
1932 	if (ret)
1933 		return ret;
1934 
1935 	peb2466->gpio.gpio_chip.owner = THIS_MODULE;
1936 	peb2466->gpio.gpio_chip.label = dev_name(&peb2466->spi->dev);
1937 	peb2466->gpio.gpio_chip.parent = &peb2466->spi->dev;
1938 	peb2466->gpio.gpio_chip.base = -1;
1939 	peb2466->gpio.gpio_chip.ngpio = 28;
1940 	peb2466->gpio.gpio_chip.get_direction = peb2466_chip_get_direction;
1941 	peb2466->gpio.gpio_chip.direction_input = peb2466_chip_direction_input;
1942 	peb2466->gpio.gpio_chip.direction_output = peb2466_chip_direction_output;
1943 	peb2466->gpio.gpio_chip.get = peb2466_chip_gpio_get;
1944 	peb2466->gpio.gpio_chip.set = peb2466_chip_gpio_set;
1945 	peb2466->gpio.gpio_chip.can_sleep = true;
1946 
1947 	return devm_gpiochip_add_data(&peb2466->spi->dev, &peb2466->gpio.gpio_chip,
1948 				      peb2466);
1949 }
1950 
1951 static int peb2466_spi_probe(struct spi_device *spi)
1952 {
1953 	struct peb2466 *peb2466;
1954 	unsigned long mclk_rate;
1955 	int ret;
1956 	u8 xr5;
1957 
1958 	spi->bits_per_word = 8;
1959 	ret = spi_setup(spi);
1960 	if (ret < 0)
1961 		return ret;
1962 
1963 	peb2466 = devm_kzalloc(&spi->dev, sizeof(*peb2466), GFP_KERNEL);
1964 	if (!peb2466)
1965 		return -ENOMEM;
1966 
1967 	peb2466->spi = spi;
1968 
1969 	peb2466->regmap = devm_regmap_init(&peb2466->spi->dev, NULL, peb2466,
1970 					   &peb2466_regmap_config);
1971 	if (IS_ERR(peb2466->regmap))
1972 		return PTR_ERR(peb2466->regmap);
1973 
1974 	peb2466->reset_gpio = devm_gpiod_get_optional(&peb2466->spi->dev,
1975 						      "reset", GPIOD_OUT_LOW);
1976 	if (IS_ERR(peb2466->reset_gpio))
1977 		return PTR_ERR(peb2466->reset_gpio);
1978 
1979 	peb2466->mclk = devm_clk_get_enabled(&peb2466->spi->dev, "mclk");
1980 	if (IS_ERR(peb2466->mclk))
1981 		return PTR_ERR(peb2466->mclk);
1982 
1983 	if (peb2466->reset_gpio) {
1984 		gpiod_set_value_cansleep(peb2466->reset_gpio, 1);
1985 		udelay(4);
1986 		gpiod_set_value_cansleep(peb2466->reset_gpio, 0);
1987 		udelay(4);
1988 	}
1989 
1990 	spi_set_drvdata(spi, peb2466);
1991 
1992 	mclk_rate = clk_get_rate(peb2466->mclk);
1993 	switch (mclk_rate) {
1994 	case 1536000:
1995 		xr5 = PEB2466_XR5_MCLK_1536;
1996 		break;
1997 	case 2048000:
1998 		xr5 = PEB2466_XR5_MCLK_2048;
1999 		break;
2000 	case 4096000:
2001 		xr5 = PEB2466_XR5_MCLK_4096;
2002 		break;
2003 	case 8192000:
2004 		xr5 = PEB2466_XR5_MCLK_8192;
2005 		break;
2006 	default:
2007 		dev_err(&peb2466->spi->dev, "Unsupported clock rate %lu\n",
2008 			mclk_rate);
2009 		ret = -EINVAL;
2010 		goto failed;
2011 	}
2012 	ret = regmap_write(peb2466->regmap, PEB2466_XR5, xr5);
2013 	if (ret) {
2014 		dev_err(&peb2466->spi->dev, "Setting MCLK failed (%d)\n", ret);
2015 		goto failed;
2016 	}
2017 
2018 	ret = devm_snd_soc_register_component(&spi->dev, &peb2466_component_driver,
2019 					      &peb2466_dai_driver, 1);
2020 	if (ret)
2021 		goto failed;
2022 
2023 	if (IS_ENABLED(CONFIG_GPIOLIB)) {
2024 		ret = peb2466_gpio_init(peb2466);
2025 		if (ret)
2026 			goto failed;
2027 	}
2028 
2029 	return 0;
2030 
2031 failed:
2032 	return ret;
2033 }
2034 
2035 static const struct of_device_id peb2466_of_match[] = {
2036 	{ .compatible = "infineon,peb2466", },
2037 	{ }
2038 };
2039 MODULE_DEVICE_TABLE(of, peb2466_of_match);
2040 
2041 static const struct spi_device_id peb2466_id_table[] = {
2042 	{ "peb2466", 0 },
2043 	{ }
2044 };
2045 MODULE_DEVICE_TABLE(spi, peb2466_id_table);
2046 
2047 static struct spi_driver peb2466_spi_driver = {
2048 	.driver  = {
2049 		.name   = "peb2466",
2050 		.of_match_table = peb2466_of_match,
2051 	},
2052 	.id_table = peb2466_id_table,
2053 	.probe  = peb2466_spi_probe,
2054 };
2055 
2056 module_spi_driver(peb2466_spi_driver);
2057 
2058 MODULE_AUTHOR("Herve Codina <herve.codina@bootlin.com>");
2059 MODULE_DESCRIPTION("PEB2466 ALSA SoC driver");
2060 MODULE_LICENSE("GPL");
2061