xref: /linux/sound/soc/codecs/peb2466.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // peb2466.c  --  Infineon PEB2466 ALSA SoC driver
4 //
5 // Copyright 2023 CS GROUP France
6 //
7 // Author: Herve Codina <herve.codina@bootlin.com>
8 
9 #include <asm/unaligned.h>
10 #include <linux/clk.h>
11 #include <linux/firmware.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/gpio/driver.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/spi/spi.h>
18 #include <sound/pcm_params.h>
19 #include <sound/soc.h>
20 #include <sound/tlv.h>
21 
22 #define PEB2466_NB_CHANNEL	4
23 
24 struct peb2466_lookup {
25 	u8 (*table)[4];
26 	unsigned int count;
27 };
28 
29 #define PEB2466_TLV_SIZE  (sizeof((unsigned int []){TLV_DB_SCALE_ITEM(0, 0, 0)}) / \
30 			   sizeof(unsigned int))
31 
32 struct peb2466_lkup_ctrl {
33 	int reg;
34 	unsigned int index;
35 	const struct peb2466_lookup *lookup;
36 	unsigned int tlv_array[PEB2466_TLV_SIZE];
37 };
38 
39 struct peb2466 {
40 	struct spi_device *spi;
41 	struct clk *mclk;
42 	struct gpio_desc *reset_gpio;
43 	u8 spi_tx_buf[2 + 8]; /* Cannot use stack area for SPI (dma-safe memory) */
44 	u8 spi_rx_buf[2 + 8]; /* Cannot use stack area for SPI (dma-safe memory) */
45 	struct regmap *regmap;
46 	struct {
47 		struct peb2466_lookup ax_lookup;
48 		struct peb2466_lookup ar_lookup;
49 		struct peb2466_lkup_ctrl ax_lkup_ctrl;
50 		struct peb2466_lkup_ctrl ar_lkup_ctrl;
51 		unsigned int tg1_freq_item;
52 		unsigned int tg2_freq_item;
53 	} ch[PEB2466_NB_CHANNEL];
54 	int max_chan_playback;
55 	int max_chan_capture;
56 	struct {
57 		struct gpio_chip gpio_chip;
58 		struct mutex lock;
59 		struct {
60 			unsigned int xr0;
61 			unsigned int xr1;
62 			unsigned int xr2;
63 			unsigned int xr3;
64 		} cache;
65 	} gpio;
66 };
67 
68 #define PEB2466_CMD_R	(1 << 5)
69 #define PEB2466_CMD_W	(0 << 5)
70 
71 #define PEB2466_CMD_MASK 0x18
72 #define PEB2466_CMD_XOP  0x18  /* XOP is 0bxxx11xxx */
73 #define PEB2466_CMD_SOP  0x10  /* SOP is 0bxxx10xxx */
74 #define PEB2466_CMD_COP  0x00  /* COP is 0bxxx0xxxx, handle 0bxxx00xxx */
75 #define PEB2466_CMD_COP1 0x08  /* COP is 0bxxx0xxxx, handle 0bxxx01xxx */
76 
77 #define PEB2466_MAKE_XOP(_lsel)      (PEB2466_CMD_XOP | (_lsel))
78 #define PEB2466_MAKE_SOP(_ad, _lsel) (PEB2466_CMD_SOP | ((_ad) << 6) | (_lsel))
79 #define PEB2466_MAKE_COP(_ad, _code) (PEB2466_CMD_COP | ((_ad) << 6) | (_code))
80 
81 #define PEB2466_CR0(_ch)	PEB2466_MAKE_SOP(_ch, 0x0)
82 #define   PEB2466_CR0_TH		(1 << 7)
83 #define   PEB2466_CR0_IMR1		(1 << 6)
84 #define   PEB2466_CR0_FRX		(1 << 5)
85 #define   PEB2466_CR0_FRR		(1 << 4)
86 #define   PEB2466_CR0_AX		(1 << 3)
87 #define   PEB2466_CR0_AR		(1 << 2)
88 #define   PEB2466_CR0_THSEL_MASK	(0x3 << 0)
89 #define   PEB2466_CR0_THSEL(_set)	((_set) << 0)
90 
91 #define PEB2466_CR1(_ch)	PEB2466_MAKE_SOP(_ch, 0x1)
92 #define   PEB2466_CR1_ETG2		(1 << 7)
93 #define   PEB2466_CR1_ETG1		(1 << 6)
94 #define   PEB2466_CR1_PTG2		(1 << 5)
95 #define   PEB2466_CR1_PTG1		(1 << 4)
96 #define   PEB2466_CR1_LAW_MASK		(1 << 3)
97 #define   PEB2466_CR1_LAW_ALAW		(0 << 3)
98 #define   PEB2466_CR1_LAW_MULAW		(1 << 3)
99 #define   PEB2466_CR1_PU		(1 << 0)
100 
101 #define PEB2466_CR2(_ch)	PEB2466_MAKE_SOP(_ch, 0x2)
102 #define PEB2466_CR3(_ch)	PEB2466_MAKE_SOP(_ch, 0x3)
103 #define PEB2466_CR4(_ch)	PEB2466_MAKE_SOP(_ch, 0x4)
104 #define PEB2466_CR5(_ch)	PEB2466_MAKE_SOP(_ch, 0x5)
105 
106 #define PEB2466_XR0		PEB2466_MAKE_XOP(0x0)
107 #define PEB2466_XR1		PEB2466_MAKE_XOP(0x1)
108 #define PEB2466_XR2		PEB2466_MAKE_XOP(0x2)
109 #define PEB2466_XR3		PEB2466_MAKE_XOP(0x3)
110 #define PEB2466_XR4		PEB2466_MAKE_XOP(0x4)
111 #define PEB2466_XR5		PEB2466_MAKE_XOP(0x5)
112 #define   PEB2466_XR5_MCLK_1536		(0x0 << 6)
113 #define   PEB2466_XR5_MCLK_2048		(0x1 << 6)
114 #define   PEB2466_XR5_MCLK_4096		(0x2 << 6)
115 #define   PEB2466_XR5_MCLK_8192		(0x3 << 6)
116 
117 #define PEB2466_XR6		PEB2466_MAKE_XOP(0x6)
118 #define   PEB2466_XR6_PCM_OFFSET(_off)	((_off) << 0)
119 
120 #define PEB2466_XR7		PEB2466_MAKE_XOP(0x7)
121 
122 #define PEB2466_TH_FILTER_P1(_ch)	PEB2466_MAKE_COP(_ch, 0x0)
123 #define PEB2466_TH_FILTER_P2(_ch)	PEB2466_MAKE_COP(_ch, 0x1)
124 #define PEB2466_TH_FILTER_P3(_ch)	PEB2466_MAKE_COP(_ch, 0x2)
125 #define PEB2466_IMR1_FILTER_P1(_ch)	PEB2466_MAKE_COP(_ch, 0x4)
126 #define PEB2466_IMR1_FILTER_P2(_ch)	PEB2466_MAKE_COP(_ch, 0x5)
127 #define PEB2466_FRX_FILTER(_ch)		PEB2466_MAKE_COP(_ch, 0x6)
128 #define PEB2466_FRR_FILTER(_ch)		PEB2466_MAKE_COP(_ch, 0x7)
129 #define PEB2466_AX_FILTER(_ch)		PEB2466_MAKE_COP(_ch, 0x8)
130 #define PEB2466_AR_FILTER(_ch)		PEB2466_MAKE_COP(_ch, 0x9)
131 #define PEB2466_TG1(_ch)		PEB2466_MAKE_COP(_ch, 0xc)
132 #define PEB2466_TG2(_ch)		PEB2466_MAKE_COP(_ch, 0xd)
133 
134 static int peb2466_write_byte(struct peb2466 *peb2466, u8 cmd, u8 val)
135 {
136 	struct spi_transfer xfer = {
137 		.tx_buf = &peb2466->spi_tx_buf,
138 		.len = 2,
139 	};
140 
141 	peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_W;
142 	peb2466->spi_tx_buf[1] = val;
143 
144 	dev_dbg(&peb2466->spi->dev, "write byte (cmd %02x) %02x\n",
145 		peb2466->spi_tx_buf[0], peb2466->spi_tx_buf[1]);
146 
147 	return spi_sync_transfer(peb2466->spi, &xfer, 1);
148 }
149 
150 static int peb2466_read_byte(struct peb2466 *peb2466, u8 cmd, u8 *val)
151 {
152 	struct spi_transfer xfer = {
153 		.tx_buf = &peb2466->spi_tx_buf,
154 		.rx_buf = &peb2466->spi_rx_buf,
155 		.len = 3,
156 	};
157 	int ret;
158 
159 	peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_R;
160 
161 	ret = spi_sync_transfer(peb2466->spi, &xfer, 1);
162 	if (ret)
163 		return ret;
164 
165 	if (peb2466->spi_rx_buf[1] != 0x81) {
166 		dev_err(&peb2466->spi->dev,
167 			"spi xfer rd (cmd %02x) invalid ident byte (0x%02x)\n",
168 			peb2466->spi_tx_buf[0], peb2466->spi_rx_buf[1]);
169 		return -EILSEQ;
170 	}
171 
172 	*val = peb2466->spi_rx_buf[2];
173 
174 	dev_dbg(&peb2466->spi->dev, "read byte (cmd %02x) %02x\n",
175 		peb2466->spi_tx_buf[0], *val);
176 
177 	return 0;
178 }
179 
180 static int peb2466_write_buf(struct peb2466 *peb2466, u8 cmd, const u8 *buf, unsigned int len)
181 {
182 	struct spi_transfer xfer = {
183 		.tx_buf = &peb2466->spi_tx_buf,
184 		.len = len + 1,
185 	};
186 
187 	if (len > 8)
188 		return -EINVAL;
189 
190 	peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_W;
191 	memcpy(&peb2466->spi_tx_buf[1], buf, len);
192 
193 	dev_dbg(&peb2466->spi->dev, "write buf (cmd %02x, %u) %*ph\n",
194 		peb2466->spi_tx_buf[0], len, len, &peb2466->spi_tx_buf[1]);
195 
196 	return spi_sync_transfer(peb2466->spi, &xfer, 1);
197 }
198 
199 static int peb2466_reg_write(void *context, unsigned int reg, unsigned int val)
200 {
201 	struct peb2466 *peb2466 = context;
202 	int ret;
203 
204 	/*
205 	 * Only XOP and SOP commands can be handled as registers.
206 	 * COP commands are handled using direct peb2466_write_buf() calls.
207 	 */
208 	switch (reg & PEB2466_CMD_MASK) {
209 	case PEB2466_CMD_XOP:
210 	case PEB2466_CMD_SOP:
211 		ret = peb2466_write_byte(peb2466, reg, val);
212 		break;
213 	default:
214 		dev_err(&peb2466->spi->dev, "Not a XOP or SOP command\n");
215 		ret = -EINVAL;
216 		break;
217 	}
218 	return ret;
219 }
220 
221 static int peb2466_reg_read(void *context, unsigned int reg, unsigned int *val)
222 {
223 	struct peb2466 *peb2466 = context;
224 	int ret;
225 	u8 tmp;
226 
227 	/* Only XOP and SOP commands can be handled as registers */
228 	switch (reg & PEB2466_CMD_MASK) {
229 	case PEB2466_CMD_XOP:
230 	case PEB2466_CMD_SOP:
231 		ret = peb2466_read_byte(peb2466, reg, &tmp);
232 		*val = tmp;
233 		break;
234 	default:
235 		dev_err(&peb2466->spi->dev, "Not a XOP or SOP command\n");
236 		ret = -EINVAL;
237 		break;
238 	}
239 	return ret;
240 }
241 
242 static const struct regmap_config peb2466_regmap_config = {
243 	.reg_bits = 8,
244 	.val_bits = 8,
245 	.max_register = 0xFF,
246 	.reg_write = peb2466_reg_write,
247 	.reg_read = peb2466_reg_read,
248 	.cache_type = REGCACHE_NONE,
249 };
250 
251 static int peb2466_lkup_ctrl_info(struct snd_kcontrol *kcontrol,
252 				  struct snd_ctl_elem_info *uinfo)
253 {
254 	struct peb2466_lkup_ctrl *lkup_ctrl =
255 		(struct peb2466_lkup_ctrl *)kcontrol->private_value;
256 
257 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
258 	uinfo->count = 1;
259 	uinfo->value.integer.min = 0;
260 	uinfo->value.integer.max = lkup_ctrl->lookup->count - 1;
261 	return 0;
262 }
263 
264 static int peb2466_lkup_ctrl_get(struct snd_kcontrol *kcontrol,
265 				 struct snd_ctl_elem_value *ucontrol)
266 {
267 	struct peb2466_lkup_ctrl *lkup_ctrl =
268 		(struct peb2466_lkup_ctrl *)kcontrol->private_value;
269 
270 	ucontrol->value.integer.value[0] = lkup_ctrl->index;
271 	return 0;
272 }
273 
274 static int peb2466_lkup_ctrl_put(struct snd_kcontrol *kcontrol,
275 				 struct snd_ctl_elem_value *ucontrol)
276 {
277 	struct peb2466_lkup_ctrl *lkup_ctrl =
278 		(struct peb2466_lkup_ctrl *)kcontrol->private_value;
279 	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
280 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
281 	unsigned int index;
282 	int ret;
283 
284 	index = ucontrol->value.integer.value[0];
285 	if (index >= lkup_ctrl->lookup->count)
286 		return -EINVAL;
287 
288 	if (index == lkup_ctrl->index)
289 		return 0;
290 
291 	ret = peb2466_write_buf(peb2466, lkup_ctrl->reg,
292 				lkup_ctrl->lookup->table[index], 4);
293 	if (ret)
294 		return ret;
295 
296 	lkup_ctrl->index = index;
297 	return 1; /* The value changed */
298 }
299 
300 static int peb2466_add_lkup_ctrl(struct snd_soc_component *component,
301 				 struct peb2466_lkup_ctrl *lkup_ctrl,
302 				 const char *name, int min_val, int step)
303 {
304 	DECLARE_TLV_DB_SCALE(tlv_array, min_val, step, 0);
305 	struct snd_kcontrol_new control = {0};
306 
307 	BUILD_BUG_ON(sizeof(lkup_ctrl->tlv_array) < sizeof(tlv_array));
308 	memcpy(lkup_ctrl->tlv_array, tlv_array, sizeof(tlv_array));
309 
310 	control.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
311 	control.name = name;
312 	control.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
313 			 SNDRV_CTL_ELEM_ACCESS_READWRITE;
314 	control.tlv.p = lkup_ctrl->tlv_array;
315 	control.info = peb2466_lkup_ctrl_info;
316 	control.get = peb2466_lkup_ctrl_get;
317 	control.put = peb2466_lkup_ctrl_put;
318 	control.private_value = (unsigned long)lkup_ctrl;
319 
320 	return snd_soc_add_component_controls(component, &control, 1);
321 }
322 
323 enum peb2466_tone_freq {
324 	PEB2466_TONE_697HZ,
325 	PEB2466_TONE_800HZ,
326 	PEB2466_TONE_950HZ,
327 	PEB2466_TONE_1000HZ,
328 	PEB2466_TONE_1008HZ,
329 	PEB2466_TONE_2000HZ,
330 };
331 
332 static const u8 peb2466_tone_lookup[][4] = {
333 	[PEB2466_TONE_697HZ] = {0x0a, 0x33, 0x5a, 0x2c},
334 	[PEB2466_TONE_800HZ] = {0x12, 0xD6, 0x5a, 0xc0},
335 	[PEB2466_TONE_950HZ] = {0x1c, 0xf0, 0x5c, 0xc0},
336 	[PEB2466_TONE_1000HZ] = {0}, /* lookup value not used for 1000Hz */
337 	[PEB2466_TONE_1008HZ] = {0x1a, 0xae, 0x57, 0x70},
338 	[PEB2466_TONE_2000HZ] = {0x00, 0x80, 0x50, 0x09},
339 };
340 
341 static const char * const peb2466_tone_freq_txt[] = {
342 	[PEB2466_TONE_697HZ] = "697Hz",
343 	[PEB2466_TONE_800HZ] = "800Hz",
344 	[PEB2466_TONE_950HZ] = "950Hz",
345 	[PEB2466_TONE_1000HZ] = "1000Hz",
346 	[PEB2466_TONE_1008HZ] = "1008Hz",
347 	[PEB2466_TONE_2000HZ] = "2000Hz"
348 };
349 
350 static const struct soc_enum peb2466_tg_freq[][2] = {
351 	[0] = {
352 		SOC_ENUM_SINGLE(PEB2466_TG1(0), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
353 				peb2466_tone_freq_txt),
354 		SOC_ENUM_SINGLE(PEB2466_TG2(0), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
355 				peb2466_tone_freq_txt)
356 	},
357 	[1] = {
358 		SOC_ENUM_SINGLE(PEB2466_TG1(1), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
359 				peb2466_tone_freq_txt),
360 		SOC_ENUM_SINGLE(PEB2466_TG2(1), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
361 				peb2466_tone_freq_txt)
362 	},
363 	[2] = {
364 		SOC_ENUM_SINGLE(PEB2466_TG1(2), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
365 				peb2466_tone_freq_txt),
366 		SOC_ENUM_SINGLE(PEB2466_TG2(2), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
367 				peb2466_tone_freq_txt)
368 	},
369 	[3] = {
370 		SOC_ENUM_SINGLE(PEB2466_TG1(3), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
371 				peb2466_tone_freq_txt),
372 		SOC_ENUM_SINGLE(PEB2466_TG2(3), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
373 				peb2466_tone_freq_txt)
374 	}
375 };
376 
377 static int peb2466_tg_freq_get(struct snd_kcontrol *kcontrol,
378 			       struct snd_ctl_elem_value *ucontrol)
379 {
380 	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
381 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
382 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
383 
384 	switch (e->reg) {
385 	case PEB2466_TG1(0):
386 		ucontrol->value.enumerated.item[0] = peb2466->ch[0].tg1_freq_item;
387 		break;
388 	case PEB2466_TG2(0):
389 		ucontrol->value.enumerated.item[0] = peb2466->ch[0].tg2_freq_item;
390 		break;
391 	case PEB2466_TG1(1):
392 		ucontrol->value.enumerated.item[0] = peb2466->ch[1].tg1_freq_item;
393 		break;
394 	case PEB2466_TG2(1):
395 		ucontrol->value.enumerated.item[0] = peb2466->ch[1].tg2_freq_item;
396 		break;
397 	case PEB2466_TG1(2):
398 		ucontrol->value.enumerated.item[0] = peb2466->ch[2].tg1_freq_item;
399 		break;
400 	case PEB2466_TG2(2):
401 		ucontrol->value.enumerated.item[0] = peb2466->ch[2].tg2_freq_item;
402 		break;
403 	case PEB2466_TG1(3):
404 		ucontrol->value.enumerated.item[0] = peb2466->ch[3].tg1_freq_item;
405 		break;
406 	case PEB2466_TG2(3):
407 		ucontrol->value.enumerated.item[0] = peb2466->ch[3].tg2_freq_item;
408 		break;
409 	default:
410 		return -EINVAL;
411 	}
412 	return 0;
413 }
414 
415 static int peb2466_tg_freq_put(struct snd_kcontrol *kcontrol,
416 			       struct snd_ctl_elem_value *ucontrol)
417 {
418 	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
419 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
420 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
421 	unsigned int *tg_freq_item;
422 	u8 cr1_reg, cr1_mask;
423 	unsigned int index;
424 	int ret;
425 
426 	index = ucontrol->value.enumerated.item[0];
427 
428 	if (index >= ARRAY_SIZE(peb2466_tone_lookup))
429 		return -EINVAL;
430 
431 	switch (e->reg) {
432 	case PEB2466_TG1(0):
433 		tg_freq_item = &peb2466->ch[0].tg1_freq_item;
434 		cr1_reg = PEB2466_CR1(0);
435 		cr1_mask = PEB2466_CR1_PTG1;
436 		break;
437 	case PEB2466_TG2(0):
438 		tg_freq_item = &peb2466->ch[0].tg2_freq_item;
439 		cr1_reg = PEB2466_CR1(0);
440 		cr1_mask = PEB2466_CR1_PTG2;
441 		break;
442 	case PEB2466_TG1(1):
443 		tg_freq_item = &peb2466->ch[1].tg1_freq_item;
444 		cr1_reg = PEB2466_CR1(1);
445 		cr1_mask = PEB2466_CR1_PTG1;
446 		break;
447 	case PEB2466_TG2(1):
448 		tg_freq_item = &peb2466->ch[1].tg2_freq_item;
449 		cr1_reg = PEB2466_CR1(1);
450 		cr1_mask = PEB2466_CR1_PTG2;
451 		break;
452 	case PEB2466_TG1(2):
453 		tg_freq_item = &peb2466->ch[2].tg1_freq_item;
454 		cr1_reg = PEB2466_CR1(2);
455 		cr1_mask = PEB2466_CR1_PTG1;
456 		break;
457 	case PEB2466_TG2(2):
458 		tg_freq_item = &peb2466->ch[2].tg2_freq_item;
459 		cr1_reg = PEB2466_CR1(2);
460 		cr1_mask = PEB2466_CR1_PTG2;
461 		break;
462 	case PEB2466_TG1(3):
463 		tg_freq_item = &peb2466->ch[3].tg1_freq_item;
464 		cr1_reg = PEB2466_CR1(3);
465 		cr1_mask = PEB2466_CR1_PTG1;
466 		break;
467 	case PEB2466_TG2(3):
468 		tg_freq_item = &peb2466->ch[3].tg2_freq_item;
469 		cr1_reg = PEB2466_CR1(3);
470 		cr1_mask = PEB2466_CR1_PTG2;
471 		break;
472 	default:
473 		return -EINVAL;
474 	}
475 
476 	if (index == *tg_freq_item)
477 		return 0;
478 
479 	if (index == PEB2466_TONE_1000HZ) {
480 		ret = regmap_update_bits(peb2466->regmap, cr1_reg, cr1_mask, 0);
481 		if (ret)
482 			return ret;
483 	} else {
484 		ret = peb2466_write_buf(peb2466, e->reg, peb2466_tone_lookup[index], 4);
485 		if (ret)
486 			return ret;
487 		ret = regmap_update_bits(peb2466->regmap, cr1_reg, cr1_mask, cr1_mask);
488 		if (ret)
489 			return ret;
490 	}
491 
492 	*tg_freq_item = index;
493 	return 1; /* The value changed */
494 }
495 
496 static const struct snd_kcontrol_new peb2466_ch0_out_mix_controls[] = {
497 	SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(0), 6, 1, 0),
498 	SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(0), 7, 1, 0),
499 	SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(0), 0, 1, 0)
500 };
501 
502 static const struct snd_kcontrol_new peb2466_ch1_out_mix_controls[] = {
503 	SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(1), 6, 1, 0),
504 	SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(1), 7, 1, 0),
505 	SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(1), 0, 1, 0)
506 };
507 
508 static const struct snd_kcontrol_new peb2466_ch2_out_mix_controls[] = {
509 	SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(2), 6, 1, 0),
510 	SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(2), 7, 1, 0),
511 	SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(2), 0, 1, 0)
512 };
513 
514 static const struct snd_kcontrol_new peb2466_ch3_out_mix_controls[] = {
515 	SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(3), 6, 1, 0),
516 	SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(3), 7, 1, 0),
517 	SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(3), 0, 1, 0)
518 };
519 
520 static const struct snd_kcontrol_new peb2466_controls[] = {
521 	/* Attenuators */
522 	SOC_SINGLE("DAC0 -6dB Playback Switch", PEB2466_CR3(0), 2, 1, 0),
523 	SOC_SINGLE("DAC1 -6dB Playback Switch", PEB2466_CR3(1), 2, 1, 0),
524 	SOC_SINGLE("DAC2 -6dB Playback Switch", PEB2466_CR3(2), 2, 1, 0),
525 	SOC_SINGLE("DAC3 -6dB Playback Switch", PEB2466_CR3(3), 2, 1, 0),
526 
527 	/* Amplifiers */
528 	SOC_SINGLE("ADC0 +6dB Capture Switch", PEB2466_CR3(0), 3, 1, 0),
529 	SOC_SINGLE("ADC1 +6dB Capture Switch", PEB2466_CR3(1), 3, 1, 0),
530 	SOC_SINGLE("ADC2 +6dB Capture Switch", PEB2466_CR3(2), 3, 1, 0),
531 	SOC_SINGLE("ADC3 +6dB Capture Switch", PEB2466_CR3(3), 3, 1, 0),
532 
533 	/* Tone generators */
534 	SOC_ENUM_EXT("DAC0 TG1 Freq", peb2466_tg_freq[0][0],
535 		     peb2466_tg_freq_get, peb2466_tg_freq_put),
536 	SOC_ENUM_EXT("DAC1 TG1 Freq", peb2466_tg_freq[1][0],
537 		     peb2466_tg_freq_get, peb2466_tg_freq_put),
538 	SOC_ENUM_EXT("DAC2 TG1 Freq", peb2466_tg_freq[2][0],
539 		     peb2466_tg_freq_get, peb2466_tg_freq_put),
540 	SOC_ENUM_EXT("DAC3 TG1 Freq", peb2466_tg_freq[3][0],
541 		     peb2466_tg_freq_get, peb2466_tg_freq_put),
542 
543 	SOC_ENUM_EXT("DAC0 TG2 Freq", peb2466_tg_freq[0][1],
544 		     peb2466_tg_freq_get, peb2466_tg_freq_put),
545 	SOC_ENUM_EXT("DAC1 TG2 Freq", peb2466_tg_freq[1][1],
546 		     peb2466_tg_freq_get, peb2466_tg_freq_put),
547 	SOC_ENUM_EXT("DAC2 TG2 Freq", peb2466_tg_freq[2][1],
548 		     peb2466_tg_freq_get, peb2466_tg_freq_put),
549 	SOC_ENUM_EXT("DAC3 TG2 Freq", peb2466_tg_freq[3][1],
550 		     peb2466_tg_freq_get, peb2466_tg_freq_put),
551 };
552 
553 static const struct snd_soc_dapm_widget peb2466_dapm_widgets[] = {
554 	SND_SOC_DAPM_SUPPLY("CH0 PWR", PEB2466_CR1(0), 0, 0, NULL, 0),
555 	SND_SOC_DAPM_SUPPLY("CH1 PWR", PEB2466_CR1(1), 0, 0, NULL, 0),
556 	SND_SOC_DAPM_SUPPLY("CH2 PWR", PEB2466_CR1(2), 0, 0, NULL, 0),
557 	SND_SOC_DAPM_SUPPLY("CH3 PWR", PEB2466_CR1(3), 0, 0, NULL, 0),
558 
559 	SND_SOC_DAPM_DAC("CH0 DIN", "Playback", SND_SOC_NOPM, 0, 0),
560 	SND_SOC_DAPM_DAC("CH1 DIN", "Playback", SND_SOC_NOPM, 0, 0),
561 	SND_SOC_DAPM_DAC("CH2 DIN", "Playback", SND_SOC_NOPM, 0, 0),
562 	SND_SOC_DAPM_DAC("CH3 DIN", "Playback", SND_SOC_NOPM, 0, 0),
563 
564 	SND_SOC_DAPM_SIGGEN("CH0 TG1"),
565 	SND_SOC_DAPM_SIGGEN("CH1 TG1"),
566 	SND_SOC_DAPM_SIGGEN("CH2 TG1"),
567 	SND_SOC_DAPM_SIGGEN("CH3 TG1"),
568 
569 	SND_SOC_DAPM_SIGGEN("CH0 TG2"),
570 	SND_SOC_DAPM_SIGGEN("CH1 TG2"),
571 	SND_SOC_DAPM_SIGGEN("CH2 TG2"),
572 	SND_SOC_DAPM_SIGGEN("CH3 TG2"),
573 
574 	SND_SOC_DAPM_MIXER("DAC0 Mixer", SND_SOC_NOPM, 0, 0,
575 			   peb2466_ch0_out_mix_controls,
576 			   ARRAY_SIZE(peb2466_ch0_out_mix_controls)),
577 	SND_SOC_DAPM_MIXER("DAC1 Mixer", SND_SOC_NOPM, 0, 0,
578 			   peb2466_ch1_out_mix_controls,
579 			   ARRAY_SIZE(peb2466_ch1_out_mix_controls)),
580 	SND_SOC_DAPM_MIXER("DAC2 Mixer", SND_SOC_NOPM, 0, 0,
581 			   peb2466_ch2_out_mix_controls,
582 			   ARRAY_SIZE(peb2466_ch2_out_mix_controls)),
583 	SND_SOC_DAPM_MIXER("DAC3 Mixer", SND_SOC_NOPM, 0, 0,
584 			   peb2466_ch3_out_mix_controls,
585 			   ARRAY_SIZE(peb2466_ch3_out_mix_controls)),
586 
587 	SND_SOC_DAPM_PGA("DAC0 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
588 	SND_SOC_DAPM_PGA("DAC1 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
589 	SND_SOC_DAPM_PGA("DAC2 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
590 	SND_SOC_DAPM_PGA("DAC3 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
591 
592 	SND_SOC_DAPM_OUTPUT("OUT0"),
593 	SND_SOC_DAPM_OUTPUT("OUT1"),
594 	SND_SOC_DAPM_OUTPUT("OUT2"),
595 	SND_SOC_DAPM_OUTPUT("OUT3"),
596 
597 	SND_SOC_DAPM_INPUT("IN0"),
598 	SND_SOC_DAPM_INPUT("IN1"),
599 	SND_SOC_DAPM_INPUT("IN2"),
600 	SND_SOC_DAPM_INPUT("IN3"),
601 
602 	SND_SOC_DAPM_DAC("ADC0", "Capture", SND_SOC_NOPM, 0, 0),
603 	SND_SOC_DAPM_DAC("ADC1", "Capture", SND_SOC_NOPM, 0, 0),
604 	SND_SOC_DAPM_DAC("ADC2", "Capture", SND_SOC_NOPM, 0, 0),
605 	SND_SOC_DAPM_DAC("ADC3", "Capture", SND_SOC_NOPM, 0, 0),
606 };
607 
608 static const struct snd_soc_dapm_route peb2466_dapm_routes[] = {
609 	{ "CH0 DIN", NULL, "CH0 PWR" },
610 	{ "CH1 DIN", NULL, "CH1 PWR" },
611 	{ "CH2 DIN", NULL, "CH2 PWR" },
612 	{ "CH3 DIN", NULL, "CH3 PWR" },
613 
614 	{ "CH0 TG1", NULL, "CH0 PWR" },
615 	{ "CH1 TG1", NULL, "CH1 PWR" },
616 	{ "CH2 TG1", NULL, "CH2 PWR" },
617 	{ "CH3 TG1", NULL, "CH3 PWR" },
618 
619 	{ "CH0 TG2", NULL, "CH0 PWR" },
620 	{ "CH1 TG2", NULL, "CH1 PWR" },
621 	{ "CH2 TG2", NULL, "CH2 PWR" },
622 	{ "CH3 TG2", NULL, "CH3 PWR" },
623 
624 	{ "DAC0 Mixer", "TG1 Switch", "CH0 TG1" },
625 	{ "DAC0 Mixer", "TG2 Switch", "CH0 TG2" },
626 	{ "DAC0 Mixer", "Voice Switch", "CH0 DIN" },
627 	{ "DAC0 Mixer", NULL, "CH0 DIN" },
628 
629 	{ "DAC1 Mixer", "TG1 Switch", "CH1 TG1" },
630 	{ "DAC1 Mixer", "TG2 Switch", "CH1 TG2" },
631 	{ "DAC1 Mixer", "Voice Switch", "CH1 DIN" },
632 	{ "DAC1 Mixer", NULL, "CH1 DIN" },
633 
634 	{ "DAC2 Mixer", "TG1 Switch", "CH2 TG1" },
635 	{ "DAC2 Mixer", "TG2 Switch", "CH2 TG2" },
636 	{ "DAC2 Mixer", "Voice Switch", "CH2 DIN" },
637 	{ "DAC2 Mixer", NULL, "CH2 DIN" },
638 
639 	{ "DAC3 Mixer", "TG1 Switch", "CH3 TG1" },
640 	{ "DAC3 Mixer", "TG2 Switch", "CH3 TG2" },
641 	{ "DAC3 Mixer", "Voice Switch", "CH3 DIN" },
642 	{ "DAC3 Mixer", NULL, "CH3 DIN" },
643 
644 	{ "DAC0 PGA", NULL, "DAC0 Mixer" },
645 	{ "DAC1 PGA", NULL, "DAC1 Mixer" },
646 	{ "DAC2 PGA", NULL, "DAC2 Mixer" },
647 	{ "DAC3 PGA", NULL, "DAC3 Mixer" },
648 
649 	{ "OUT0", NULL, "DAC0 PGA" },
650 	{ "OUT1", NULL, "DAC1 PGA" },
651 	{ "OUT2", NULL, "DAC2 PGA" },
652 	{ "OUT3", NULL, "DAC3 PGA" },
653 
654 	{ "ADC0", NULL, "IN0" },
655 	{ "ADC1", NULL, "IN1" },
656 	{ "ADC2", NULL, "IN2" },
657 	{ "ADC3", NULL, "IN3" },
658 
659 	{ "ADC0", NULL, "CH0 PWR" },
660 	{ "ADC1", NULL, "CH1 PWR" },
661 	{ "ADC2", NULL, "CH2 PWR" },
662 	{ "ADC3", NULL, "CH3 PWR" },
663 };
664 
665 static int peb2466_dai_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
666 				    unsigned int rx_mask, int slots, int width)
667 {
668 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
669 	unsigned int chan;
670 	unsigned int mask;
671 	u8 slot;
672 	int ret;
673 
674 	switch (width) {
675 	case 0:
676 		/* Not set -> default 8 */
677 	case 8:
678 		break;
679 	default:
680 		dev_err(dai->dev, "tdm slot width %d not supported\n", width);
681 		return -EINVAL;
682 	}
683 
684 	mask = tx_mask;
685 	slot = 0;
686 	chan = 0;
687 	while (mask && chan < PEB2466_NB_CHANNEL) {
688 		if (mask & 0x1) {
689 			ret = regmap_write(peb2466->regmap, PEB2466_CR5(chan), slot);
690 			if (ret) {
691 				dev_err(dai->dev, "chan %d set tx tdm slot failed (%d)\n",
692 					chan, ret);
693 				return ret;
694 			}
695 			chan++;
696 		}
697 		mask >>= 1;
698 		slot++;
699 	}
700 	if (mask) {
701 		dev_err(dai->dev, "too much tx slots defined (mask = 0x%x) support max %d\n",
702 			tx_mask, PEB2466_NB_CHANNEL);
703 		return -EINVAL;
704 	}
705 	peb2466->max_chan_playback = chan;
706 
707 	mask = rx_mask;
708 	slot = 0;
709 	chan = 0;
710 	while (mask && chan < PEB2466_NB_CHANNEL) {
711 		if (mask & 0x1) {
712 			ret = regmap_write(peb2466->regmap, PEB2466_CR4(chan), slot);
713 			if (ret) {
714 				dev_err(dai->dev, "chan %d set rx tdm slot failed (%d)\n",
715 					chan, ret);
716 				return ret;
717 			}
718 			chan++;
719 		}
720 		mask >>= 1;
721 		slot++;
722 	}
723 	if (mask) {
724 		dev_err(dai->dev, "too much rx slots defined (mask = 0x%x) support max %d\n",
725 			rx_mask, PEB2466_NB_CHANNEL);
726 		return -EINVAL;
727 	}
728 	peb2466->max_chan_capture = chan;
729 
730 	return 0;
731 }
732 
733 static int peb2466_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
734 {
735 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
736 	u8 xr6;
737 
738 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
739 	case SND_SOC_DAIFMT_DSP_A:
740 		xr6 = PEB2466_XR6_PCM_OFFSET(1);
741 		break;
742 	case SND_SOC_DAIFMT_DSP_B:
743 		xr6 = PEB2466_XR6_PCM_OFFSET(0);
744 		break;
745 	default:
746 		dev_err(dai->dev, "Unsupported format 0x%x\n",
747 			fmt & SND_SOC_DAIFMT_FORMAT_MASK);
748 		return -EINVAL;
749 	}
750 	return regmap_write(peb2466->regmap, PEB2466_XR6, xr6);
751 }
752 
753 static int peb2466_dai_hw_params(struct snd_pcm_substream *substream,
754 				 struct snd_pcm_hw_params *params,
755 				 struct snd_soc_dai *dai)
756 {
757 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
758 	unsigned int ch;
759 	int ret;
760 	u8 cr1;
761 
762 	switch (params_format(params)) {
763 	case SNDRV_PCM_FORMAT_MU_LAW:
764 		cr1 = PEB2466_CR1_LAW_MULAW;
765 		break;
766 	case SNDRV_PCM_FORMAT_A_LAW:
767 		cr1 = PEB2466_CR1_LAW_ALAW;
768 		break;
769 	default:
770 		dev_err(&peb2466->spi->dev, "Unsupported format 0x%x\n",
771 			params_format(params));
772 		return -EINVAL;
773 	}
774 
775 	for (ch = 0; ch < PEB2466_NB_CHANNEL; ch++) {
776 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR1(ch),
777 					 PEB2466_CR1_LAW_MASK, cr1);
778 		if (ret)
779 			return ret;
780 	}
781 
782 	return 0;
783 }
784 
785 static const unsigned int peb2466_sample_bits[] = {8};
786 
787 static struct snd_pcm_hw_constraint_list peb2466_sample_bits_constr = {
788 	.list = peb2466_sample_bits,
789 	.count = ARRAY_SIZE(peb2466_sample_bits),
790 };
791 
792 static int peb2466_dai_startup(struct snd_pcm_substream *substream,
793 			       struct snd_soc_dai *dai)
794 {
795 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
796 	unsigned int max_ch;
797 	int ret;
798 
799 	max_ch = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
800 		peb2466->max_chan_playback : peb2466->max_chan_capture;
801 
802 	/*
803 	 * Disable stream support (min = 0, max = 0) if no timeslots were
804 	 * configured.
805 	 */
806 	ret = snd_pcm_hw_constraint_minmax(substream->runtime,
807 					   SNDRV_PCM_HW_PARAM_CHANNELS,
808 					   max_ch ? 1 : 0, max_ch);
809 	if (ret < 0)
810 		return ret;
811 
812 	return snd_pcm_hw_constraint_list(substream->runtime, 0,
813 					  SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
814 					  &peb2466_sample_bits_constr);
815 }
816 
817 static u64 peb2466_dai_formats[] = {
818 	SND_SOC_POSSIBLE_DAIFMT_DSP_A	|
819 	SND_SOC_POSSIBLE_DAIFMT_DSP_B,
820 };
821 
822 static const struct snd_soc_dai_ops peb2466_dai_ops = {
823 	.startup = peb2466_dai_startup,
824 	.hw_params = peb2466_dai_hw_params,
825 	.set_tdm_slot = peb2466_dai_set_tdm_slot,
826 	.set_fmt = peb2466_dai_set_fmt,
827 	.auto_selectable_formats     = peb2466_dai_formats,
828 	.num_auto_selectable_formats = ARRAY_SIZE(peb2466_dai_formats),
829 };
830 
831 static struct snd_soc_dai_driver peb2466_dai_driver = {
832 	.name = "peb2466",
833 	.playback = {
834 		.stream_name = "Playback",
835 		.channels_min = 1,
836 		.channels_max = PEB2466_NB_CHANNEL,
837 		.rates = SNDRV_PCM_RATE_8000,
838 		.formats = SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
839 	},
840 	.capture = {
841 		.stream_name = "Capture",
842 		.channels_min = 1,
843 		.channels_max = PEB2466_NB_CHANNEL,
844 		.rates = SNDRV_PCM_RATE_8000,
845 		.formats = SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
846 	},
847 	.ops = &peb2466_dai_ops,
848 };
849 
850 static int peb2466_reset_audio(struct peb2466 *peb2466)
851 {
852 	static const struct reg_sequence reg_reset[] = {
853 		{  .reg = PEB2466_XR6,    .def = 0x00 },
854 
855 		{  .reg = PEB2466_CR5(0), .def = 0x00 },
856 		{  .reg = PEB2466_CR4(0), .def = 0x00 },
857 		{  .reg = PEB2466_CR3(0), .def = 0x00 },
858 		{  .reg = PEB2466_CR2(0), .def = 0x00 },
859 		{  .reg = PEB2466_CR1(0), .def = 0x00 },
860 		{  .reg = PEB2466_CR0(0), .def = PEB2466_CR0_IMR1 },
861 
862 		{  .reg = PEB2466_CR5(1), .def = 0x00 },
863 		{  .reg = PEB2466_CR4(1), .def = 0x00 },
864 		{  .reg = PEB2466_CR3(1), .def = 0x00 },
865 		{  .reg = PEB2466_CR2(1), .def = 0x00 },
866 		{  .reg = PEB2466_CR1(1), .def = 0x00 },
867 		{  .reg = PEB2466_CR0(1), .def = PEB2466_CR0_IMR1 },
868 
869 		{  .reg = PEB2466_CR5(2), .def = 0x00 },
870 		{  .reg = PEB2466_CR4(2), .def = 0x00 },
871 		{  .reg = PEB2466_CR3(2), .def = 0x00 },
872 		{  .reg = PEB2466_CR2(2), .def = 0x00 },
873 		{  .reg = PEB2466_CR1(2), .def = 0x00 },
874 		{  .reg = PEB2466_CR0(2), .def = PEB2466_CR0_IMR1 },
875 
876 		{  .reg = PEB2466_CR5(3), .def = 0x00 },
877 		{  .reg = PEB2466_CR4(3), .def = 0x00 },
878 		{  .reg = PEB2466_CR3(3), .def = 0x00 },
879 		{  .reg = PEB2466_CR2(3), .def = 0x00 },
880 		{  .reg = PEB2466_CR1(3), .def = 0x00 },
881 		{  .reg = PEB2466_CR0(3), .def = PEB2466_CR0_IMR1 },
882 	};
883 	static const u8 imr1_p1[8] = {0x00, 0x90, 0x09, 0x00, 0x90, 0x09, 0x00, 0x00};
884 	static const u8 imr1_p2[8] = {0x7F, 0xFF, 0x00, 0x00, 0x90, 0x14, 0x40, 0x08};
885 	static const u8 zero[8] = {0};
886 	int ret;
887 	int i;
888 
889 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
890 		peb2466->ch[i].tg1_freq_item = PEB2466_TONE_1000HZ;
891 		peb2466->ch[i].tg2_freq_item = PEB2466_TONE_1000HZ;
892 
893 		/*
894 		 * Even if not used, disabling IM/R1 filter is not recommended.
895 		 * Instead, we must configure it with default coefficients and
896 		 * enable it.
897 		 * The filter will be enabled right after (in the following
898 		 * regmap_multi_reg_write() call).
899 		 */
900 		ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P1(i), imr1_p1, 8);
901 		if (ret)
902 			return ret;
903 		ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P2(i), imr1_p2, 8);
904 		if (ret)
905 			return ret;
906 
907 		/* Set all other filters coefficients to zero */
908 		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P1(i), zero, 8);
909 		if (ret)
910 			return ret;
911 		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P2(i), zero, 8);
912 		if (ret)
913 			return ret;
914 		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P3(i), zero, 8);
915 		if (ret)
916 			return ret;
917 		ret = peb2466_write_buf(peb2466, PEB2466_FRX_FILTER(i), zero, 8);
918 		if (ret)
919 			return ret;
920 		ret = peb2466_write_buf(peb2466, PEB2466_FRR_FILTER(i), zero, 8);
921 		if (ret)
922 			return ret;
923 		ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i), zero, 4);
924 		if (ret)
925 			return ret;
926 		ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i), zero, 4);
927 		if (ret)
928 			return ret;
929 	}
930 
931 	return regmap_multi_reg_write(peb2466->regmap, reg_reset, ARRAY_SIZE(reg_reset));
932 }
933 
934 static int peb2466_fw_parse_thfilter(struct snd_soc_component *component,
935 				     u16 tag, u32 lng, const u8 *data)
936 {
937 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
938 	u8 mask;
939 	int ret;
940 	int i;
941 
942 	dev_info(component->dev, "fw TH filter: mask %x, %*phN\n", *data,
943 		 lng - 1, data + 1);
944 
945 	/*
946 	 * TH_FILTER TLV data:
947 	 *   - @0  1 byte:  Chan mask (bit set means related channel is concerned)
948 	 *   - @1  8 bytes: TH-Filter coefficients part1
949 	 *   - @9  8 bytes: TH-Filter coefficients part2
950 	 *   - @17 8 bytes: TH-Filter coefficients part3
951 	 */
952 	mask = *data;
953 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
954 		if (!(mask & (1 << i)))
955 			continue;
956 
957 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
958 					 PEB2466_CR0_TH, 0);
959 		if (ret)
960 			return ret;
961 
962 		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P1(i), data + 1, 8);
963 		if (ret)
964 			return ret;
965 
966 		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P2(i), data + 9, 8);
967 		if (ret)
968 			return ret;
969 
970 		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P3(i), data + 17, 8);
971 		if (ret)
972 			return ret;
973 
974 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
975 					 PEB2466_CR0_TH | PEB2466_CR0_THSEL_MASK,
976 					 PEB2466_CR0_TH | PEB2466_CR0_THSEL(i));
977 		if (ret)
978 			return ret;
979 	}
980 	return 0;
981 }
982 
983 static int peb2466_fw_parse_imr1filter(struct snd_soc_component *component,
984 				       u16 tag, u32 lng, const u8 *data)
985 {
986 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
987 	u8 mask;
988 	int ret;
989 	int i;
990 
991 	dev_info(component->dev, "fw IM/R1 filter: mask %x, %*phN\n", *data,
992 		 lng - 1, data + 1);
993 
994 	/*
995 	 * IMR1_FILTER TLV data:
996 	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
997 	 *   - @1 8 bytes: IM/R1-Filter coefficients part1
998 	 *   - @9 8 bytes: IM/R1-Filter coefficients part2
999 	 */
1000 	mask = *data;
1001 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1002 		if (!(mask & (1 << i)))
1003 			continue;
1004 
1005 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1006 					 PEB2466_CR0_IMR1, 0);
1007 		if (ret)
1008 			return ret;
1009 
1010 		ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P1(i), data + 1, 8);
1011 		if (ret)
1012 			return ret;
1013 
1014 		ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P2(i), data + 9, 8);
1015 		if (ret)
1016 			return ret;
1017 
1018 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1019 					 PEB2466_CR0_IMR1, PEB2466_CR0_IMR1);
1020 		if (ret)
1021 			return ret;
1022 	}
1023 	return 0;
1024 }
1025 
1026 static int peb2466_fw_parse_frxfilter(struct snd_soc_component *component,
1027 				      u16 tag, u32 lng, const u8 *data)
1028 {
1029 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1030 	u8 mask;
1031 	int ret;
1032 	int i;
1033 
1034 	dev_info(component->dev, "fw FRX filter: mask %x, %*phN\n", *data,
1035 		 lng - 1, data + 1);
1036 
1037 	/*
1038 	 * FRX_FILTER TLV data:
1039 	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1040 	 *   - @1 8 bytes: FRX-Filter coefficients
1041 	 */
1042 	mask = *data;
1043 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1044 		if (!(mask & (1 << i)))
1045 			continue;
1046 
1047 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1048 					 PEB2466_CR0_FRX, 0);
1049 		if (ret)
1050 			return ret;
1051 
1052 		ret = peb2466_write_buf(peb2466, PEB2466_FRX_FILTER(i), data + 1, 8);
1053 		if (ret)
1054 			return ret;
1055 
1056 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1057 					 PEB2466_CR0_FRX, PEB2466_CR0_FRX);
1058 		if (ret)
1059 			return ret;
1060 	}
1061 	return 0;
1062 }
1063 
1064 static int peb2466_fw_parse_frrfilter(struct snd_soc_component *component,
1065 				      u16 tag, u32 lng, const u8 *data)
1066 {
1067 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1068 	u8 mask;
1069 	int ret;
1070 	int i;
1071 
1072 	dev_info(component->dev, "fw FRR filter: mask %x, %*phN\n", *data,
1073 		 lng - 1, data + 1);
1074 
1075 	/*
1076 	 * FRR_FILTER TLV data:
1077 	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1078 	 *   - @1 8 bytes: FRR-Filter coefficients
1079 	 */
1080 	mask = *data;
1081 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1082 		if (!(mask & (1 << i)))
1083 			continue;
1084 
1085 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1086 					 PEB2466_CR0_FRR, 0);
1087 		if (ret)
1088 			return ret;
1089 
1090 		ret = peb2466_write_buf(peb2466, PEB2466_FRR_FILTER(i), data + 1, 8);
1091 		if (ret)
1092 			return ret;
1093 
1094 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1095 					 PEB2466_CR0_FRR, PEB2466_CR0_FRR);
1096 		if (ret)
1097 			return ret;
1098 	}
1099 	return 0;
1100 }
1101 
1102 static int peb2466_fw_parse_axfilter(struct snd_soc_component *component,
1103 				     u16 tag, u32 lng, const u8 *data)
1104 {
1105 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1106 	u8 mask;
1107 	int ret;
1108 	int i;
1109 
1110 	dev_info(component->dev, "fw AX filter: mask %x, %*phN\n", *data,
1111 		 lng - 1, data + 1);
1112 
1113 	/*
1114 	 * AX_FILTER TLV data:
1115 	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1116 	 *   - @1 4 bytes: AX-Filter coefficients
1117 	 */
1118 	mask = *data;
1119 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1120 		if (!(mask & (1 << i)))
1121 			continue;
1122 
1123 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1124 					 PEB2466_CR0_AX, 0);
1125 		if (ret)
1126 			return ret;
1127 
1128 		ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i), data + 1, 4);
1129 		if (ret)
1130 			return ret;
1131 
1132 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1133 					 PEB2466_CR0_AX, PEB2466_CR0_AX);
1134 		if (ret)
1135 			return ret;
1136 	}
1137 	return 0;
1138 }
1139 
1140 static int peb2466_fw_parse_arfilter(struct snd_soc_component *component,
1141 				     u16 tag, u32 lng, const u8 *data)
1142 {
1143 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1144 	u8 mask;
1145 	int ret;
1146 	int i;
1147 
1148 	dev_info(component->dev, "fw AR filter: mask %x, %*phN\n", *data,
1149 		 lng - 1, data + 1);
1150 
1151 	/*
1152 	 * AR_FILTER TLV data:
1153 	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1154 	 *   - @1 4 bytes: AR-Filter coefficients
1155 	 */
1156 	mask = *data;
1157 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1158 		if (!(mask & (1 << i)))
1159 			continue;
1160 
1161 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1162 					 PEB2466_CR0_AR, 0);
1163 		if (ret)
1164 			return ret;
1165 
1166 		ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i), data + 1, 4);
1167 		if (ret)
1168 			return ret;
1169 
1170 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1171 					 PEB2466_CR0_AR, PEB2466_CR0_AR);
1172 		if (ret)
1173 			return ret;
1174 	}
1175 	return 0;
1176 }
1177 
1178 static const char * const peb2466_ax_ctrl_names[] = {
1179 	"ADC0 Capture Volume",
1180 	"ADC1 Capture Volume",
1181 	"ADC2 Capture Volume",
1182 	"ADC3 Capture Volume",
1183 };
1184 
1185 static int peb2466_fw_parse_axtable(struct snd_soc_component *component,
1186 				    u16 tag, u32 lng, const u8 *data)
1187 {
1188 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1189 	struct peb2466_lkup_ctrl *lkup_ctrl;
1190 	struct peb2466_lookup *lookup;
1191 	u8 (*table)[4];
1192 	u32 table_size;
1193 	u32 init_index;
1194 	s32 min_val;
1195 	s32 step;
1196 	u8 mask;
1197 	int ret;
1198 	int i;
1199 
1200 	/*
1201 	 * AX_TABLE TLV data:
1202 	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1203 	 *   - @1 32bits signed: Min table value in centi dB (MinVal)
1204 	 *                       ie -300 means -3.0 dB
1205 	 *   - @5 32bits signed: Step from on item to other item in centi dB (Step)
1206 	 *                       ie 25 means 0.25 dB)
1207 	 *   - @9 32bits unsigned: Item index in the table to use for the initial
1208 	 *                         value
1209 	 *   - @13 N*4 bytes: Table composed of 4 bytes items.
1210 	 *                    Each item correspond to an AX filter value.
1211 	 *
1212 	 * The conversion from raw value item in the table to/from the value in
1213 	 * dB is: Raw value at index i <-> (MinVal + i * Step) in centi dB.
1214 	 */
1215 
1216 	/* Check Lng and extract the table size. */
1217 	if (lng < 13 || ((lng - 13) % 4)) {
1218 		dev_err(component->dev, "fw AX table lng %u invalid\n", lng);
1219 		return -EINVAL;
1220 	}
1221 	table_size = lng - 13;
1222 
1223 	min_val = get_unaligned_be32(data + 1);
1224 	step = get_unaligned_be32(data + 5);
1225 	init_index = get_unaligned_be32(data + 9);
1226 	if (init_index >= (table_size / 4)) {
1227 		dev_err(component->dev, "fw AX table index %u out of table[%u]\n",
1228 			init_index, table_size / 4);
1229 		return -EINVAL;
1230 	}
1231 
1232 	dev_info(component->dev,
1233 		 "fw AX table: mask %x, min %d, step %d, %u items, tbl[%u] %*phN\n",
1234 		 *data, min_val, step, table_size / 4, init_index,
1235 		 4, data + 13 + (init_index * 4));
1236 
1237 	BUILD_BUG_ON(sizeof(*table) != 4);
1238 	table = devm_kzalloc(&peb2466->spi->dev, table_size, GFP_KERNEL);
1239 	if (!table)
1240 		return -ENOMEM;
1241 	memcpy(table, data + 13, table_size);
1242 
1243 	mask = *data;
1244 	BUILD_BUG_ON(ARRAY_SIZE(peb2466_ax_ctrl_names) != ARRAY_SIZE(peb2466->ch));
1245 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1246 		if (!(mask & (1 << i)))
1247 			continue;
1248 
1249 		lookup = &peb2466->ch[i].ax_lookup;
1250 		lookup->table = table;
1251 		lookup->count = table_size / 4;
1252 
1253 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1254 					 PEB2466_CR0_AX, 0);
1255 		if (ret)
1256 			return ret;
1257 
1258 		ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i),
1259 					lookup->table[init_index], 4);
1260 		if (ret)
1261 			return ret;
1262 
1263 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1264 					 PEB2466_CR0_AX, PEB2466_CR0_AX);
1265 		if (ret)
1266 			return ret;
1267 
1268 		lkup_ctrl = &peb2466->ch[i].ax_lkup_ctrl;
1269 		lkup_ctrl->lookup = lookup;
1270 		lkup_ctrl->reg = PEB2466_AX_FILTER(i);
1271 		lkup_ctrl->index = init_index;
1272 
1273 		ret = peb2466_add_lkup_ctrl(component, lkup_ctrl,
1274 					    peb2466_ax_ctrl_names[i],
1275 					    min_val, step);
1276 		if (ret)
1277 			return ret;
1278 	}
1279 	return 0;
1280 }
1281 
1282 static const char * const peb2466_ar_ctrl_names[] = {
1283 	"DAC0 Playback Volume",
1284 	"DAC1 Playback Volume",
1285 	"DAC2 Playback Volume",
1286 	"DAC3 Playback Volume",
1287 };
1288 
1289 static int peb2466_fw_parse_artable(struct snd_soc_component *component,
1290 				    u16 tag, u32 lng, const u8 *data)
1291 {
1292 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1293 	struct peb2466_lkup_ctrl *lkup_ctrl;
1294 	struct peb2466_lookup *lookup;
1295 	u8 (*table)[4];
1296 	u32 table_size;
1297 	u32 init_index;
1298 	s32 min_val;
1299 	s32 step;
1300 	u8 mask;
1301 	int ret;
1302 	int i;
1303 
1304 	/*
1305 	 * AR_TABLE TLV data:
1306 	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1307 	 *   - @1 32bits signed: Min table value in centi dB (MinVal)
1308 	 *                       ie -300 means -3.0 dB
1309 	 *   - @5 32bits signed: Step from on item to other item in centi dB (Step)
1310 	 *                       ie 25 means 0.25 dB)
1311 	 *   - @9 32bits unsigned: Item index in the table to use for the initial
1312 	 *                         value
1313 	 *   - @13 N*4 bytes: Table composed of 4 bytes items.
1314 	 *                    Each item correspond to an AR filter value.
1315 	 *
1316 	 * The conversion from raw value item in the table to/from the value in
1317 	 * dB is: Raw value at index i <-> (MinVal + i * Step) in centi dB.
1318 	 */
1319 
1320 	/* Check Lng and extract the table size. */
1321 	if (lng < 13 || ((lng - 13) % 4)) {
1322 		dev_err(component->dev, "fw AR table lng %u invalid\n", lng);
1323 		return -EINVAL;
1324 	}
1325 	table_size = lng - 13;
1326 
1327 	min_val = get_unaligned_be32(data + 1);
1328 	step = get_unaligned_be32(data + 5);
1329 	init_index = get_unaligned_be32(data + 9);
1330 	if (init_index >= (table_size / 4)) {
1331 		dev_err(component->dev, "fw AR table index %u out of table[%u]\n",
1332 			init_index, table_size / 4);
1333 		return -EINVAL;
1334 	}
1335 
1336 	dev_info(component->dev,
1337 		 "fw AR table: mask %x, min %d, step %d, %u items, tbl[%u] %*phN\n",
1338 		 *data, min_val, step, table_size / 4, init_index,
1339 		 4, data + 13 + (init_index * 4));
1340 
1341 	BUILD_BUG_ON(sizeof(*table) != 4);
1342 	table = devm_kzalloc(&peb2466->spi->dev, table_size, GFP_KERNEL);
1343 	if (!table)
1344 		return -ENOMEM;
1345 	memcpy(table, data + 13, table_size);
1346 
1347 	mask = *data;
1348 	BUILD_BUG_ON(ARRAY_SIZE(peb2466_ar_ctrl_names) != ARRAY_SIZE(peb2466->ch));
1349 	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1350 		if (!(mask & (1 << i)))
1351 			continue;
1352 
1353 		lookup = &peb2466->ch[i].ar_lookup;
1354 		lookup->table = table;
1355 		lookup->count = table_size / 4;
1356 
1357 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1358 					 PEB2466_CR0_AR, 0);
1359 		if (ret)
1360 			return ret;
1361 
1362 		ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i),
1363 					lookup->table[init_index], 4);
1364 		if (ret)
1365 			return ret;
1366 
1367 		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1368 					 PEB2466_CR0_AR, PEB2466_CR0_AR);
1369 		if (ret)
1370 			return ret;
1371 
1372 		lkup_ctrl = &peb2466->ch[i].ar_lkup_ctrl;
1373 		lkup_ctrl->lookup = lookup;
1374 		lkup_ctrl->reg = PEB2466_AR_FILTER(i);
1375 		lkup_ctrl->index = init_index;
1376 
1377 		ret = peb2466_add_lkup_ctrl(component, lkup_ctrl,
1378 					    peb2466_ar_ctrl_names[i],
1379 					    min_val, step);
1380 		if (ret)
1381 			return ret;
1382 	}
1383 	return 0;
1384 }
1385 
1386 struct peb2466_fw_tag_def {
1387 	u16 tag;
1388 	u32 lng_min;
1389 	u32 lng_max;
1390 	int (*parse)(struct snd_soc_component *component,
1391 		     u16 tag, u32 lng, const u8 *data);
1392 };
1393 
1394 #define PEB2466_TAG_DEF_LNG_EQ(__tag, __lng, __parse) { \
1395 	.tag = __tag,		\
1396 	.lng_min = __lng,	\
1397 	.lng_max = __lng,	\
1398 	.parse = __parse,	\
1399 }
1400 
1401 #define PEB2466_TAG_DEF_LNG_MIN(__tag, __lng_min, __parse) { \
1402 	.tag = __tag,		\
1403 	.lng_min = __lng_min,	\
1404 	.lng_max = U32_MAX,	\
1405 	.parse = __parse,	\
1406 }
1407 
1408 static const struct peb2466_fw_tag_def peb2466_fw_tag_defs[] = {
1409 	/* TH FILTER */
1410 	PEB2466_TAG_DEF_LNG_EQ(0x0001, 1 + 3 * 8, peb2466_fw_parse_thfilter),
1411 	/* IMR1 FILTER */
1412 	PEB2466_TAG_DEF_LNG_EQ(0x0002, 1 + 2 * 8, peb2466_fw_parse_imr1filter),
1413 	/* FRX FILTER */
1414 	PEB2466_TAG_DEF_LNG_EQ(0x0003, 1 + 8, peb2466_fw_parse_frxfilter),
1415 	/* FRR FILTER */
1416 	PEB2466_TAG_DEF_LNG_EQ(0x0004, 1 + 8, peb2466_fw_parse_frrfilter),
1417 	/* AX FILTER */
1418 	PEB2466_TAG_DEF_LNG_EQ(0x0005, 1 + 4, peb2466_fw_parse_axfilter),
1419 	/* AR FILTER */
1420 	PEB2466_TAG_DEF_LNG_EQ(0x0006, 1 + 4, peb2466_fw_parse_arfilter),
1421 	/* AX TABLE */
1422 	PEB2466_TAG_DEF_LNG_MIN(0x0105, 1 + 3 * 4, peb2466_fw_parse_axtable),
1423 	/* AR TABLE */
1424 	PEB2466_TAG_DEF_LNG_MIN(0x0106, 1 + 3 * 4, peb2466_fw_parse_artable),
1425 };
1426 
1427 static const struct peb2466_fw_tag_def *peb2466_fw_get_tag_def(u16 tag)
1428 {
1429 	int i;
1430 
1431 	for (i = 0; i < ARRAY_SIZE(peb2466_fw_tag_defs); i++) {
1432 		if (peb2466_fw_tag_defs[i].tag == tag)
1433 			return &peb2466_fw_tag_defs[i];
1434 	}
1435 	return NULL;
1436 }
1437 
1438 static int peb2466_fw_parse(struct snd_soc_component *component,
1439 			    const u8 *data, size_t size)
1440 {
1441 	const struct peb2466_fw_tag_def *tag_def;
1442 	size_t left;
1443 	const u8 *buf;
1444 	u16 val16;
1445 	u16 tag;
1446 	u32 lng;
1447 	int ret;
1448 
1449 	/*
1450 	 * Coefficients firmware binary structure (16bits and 32bits are
1451 	 * big-endian values).
1452 	 *
1453 	 * @0, 16bits: Magic (0x2466)
1454 	 * @2, 16bits: Version (0x0100 for version 1.0)
1455 	 * @4, 2+4+N bytes: TLV block
1456 	 * @4+(2+4+N) bytes: Next TLV block
1457 	 * ...
1458 	 *
1459 	 * Detail of a TLV block:
1460 	 *   @0, 16bits: Tag
1461 	 *   @2, 32bits: Lng
1462 	 *   @6, lng bytes: Data
1463 	 *
1464 	 * The detail the Data for a given TLV Tag is provided in the related
1465 	 * parser.
1466 	 */
1467 
1468 	left = size;
1469 	buf = data;
1470 
1471 	if (left < 4) {
1472 		dev_err(component->dev, "fw size %zu, exp at least 4\n", left);
1473 		return -EINVAL;
1474 	}
1475 
1476 	/* Check magic */
1477 	val16 = get_unaligned_be16(buf);
1478 	if (val16 != 0x2466) {
1479 		dev_err(component->dev, "fw magic 0x%04x exp 0x2466\n", val16);
1480 		return -EINVAL;
1481 	}
1482 	buf += 2;
1483 	left -= 2;
1484 
1485 	/* Check version */
1486 	val16 = get_unaligned_be16(buf);
1487 	if (val16 != 0x0100) {
1488 		dev_err(component->dev, "fw magic 0x%04x exp 0x0100\n", val16);
1489 		return -EINVAL;
1490 	}
1491 	buf += 2;
1492 	left -= 2;
1493 
1494 	while (left) {
1495 		if (left < 6) {
1496 			dev_err(component->dev, "fw %td/%zu left %zu, exp at least 6\n",
1497 				buf - data, size, left);
1498 			return -EINVAL;
1499 		}
1500 		/* Check tag and lng */
1501 		tag = get_unaligned_be16(buf);
1502 		lng = get_unaligned_be32(buf + 2);
1503 		tag_def = peb2466_fw_get_tag_def(tag);
1504 		if (!tag_def) {
1505 			dev_err(component->dev, "fw %td/%zu tag 0x%04x unknown\n",
1506 				buf - data, size, tag);
1507 			return -EINVAL;
1508 		}
1509 		if (lng < tag_def->lng_min || lng > tag_def->lng_max) {
1510 			dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u, exp [%u;%u]\n",
1511 				buf - data, size, tag, lng, tag_def->lng_min, tag_def->lng_max);
1512 			return -EINVAL;
1513 		}
1514 		buf += 6;
1515 		left -= 6;
1516 		if (left < lng) {
1517 			dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u, left %zu\n",
1518 				buf - data, size, tag, lng, left);
1519 			return -EINVAL;
1520 		}
1521 
1522 		/* TLV block is valid -> parse the data part */
1523 		ret = tag_def->parse(component, tag, lng, buf);
1524 		if (ret) {
1525 			dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u parse failed\n",
1526 				buf - data, size, tag, lng);
1527 			return ret;
1528 		}
1529 
1530 		buf += lng;
1531 		left -= lng;
1532 	}
1533 	return 0;
1534 }
1535 
1536 static int peb2466_load_coeffs(struct snd_soc_component *component, const char *fw_name)
1537 {
1538 	const struct firmware *fw;
1539 	int ret;
1540 
1541 	ret = request_firmware(&fw, fw_name, component->dev);
1542 	if (ret)
1543 		return ret;
1544 
1545 	ret = peb2466_fw_parse(component, fw->data, fw->size);
1546 	release_firmware(fw);
1547 
1548 	return ret;
1549 }
1550 
1551 static int peb2466_component_probe(struct snd_soc_component *component)
1552 {
1553 	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1554 	const char *firmware_name;
1555 	int ret;
1556 
1557 	/* reset peb2466 audio part */
1558 	ret = peb2466_reset_audio(peb2466);
1559 	if (ret)
1560 		return ret;
1561 
1562 	ret = of_property_read_string(peb2466->spi->dev.of_node,
1563 				      "firmware-name", &firmware_name);
1564 	if (ret)
1565 		return (ret == -EINVAL) ? 0 : ret;
1566 
1567 	return peb2466_load_coeffs(component, firmware_name);
1568 }
1569 
1570 static const struct snd_soc_component_driver peb2466_component_driver = {
1571 	.probe			= peb2466_component_probe,
1572 	.controls		= peb2466_controls,
1573 	.num_controls		= ARRAY_SIZE(peb2466_controls),
1574 	.dapm_widgets		= peb2466_dapm_widgets,
1575 	.num_dapm_widgets	= ARRAY_SIZE(peb2466_dapm_widgets),
1576 	.dapm_routes		= peb2466_dapm_routes,
1577 	.num_dapm_routes	= ARRAY_SIZE(peb2466_dapm_routes),
1578 	.endianness		= 1,
1579 };
1580 
1581 /*
1582  * The mapping used for the relationship between the gpio offset and the
1583  * physical pin is the following:
1584  *
1585  * offset     pin
1586  *      0     SI1_0
1587  *      1     SI1_1
1588  *      2     SI2_0
1589  *      3     SI2_1
1590  *      4     SI3_0
1591  *      5     SI3_1
1592  *      6     SI4_0
1593  *      7     SI4_1
1594  *      8     SO1_0
1595  *      9     SO1_1
1596  *     10     SO2_0
1597  *     11     SO2_1
1598  *     12     SO3_0
1599  *     13     SO3_1
1600  *     14     SO4_0
1601  *     15     SO4_1
1602  *     16     SB1_0
1603  *     17     SB1_1
1604  *     18     SB2_0
1605  *     19     SB2_1
1606  *     20     SB3_0
1607  *     21     SB3_1
1608  *     22     SB4_0
1609  *     23     SB4_1
1610  *     24     SB1_2
1611  *     25     SB2_2
1612  *     26     SB3_2
1613  *     27     SB4_2
1614  */
1615 
1616 static int peb2466_chip_gpio_offset_to_data_regmask(unsigned int offset,
1617 						    unsigned int *xr_reg,
1618 						    unsigned int *mask)
1619 {
1620 	if (offset < 16) {
1621 		/*
1622 		 * SIx_{0,1} and SOx_{0,1}
1623 		 *   Read accesses read SIx_{0,1} values
1624 		 *   Write accesses write SOx_{0,1} values
1625 		 */
1626 		*xr_reg = PEB2466_XR0;
1627 		*mask = (1 << (offset % 8));
1628 		return 0;
1629 	}
1630 	if (offset < 24) {
1631 		/* SBx_{0,1} */
1632 		*xr_reg = PEB2466_XR1;
1633 		*mask = (1 << (offset - 16));
1634 		return 0;
1635 	}
1636 	if (offset < 28) {
1637 		/* SBx_2 */
1638 		*xr_reg = PEB2466_XR3;
1639 		*mask = (1 << (offset - 24 + 4));
1640 		return 0;
1641 	}
1642 	return -EINVAL;
1643 }
1644 
1645 static int peb2466_chip_gpio_offset_to_dir_regmask(unsigned int offset,
1646 						   unsigned int *xr_reg,
1647 						   unsigned int *mask)
1648 {
1649 	if (offset < 16) {
1650 		/* Direction cannot be changed for these GPIOs */
1651 		return -EINVAL;
1652 	}
1653 	if (offset < 24) {
1654 		*xr_reg = PEB2466_XR2;
1655 		*mask = (1 << (offset - 16));
1656 		return 0;
1657 	}
1658 	if (offset < 28) {
1659 		*xr_reg = PEB2466_XR3;
1660 		*mask = (1 << (offset - 24));
1661 		return 0;
1662 	}
1663 	return -EINVAL;
1664 }
1665 
1666 static unsigned int *peb2466_chip_gpio_get_cache(struct peb2466 *peb2466,
1667 						 unsigned int xr_reg)
1668 {
1669 	unsigned int *cache;
1670 
1671 	switch (xr_reg) {
1672 	case PEB2466_XR0:
1673 		cache = &peb2466->gpio.cache.xr0;
1674 		break;
1675 	case PEB2466_XR1:
1676 		cache = &peb2466->gpio.cache.xr1;
1677 		break;
1678 	case PEB2466_XR2:
1679 		cache = &peb2466->gpio.cache.xr2;
1680 		break;
1681 	case PEB2466_XR3:
1682 		cache = &peb2466->gpio.cache.xr3;
1683 		break;
1684 	default:
1685 		cache = NULL;
1686 		break;
1687 	}
1688 	return cache;
1689 }
1690 
1691 static int peb2466_chip_gpio_update_bits(struct peb2466 *peb2466, unsigned int xr_reg,
1692 					 unsigned int mask, unsigned int val)
1693 {
1694 	unsigned int tmp;
1695 	unsigned int *cache;
1696 	int ret;
1697 
1698 	/*
1699 	 * Read and write accesses use different peb2466 internal signals (input
1700 	 * signals on reads and output signals on writes). regmap_update_bits
1701 	 * cannot be used to read/modify/write the value.
1702 	 * So, a specific cache value is used.
1703 	 */
1704 
1705 	mutex_lock(&peb2466->gpio.lock);
1706 
1707 	cache = peb2466_chip_gpio_get_cache(peb2466, xr_reg);
1708 	if (!cache) {
1709 		ret = -EINVAL;
1710 		goto end;
1711 	}
1712 
1713 	tmp = *cache;
1714 	tmp &= ~mask;
1715 	tmp |= val;
1716 
1717 	ret = regmap_write(peb2466->regmap, xr_reg, tmp);
1718 	if (ret)
1719 		goto end;
1720 
1721 	*cache = tmp;
1722 	ret = 0;
1723 
1724 end:
1725 	mutex_unlock(&peb2466->gpio.lock);
1726 	return ret;
1727 }
1728 
1729 static void peb2466_chip_gpio_set(struct gpio_chip *c, unsigned int offset, int val)
1730 {
1731 	struct peb2466 *peb2466 = gpiochip_get_data(c);
1732 	unsigned int xr_reg;
1733 	unsigned int mask;
1734 	int ret;
1735 
1736 	if (offset < 8) {
1737 		/*
1738 		 * SIx_{0,1} signals cannot be set and writing the related
1739 		 * register will change the SOx_{0,1} signals
1740 		 */
1741 		dev_warn(&peb2466->spi->dev, "cannot set gpio %d (read-only)\n",
1742 			 offset);
1743 		return;
1744 	}
1745 
1746 	ret = peb2466_chip_gpio_offset_to_data_regmask(offset, &xr_reg, &mask);
1747 	if (ret) {
1748 		dev_err(&peb2466->spi->dev, "cannot set gpio %d (%d)\n",
1749 			offset, ret);
1750 		return;
1751 	}
1752 
1753 	ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, val ? mask : 0);
1754 	if (ret) {
1755 		dev_err(&peb2466->spi->dev, "set gpio %d (0x%x, 0x%x) failed (%d)\n",
1756 			offset, xr_reg, mask, ret);
1757 	}
1758 }
1759 
1760 static int peb2466_chip_gpio_get(struct gpio_chip *c, unsigned int offset)
1761 {
1762 	struct peb2466 *peb2466 = gpiochip_get_data(c);
1763 	bool use_cache = false;
1764 	unsigned int *cache;
1765 	unsigned int xr_reg;
1766 	unsigned int mask;
1767 	unsigned int val;
1768 	int ret;
1769 
1770 	if (offset >= 8 && offset < 16) {
1771 		/*
1772 		 * SOx_{0,1} signals cannot be read. Reading the related
1773 		 * register will read the SIx_{0,1} signals.
1774 		 * Use the cache to get value;
1775 		 */
1776 		use_cache = true;
1777 	}
1778 
1779 	ret = peb2466_chip_gpio_offset_to_data_regmask(offset, &xr_reg, &mask);
1780 	if (ret) {
1781 		dev_err(&peb2466->spi->dev, "cannot get gpio %d (%d)\n",
1782 			offset, ret);
1783 		return -EINVAL;
1784 	}
1785 
1786 	if (use_cache) {
1787 		cache = peb2466_chip_gpio_get_cache(peb2466, xr_reg);
1788 		if (!cache)
1789 			return -EINVAL;
1790 		val = *cache;
1791 	} else {
1792 		ret = regmap_read(peb2466->regmap, xr_reg, &val);
1793 		if (ret) {
1794 			dev_err(&peb2466->spi->dev, "get gpio %d (0x%x, 0x%x) failed (%d)\n",
1795 				offset, xr_reg, mask, ret);
1796 			return ret;
1797 		}
1798 	}
1799 
1800 	return !!(val & mask);
1801 }
1802 
1803 static int peb2466_chip_get_direction(struct gpio_chip *c, unsigned int offset)
1804 {
1805 	struct peb2466 *peb2466 = gpiochip_get_data(c);
1806 	unsigned int xr_reg;
1807 	unsigned int mask;
1808 	unsigned int val;
1809 	int ret;
1810 
1811 	if (offset < 8) {
1812 		/* SIx_{0,1} */
1813 		return GPIO_LINE_DIRECTION_IN;
1814 	}
1815 	if (offset < 16) {
1816 		/* SOx_{0,1} */
1817 		return GPIO_LINE_DIRECTION_OUT;
1818 	}
1819 
1820 	ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask);
1821 	if (ret) {
1822 		dev_err(&peb2466->spi->dev, "cannot get gpio %d direction (%d)\n",
1823 			offset, ret);
1824 		return ret;
1825 	}
1826 
1827 	ret = regmap_read(peb2466->regmap, xr_reg, &val);
1828 	if (ret) {
1829 		dev_err(&peb2466->spi->dev, "get dir gpio %d (0x%x, 0x%x) failed (%d)\n",
1830 			offset, xr_reg, mask, ret);
1831 		return ret;
1832 	}
1833 
1834 	return val & mask ? GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1835 }
1836 
1837 static int peb2466_chip_direction_input(struct gpio_chip *c, unsigned int offset)
1838 {
1839 	struct peb2466 *peb2466 = gpiochip_get_data(c);
1840 	unsigned int xr_reg;
1841 	unsigned int mask;
1842 	int ret;
1843 
1844 	if (offset < 8) {
1845 		/* SIx_{0,1} */
1846 		return 0;
1847 	}
1848 	if (offset < 16) {
1849 		/* SOx_{0,1} */
1850 		return -EINVAL;
1851 	}
1852 
1853 	ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask);
1854 	if (ret) {
1855 		dev_err(&peb2466->spi->dev, "cannot set gpio %d direction (%d)\n",
1856 			offset, ret);
1857 		return ret;
1858 	}
1859 
1860 	ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, 0);
1861 	if (ret) {
1862 		dev_err(&peb2466->spi->dev, "Set dir in gpio %d (0x%x, 0x%x) failed (%d)\n",
1863 			offset, xr_reg, mask, ret);
1864 		return ret;
1865 	}
1866 
1867 	return 0;
1868 }
1869 
1870 static int peb2466_chip_direction_output(struct gpio_chip *c, unsigned int offset, int val)
1871 {
1872 	struct peb2466 *peb2466 = gpiochip_get_data(c);
1873 	unsigned int xr_reg;
1874 	unsigned int mask;
1875 	int ret;
1876 
1877 	if (offset < 8) {
1878 		/* SIx_{0,1} */
1879 		return -EINVAL;
1880 	}
1881 
1882 	peb2466_chip_gpio_set(c, offset, val);
1883 
1884 	if (offset < 16) {
1885 		/* SOx_{0,1} */
1886 		return 0;
1887 	}
1888 
1889 	ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask);
1890 	if (ret) {
1891 		dev_err(&peb2466->spi->dev, "cannot set gpio %d direction (%d)\n",
1892 			offset, ret);
1893 		return ret;
1894 	}
1895 
1896 	ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, mask);
1897 	if (ret) {
1898 		dev_err(&peb2466->spi->dev, "Set dir in gpio %d (0x%x, 0x%x) failed (%d)\n",
1899 			offset, xr_reg, mask, ret);
1900 		return ret;
1901 	}
1902 
1903 	return 0;
1904 }
1905 
1906 static int peb2466_reset_gpio(struct peb2466 *peb2466)
1907 {
1908 	static const struct reg_sequence reg_reset[] = {
1909 		/* Output pins at 0, input/output pins as input */
1910 		{  .reg = PEB2466_XR0, .def = 0 },
1911 		{  .reg = PEB2466_XR1, .def = 0 },
1912 		{  .reg = PEB2466_XR2, .def = 0 },
1913 		{  .reg = PEB2466_XR3, .def = 0 },
1914 	};
1915 
1916 	peb2466->gpio.cache.xr0 = 0;
1917 	peb2466->gpio.cache.xr1 = 0;
1918 	peb2466->gpio.cache.xr2 = 0;
1919 	peb2466->gpio.cache.xr3 = 0;
1920 
1921 	return regmap_multi_reg_write(peb2466->regmap, reg_reset, ARRAY_SIZE(reg_reset));
1922 }
1923 
1924 static int peb2466_gpio_init(struct peb2466 *peb2466)
1925 {
1926 	int ret;
1927 
1928 	mutex_init(&peb2466->gpio.lock);
1929 
1930 	ret = peb2466_reset_gpio(peb2466);
1931 	if (ret)
1932 		return ret;
1933 
1934 	peb2466->gpio.gpio_chip.owner = THIS_MODULE;
1935 	peb2466->gpio.gpio_chip.label = dev_name(&peb2466->spi->dev);
1936 	peb2466->gpio.gpio_chip.parent = &peb2466->spi->dev;
1937 	peb2466->gpio.gpio_chip.base = -1;
1938 	peb2466->gpio.gpio_chip.ngpio = 28;
1939 	peb2466->gpio.gpio_chip.get_direction = peb2466_chip_get_direction;
1940 	peb2466->gpio.gpio_chip.direction_input = peb2466_chip_direction_input;
1941 	peb2466->gpio.gpio_chip.direction_output = peb2466_chip_direction_output;
1942 	peb2466->gpio.gpio_chip.get = peb2466_chip_gpio_get;
1943 	peb2466->gpio.gpio_chip.set = peb2466_chip_gpio_set;
1944 	peb2466->gpio.gpio_chip.can_sleep = true;
1945 
1946 	return devm_gpiochip_add_data(&peb2466->spi->dev, &peb2466->gpio.gpio_chip,
1947 				      peb2466);
1948 }
1949 
1950 static int peb2466_spi_probe(struct spi_device *spi)
1951 {
1952 	struct peb2466 *peb2466;
1953 	unsigned long mclk_rate;
1954 	int ret;
1955 	u8 xr5;
1956 
1957 	spi->bits_per_word = 8;
1958 	ret = spi_setup(spi);
1959 	if (ret < 0)
1960 		return ret;
1961 
1962 	peb2466 = devm_kzalloc(&spi->dev, sizeof(*peb2466), GFP_KERNEL);
1963 	if (!peb2466)
1964 		return -ENOMEM;
1965 
1966 	peb2466->spi = spi;
1967 
1968 	peb2466->regmap = devm_regmap_init(&peb2466->spi->dev, NULL, peb2466,
1969 					   &peb2466_regmap_config);
1970 	if (IS_ERR(peb2466->regmap))
1971 		return PTR_ERR(peb2466->regmap);
1972 
1973 	peb2466->reset_gpio = devm_gpiod_get_optional(&peb2466->spi->dev,
1974 						      "reset", GPIOD_OUT_LOW);
1975 	if (IS_ERR(peb2466->reset_gpio))
1976 		return PTR_ERR(peb2466->reset_gpio);
1977 
1978 	peb2466->mclk = devm_clk_get(&peb2466->spi->dev, "mclk");
1979 	if (IS_ERR(peb2466->mclk))
1980 		return PTR_ERR(peb2466->mclk);
1981 	ret = clk_prepare_enable(peb2466->mclk);
1982 	if (ret)
1983 		return ret;
1984 
1985 	if (peb2466->reset_gpio) {
1986 		gpiod_set_value_cansleep(peb2466->reset_gpio, 1);
1987 		udelay(4);
1988 		gpiod_set_value_cansleep(peb2466->reset_gpio, 0);
1989 		udelay(4);
1990 	}
1991 
1992 	spi_set_drvdata(spi, peb2466);
1993 
1994 	mclk_rate = clk_get_rate(peb2466->mclk);
1995 	switch (mclk_rate) {
1996 	case 1536000:
1997 		xr5 = PEB2466_XR5_MCLK_1536;
1998 		break;
1999 	case 2048000:
2000 		xr5 = PEB2466_XR5_MCLK_2048;
2001 		break;
2002 	case 4096000:
2003 		xr5 = PEB2466_XR5_MCLK_4096;
2004 		break;
2005 	case 8192000:
2006 		xr5 = PEB2466_XR5_MCLK_8192;
2007 		break;
2008 	default:
2009 		dev_err(&peb2466->spi->dev, "Unsupported clock rate %lu\n",
2010 			mclk_rate);
2011 		ret = -EINVAL;
2012 		goto failed;
2013 	}
2014 	ret = regmap_write(peb2466->regmap, PEB2466_XR5, xr5);
2015 	if (ret) {
2016 		dev_err(&peb2466->spi->dev, "Setting MCLK failed (%d)\n", ret);
2017 		goto failed;
2018 	}
2019 
2020 	ret = devm_snd_soc_register_component(&spi->dev, &peb2466_component_driver,
2021 					      &peb2466_dai_driver, 1);
2022 	if (ret)
2023 		goto failed;
2024 
2025 	if (IS_ENABLED(CONFIG_GPIOLIB)) {
2026 		ret = peb2466_gpio_init(peb2466);
2027 		if (ret)
2028 			goto failed;
2029 	}
2030 
2031 	return 0;
2032 
2033 failed:
2034 	clk_disable_unprepare(peb2466->mclk);
2035 	return ret;
2036 }
2037 
2038 static void peb2466_spi_remove(struct spi_device *spi)
2039 {
2040 	struct peb2466 *peb2466 = spi_get_drvdata(spi);
2041 
2042 	clk_disable_unprepare(peb2466->mclk);
2043 }
2044 
2045 static const struct of_device_id peb2466_of_match[] = {
2046 	{ .compatible = "infineon,peb2466", },
2047 	{ }
2048 };
2049 MODULE_DEVICE_TABLE(of, peb2466_of_match);
2050 
2051 static const struct spi_device_id peb2466_id_table[] = {
2052 	{ "peb2466", 0 },
2053 	{ }
2054 };
2055 MODULE_DEVICE_TABLE(spi, peb2466_id_table);
2056 
2057 static struct spi_driver peb2466_spi_driver = {
2058 	.driver  = {
2059 		.name   = "peb2466",
2060 		.of_match_table = peb2466_of_match,
2061 	},
2062 	.id_table = peb2466_id_table,
2063 	.probe  = peb2466_spi_probe,
2064 	.remove = peb2466_spi_remove,
2065 };
2066 
2067 module_spi_driver(peb2466_spi_driver);
2068 
2069 MODULE_AUTHOR("Herve Codina <herve.codina@bootlin.com>");
2070 MODULE_DESCRIPTION("PEB2466 ALSA SoC driver");
2071 MODULE_LICENSE("GPL");
2072