1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // peb2466.c -- Infineon PEB2466 ALSA SoC driver 4 // 5 // Copyright 2023 CS GROUP France 6 // 7 // Author: Herve Codina <herve.codina@bootlin.com> 8 9 #include <linux/unaligned.h> 10 #include <linux/clk.h> 11 #include <linux/firmware.h> 12 #include <linux/gpio/consumer.h> 13 #include <linux/gpio/driver.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/slab.h> 17 #include <linux/spi/spi.h> 18 #include <sound/pcm_params.h> 19 #include <sound/soc.h> 20 #include <sound/tlv.h> 21 22 #define PEB2466_NB_CHANNEL 4 23 24 struct peb2466_lookup { 25 u8 (*table)[4]; 26 unsigned int count; 27 }; 28 29 #define PEB2466_TLV_SIZE (sizeof((unsigned int []){TLV_DB_SCALE_ITEM(0, 0, 0)}) / \ 30 sizeof(unsigned int)) 31 32 struct peb2466_lkup_ctrl { 33 int reg; 34 unsigned int index; 35 const struct peb2466_lookup *lookup; 36 unsigned int tlv_array[PEB2466_TLV_SIZE]; 37 }; 38 39 struct peb2466 { 40 struct spi_device *spi; 41 struct clk *mclk; 42 struct gpio_desc *reset_gpio; 43 u8 spi_tx_buf[2 + 8]; /* Cannot use stack area for SPI (dma-safe memory) */ 44 u8 spi_rx_buf[2 + 8]; /* Cannot use stack area for SPI (dma-safe memory) */ 45 struct regmap *regmap; 46 struct { 47 struct peb2466_lookup ax_lookup; 48 struct peb2466_lookup ar_lookup; 49 struct peb2466_lkup_ctrl ax_lkup_ctrl; 50 struct peb2466_lkup_ctrl ar_lkup_ctrl; 51 unsigned int tg1_freq_item; 52 unsigned int tg2_freq_item; 53 } ch[PEB2466_NB_CHANNEL]; 54 int max_chan_playback; 55 int max_chan_capture; 56 struct { 57 struct gpio_chip gpio_chip; 58 struct mutex lock; 59 struct { 60 unsigned int xr0; 61 unsigned int xr1; 62 unsigned int xr2; 63 unsigned int xr3; 64 } cache; 65 } gpio; 66 }; 67 68 #define PEB2466_CMD_R (1 << 5) 69 #define PEB2466_CMD_W (0 << 5) 70 71 #define PEB2466_CMD_MASK 0x18 72 #define PEB2466_CMD_XOP 0x18 /* XOP is 0bxxx11xxx */ 73 #define PEB2466_CMD_SOP 0x10 /* SOP is 0bxxx10xxx */ 74 #define PEB2466_CMD_COP 0x00 /* COP is 0bxxx0xxxx, handle 0bxxx00xxx */ 75 #define PEB2466_CMD_COP1 0x08 /* COP is 0bxxx0xxxx, handle 0bxxx01xxx */ 76 77 #define PEB2466_MAKE_XOP(_lsel) (PEB2466_CMD_XOP | (_lsel)) 78 #define PEB2466_MAKE_SOP(_ad, _lsel) (PEB2466_CMD_SOP | ((_ad) << 6) | (_lsel)) 79 #define PEB2466_MAKE_COP(_ad, _code) (PEB2466_CMD_COP | ((_ad) << 6) | (_code)) 80 81 #define PEB2466_CR0(_ch) PEB2466_MAKE_SOP(_ch, 0x0) 82 #define PEB2466_CR0_TH (1 << 7) 83 #define PEB2466_CR0_IMR1 (1 << 6) 84 #define PEB2466_CR0_FRX (1 << 5) 85 #define PEB2466_CR0_FRR (1 << 4) 86 #define PEB2466_CR0_AX (1 << 3) 87 #define PEB2466_CR0_AR (1 << 2) 88 #define PEB2466_CR0_THSEL_MASK (0x3 << 0) 89 #define PEB2466_CR0_THSEL(_set) ((_set) << 0) 90 91 #define PEB2466_CR1(_ch) PEB2466_MAKE_SOP(_ch, 0x1) 92 #define PEB2466_CR1_ETG2 (1 << 7) 93 #define PEB2466_CR1_ETG1 (1 << 6) 94 #define PEB2466_CR1_PTG2 (1 << 5) 95 #define PEB2466_CR1_PTG1 (1 << 4) 96 #define PEB2466_CR1_LAW_MASK (1 << 3) 97 #define PEB2466_CR1_LAW_ALAW (0 << 3) 98 #define PEB2466_CR1_LAW_MULAW (1 << 3) 99 #define PEB2466_CR1_PU (1 << 0) 100 101 #define PEB2466_CR2(_ch) PEB2466_MAKE_SOP(_ch, 0x2) 102 #define PEB2466_CR3(_ch) PEB2466_MAKE_SOP(_ch, 0x3) 103 #define PEB2466_CR4(_ch) PEB2466_MAKE_SOP(_ch, 0x4) 104 #define PEB2466_CR5(_ch) PEB2466_MAKE_SOP(_ch, 0x5) 105 106 #define PEB2466_XR0 PEB2466_MAKE_XOP(0x0) 107 #define PEB2466_XR1 PEB2466_MAKE_XOP(0x1) 108 #define PEB2466_XR2 PEB2466_MAKE_XOP(0x2) 109 #define PEB2466_XR3 PEB2466_MAKE_XOP(0x3) 110 #define PEB2466_XR4 PEB2466_MAKE_XOP(0x4) 111 #define PEB2466_XR5 PEB2466_MAKE_XOP(0x5) 112 #define PEB2466_XR5_MCLK_1536 (0x0 << 6) 113 #define PEB2466_XR5_MCLK_2048 (0x1 << 6) 114 #define PEB2466_XR5_MCLK_4096 (0x2 << 6) 115 #define PEB2466_XR5_MCLK_8192 (0x3 << 6) 116 117 #define PEB2466_XR6 PEB2466_MAKE_XOP(0x6) 118 #define PEB2466_XR6_PCM_OFFSET(_off) ((_off) << 0) 119 120 #define PEB2466_XR7 PEB2466_MAKE_XOP(0x7) 121 122 #define PEB2466_TH_FILTER_P1(_ch) PEB2466_MAKE_COP(_ch, 0x0) 123 #define PEB2466_TH_FILTER_P2(_ch) PEB2466_MAKE_COP(_ch, 0x1) 124 #define PEB2466_TH_FILTER_P3(_ch) PEB2466_MAKE_COP(_ch, 0x2) 125 #define PEB2466_IMR1_FILTER_P1(_ch) PEB2466_MAKE_COP(_ch, 0x4) 126 #define PEB2466_IMR1_FILTER_P2(_ch) PEB2466_MAKE_COP(_ch, 0x5) 127 #define PEB2466_FRX_FILTER(_ch) PEB2466_MAKE_COP(_ch, 0x6) 128 #define PEB2466_FRR_FILTER(_ch) PEB2466_MAKE_COP(_ch, 0x7) 129 #define PEB2466_AX_FILTER(_ch) PEB2466_MAKE_COP(_ch, 0x8) 130 #define PEB2466_AR_FILTER(_ch) PEB2466_MAKE_COP(_ch, 0x9) 131 #define PEB2466_TG1(_ch) PEB2466_MAKE_COP(_ch, 0xc) 132 #define PEB2466_TG2(_ch) PEB2466_MAKE_COP(_ch, 0xd) 133 134 static int peb2466_write_byte(struct peb2466 *peb2466, u8 cmd, u8 val) 135 { 136 struct spi_transfer xfer = { 137 .tx_buf = &peb2466->spi_tx_buf, 138 .len = 2, 139 }; 140 141 peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_W; 142 peb2466->spi_tx_buf[1] = val; 143 144 dev_dbg(&peb2466->spi->dev, "write byte (cmd %02x) %02x\n", 145 peb2466->spi_tx_buf[0], peb2466->spi_tx_buf[1]); 146 147 return spi_sync_transfer(peb2466->spi, &xfer, 1); 148 } 149 150 static int peb2466_read_byte(struct peb2466 *peb2466, u8 cmd, u8 *val) 151 { 152 struct spi_transfer xfer = { 153 .tx_buf = &peb2466->spi_tx_buf, 154 .rx_buf = &peb2466->spi_rx_buf, 155 .len = 3, 156 }; 157 int ret; 158 159 peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_R; 160 161 ret = spi_sync_transfer(peb2466->spi, &xfer, 1); 162 if (ret) 163 return ret; 164 165 if (peb2466->spi_rx_buf[1] != 0x81) { 166 dev_err(&peb2466->spi->dev, 167 "spi xfer rd (cmd %02x) invalid ident byte (0x%02x)\n", 168 peb2466->spi_tx_buf[0], peb2466->spi_rx_buf[1]); 169 return -EILSEQ; 170 } 171 172 *val = peb2466->spi_rx_buf[2]; 173 174 dev_dbg(&peb2466->spi->dev, "read byte (cmd %02x) %02x\n", 175 peb2466->spi_tx_buf[0], *val); 176 177 return 0; 178 } 179 180 static int peb2466_write_buf(struct peb2466 *peb2466, u8 cmd, const u8 *buf, unsigned int len) 181 { 182 struct spi_transfer xfer = { 183 .tx_buf = &peb2466->spi_tx_buf, 184 .len = len + 1, 185 }; 186 187 if (len > 8) 188 return -EINVAL; 189 190 peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_W; 191 memcpy(&peb2466->spi_tx_buf[1], buf, len); 192 193 dev_dbg(&peb2466->spi->dev, "write buf (cmd %02x, %u) %*ph\n", 194 peb2466->spi_tx_buf[0], len, len, &peb2466->spi_tx_buf[1]); 195 196 return spi_sync_transfer(peb2466->spi, &xfer, 1); 197 } 198 199 static int peb2466_reg_write(void *context, unsigned int reg, unsigned int val) 200 { 201 struct peb2466 *peb2466 = context; 202 int ret; 203 204 /* 205 * Only XOP and SOP commands can be handled as registers. 206 * COP commands are handled using direct peb2466_write_buf() calls. 207 */ 208 switch (reg & PEB2466_CMD_MASK) { 209 case PEB2466_CMD_XOP: 210 case PEB2466_CMD_SOP: 211 ret = peb2466_write_byte(peb2466, reg, val); 212 break; 213 default: 214 dev_err(&peb2466->spi->dev, "Not a XOP or SOP command\n"); 215 ret = -EINVAL; 216 break; 217 } 218 return ret; 219 } 220 221 static int peb2466_reg_read(void *context, unsigned int reg, unsigned int *val) 222 { 223 struct peb2466 *peb2466 = context; 224 int ret; 225 u8 tmp; 226 227 /* Only XOP and SOP commands can be handled as registers */ 228 switch (reg & PEB2466_CMD_MASK) { 229 case PEB2466_CMD_XOP: 230 case PEB2466_CMD_SOP: 231 ret = peb2466_read_byte(peb2466, reg, &tmp); 232 if (!ret) 233 *val = tmp; 234 break; 235 default: 236 dev_err(&peb2466->spi->dev, "Not a XOP or SOP command\n"); 237 ret = -EINVAL; 238 break; 239 } 240 return ret; 241 } 242 243 static const struct regmap_config peb2466_regmap_config = { 244 .reg_bits = 8, 245 .val_bits = 8, 246 .max_register = 0xFF, 247 .reg_write = peb2466_reg_write, 248 .reg_read = peb2466_reg_read, 249 .cache_type = REGCACHE_NONE, 250 }; 251 252 static int peb2466_lkup_ctrl_info(struct snd_kcontrol *kcontrol, 253 struct snd_ctl_elem_info *uinfo) 254 { 255 struct peb2466_lkup_ctrl *lkup_ctrl = 256 (struct peb2466_lkup_ctrl *)kcontrol->private_value; 257 258 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 259 uinfo->count = 1; 260 uinfo->value.integer.min = 0; 261 uinfo->value.integer.max = lkup_ctrl->lookup->count - 1; 262 return 0; 263 } 264 265 static int peb2466_lkup_ctrl_get(struct snd_kcontrol *kcontrol, 266 struct snd_ctl_elem_value *ucontrol) 267 { 268 struct peb2466_lkup_ctrl *lkup_ctrl = 269 (struct peb2466_lkup_ctrl *)kcontrol->private_value; 270 271 ucontrol->value.integer.value[0] = lkup_ctrl->index; 272 return 0; 273 } 274 275 static int peb2466_lkup_ctrl_put(struct snd_kcontrol *kcontrol, 276 struct snd_ctl_elem_value *ucontrol) 277 { 278 struct peb2466_lkup_ctrl *lkup_ctrl = 279 (struct peb2466_lkup_ctrl *)kcontrol->private_value; 280 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 281 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); 282 unsigned int index; 283 int ret; 284 285 index = ucontrol->value.integer.value[0]; 286 if (index >= lkup_ctrl->lookup->count) 287 return -EINVAL; 288 289 if (index == lkup_ctrl->index) 290 return 0; 291 292 ret = peb2466_write_buf(peb2466, lkup_ctrl->reg, 293 lkup_ctrl->lookup->table[index], 4); 294 if (ret) 295 return ret; 296 297 lkup_ctrl->index = index; 298 return 1; /* The value changed */ 299 } 300 301 static int peb2466_add_lkup_ctrl(struct snd_soc_component *component, 302 struct peb2466_lkup_ctrl *lkup_ctrl, 303 const char *name, int min_val, int step) 304 { 305 DECLARE_TLV_DB_SCALE(tlv_array, min_val, step, 0); 306 struct snd_kcontrol_new control = {0}; 307 308 BUILD_BUG_ON(sizeof(lkup_ctrl->tlv_array) < sizeof(tlv_array)); 309 memcpy(lkup_ctrl->tlv_array, tlv_array, sizeof(tlv_array)); 310 311 control.iface = SNDRV_CTL_ELEM_IFACE_MIXER; 312 control.name = name; 313 control.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | 314 SNDRV_CTL_ELEM_ACCESS_READWRITE; 315 control.tlv.p = lkup_ctrl->tlv_array; 316 control.info = peb2466_lkup_ctrl_info; 317 control.get = peb2466_lkup_ctrl_get; 318 control.put = peb2466_lkup_ctrl_put; 319 control.private_value = (unsigned long)lkup_ctrl; 320 321 return snd_soc_add_component_controls(component, &control, 1); 322 } 323 324 enum peb2466_tone_freq { 325 PEB2466_TONE_697HZ, 326 PEB2466_TONE_800HZ, 327 PEB2466_TONE_950HZ, 328 PEB2466_TONE_1000HZ, 329 PEB2466_TONE_1008HZ, 330 PEB2466_TONE_2000HZ, 331 }; 332 333 static const u8 peb2466_tone_lookup[][4] = { 334 [PEB2466_TONE_697HZ] = {0x0a, 0x33, 0x5a, 0x2c}, 335 [PEB2466_TONE_800HZ] = {0x12, 0xD6, 0x5a, 0xc0}, 336 [PEB2466_TONE_950HZ] = {0x1c, 0xf0, 0x5c, 0xc0}, 337 [PEB2466_TONE_1000HZ] = {0}, /* lookup value not used for 1000Hz */ 338 [PEB2466_TONE_1008HZ] = {0x1a, 0xae, 0x57, 0x70}, 339 [PEB2466_TONE_2000HZ] = {0x00, 0x80, 0x50, 0x09}, 340 }; 341 342 static const char * const peb2466_tone_freq_txt[] = { 343 [PEB2466_TONE_697HZ] = "697Hz", 344 [PEB2466_TONE_800HZ] = "800Hz", 345 [PEB2466_TONE_950HZ] = "950Hz", 346 [PEB2466_TONE_1000HZ] = "1000Hz", 347 [PEB2466_TONE_1008HZ] = "1008Hz", 348 [PEB2466_TONE_2000HZ] = "2000Hz" 349 }; 350 351 static const struct soc_enum peb2466_tg_freq[][2] = { 352 [0] = { 353 SOC_ENUM_SINGLE(PEB2466_TG1(0), 0, ARRAY_SIZE(peb2466_tone_freq_txt), 354 peb2466_tone_freq_txt), 355 SOC_ENUM_SINGLE(PEB2466_TG2(0), 0, ARRAY_SIZE(peb2466_tone_freq_txt), 356 peb2466_tone_freq_txt) 357 }, 358 [1] = { 359 SOC_ENUM_SINGLE(PEB2466_TG1(1), 0, ARRAY_SIZE(peb2466_tone_freq_txt), 360 peb2466_tone_freq_txt), 361 SOC_ENUM_SINGLE(PEB2466_TG2(1), 0, ARRAY_SIZE(peb2466_tone_freq_txt), 362 peb2466_tone_freq_txt) 363 }, 364 [2] = { 365 SOC_ENUM_SINGLE(PEB2466_TG1(2), 0, ARRAY_SIZE(peb2466_tone_freq_txt), 366 peb2466_tone_freq_txt), 367 SOC_ENUM_SINGLE(PEB2466_TG2(2), 0, ARRAY_SIZE(peb2466_tone_freq_txt), 368 peb2466_tone_freq_txt) 369 }, 370 [3] = { 371 SOC_ENUM_SINGLE(PEB2466_TG1(3), 0, ARRAY_SIZE(peb2466_tone_freq_txt), 372 peb2466_tone_freq_txt), 373 SOC_ENUM_SINGLE(PEB2466_TG2(3), 0, ARRAY_SIZE(peb2466_tone_freq_txt), 374 peb2466_tone_freq_txt) 375 } 376 }; 377 378 static int peb2466_tg_freq_get(struct snd_kcontrol *kcontrol, 379 struct snd_ctl_elem_value *ucontrol) 380 { 381 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 382 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); 383 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 384 385 switch (e->reg) { 386 case PEB2466_TG1(0): 387 ucontrol->value.enumerated.item[0] = peb2466->ch[0].tg1_freq_item; 388 break; 389 case PEB2466_TG2(0): 390 ucontrol->value.enumerated.item[0] = peb2466->ch[0].tg2_freq_item; 391 break; 392 case PEB2466_TG1(1): 393 ucontrol->value.enumerated.item[0] = peb2466->ch[1].tg1_freq_item; 394 break; 395 case PEB2466_TG2(1): 396 ucontrol->value.enumerated.item[0] = peb2466->ch[1].tg2_freq_item; 397 break; 398 case PEB2466_TG1(2): 399 ucontrol->value.enumerated.item[0] = peb2466->ch[2].tg1_freq_item; 400 break; 401 case PEB2466_TG2(2): 402 ucontrol->value.enumerated.item[0] = peb2466->ch[2].tg2_freq_item; 403 break; 404 case PEB2466_TG1(3): 405 ucontrol->value.enumerated.item[0] = peb2466->ch[3].tg1_freq_item; 406 break; 407 case PEB2466_TG2(3): 408 ucontrol->value.enumerated.item[0] = peb2466->ch[3].tg2_freq_item; 409 break; 410 default: 411 return -EINVAL; 412 } 413 return 0; 414 } 415 416 static int peb2466_tg_freq_put(struct snd_kcontrol *kcontrol, 417 struct snd_ctl_elem_value *ucontrol) 418 { 419 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 420 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); 421 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 422 unsigned int *tg_freq_item; 423 u8 cr1_reg, cr1_mask; 424 unsigned int index; 425 int ret; 426 427 index = ucontrol->value.enumerated.item[0]; 428 429 if (index >= ARRAY_SIZE(peb2466_tone_lookup)) 430 return -EINVAL; 431 432 switch (e->reg) { 433 case PEB2466_TG1(0): 434 tg_freq_item = &peb2466->ch[0].tg1_freq_item; 435 cr1_reg = PEB2466_CR1(0); 436 cr1_mask = PEB2466_CR1_PTG1; 437 break; 438 case PEB2466_TG2(0): 439 tg_freq_item = &peb2466->ch[0].tg2_freq_item; 440 cr1_reg = PEB2466_CR1(0); 441 cr1_mask = PEB2466_CR1_PTG2; 442 break; 443 case PEB2466_TG1(1): 444 tg_freq_item = &peb2466->ch[1].tg1_freq_item; 445 cr1_reg = PEB2466_CR1(1); 446 cr1_mask = PEB2466_CR1_PTG1; 447 break; 448 case PEB2466_TG2(1): 449 tg_freq_item = &peb2466->ch[1].tg2_freq_item; 450 cr1_reg = PEB2466_CR1(1); 451 cr1_mask = PEB2466_CR1_PTG2; 452 break; 453 case PEB2466_TG1(2): 454 tg_freq_item = &peb2466->ch[2].tg1_freq_item; 455 cr1_reg = PEB2466_CR1(2); 456 cr1_mask = PEB2466_CR1_PTG1; 457 break; 458 case PEB2466_TG2(2): 459 tg_freq_item = &peb2466->ch[2].tg2_freq_item; 460 cr1_reg = PEB2466_CR1(2); 461 cr1_mask = PEB2466_CR1_PTG2; 462 break; 463 case PEB2466_TG1(3): 464 tg_freq_item = &peb2466->ch[3].tg1_freq_item; 465 cr1_reg = PEB2466_CR1(3); 466 cr1_mask = PEB2466_CR1_PTG1; 467 break; 468 case PEB2466_TG2(3): 469 tg_freq_item = &peb2466->ch[3].tg2_freq_item; 470 cr1_reg = PEB2466_CR1(3); 471 cr1_mask = PEB2466_CR1_PTG2; 472 break; 473 default: 474 return -EINVAL; 475 } 476 477 if (index == *tg_freq_item) 478 return 0; 479 480 if (index == PEB2466_TONE_1000HZ) { 481 ret = regmap_update_bits(peb2466->regmap, cr1_reg, cr1_mask, 0); 482 if (ret) 483 return ret; 484 } else { 485 ret = peb2466_write_buf(peb2466, e->reg, peb2466_tone_lookup[index], 4); 486 if (ret) 487 return ret; 488 ret = regmap_update_bits(peb2466->regmap, cr1_reg, cr1_mask, cr1_mask); 489 if (ret) 490 return ret; 491 } 492 493 *tg_freq_item = index; 494 return 1; /* The value changed */ 495 } 496 497 static const struct snd_kcontrol_new peb2466_ch0_out_mix_controls[] = { 498 SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(0), 6, 1, 0), 499 SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(0), 7, 1, 0), 500 SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(0), 0, 1, 0) 501 }; 502 503 static const struct snd_kcontrol_new peb2466_ch1_out_mix_controls[] = { 504 SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(1), 6, 1, 0), 505 SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(1), 7, 1, 0), 506 SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(1), 0, 1, 0) 507 }; 508 509 static const struct snd_kcontrol_new peb2466_ch2_out_mix_controls[] = { 510 SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(2), 6, 1, 0), 511 SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(2), 7, 1, 0), 512 SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(2), 0, 1, 0) 513 }; 514 515 static const struct snd_kcontrol_new peb2466_ch3_out_mix_controls[] = { 516 SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(3), 6, 1, 0), 517 SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(3), 7, 1, 0), 518 SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(3), 0, 1, 0) 519 }; 520 521 static const struct snd_kcontrol_new peb2466_controls[] = { 522 /* Attenuators */ 523 SOC_SINGLE("DAC0 -6dB Playback Switch", PEB2466_CR3(0), 2, 1, 0), 524 SOC_SINGLE("DAC1 -6dB Playback Switch", PEB2466_CR3(1), 2, 1, 0), 525 SOC_SINGLE("DAC2 -6dB Playback Switch", PEB2466_CR3(2), 2, 1, 0), 526 SOC_SINGLE("DAC3 -6dB Playback Switch", PEB2466_CR3(3), 2, 1, 0), 527 528 /* Amplifiers */ 529 SOC_SINGLE("ADC0 +6dB Capture Switch", PEB2466_CR3(0), 3, 1, 0), 530 SOC_SINGLE("ADC1 +6dB Capture Switch", PEB2466_CR3(1), 3, 1, 0), 531 SOC_SINGLE("ADC2 +6dB Capture Switch", PEB2466_CR3(2), 3, 1, 0), 532 SOC_SINGLE("ADC3 +6dB Capture Switch", PEB2466_CR3(3), 3, 1, 0), 533 534 /* Tone generators */ 535 SOC_ENUM_EXT("DAC0 TG1 Freq", peb2466_tg_freq[0][0], 536 peb2466_tg_freq_get, peb2466_tg_freq_put), 537 SOC_ENUM_EXT("DAC1 TG1 Freq", peb2466_tg_freq[1][0], 538 peb2466_tg_freq_get, peb2466_tg_freq_put), 539 SOC_ENUM_EXT("DAC2 TG1 Freq", peb2466_tg_freq[2][0], 540 peb2466_tg_freq_get, peb2466_tg_freq_put), 541 SOC_ENUM_EXT("DAC3 TG1 Freq", peb2466_tg_freq[3][0], 542 peb2466_tg_freq_get, peb2466_tg_freq_put), 543 544 SOC_ENUM_EXT("DAC0 TG2 Freq", peb2466_tg_freq[0][1], 545 peb2466_tg_freq_get, peb2466_tg_freq_put), 546 SOC_ENUM_EXT("DAC1 TG2 Freq", peb2466_tg_freq[1][1], 547 peb2466_tg_freq_get, peb2466_tg_freq_put), 548 SOC_ENUM_EXT("DAC2 TG2 Freq", peb2466_tg_freq[2][1], 549 peb2466_tg_freq_get, peb2466_tg_freq_put), 550 SOC_ENUM_EXT("DAC3 TG2 Freq", peb2466_tg_freq[3][1], 551 peb2466_tg_freq_get, peb2466_tg_freq_put), 552 }; 553 554 static const struct snd_soc_dapm_widget peb2466_dapm_widgets[] = { 555 SND_SOC_DAPM_SUPPLY("CH0 PWR", PEB2466_CR1(0), 0, 0, NULL, 0), 556 SND_SOC_DAPM_SUPPLY("CH1 PWR", PEB2466_CR1(1), 0, 0, NULL, 0), 557 SND_SOC_DAPM_SUPPLY("CH2 PWR", PEB2466_CR1(2), 0, 0, NULL, 0), 558 SND_SOC_DAPM_SUPPLY("CH3 PWR", PEB2466_CR1(3), 0, 0, NULL, 0), 559 560 SND_SOC_DAPM_DAC("CH0 DIN", "Playback", SND_SOC_NOPM, 0, 0), 561 SND_SOC_DAPM_DAC("CH1 DIN", "Playback", SND_SOC_NOPM, 0, 0), 562 SND_SOC_DAPM_DAC("CH2 DIN", "Playback", SND_SOC_NOPM, 0, 0), 563 SND_SOC_DAPM_DAC("CH3 DIN", "Playback", SND_SOC_NOPM, 0, 0), 564 565 SND_SOC_DAPM_SIGGEN("CH0 TG1"), 566 SND_SOC_DAPM_SIGGEN("CH1 TG1"), 567 SND_SOC_DAPM_SIGGEN("CH2 TG1"), 568 SND_SOC_DAPM_SIGGEN("CH3 TG1"), 569 570 SND_SOC_DAPM_SIGGEN("CH0 TG2"), 571 SND_SOC_DAPM_SIGGEN("CH1 TG2"), 572 SND_SOC_DAPM_SIGGEN("CH2 TG2"), 573 SND_SOC_DAPM_SIGGEN("CH3 TG2"), 574 575 SND_SOC_DAPM_MIXER("DAC0 Mixer", SND_SOC_NOPM, 0, 0, 576 peb2466_ch0_out_mix_controls, 577 ARRAY_SIZE(peb2466_ch0_out_mix_controls)), 578 SND_SOC_DAPM_MIXER("DAC1 Mixer", SND_SOC_NOPM, 0, 0, 579 peb2466_ch1_out_mix_controls, 580 ARRAY_SIZE(peb2466_ch1_out_mix_controls)), 581 SND_SOC_DAPM_MIXER("DAC2 Mixer", SND_SOC_NOPM, 0, 0, 582 peb2466_ch2_out_mix_controls, 583 ARRAY_SIZE(peb2466_ch2_out_mix_controls)), 584 SND_SOC_DAPM_MIXER("DAC3 Mixer", SND_SOC_NOPM, 0, 0, 585 peb2466_ch3_out_mix_controls, 586 ARRAY_SIZE(peb2466_ch3_out_mix_controls)), 587 588 SND_SOC_DAPM_PGA("DAC0 PGA", SND_SOC_NOPM, 0, 0, NULL, 0), 589 SND_SOC_DAPM_PGA("DAC1 PGA", SND_SOC_NOPM, 0, 0, NULL, 0), 590 SND_SOC_DAPM_PGA("DAC2 PGA", SND_SOC_NOPM, 0, 0, NULL, 0), 591 SND_SOC_DAPM_PGA("DAC3 PGA", SND_SOC_NOPM, 0, 0, NULL, 0), 592 593 SND_SOC_DAPM_OUTPUT("OUT0"), 594 SND_SOC_DAPM_OUTPUT("OUT1"), 595 SND_SOC_DAPM_OUTPUT("OUT2"), 596 SND_SOC_DAPM_OUTPUT("OUT3"), 597 598 SND_SOC_DAPM_INPUT("IN0"), 599 SND_SOC_DAPM_INPUT("IN1"), 600 SND_SOC_DAPM_INPUT("IN2"), 601 SND_SOC_DAPM_INPUT("IN3"), 602 603 SND_SOC_DAPM_DAC("ADC0", "Capture", SND_SOC_NOPM, 0, 0), 604 SND_SOC_DAPM_DAC("ADC1", "Capture", SND_SOC_NOPM, 0, 0), 605 SND_SOC_DAPM_DAC("ADC2", "Capture", SND_SOC_NOPM, 0, 0), 606 SND_SOC_DAPM_DAC("ADC3", "Capture", SND_SOC_NOPM, 0, 0), 607 }; 608 609 static const struct snd_soc_dapm_route peb2466_dapm_routes[] = { 610 { "CH0 DIN", NULL, "CH0 PWR" }, 611 { "CH1 DIN", NULL, "CH1 PWR" }, 612 { "CH2 DIN", NULL, "CH2 PWR" }, 613 { "CH3 DIN", NULL, "CH3 PWR" }, 614 615 { "CH0 TG1", NULL, "CH0 PWR" }, 616 { "CH1 TG1", NULL, "CH1 PWR" }, 617 { "CH2 TG1", NULL, "CH2 PWR" }, 618 { "CH3 TG1", NULL, "CH3 PWR" }, 619 620 { "CH0 TG2", NULL, "CH0 PWR" }, 621 { "CH1 TG2", NULL, "CH1 PWR" }, 622 { "CH2 TG2", NULL, "CH2 PWR" }, 623 { "CH3 TG2", NULL, "CH3 PWR" }, 624 625 { "DAC0 Mixer", "TG1 Switch", "CH0 TG1" }, 626 { "DAC0 Mixer", "TG2 Switch", "CH0 TG2" }, 627 { "DAC0 Mixer", "Voice Switch", "CH0 DIN" }, 628 { "DAC0 Mixer", NULL, "CH0 DIN" }, 629 630 { "DAC1 Mixer", "TG1 Switch", "CH1 TG1" }, 631 { "DAC1 Mixer", "TG2 Switch", "CH1 TG2" }, 632 { "DAC1 Mixer", "Voice Switch", "CH1 DIN" }, 633 { "DAC1 Mixer", NULL, "CH1 DIN" }, 634 635 { "DAC2 Mixer", "TG1 Switch", "CH2 TG1" }, 636 { "DAC2 Mixer", "TG2 Switch", "CH2 TG2" }, 637 { "DAC2 Mixer", "Voice Switch", "CH2 DIN" }, 638 { "DAC2 Mixer", NULL, "CH2 DIN" }, 639 640 { "DAC3 Mixer", "TG1 Switch", "CH3 TG1" }, 641 { "DAC3 Mixer", "TG2 Switch", "CH3 TG2" }, 642 { "DAC3 Mixer", "Voice Switch", "CH3 DIN" }, 643 { "DAC3 Mixer", NULL, "CH3 DIN" }, 644 645 { "DAC0 PGA", NULL, "DAC0 Mixer" }, 646 { "DAC1 PGA", NULL, "DAC1 Mixer" }, 647 { "DAC2 PGA", NULL, "DAC2 Mixer" }, 648 { "DAC3 PGA", NULL, "DAC3 Mixer" }, 649 650 { "OUT0", NULL, "DAC0 PGA" }, 651 { "OUT1", NULL, "DAC1 PGA" }, 652 { "OUT2", NULL, "DAC2 PGA" }, 653 { "OUT3", NULL, "DAC3 PGA" }, 654 655 { "ADC0", NULL, "IN0" }, 656 { "ADC1", NULL, "IN1" }, 657 { "ADC2", NULL, "IN2" }, 658 { "ADC3", NULL, "IN3" }, 659 660 { "ADC0", NULL, "CH0 PWR" }, 661 { "ADC1", NULL, "CH1 PWR" }, 662 { "ADC2", NULL, "CH2 PWR" }, 663 { "ADC3", NULL, "CH3 PWR" }, 664 }; 665 666 static int peb2466_dai_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, 667 unsigned int rx_mask, int slots, int width) 668 { 669 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component); 670 unsigned int chan; 671 unsigned int mask; 672 u8 slot; 673 int ret; 674 675 switch (width) { 676 case 0: 677 /* Not set -> default 8 */ 678 case 8: 679 break; 680 default: 681 dev_err(dai->dev, "tdm slot width %d not supported\n", width); 682 return -EINVAL; 683 } 684 685 mask = tx_mask; 686 slot = 0; 687 chan = 0; 688 while (mask && chan < PEB2466_NB_CHANNEL) { 689 if (mask & 0x1) { 690 ret = regmap_write(peb2466->regmap, PEB2466_CR5(chan), slot); 691 if (ret) { 692 dev_err(dai->dev, "chan %d set tx tdm slot failed (%d)\n", 693 chan, ret); 694 return ret; 695 } 696 chan++; 697 } 698 mask >>= 1; 699 slot++; 700 } 701 if (mask) { 702 dev_err(dai->dev, "too much tx slots defined (mask = 0x%x) support max %d\n", 703 tx_mask, PEB2466_NB_CHANNEL); 704 return -EINVAL; 705 } 706 peb2466->max_chan_playback = chan; 707 708 mask = rx_mask; 709 slot = 0; 710 chan = 0; 711 while (mask && chan < PEB2466_NB_CHANNEL) { 712 if (mask & 0x1) { 713 ret = regmap_write(peb2466->regmap, PEB2466_CR4(chan), slot); 714 if (ret) { 715 dev_err(dai->dev, "chan %d set rx tdm slot failed (%d)\n", 716 chan, ret); 717 return ret; 718 } 719 chan++; 720 } 721 mask >>= 1; 722 slot++; 723 } 724 if (mask) { 725 dev_err(dai->dev, "too much rx slots defined (mask = 0x%x) support max %d\n", 726 rx_mask, PEB2466_NB_CHANNEL); 727 return -EINVAL; 728 } 729 peb2466->max_chan_capture = chan; 730 731 return 0; 732 } 733 734 static int peb2466_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) 735 { 736 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component); 737 u8 xr6; 738 739 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 740 case SND_SOC_DAIFMT_DSP_A: 741 xr6 = PEB2466_XR6_PCM_OFFSET(1); 742 break; 743 case SND_SOC_DAIFMT_DSP_B: 744 xr6 = PEB2466_XR6_PCM_OFFSET(0); 745 break; 746 default: 747 dev_err(dai->dev, "Unsupported format 0x%x\n", 748 fmt & SND_SOC_DAIFMT_FORMAT_MASK); 749 return -EINVAL; 750 } 751 return regmap_write(peb2466->regmap, PEB2466_XR6, xr6); 752 } 753 754 static int peb2466_dai_hw_params(struct snd_pcm_substream *substream, 755 struct snd_pcm_hw_params *params, 756 struct snd_soc_dai *dai) 757 { 758 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component); 759 unsigned int ch; 760 int ret; 761 u8 cr1; 762 763 switch (params_format(params)) { 764 case SNDRV_PCM_FORMAT_MU_LAW: 765 cr1 = PEB2466_CR1_LAW_MULAW; 766 break; 767 case SNDRV_PCM_FORMAT_A_LAW: 768 cr1 = PEB2466_CR1_LAW_ALAW; 769 break; 770 default: 771 dev_err(&peb2466->spi->dev, "Unsupported format 0x%x\n", 772 params_format(params)); 773 return -EINVAL; 774 } 775 776 for (ch = 0; ch < PEB2466_NB_CHANNEL; ch++) { 777 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR1(ch), 778 PEB2466_CR1_LAW_MASK, cr1); 779 if (ret) 780 return ret; 781 } 782 783 return 0; 784 } 785 786 static const unsigned int peb2466_sample_bits[] = {8}; 787 788 static struct snd_pcm_hw_constraint_list peb2466_sample_bits_constr = { 789 .list = peb2466_sample_bits, 790 .count = ARRAY_SIZE(peb2466_sample_bits), 791 }; 792 793 static int peb2466_dai_startup(struct snd_pcm_substream *substream, 794 struct snd_soc_dai *dai) 795 { 796 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component); 797 unsigned int max_ch; 798 int ret; 799 800 max_ch = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? 801 peb2466->max_chan_playback : peb2466->max_chan_capture; 802 803 /* 804 * Disable stream support (min = 0, max = 0) if no timeslots were 805 * configured. 806 */ 807 ret = snd_pcm_hw_constraint_minmax(substream->runtime, 808 SNDRV_PCM_HW_PARAM_CHANNELS, 809 max_ch ? 1 : 0, max_ch); 810 if (ret < 0) 811 return ret; 812 813 return snd_pcm_hw_constraint_list(substream->runtime, 0, 814 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, 815 &peb2466_sample_bits_constr); 816 } 817 818 static const u64 peb2466_dai_formats[] = { 819 SND_SOC_POSSIBLE_DAIFMT_DSP_A | 820 SND_SOC_POSSIBLE_DAIFMT_DSP_B, 821 }; 822 823 static const struct snd_soc_dai_ops peb2466_dai_ops = { 824 .startup = peb2466_dai_startup, 825 .hw_params = peb2466_dai_hw_params, 826 .set_tdm_slot = peb2466_dai_set_tdm_slot, 827 .set_fmt = peb2466_dai_set_fmt, 828 .auto_selectable_formats = peb2466_dai_formats, 829 .num_auto_selectable_formats = ARRAY_SIZE(peb2466_dai_formats), 830 }; 831 832 static struct snd_soc_dai_driver peb2466_dai_driver = { 833 .name = "peb2466", 834 .playback = { 835 .stream_name = "Playback", 836 .channels_min = 1, 837 .channels_max = PEB2466_NB_CHANNEL, 838 .rates = SNDRV_PCM_RATE_8000, 839 .formats = SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW, 840 }, 841 .capture = { 842 .stream_name = "Capture", 843 .channels_min = 1, 844 .channels_max = PEB2466_NB_CHANNEL, 845 .rates = SNDRV_PCM_RATE_8000, 846 .formats = SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW, 847 }, 848 .ops = &peb2466_dai_ops, 849 }; 850 851 static int peb2466_reset_audio(struct peb2466 *peb2466) 852 { 853 static const struct reg_sequence reg_reset[] = { 854 { .reg = PEB2466_XR6, .def = 0x00 }, 855 856 { .reg = PEB2466_CR5(0), .def = 0x00 }, 857 { .reg = PEB2466_CR4(0), .def = 0x00 }, 858 { .reg = PEB2466_CR3(0), .def = 0x00 }, 859 { .reg = PEB2466_CR2(0), .def = 0x00 }, 860 { .reg = PEB2466_CR1(0), .def = 0x00 }, 861 { .reg = PEB2466_CR0(0), .def = PEB2466_CR0_IMR1 }, 862 863 { .reg = PEB2466_CR5(1), .def = 0x00 }, 864 { .reg = PEB2466_CR4(1), .def = 0x00 }, 865 { .reg = PEB2466_CR3(1), .def = 0x00 }, 866 { .reg = PEB2466_CR2(1), .def = 0x00 }, 867 { .reg = PEB2466_CR1(1), .def = 0x00 }, 868 { .reg = PEB2466_CR0(1), .def = PEB2466_CR0_IMR1 }, 869 870 { .reg = PEB2466_CR5(2), .def = 0x00 }, 871 { .reg = PEB2466_CR4(2), .def = 0x00 }, 872 { .reg = PEB2466_CR3(2), .def = 0x00 }, 873 { .reg = PEB2466_CR2(2), .def = 0x00 }, 874 { .reg = PEB2466_CR1(2), .def = 0x00 }, 875 { .reg = PEB2466_CR0(2), .def = PEB2466_CR0_IMR1 }, 876 877 { .reg = PEB2466_CR5(3), .def = 0x00 }, 878 { .reg = PEB2466_CR4(3), .def = 0x00 }, 879 { .reg = PEB2466_CR3(3), .def = 0x00 }, 880 { .reg = PEB2466_CR2(3), .def = 0x00 }, 881 { .reg = PEB2466_CR1(3), .def = 0x00 }, 882 { .reg = PEB2466_CR0(3), .def = PEB2466_CR0_IMR1 }, 883 }; 884 static const u8 imr1_p1[8] = {0x00, 0x90, 0x09, 0x00, 0x90, 0x09, 0x00, 0x00}; 885 static const u8 imr1_p2[8] = {0x7F, 0xFF, 0x00, 0x00, 0x90, 0x14, 0x40, 0x08}; 886 static const u8 zero[8] = {0}; 887 int ret; 888 int i; 889 890 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { 891 peb2466->ch[i].tg1_freq_item = PEB2466_TONE_1000HZ; 892 peb2466->ch[i].tg2_freq_item = PEB2466_TONE_1000HZ; 893 894 /* 895 * Even if not used, disabling IM/R1 filter is not recommended. 896 * Instead, we must configure it with default coefficients and 897 * enable it. 898 * The filter will be enabled right after (in the following 899 * regmap_multi_reg_write() call). 900 */ 901 ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P1(i), imr1_p1, 8); 902 if (ret) 903 return ret; 904 ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P2(i), imr1_p2, 8); 905 if (ret) 906 return ret; 907 908 /* Set all other filters coefficients to zero */ 909 ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P1(i), zero, 8); 910 if (ret) 911 return ret; 912 ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P2(i), zero, 8); 913 if (ret) 914 return ret; 915 ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P3(i), zero, 8); 916 if (ret) 917 return ret; 918 ret = peb2466_write_buf(peb2466, PEB2466_FRX_FILTER(i), zero, 8); 919 if (ret) 920 return ret; 921 ret = peb2466_write_buf(peb2466, PEB2466_FRR_FILTER(i), zero, 8); 922 if (ret) 923 return ret; 924 ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i), zero, 4); 925 if (ret) 926 return ret; 927 ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i), zero, 4); 928 if (ret) 929 return ret; 930 } 931 932 return regmap_multi_reg_write(peb2466->regmap, reg_reset, ARRAY_SIZE(reg_reset)); 933 } 934 935 static int peb2466_fw_parse_thfilter(struct snd_soc_component *component, 936 u16 tag, u32 lng, const u8 *data) 937 { 938 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); 939 u8 mask; 940 int ret; 941 int i; 942 943 dev_info(component->dev, "fw TH filter: mask %x, %*phN\n", *data, 944 lng - 1, data + 1); 945 946 /* 947 * TH_FILTER TLV data: 948 * - @0 1 byte: Chan mask (bit set means related channel is concerned) 949 * - @1 8 bytes: TH-Filter coefficients part1 950 * - @9 8 bytes: TH-Filter coefficients part2 951 * - @17 8 bytes: TH-Filter coefficients part3 952 */ 953 mask = *data; 954 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { 955 if (!(mask & (1 << i))) 956 continue; 957 958 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), 959 PEB2466_CR0_TH, 0); 960 if (ret) 961 return ret; 962 963 ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P1(i), data + 1, 8); 964 if (ret) 965 return ret; 966 967 ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P2(i), data + 9, 8); 968 if (ret) 969 return ret; 970 971 ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P3(i), data + 17, 8); 972 if (ret) 973 return ret; 974 975 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), 976 PEB2466_CR0_TH | PEB2466_CR0_THSEL_MASK, 977 PEB2466_CR0_TH | PEB2466_CR0_THSEL(i)); 978 if (ret) 979 return ret; 980 } 981 return 0; 982 } 983 984 static int peb2466_fw_parse_imr1filter(struct snd_soc_component *component, 985 u16 tag, u32 lng, const u8 *data) 986 { 987 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); 988 u8 mask; 989 int ret; 990 int i; 991 992 dev_info(component->dev, "fw IM/R1 filter: mask %x, %*phN\n", *data, 993 lng - 1, data + 1); 994 995 /* 996 * IMR1_FILTER TLV data: 997 * - @0 1 byte: Chan mask (bit set means related channel is concerned) 998 * - @1 8 bytes: IM/R1-Filter coefficients part1 999 * - @9 8 bytes: IM/R1-Filter coefficients part2 1000 */ 1001 mask = *data; 1002 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { 1003 if (!(mask & (1 << i))) 1004 continue; 1005 1006 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), 1007 PEB2466_CR0_IMR1, 0); 1008 if (ret) 1009 return ret; 1010 1011 ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P1(i), data + 1, 8); 1012 if (ret) 1013 return ret; 1014 1015 ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P2(i), data + 9, 8); 1016 if (ret) 1017 return ret; 1018 1019 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), 1020 PEB2466_CR0_IMR1, PEB2466_CR0_IMR1); 1021 if (ret) 1022 return ret; 1023 } 1024 return 0; 1025 } 1026 1027 static int peb2466_fw_parse_frxfilter(struct snd_soc_component *component, 1028 u16 tag, u32 lng, const u8 *data) 1029 { 1030 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); 1031 u8 mask; 1032 int ret; 1033 int i; 1034 1035 dev_info(component->dev, "fw FRX filter: mask %x, %*phN\n", *data, 1036 lng - 1, data + 1); 1037 1038 /* 1039 * FRX_FILTER TLV data: 1040 * - @0 1 byte: Chan mask (bit set means related channel is concerned) 1041 * - @1 8 bytes: FRX-Filter coefficients 1042 */ 1043 mask = *data; 1044 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { 1045 if (!(mask & (1 << i))) 1046 continue; 1047 1048 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), 1049 PEB2466_CR0_FRX, 0); 1050 if (ret) 1051 return ret; 1052 1053 ret = peb2466_write_buf(peb2466, PEB2466_FRX_FILTER(i), data + 1, 8); 1054 if (ret) 1055 return ret; 1056 1057 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), 1058 PEB2466_CR0_FRX, PEB2466_CR0_FRX); 1059 if (ret) 1060 return ret; 1061 } 1062 return 0; 1063 } 1064 1065 static int peb2466_fw_parse_frrfilter(struct snd_soc_component *component, 1066 u16 tag, u32 lng, const u8 *data) 1067 { 1068 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); 1069 u8 mask; 1070 int ret; 1071 int i; 1072 1073 dev_info(component->dev, "fw FRR filter: mask %x, %*phN\n", *data, 1074 lng - 1, data + 1); 1075 1076 /* 1077 * FRR_FILTER TLV data: 1078 * - @0 1 byte: Chan mask (bit set means related channel is concerned) 1079 * - @1 8 bytes: FRR-Filter coefficients 1080 */ 1081 mask = *data; 1082 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { 1083 if (!(mask & (1 << i))) 1084 continue; 1085 1086 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), 1087 PEB2466_CR0_FRR, 0); 1088 if (ret) 1089 return ret; 1090 1091 ret = peb2466_write_buf(peb2466, PEB2466_FRR_FILTER(i), data + 1, 8); 1092 if (ret) 1093 return ret; 1094 1095 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), 1096 PEB2466_CR0_FRR, PEB2466_CR0_FRR); 1097 if (ret) 1098 return ret; 1099 } 1100 return 0; 1101 } 1102 1103 static int peb2466_fw_parse_axfilter(struct snd_soc_component *component, 1104 u16 tag, u32 lng, const u8 *data) 1105 { 1106 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); 1107 u8 mask; 1108 int ret; 1109 int i; 1110 1111 dev_info(component->dev, "fw AX filter: mask %x, %*phN\n", *data, 1112 lng - 1, data + 1); 1113 1114 /* 1115 * AX_FILTER TLV data: 1116 * - @0 1 byte: Chan mask (bit set means related channel is concerned) 1117 * - @1 4 bytes: AX-Filter coefficients 1118 */ 1119 mask = *data; 1120 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { 1121 if (!(mask & (1 << i))) 1122 continue; 1123 1124 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), 1125 PEB2466_CR0_AX, 0); 1126 if (ret) 1127 return ret; 1128 1129 ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i), data + 1, 4); 1130 if (ret) 1131 return ret; 1132 1133 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), 1134 PEB2466_CR0_AX, PEB2466_CR0_AX); 1135 if (ret) 1136 return ret; 1137 } 1138 return 0; 1139 } 1140 1141 static int peb2466_fw_parse_arfilter(struct snd_soc_component *component, 1142 u16 tag, u32 lng, const u8 *data) 1143 { 1144 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); 1145 u8 mask; 1146 int ret; 1147 int i; 1148 1149 dev_info(component->dev, "fw AR filter: mask %x, %*phN\n", *data, 1150 lng - 1, data + 1); 1151 1152 /* 1153 * AR_FILTER TLV data: 1154 * - @0 1 byte: Chan mask (bit set means related channel is concerned) 1155 * - @1 4 bytes: AR-Filter coefficients 1156 */ 1157 mask = *data; 1158 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { 1159 if (!(mask & (1 << i))) 1160 continue; 1161 1162 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), 1163 PEB2466_CR0_AR, 0); 1164 if (ret) 1165 return ret; 1166 1167 ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i), data + 1, 4); 1168 if (ret) 1169 return ret; 1170 1171 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), 1172 PEB2466_CR0_AR, PEB2466_CR0_AR); 1173 if (ret) 1174 return ret; 1175 } 1176 return 0; 1177 } 1178 1179 static const char * const peb2466_ax_ctrl_names[] = { 1180 "ADC0 Capture Volume", 1181 "ADC1 Capture Volume", 1182 "ADC2 Capture Volume", 1183 "ADC3 Capture Volume", 1184 }; 1185 1186 static int peb2466_fw_parse_axtable(struct snd_soc_component *component, 1187 u16 tag, u32 lng, const u8 *data) 1188 { 1189 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); 1190 struct peb2466_lkup_ctrl *lkup_ctrl; 1191 struct peb2466_lookup *lookup; 1192 u8 (*table)[4]; 1193 u32 table_size; 1194 u32 init_index; 1195 s32 min_val; 1196 s32 step; 1197 u8 mask; 1198 int ret; 1199 int i; 1200 1201 /* 1202 * AX_TABLE TLV data: 1203 * - @0 1 byte: Chan mask (bit set means related channel is concerned) 1204 * - @1 32bits signed: Min table value in centi dB (MinVal) 1205 * ie -300 means -3.0 dB 1206 * - @5 32bits signed: Step from on item to other item in centi dB (Step) 1207 * ie 25 means 0.25 dB) 1208 * - @9 32bits unsigned: Item index in the table to use for the initial 1209 * value 1210 * - @13 N*4 bytes: Table composed of 4 bytes items. 1211 * Each item correspond to an AX filter value. 1212 * 1213 * The conversion from raw value item in the table to/from the value in 1214 * dB is: Raw value at index i <-> (MinVal + i * Step) in centi dB. 1215 */ 1216 1217 /* Check Lng and extract the table size. */ 1218 if (lng < 13 || ((lng - 13) % 4)) { 1219 dev_err(component->dev, "fw AX table lng %u invalid\n", lng); 1220 return -EINVAL; 1221 } 1222 table_size = lng - 13; 1223 1224 min_val = get_unaligned_be32(data + 1); 1225 step = get_unaligned_be32(data + 5); 1226 init_index = get_unaligned_be32(data + 9); 1227 if (init_index >= (table_size / 4)) { 1228 dev_err(component->dev, "fw AX table index %u out of table[%u]\n", 1229 init_index, table_size / 4); 1230 return -EINVAL; 1231 } 1232 1233 dev_info(component->dev, 1234 "fw AX table: mask %x, min %d, step %d, %u items, tbl[%u] %*phN\n", 1235 *data, min_val, step, table_size / 4, init_index, 1236 4, data + 13 + (init_index * 4)); 1237 1238 BUILD_BUG_ON(sizeof(*table) != 4); 1239 table = devm_kzalloc(&peb2466->spi->dev, table_size, GFP_KERNEL); 1240 if (!table) 1241 return -ENOMEM; 1242 memcpy(table, data + 13, table_size); 1243 1244 mask = *data; 1245 BUILD_BUG_ON(ARRAY_SIZE(peb2466_ax_ctrl_names) != ARRAY_SIZE(peb2466->ch)); 1246 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { 1247 if (!(mask & (1 << i))) 1248 continue; 1249 1250 lookup = &peb2466->ch[i].ax_lookup; 1251 lookup->table = table; 1252 lookup->count = table_size / 4; 1253 1254 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), 1255 PEB2466_CR0_AX, 0); 1256 if (ret) 1257 return ret; 1258 1259 ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i), 1260 lookup->table[init_index], 4); 1261 if (ret) 1262 return ret; 1263 1264 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), 1265 PEB2466_CR0_AX, PEB2466_CR0_AX); 1266 if (ret) 1267 return ret; 1268 1269 lkup_ctrl = &peb2466->ch[i].ax_lkup_ctrl; 1270 lkup_ctrl->lookup = lookup; 1271 lkup_ctrl->reg = PEB2466_AX_FILTER(i); 1272 lkup_ctrl->index = init_index; 1273 1274 ret = peb2466_add_lkup_ctrl(component, lkup_ctrl, 1275 peb2466_ax_ctrl_names[i], 1276 min_val, step); 1277 if (ret) 1278 return ret; 1279 } 1280 return 0; 1281 } 1282 1283 static const char * const peb2466_ar_ctrl_names[] = { 1284 "DAC0 Playback Volume", 1285 "DAC1 Playback Volume", 1286 "DAC2 Playback Volume", 1287 "DAC3 Playback Volume", 1288 }; 1289 1290 static int peb2466_fw_parse_artable(struct snd_soc_component *component, 1291 u16 tag, u32 lng, const u8 *data) 1292 { 1293 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); 1294 struct peb2466_lkup_ctrl *lkup_ctrl; 1295 struct peb2466_lookup *lookup; 1296 u8 (*table)[4]; 1297 u32 table_size; 1298 u32 init_index; 1299 s32 min_val; 1300 s32 step; 1301 u8 mask; 1302 int ret; 1303 int i; 1304 1305 /* 1306 * AR_TABLE TLV data: 1307 * - @0 1 byte: Chan mask (bit set means related channel is concerned) 1308 * - @1 32bits signed: Min table value in centi dB (MinVal) 1309 * ie -300 means -3.0 dB 1310 * - @5 32bits signed: Step from on item to other item in centi dB (Step) 1311 * ie 25 means 0.25 dB) 1312 * - @9 32bits unsigned: Item index in the table to use for the initial 1313 * value 1314 * - @13 N*4 bytes: Table composed of 4 bytes items. 1315 * Each item correspond to an AR filter value. 1316 * 1317 * The conversion from raw value item in the table to/from the value in 1318 * dB is: Raw value at index i <-> (MinVal + i * Step) in centi dB. 1319 */ 1320 1321 /* Check Lng and extract the table size. */ 1322 if (lng < 13 || ((lng - 13) % 4)) { 1323 dev_err(component->dev, "fw AR table lng %u invalid\n", lng); 1324 return -EINVAL; 1325 } 1326 table_size = lng - 13; 1327 1328 min_val = get_unaligned_be32(data + 1); 1329 step = get_unaligned_be32(data + 5); 1330 init_index = get_unaligned_be32(data + 9); 1331 if (init_index >= (table_size / 4)) { 1332 dev_err(component->dev, "fw AR table index %u out of table[%u]\n", 1333 init_index, table_size / 4); 1334 return -EINVAL; 1335 } 1336 1337 dev_info(component->dev, 1338 "fw AR table: mask %x, min %d, step %d, %u items, tbl[%u] %*phN\n", 1339 *data, min_val, step, table_size / 4, init_index, 1340 4, data + 13 + (init_index * 4)); 1341 1342 BUILD_BUG_ON(sizeof(*table) != 4); 1343 table = devm_kzalloc(&peb2466->spi->dev, table_size, GFP_KERNEL); 1344 if (!table) 1345 return -ENOMEM; 1346 memcpy(table, data + 13, table_size); 1347 1348 mask = *data; 1349 BUILD_BUG_ON(ARRAY_SIZE(peb2466_ar_ctrl_names) != ARRAY_SIZE(peb2466->ch)); 1350 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { 1351 if (!(mask & (1 << i))) 1352 continue; 1353 1354 lookup = &peb2466->ch[i].ar_lookup; 1355 lookup->table = table; 1356 lookup->count = table_size / 4; 1357 1358 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), 1359 PEB2466_CR0_AR, 0); 1360 if (ret) 1361 return ret; 1362 1363 ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i), 1364 lookup->table[init_index], 4); 1365 if (ret) 1366 return ret; 1367 1368 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), 1369 PEB2466_CR0_AR, PEB2466_CR0_AR); 1370 if (ret) 1371 return ret; 1372 1373 lkup_ctrl = &peb2466->ch[i].ar_lkup_ctrl; 1374 lkup_ctrl->lookup = lookup; 1375 lkup_ctrl->reg = PEB2466_AR_FILTER(i); 1376 lkup_ctrl->index = init_index; 1377 1378 ret = peb2466_add_lkup_ctrl(component, lkup_ctrl, 1379 peb2466_ar_ctrl_names[i], 1380 min_val, step); 1381 if (ret) 1382 return ret; 1383 } 1384 return 0; 1385 } 1386 1387 struct peb2466_fw_tag_def { 1388 u16 tag; 1389 u32 lng_min; 1390 u32 lng_max; 1391 int (*parse)(struct snd_soc_component *component, 1392 u16 tag, u32 lng, const u8 *data); 1393 }; 1394 1395 #define PEB2466_TAG_DEF_LNG_EQ(__tag, __lng, __parse) { \ 1396 .tag = __tag, \ 1397 .lng_min = __lng, \ 1398 .lng_max = __lng, \ 1399 .parse = __parse, \ 1400 } 1401 1402 #define PEB2466_TAG_DEF_LNG_MIN(__tag, __lng_min, __parse) { \ 1403 .tag = __tag, \ 1404 .lng_min = __lng_min, \ 1405 .lng_max = U32_MAX, \ 1406 .parse = __parse, \ 1407 } 1408 1409 static const struct peb2466_fw_tag_def peb2466_fw_tag_defs[] = { 1410 /* TH FILTER */ 1411 PEB2466_TAG_DEF_LNG_EQ(0x0001, 1 + 3 * 8, peb2466_fw_parse_thfilter), 1412 /* IMR1 FILTER */ 1413 PEB2466_TAG_DEF_LNG_EQ(0x0002, 1 + 2 * 8, peb2466_fw_parse_imr1filter), 1414 /* FRX FILTER */ 1415 PEB2466_TAG_DEF_LNG_EQ(0x0003, 1 + 8, peb2466_fw_parse_frxfilter), 1416 /* FRR FILTER */ 1417 PEB2466_TAG_DEF_LNG_EQ(0x0004, 1 + 8, peb2466_fw_parse_frrfilter), 1418 /* AX FILTER */ 1419 PEB2466_TAG_DEF_LNG_EQ(0x0005, 1 + 4, peb2466_fw_parse_axfilter), 1420 /* AR FILTER */ 1421 PEB2466_TAG_DEF_LNG_EQ(0x0006, 1 + 4, peb2466_fw_parse_arfilter), 1422 /* AX TABLE */ 1423 PEB2466_TAG_DEF_LNG_MIN(0x0105, 1 + 3 * 4, peb2466_fw_parse_axtable), 1424 /* AR TABLE */ 1425 PEB2466_TAG_DEF_LNG_MIN(0x0106, 1 + 3 * 4, peb2466_fw_parse_artable), 1426 }; 1427 1428 static const struct peb2466_fw_tag_def *peb2466_fw_get_tag_def(u16 tag) 1429 { 1430 int i; 1431 1432 for (i = 0; i < ARRAY_SIZE(peb2466_fw_tag_defs); i++) { 1433 if (peb2466_fw_tag_defs[i].tag == tag) 1434 return &peb2466_fw_tag_defs[i]; 1435 } 1436 return NULL; 1437 } 1438 1439 static int peb2466_fw_parse(struct snd_soc_component *component, 1440 const u8 *data, size_t size) 1441 { 1442 const struct peb2466_fw_tag_def *tag_def; 1443 size_t left; 1444 const u8 *buf; 1445 u16 val16; 1446 u16 tag; 1447 u32 lng; 1448 int ret; 1449 1450 /* 1451 * Coefficients firmware binary structure (16bits and 32bits are 1452 * big-endian values). 1453 * 1454 * @0, 16bits: Magic (0x2466) 1455 * @2, 16bits: Version (0x0100 for version 1.0) 1456 * @4, 2+4+N bytes: TLV block 1457 * @4+(2+4+N) bytes: Next TLV block 1458 * ... 1459 * 1460 * Detail of a TLV block: 1461 * @0, 16bits: Tag 1462 * @2, 32bits: Lng 1463 * @6, lng bytes: Data 1464 * 1465 * The detail the Data for a given TLV Tag is provided in the related 1466 * parser. 1467 */ 1468 1469 left = size; 1470 buf = data; 1471 1472 if (left < 4) { 1473 dev_err(component->dev, "fw size %zu, exp at least 4\n", left); 1474 return -EINVAL; 1475 } 1476 1477 /* Check magic */ 1478 val16 = get_unaligned_be16(buf); 1479 if (val16 != 0x2466) { 1480 dev_err(component->dev, "fw magic 0x%04x exp 0x2466\n", val16); 1481 return -EINVAL; 1482 } 1483 buf += 2; 1484 left -= 2; 1485 1486 /* Check version */ 1487 val16 = get_unaligned_be16(buf); 1488 if (val16 != 0x0100) { 1489 dev_err(component->dev, "fw magic 0x%04x exp 0x0100\n", val16); 1490 return -EINVAL; 1491 } 1492 buf += 2; 1493 left -= 2; 1494 1495 while (left) { 1496 if (left < 6) { 1497 dev_err(component->dev, "fw %td/%zu left %zu, exp at least 6\n", 1498 buf - data, size, left); 1499 return -EINVAL; 1500 } 1501 /* Check tag and lng */ 1502 tag = get_unaligned_be16(buf); 1503 lng = get_unaligned_be32(buf + 2); 1504 tag_def = peb2466_fw_get_tag_def(tag); 1505 if (!tag_def) { 1506 dev_err(component->dev, "fw %td/%zu tag 0x%04x unknown\n", 1507 buf - data, size, tag); 1508 return -EINVAL; 1509 } 1510 if (lng < tag_def->lng_min || lng > tag_def->lng_max) { 1511 dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u, exp [%u;%u]\n", 1512 buf - data, size, tag, lng, tag_def->lng_min, tag_def->lng_max); 1513 return -EINVAL; 1514 } 1515 buf += 6; 1516 left -= 6; 1517 if (left < lng) { 1518 dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u, left %zu\n", 1519 buf - data, size, tag, lng, left); 1520 return -EINVAL; 1521 } 1522 1523 /* TLV block is valid -> parse the data part */ 1524 ret = tag_def->parse(component, tag, lng, buf); 1525 if (ret) { 1526 dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u parse failed\n", 1527 buf - data, size, tag, lng); 1528 return ret; 1529 } 1530 1531 buf += lng; 1532 left -= lng; 1533 } 1534 return 0; 1535 } 1536 1537 static int peb2466_load_coeffs(struct snd_soc_component *component, const char *fw_name) 1538 { 1539 const struct firmware *fw; 1540 int ret; 1541 1542 ret = request_firmware(&fw, fw_name, component->dev); 1543 if (ret) 1544 return ret; 1545 1546 ret = peb2466_fw_parse(component, fw->data, fw->size); 1547 release_firmware(fw); 1548 1549 return ret; 1550 } 1551 1552 static int peb2466_component_probe(struct snd_soc_component *component) 1553 { 1554 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); 1555 const char *firmware_name; 1556 int ret; 1557 1558 /* reset peb2466 audio part */ 1559 ret = peb2466_reset_audio(peb2466); 1560 if (ret) 1561 return ret; 1562 1563 ret = of_property_read_string(peb2466->spi->dev.of_node, 1564 "firmware-name", &firmware_name); 1565 if (ret) 1566 return (ret == -EINVAL) ? 0 : ret; 1567 1568 return peb2466_load_coeffs(component, firmware_name); 1569 } 1570 1571 static const struct snd_soc_component_driver peb2466_component_driver = { 1572 .probe = peb2466_component_probe, 1573 .controls = peb2466_controls, 1574 .num_controls = ARRAY_SIZE(peb2466_controls), 1575 .dapm_widgets = peb2466_dapm_widgets, 1576 .num_dapm_widgets = ARRAY_SIZE(peb2466_dapm_widgets), 1577 .dapm_routes = peb2466_dapm_routes, 1578 .num_dapm_routes = ARRAY_SIZE(peb2466_dapm_routes), 1579 .endianness = 1, 1580 }; 1581 1582 /* 1583 * The mapping used for the relationship between the gpio offset and the 1584 * physical pin is the following: 1585 * 1586 * offset pin 1587 * 0 SI1_0 1588 * 1 SI1_1 1589 * 2 SI2_0 1590 * 3 SI2_1 1591 * 4 SI3_0 1592 * 5 SI3_1 1593 * 6 SI4_0 1594 * 7 SI4_1 1595 * 8 SO1_0 1596 * 9 SO1_1 1597 * 10 SO2_0 1598 * 11 SO2_1 1599 * 12 SO3_0 1600 * 13 SO3_1 1601 * 14 SO4_0 1602 * 15 SO4_1 1603 * 16 SB1_0 1604 * 17 SB1_1 1605 * 18 SB2_0 1606 * 19 SB2_1 1607 * 20 SB3_0 1608 * 21 SB3_1 1609 * 22 SB4_0 1610 * 23 SB4_1 1611 * 24 SB1_2 1612 * 25 SB2_2 1613 * 26 SB3_2 1614 * 27 SB4_2 1615 */ 1616 1617 static int peb2466_chip_gpio_offset_to_data_regmask(unsigned int offset, 1618 unsigned int *xr_reg, 1619 unsigned int *mask) 1620 { 1621 if (offset < 16) { 1622 /* 1623 * SIx_{0,1} and SOx_{0,1} 1624 * Read accesses read SIx_{0,1} values 1625 * Write accesses write SOx_{0,1} values 1626 */ 1627 *xr_reg = PEB2466_XR0; 1628 *mask = (1 << (offset % 8)); 1629 return 0; 1630 } 1631 if (offset < 24) { 1632 /* SBx_{0,1} */ 1633 *xr_reg = PEB2466_XR1; 1634 *mask = (1 << (offset - 16)); 1635 return 0; 1636 } 1637 if (offset < 28) { 1638 /* SBx_2 */ 1639 *xr_reg = PEB2466_XR3; 1640 *mask = (1 << (offset - 24 + 4)); 1641 return 0; 1642 } 1643 return -EINVAL; 1644 } 1645 1646 static int peb2466_chip_gpio_offset_to_dir_regmask(unsigned int offset, 1647 unsigned int *xr_reg, 1648 unsigned int *mask) 1649 { 1650 if (offset < 16) { 1651 /* Direction cannot be changed for these GPIOs */ 1652 return -EINVAL; 1653 } 1654 if (offset < 24) { 1655 *xr_reg = PEB2466_XR2; 1656 *mask = (1 << (offset - 16)); 1657 return 0; 1658 } 1659 if (offset < 28) { 1660 *xr_reg = PEB2466_XR3; 1661 *mask = (1 << (offset - 24)); 1662 return 0; 1663 } 1664 return -EINVAL; 1665 } 1666 1667 static unsigned int *peb2466_chip_gpio_get_cache(struct peb2466 *peb2466, 1668 unsigned int xr_reg) 1669 { 1670 unsigned int *cache; 1671 1672 switch (xr_reg) { 1673 case PEB2466_XR0: 1674 cache = &peb2466->gpio.cache.xr0; 1675 break; 1676 case PEB2466_XR1: 1677 cache = &peb2466->gpio.cache.xr1; 1678 break; 1679 case PEB2466_XR2: 1680 cache = &peb2466->gpio.cache.xr2; 1681 break; 1682 case PEB2466_XR3: 1683 cache = &peb2466->gpio.cache.xr3; 1684 break; 1685 default: 1686 cache = NULL; 1687 break; 1688 } 1689 return cache; 1690 } 1691 1692 static int peb2466_chip_gpio_update_bits(struct peb2466 *peb2466, unsigned int xr_reg, 1693 unsigned int mask, unsigned int val) 1694 { 1695 unsigned int tmp; 1696 unsigned int *cache; 1697 int ret; 1698 1699 /* 1700 * Read and write accesses use different peb2466 internal signals (input 1701 * signals on reads and output signals on writes). regmap_update_bits 1702 * cannot be used to read/modify/write the value. 1703 * So, a specific cache value is used. 1704 */ 1705 1706 mutex_lock(&peb2466->gpio.lock); 1707 1708 cache = peb2466_chip_gpio_get_cache(peb2466, xr_reg); 1709 if (!cache) { 1710 ret = -EINVAL; 1711 goto end; 1712 } 1713 1714 tmp = *cache; 1715 tmp &= ~mask; 1716 tmp |= val; 1717 1718 ret = regmap_write(peb2466->regmap, xr_reg, tmp); 1719 if (ret) 1720 goto end; 1721 1722 *cache = tmp; 1723 ret = 0; 1724 1725 end: 1726 mutex_unlock(&peb2466->gpio.lock); 1727 return ret; 1728 } 1729 1730 static void peb2466_chip_gpio_set(struct gpio_chip *c, unsigned int offset, int val) 1731 { 1732 struct peb2466 *peb2466 = gpiochip_get_data(c); 1733 unsigned int xr_reg; 1734 unsigned int mask; 1735 int ret; 1736 1737 if (offset < 8) { 1738 /* 1739 * SIx_{0,1} signals cannot be set and writing the related 1740 * register will change the SOx_{0,1} signals 1741 */ 1742 dev_warn(&peb2466->spi->dev, "cannot set gpio %d (read-only)\n", 1743 offset); 1744 return; 1745 } 1746 1747 ret = peb2466_chip_gpio_offset_to_data_regmask(offset, &xr_reg, &mask); 1748 if (ret) { 1749 dev_err(&peb2466->spi->dev, "cannot set gpio %d (%d)\n", 1750 offset, ret); 1751 return; 1752 } 1753 1754 ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, val ? mask : 0); 1755 if (ret) { 1756 dev_err(&peb2466->spi->dev, "set gpio %d (0x%x, 0x%x) failed (%d)\n", 1757 offset, xr_reg, mask, ret); 1758 } 1759 } 1760 1761 static int peb2466_chip_gpio_get(struct gpio_chip *c, unsigned int offset) 1762 { 1763 struct peb2466 *peb2466 = gpiochip_get_data(c); 1764 bool use_cache = false; 1765 unsigned int *cache; 1766 unsigned int xr_reg; 1767 unsigned int mask; 1768 unsigned int val; 1769 int ret; 1770 1771 if (offset >= 8 && offset < 16) { 1772 /* 1773 * SOx_{0,1} signals cannot be read. Reading the related 1774 * register will read the SIx_{0,1} signals. 1775 * Use the cache to get value; 1776 */ 1777 use_cache = true; 1778 } 1779 1780 ret = peb2466_chip_gpio_offset_to_data_regmask(offset, &xr_reg, &mask); 1781 if (ret) { 1782 dev_err(&peb2466->spi->dev, "cannot get gpio %d (%d)\n", 1783 offset, ret); 1784 return -EINVAL; 1785 } 1786 1787 if (use_cache) { 1788 cache = peb2466_chip_gpio_get_cache(peb2466, xr_reg); 1789 if (!cache) 1790 return -EINVAL; 1791 val = *cache; 1792 } else { 1793 ret = regmap_read(peb2466->regmap, xr_reg, &val); 1794 if (ret) { 1795 dev_err(&peb2466->spi->dev, "get gpio %d (0x%x, 0x%x) failed (%d)\n", 1796 offset, xr_reg, mask, ret); 1797 return ret; 1798 } 1799 } 1800 1801 return !!(val & mask); 1802 } 1803 1804 static int peb2466_chip_get_direction(struct gpio_chip *c, unsigned int offset) 1805 { 1806 struct peb2466 *peb2466 = gpiochip_get_data(c); 1807 unsigned int xr_reg; 1808 unsigned int mask; 1809 unsigned int val; 1810 int ret; 1811 1812 if (offset < 8) { 1813 /* SIx_{0,1} */ 1814 return GPIO_LINE_DIRECTION_IN; 1815 } 1816 if (offset < 16) { 1817 /* SOx_{0,1} */ 1818 return GPIO_LINE_DIRECTION_OUT; 1819 } 1820 1821 ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask); 1822 if (ret) { 1823 dev_err(&peb2466->spi->dev, "cannot get gpio %d direction (%d)\n", 1824 offset, ret); 1825 return ret; 1826 } 1827 1828 ret = regmap_read(peb2466->regmap, xr_reg, &val); 1829 if (ret) { 1830 dev_err(&peb2466->spi->dev, "get dir gpio %d (0x%x, 0x%x) failed (%d)\n", 1831 offset, xr_reg, mask, ret); 1832 return ret; 1833 } 1834 1835 return val & mask ? GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN; 1836 } 1837 1838 static int peb2466_chip_direction_input(struct gpio_chip *c, unsigned int offset) 1839 { 1840 struct peb2466 *peb2466 = gpiochip_get_data(c); 1841 unsigned int xr_reg; 1842 unsigned int mask; 1843 int ret; 1844 1845 if (offset < 8) { 1846 /* SIx_{0,1} */ 1847 return 0; 1848 } 1849 if (offset < 16) { 1850 /* SOx_{0,1} */ 1851 return -EINVAL; 1852 } 1853 1854 ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask); 1855 if (ret) { 1856 dev_err(&peb2466->spi->dev, "cannot set gpio %d direction (%d)\n", 1857 offset, ret); 1858 return ret; 1859 } 1860 1861 ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, 0); 1862 if (ret) { 1863 dev_err(&peb2466->spi->dev, "Set dir in gpio %d (0x%x, 0x%x) failed (%d)\n", 1864 offset, xr_reg, mask, ret); 1865 return ret; 1866 } 1867 1868 return 0; 1869 } 1870 1871 static int peb2466_chip_direction_output(struct gpio_chip *c, unsigned int offset, int val) 1872 { 1873 struct peb2466 *peb2466 = gpiochip_get_data(c); 1874 unsigned int xr_reg; 1875 unsigned int mask; 1876 int ret; 1877 1878 if (offset < 8) { 1879 /* SIx_{0,1} */ 1880 return -EINVAL; 1881 } 1882 1883 peb2466_chip_gpio_set(c, offset, val); 1884 1885 if (offset < 16) { 1886 /* SOx_{0,1} */ 1887 return 0; 1888 } 1889 1890 ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask); 1891 if (ret) { 1892 dev_err(&peb2466->spi->dev, "cannot set gpio %d direction (%d)\n", 1893 offset, ret); 1894 return ret; 1895 } 1896 1897 ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, mask); 1898 if (ret) { 1899 dev_err(&peb2466->spi->dev, "Set dir in gpio %d (0x%x, 0x%x) failed (%d)\n", 1900 offset, xr_reg, mask, ret); 1901 return ret; 1902 } 1903 1904 return 0; 1905 } 1906 1907 static int peb2466_reset_gpio(struct peb2466 *peb2466) 1908 { 1909 static const struct reg_sequence reg_reset[] = { 1910 /* Output pins at 0, input/output pins as input */ 1911 { .reg = PEB2466_XR0, .def = 0 }, 1912 { .reg = PEB2466_XR1, .def = 0 }, 1913 { .reg = PEB2466_XR2, .def = 0 }, 1914 { .reg = PEB2466_XR3, .def = 0 }, 1915 }; 1916 1917 peb2466->gpio.cache.xr0 = 0; 1918 peb2466->gpio.cache.xr1 = 0; 1919 peb2466->gpio.cache.xr2 = 0; 1920 peb2466->gpio.cache.xr3 = 0; 1921 1922 return regmap_multi_reg_write(peb2466->regmap, reg_reset, ARRAY_SIZE(reg_reset)); 1923 } 1924 1925 static int peb2466_gpio_init(struct peb2466 *peb2466) 1926 { 1927 int ret; 1928 1929 mutex_init(&peb2466->gpio.lock); 1930 1931 ret = peb2466_reset_gpio(peb2466); 1932 if (ret) 1933 return ret; 1934 1935 peb2466->gpio.gpio_chip.owner = THIS_MODULE; 1936 peb2466->gpio.gpio_chip.label = dev_name(&peb2466->spi->dev); 1937 peb2466->gpio.gpio_chip.parent = &peb2466->spi->dev; 1938 peb2466->gpio.gpio_chip.base = -1; 1939 peb2466->gpio.gpio_chip.ngpio = 28; 1940 peb2466->gpio.gpio_chip.get_direction = peb2466_chip_get_direction; 1941 peb2466->gpio.gpio_chip.direction_input = peb2466_chip_direction_input; 1942 peb2466->gpio.gpio_chip.direction_output = peb2466_chip_direction_output; 1943 peb2466->gpio.gpio_chip.get = peb2466_chip_gpio_get; 1944 peb2466->gpio.gpio_chip.set = peb2466_chip_gpio_set; 1945 peb2466->gpio.gpio_chip.can_sleep = true; 1946 1947 return devm_gpiochip_add_data(&peb2466->spi->dev, &peb2466->gpio.gpio_chip, 1948 peb2466); 1949 } 1950 1951 static int peb2466_spi_probe(struct spi_device *spi) 1952 { 1953 struct peb2466 *peb2466; 1954 unsigned long mclk_rate; 1955 int ret; 1956 u8 xr5; 1957 1958 spi->bits_per_word = 8; 1959 ret = spi_setup(spi); 1960 if (ret < 0) 1961 return ret; 1962 1963 peb2466 = devm_kzalloc(&spi->dev, sizeof(*peb2466), GFP_KERNEL); 1964 if (!peb2466) 1965 return -ENOMEM; 1966 1967 peb2466->spi = spi; 1968 1969 peb2466->regmap = devm_regmap_init(&peb2466->spi->dev, NULL, peb2466, 1970 &peb2466_regmap_config); 1971 if (IS_ERR(peb2466->regmap)) 1972 return PTR_ERR(peb2466->regmap); 1973 1974 peb2466->reset_gpio = devm_gpiod_get_optional(&peb2466->spi->dev, 1975 "reset", GPIOD_OUT_LOW); 1976 if (IS_ERR(peb2466->reset_gpio)) 1977 return PTR_ERR(peb2466->reset_gpio); 1978 1979 peb2466->mclk = devm_clk_get_enabled(&peb2466->spi->dev, "mclk"); 1980 if (IS_ERR(peb2466->mclk)) 1981 return PTR_ERR(peb2466->mclk); 1982 1983 if (peb2466->reset_gpio) { 1984 gpiod_set_value_cansleep(peb2466->reset_gpio, 1); 1985 udelay(4); 1986 gpiod_set_value_cansleep(peb2466->reset_gpio, 0); 1987 udelay(4); 1988 } 1989 1990 spi_set_drvdata(spi, peb2466); 1991 1992 mclk_rate = clk_get_rate(peb2466->mclk); 1993 switch (mclk_rate) { 1994 case 1536000: 1995 xr5 = PEB2466_XR5_MCLK_1536; 1996 break; 1997 case 2048000: 1998 xr5 = PEB2466_XR5_MCLK_2048; 1999 break; 2000 case 4096000: 2001 xr5 = PEB2466_XR5_MCLK_4096; 2002 break; 2003 case 8192000: 2004 xr5 = PEB2466_XR5_MCLK_8192; 2005 break; 2006 default: 2007 dev_err(&peb2466->spi->dev, "Unsupported clock rate %lu\n", 2008 mclk_rate); 2009 ret = -EINVAL; 2010 goto failed; 2011 } 2012 ret = regmap_write(peb2466->regmap, PEB2466_XR5, xr5); 2013 if (ret) { 2014 dev_err(&peb2466->spi->dev, "Setting MCLK failed (%d)\n", ret); 2015 goto failed; 2016 } 2017 2018 ret = devm_snd_soc_register_component(&spi->dev, &peb2466_component_driver, 2019 &peb2466_dai_driver, 1); 2020 if (ret) 2021 goto failed; 2022 2023 if (IS_ENABLED(CONFIG_GPIOLIB)) { 2024 ret = peb2466_gpio_init(peb2466); 2025 if (ret) 2026 goto failed; 2027 } 2028 2029 return 0; 2030 2031 failed: 2032 return ret; 2033 } 2034 2035 static const struct of_device_id peb2466_of_match[] = { 2036 { .compatible = "infineon,peb2466", }, 2037 { } 2038 }; 2039 MODULE_DEVICE_TABLE(of, peb2466_of_match); 2040 2041 static const struct spi_device_id peb2466_id_table[] = { 2042 { "peb2466", 0 }, 2043 { } 2044 }; 2045 MODULE_DEVICE_TABLE(spi, peb2466_id_table); 2046 2047 static struct spi_driver peb2466_spi_driver = { 2048 .driver = { 2049 .name = "peb2466", 2050 .of_match_table = peb2466_of_match, 2051 }, 2052 .id_table = peb2466_id_table, 2053 .probe = peb2466_spi_probe, 2054 }; 2055 2056 module_spi_driver(peb2466_spi_driver); 2057 2058 MODULE_AUTHOR("Herve Codina <herve.codina@bootlin.com>"); 2059 MODULE_DESCRIPTION("PEB2466 ALSA SoC driver"); 2060 MODULE_LICENSE("GPL"); 2061