xref: /linux/sound/soc/codecs/nau8825.c (revision f474808acb3c4b30552d9c59b181244e0300d218)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Nuvoton NAU8825 audio codec driver
4  *
5  * Copyright 2015 Google Chromium project.
6  *  Author: Anatol Pomozov <anatol@chromium.org>
7  * Copyright 2015 Nuvoton Technology Corp.
8  *  Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com>
9  */
10 
11 #include <linux/module.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/i2c.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <linux/clk.h>
18 #include <linux/acpi.h>
19 #include <linux/math64.h>
20 #include <linux/semaphore.h>
21 
22 #include <sound/initval.h>
23 #include <sound/tlv.h>
24 #include <sound/core.h>
25 #include <sound/pcm.h>
26 #include <sound/pcm_params.h>
27 #include <sound/soc.h>
28 #include <sound/jack.h>
29 
30 
31 #include "nau8825.h"
32 
33 
34 #define NUVOTON_CODEC_DAI "nau8825-hifi"
35 
36 #define NAU_FREF_MAX 13500000
37 #define NAU_FVCO_MAX 124000000
38 #define NAU_FVCO_MIN 90000000
39 
40 /* cross talk suppression detection */
41 #define LOG10_MAGIC 646456993
42 #define GAIN_AUGMENT 22500
43 #define SIDETONE_BASE 207000
44 
45 /* the maximum frequency of CLK_ADC and CLK_DAC */
46 #define CLK_DA_AD_MAX 6144000
47 
48 static int nau8825_configure_sysclk(struct nau8825 *nau8825,
49 		int clk_id, unsigned int freq);
50 
51 struct nau8825_fll {
52 	int mclk_src;
53 	int ratio;
54 	int fll_frac;
55 	int fll_int;
56 	int clk_ref_div;
57 };
58 
59 struct nau8825_fll_attr {
60 	unsigned int param;
61 	unsigned int val;
62 };
63 
64 /* scaling for mclk from sysclk_src output */
65 static const struct nau8825_fll_attr mclk_src_scaling[] = {
66 	{ 1, 0x0 },
67 	{ 2, 0x2 },
68 	{ 4, 0x3 },
69 	{ 8, 0x4 },
70 	{ 16, 0x5 },
71 	{ 32, 0x6 },
72 	{ 3, 0x7 },
73 	{ 6, 0xa },
74 	{ 12, 0xb },
75 	{ 24, 0xc },
76 	{ 48, 0xd },
77 	{ 96, 0xe },
78 	{ 5, 0xf },
79 };
80 
81 /* ratio for input clk freq */
82 static const struct nau8825_fll_attr fll_ratio[] = {
83 	{ 512000, 0x01 },
84 	{ 256000, 0x02 },
85 	{ 128000, 0x04 },
86 	{ 64000, 0x08 },
87 	{ 32000, 0x10 },
88 	{ 8000, 0x20 },
89 	{ 4000, 0x40 },
90 };
91 
92 static const struct nau8825_fll_attr fll_pre_scalar[] = {
93 	{ 1, 0x0 },
94 	{ 2, 0x1 },
95 	{ 4, 0x2 },
96 	{ 8, 0x3 },
97 };
98 
99 /* over sampling rate */
100 struct nau8825_osr_attr {
101 	unsigned int osr;
102 	unsigned int clk_src;
103 };
104 
105 static const struct nau8825_osr_attr osr_dac_sel[] = {
106 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
107 	{ 256, 0 },	/* OSR 256, SRC 1 */
108 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
109 	{ 0, 0 },
110 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
111 };
112 
113 static const struct nau8825_osr_attr osr_adc_sel[] = {
114 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
115 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
116 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
117 	{ 256, 0 },	/* OSR 256, SRC 1 */
118 };
119 
120 static const struct reg_default nau8825_reg_defaults[] = {
121 	{ NAU8825_REG_ENA_CTRL, 0x00ff },
122 	{ NAU8825_REG_IIC_ADDR_SET, 0x0 },
123 	{ NAU8825_REG_CLK_DIVIDER, 0x0050 },
124 	{ NAU8825_REG_FLL1, 0x0 },
125 	{ NAU8825_REG_FLL2, 0x3126 },
126 	{ NAU8825_REG_FLL3, 0x0008 },
127 	{ NAU8825_REG_FLL4, 0x0010 },
128 	{ NAU8825_REG_FLL5, 0x0 },
129 	{ NAU8825_REG_FLL6, 0x6000 },
130 	{ NAU8825_REG_FLL_VCO_RSV, 0xf13c },
131 	{ NAU8825_REG_HSD_CTRL, 0x000c },
132 	{ NAU8825_REG_JACK_DET_CTRL, 0x0 },
133 	{ NAU8825_REG_INTERRUPT_MASK, 0x0 },
134 	{ NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff },
135 	{ NAU8825_REG_SAR_CTRL, 0x0015 },
136 	{ NAU8825_REG_KEYDET_CTRL, 0x0110 },
137 	{ NAU8825_REG_VDET_THRESHOLD_1, 0x0 },
138 	{ NAU8825_REG_VDET_THRESHOLD_2, 0x0 },
139 	{ NAU8825_REG_VDET_THRESHOLD_3, 0x0 },
140 	{ NAU8825_REG_VDET_THRESHOLD_4, 0x0 },
141 	{ NAU8825_REG_GPIO34_CTRL, 0x0 },
142 	{ NAU8825_REG_GPIO12_CTRL, 0x0 },
143 	{ NAU8825_REG_TDM_CTRL, 0x0 },
144 	{ NAU8825_REG_I2S_PCM_CTRL1, 0x000b },
145 	{ NAU8825_REG_I2S_PCM_CTRL2, 0x8010 },
146 	{ NAU8825_REG_LEFT_TIME_SLOT, 0x0 },
147 	{ NAU8825_REG_RIGHT_TIME_SLOT, 0x0 },
148 	{ NAU8825_REG_BIQ_CTRL, 0x0 },
149 	{ NAU8825_REG_BIQ_COF1, 0x0 },
150 	{ NAU8825_REG_BIQ_COF2, 0x0 },
151 	{ NAU8825_REG_BIQ_COF3, 0x0 },
152 	{ NAU8825_REG_BIQ_COF4, 0x0 },
153 	{ NAU8825_REG_BIQ_COF5, 0x0 },
154 	{ NAU8825_REG_BIQ_COF6, 0x0 },
155 	{ NAU8825_REG_BIQ_COF7, 0x0 },
156 	{ NAU8825_REG_BIQ_COF8, 0x0 },
157 	{ NAU8825_REG_BIQ_COF9, 0x0 },
158 	{ NAU8825_REG_BIQ_COF10, 0x0 },
159 	{ NAU8825_REG_ADC_RATE, 0x0010 },
160 	{ NAU8825_REG_DAC_CTRL1, 0x0001 },
161 	{ NAU8825_REG_DAC_CTRL2, 0x0 },
162 	{ NAU8825_REG_DAC_DGAIN_CTRL, 0x0 },
163 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
164 	{ NAU8825_REG_MUTE_CTRL, 0x0 },
165 	{ NAU8825_REG_HSVOL_CTRL, 0x0 },
166 	{ NAU8825_REG_DACL_CTRL, 0x02cf },
167 	{ NAU8825_REG_DACR_CTRL, 0x00cf },
168 	{ NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 },
169 	{ NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 },
170 	{ NAU8825_REG_ADC_DRC_SLOPES, 0x25ff },
171 	{ NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 },
172 	{ NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 },
173 	{ NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 },
174 	{ NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 },
175 	{ NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 },
176 	{ NAU8825_REG_IMM_MODE_CTRL, 0x0 },
177 	{ NAU8825_REG_CLASSG_CTRL, 0x0 },
178 	{ NAU8825_REG_OPT_EFUSE_CTRL, 0x0 },
179 	{ NAU8825_REG_MISC_CTRL, 0x0 },
180 	{ NAU8825_REG_BIAS_ADJ, 0x0 },
181 	{ NAU8825_REG_TRIM_SETTINGS, 0x0 },
182 	{ NAU8825_REG_ANALOG_CONTROL_1, 0x0 },
183 	{ NAU8825_REG_ANALOG_CONTROL_2, 0x0 },
184 	{ NAU8825_REG_ANALOG_ADC_1, 0x0011 },
185 	{ NAU8825_REG_ANALOG_ADC_2, 0x0020 },
186 	{ NAU8825_REG_RDAC, 0x0008 },
187 	{ NAU8825_REG_MIC_BIAS, 0x0006 },
188 	{ NAU8825_REG_BOOST, 0x0 },
189 	{ NAU8825_REG_FEPGA, 0x0 },
190 	{ NAU8825_REG_POWER_UP_CONTROL, 0x0 },
191 	{ NAU8825_REG_CHARGE_PUMP, 0x0 },
192 };
193 
194 /* register backup table when cross talk detection */
195 static struct reg_default nau8825_xtalk_baktab[] = {
196 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
197 	{ NAU8825_REG_HSVOL_CTRL, 0 },
198 	{ NAU8825_REG_DACL_CTRL, 0x00cf },
199 	{ NAU8825_REG_DACR_CTRL, 0x02cf },
200 };
201 
202 static const unsigned short logtable[256] = {
203 	0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7,
204 	0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508,
205 	0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6,
206 	0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37,
207 	0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f,
208 	0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41,
209 	0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1,
210 	0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142,
211 	0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68,
212 	0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355,
213 	0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c,
214 	0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490,
215 	0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3,
216 	0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507,
217 	0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe,
218 	0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca,
219 	0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c,
220 	0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7,
221 	0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c,
222 	0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c,
223 	0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a,
224 	0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065,
225 	0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730,
226 	0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc,
227 	0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469,
228 	0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9,
229 	0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c,
230 	0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765,
231 	0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83,
232 	0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387,
233 	0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973,
234 	0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47
235 };
236 
237 /**
238  * nau8825_sema_acquire - acquire the semaphore of nau88l25
239  * @nau8825:  component to register the codec private data with
240  * @timeout: how long in jiffies to wait before failure or zero to wait
241  * until release
242  *
243  * Attempts to acquire the semaphore with number of jiffies. If no more
244  * tasks are allowed to acquire the semaphore, calling this function will
245  * put the task to sleep. If the semaphore is not released within the
246  * specified number of jiffies, this function returns.
247  * If the semaphore is not released within the specified number of jiffies,
248  * this function returns -ETIME. If the sleep is interrupted by a signal,
249  * this function will return -EINTR. It returns 0 if the semaphore was
250  * acquired successfully.
251  *
252  * Acquires the semaphore without jiffies. Try to acquire the semaphore
253  * atomically. Returns 0 if the semaphore has been acquired successfully
254  * or 1 if it it cannot be acquired.
255  */
256 static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout)
257 {
258 	int ret;
259 
260 	if (timeout) {
261 		ret = down_timeout(&nau8825->xtalk_sem, timeout);
262 		if (ret < 0)
263 			dev_warn(nau8825->dev, "Acquire semaphore timeout\n");
264 	} else {
265 		ret = down_trylock(&nau8825->xtalk_sem);
266 		if (ret)
267 			dev_warn(nau8825->dev, "Acquire semaphore fail\n");
268 	}
269 
270 	return ret;
271 }
272 
273 /**
274  * nau8825_sema_release - release the semaphore of nau88l25
275  * @nau8825:  component to register the codec private data with
276  *
277  * Release the semaphore which may be called from any context and
278  * even by tasks which have never called down().
279  */
280 static inline void nau8825_sema_release(struct nau8825 *nau8825)
281 {
282 	up(&nau8825->xtalk_sem);
283 }
284 
285 /**
286  * nau8825_sema_reset - reset the semaphore for nau88l25
287  * @nau8825:  component to register the codec private data with
288  *
289  * Reset the counter of the semaphore. Call this function to restart
290  * a new round task management.
291  */
292 static inline void nau8825_sema_reset(struct nau8825 *nau8825)
293 {
294 	nau8825->xtalk_sem.count = 1;
295 }
296 
297 /**
298  * Ramp up the headphone volume change gradually to target level.
299  *
300  * @nau8825:  component to register the codec private data with
301  * @vol_from: the volume to start up
302  * @vol_to: the target volume
303  * @step: the volume span to move on
304  *
305  * The headphone volume is from 0dB to minimum -54dB and -1dB per step.
306  * If the volume changes sharp, there is a pop noise heard in headphone. We
307  * provide the function to ramp up the volume up or down by delaying 10ms
308  * per step.
309  */
310 static void nau8825_hpvol_ramp(struct nau8825 *nau8825,
311 	unsigned int vol_from, unsigned int vol_to, unsigned int step)
312 {
313 	unsigned int value, volume, ramp_up, from, to;
314 
315 	if (vol_from == vol_to || step == 0) {
316 		return;
317 	} else if (vol_from < vol_to) {
318 		ramp_up = true;
319 		from = vol_from;
320 		to = vol_to;
321 	} else {
322 		ramp_up = false;
323 		from = vol_to;
324 		to = vol_from;
325 	}
326 	/* only handle volume from 0dB to minimum -54dB */
327 	if (to > NAU8825_HP_VOL_MIN)
328 		to = NAU8825_HP_VOL_MIN;
329 
330 	for (volume = from; volume < to; volume += step) {
331 		if (ramp_up)
332 			value = volume;
333 		else
334 			value = to - volume + from;
335 		regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
336 			NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
337 			(value << NAU8825_HPL_VOL_SFT) | value);
338 		usleep_range(10000, 10500);
339 	}
340 	if (ramp_up)
341 		value = to;
342 	else
343 		value = from;
344 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
345 		NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
346 		(value << NAU8825_HPL_VOL_SFT) | value);
347 }
348 
349 /**
350  * Computes log10 of a value; the result is round off to 3 decimal. This func-
351  * tion takes reference to dvb-math. The source code locates as the following.
352  * Linux/drivers/media/dvb-core/dvb_math.c
353  * @value:  input for log10
354  *
355  * return log10(value) * 1000
356  */
357 static u32 nau8825_intlog10_dec3(u32 value)
358 {
359 	u32 msb, logentry, significand, interpolation, log10val;
360 	u64 log2val;
361 
362 	/* first detect the msb (count begins at 0) */
363 	msb = fls(value) - 1;
364 	/**
365 	 *      now we use a logtable after the following method:
366 	 *
367 	 *      log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24
368 	 *      where x = msb and therefore 1 <= y < 2
369 	 *      first y is determined by shifting the value left
370 	 *      so that msb is bit 31
371 	 *              0x00231f56 -> 0x8C7D5800
372 	 *      the result is y * 2^31 -> "significand"
373 	 *      then the highest 9 bits are used for a table lookup
374 	 *      the highest bit is discarded because it's always set
375 	 *      the highest nine bits in our example are 100011000
376 	 *      so we would use the entry 0x18
377 	 */
378 	significand = value << (31 - msb);
379 	logentry = (significand >> 23) & 0xff;
380 	/**
381 	 *      last step we do is interpolation because of the
382 	 *      limitations of the log table the error is that part of
383 	 *      the significand which isn't used for lookup then we
384 	 *      compute the ratio between the error and the next table entry
385 	 *      and interpolate it between the log table entry used and the
386 	 *      next one the biggest error possible is 0x7fffff
387 	 *      (in our example it's 0x7D5800)
388 	 *      needed value for next table entry is 0x800000
389 	 *      so the interpolation is
390 	 *      (error / 0x800000) * (logtable_next - logtable_current)
391 	 *      in the implementation the division is moved to the end for
392 	 *      better accuracy there is also an overflow correction if
393 	 *      logtable_next is 256
394 	 */
395 	interpolation = ((significand & 0x7fffff) *
396 		((logtable[(logentry + 1) & 0xff] -
397 		logtable[logentry]) & 0xffff)) >> 15;
398 
399 	log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation);
400 	/**
401 	 *      log10(x) = log2(x) * log10(2)
402 	 */
403 	log10val = (log2val * LOG10_MAGIC) >> 31;
404 	/**
405 	 *      the result is round off to 3 decimal
406 	 */
407 	return log10val / ((1 << 24) / 1000);
408 }
409 
410 /**
411  * computes cross talk suppression sidetone gain.
412  *
413  * @sig_org: orignal signal level
414  * @sig_cros: cross talk signal level
415  *
416  * The orignal and cross talk signal vlues need to be characterized.
417  * Once these values have been characterized, this sidetone value
418  * can be converted to decibel with the equation below.
419  * sidetone = 20 * log (original signal level / crosstalk signal level)
420  *
421  * return cross talk sidetone gain
422  */
423 static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros)
424 {
425 	u32 gain, sidetone;
426 
427 	if (WARN_ON(sig_org == 0 || sig_cros == 0))
428 		return 0;
429 
430 	sig_org = nau8825_intlog10_dec3(sig_org);
431 	sig_cros = nau8825_intlog10_dec3(sig_cros);
432 	if (sig_org >= sig_cros)
433 		gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT;
434 	else
435 		gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT;
436 	sidetone = SIDETONE_BASE - gain * 2;
437 	sidetone /= 1000;
438 
439 	return sidetone;
440 }
441 
442 static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg)
443 {
444 	int index;
445 
446 	for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++)
447 		if (nau8825_xtalk_baktab[index].reg == reg)
448 			return index;
449 	return -EINVAL;
450 }
451 
452 static void nau8825_xtalk_backup(struct nau8825 *nau8825)
453 {
454 	int i;
455 
456 	if (nau8825->xtalk_baktab_initialized)
457 		return;
458 
459 	/* Backup some register values to backup table */
460 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++)
461 		regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
462 				&nau8825_xtalk_baktab[i].def);
463 
464 	nau8825->xtalk_baktab_initialized = true;
465 }
466 
467 static void nau8825_xtalk_restore(struct nau8825 *nau8825, bool cause_cancel)
468 {
469 	int i, volume;
470 
471 	if (!nau8825->xtalk_baktab_initialized)
472 		return;
473 
474 	/* Restore register values from backup table; When the driver restores
475 	 * the headphone volume in XTALK_DONE state, it needs recover to
476 	 * original level gradually with 3dB per step for less pop noise.
477 	 * Otherwise, the restore should do ASAP.
478 	 */
479 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) {
480 		if (!cause_cancel && nau8825_xtalk_baktab[i].reg ==
481 			NAU8825_REG_HSVOL_CTRL) {
482 			/* Ramping up the volume change to reduce pop noise */
483 			volume = nau8825_xtalk_baktab[i].def &
484 				NAU8825_HPR_VOL_MASK;
485 			nau8825_hpvol_ramp(nau8825, 0, volume, 3);
486 			continue;
487 		}
488 		regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
489 				nau8825_xtalk_baktab[i].def);
490 	}
491 
492 	nau8825->xtalk_baktab_initialized = false;
493 }
494 
495 static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825)
496 {
497 	/* Enable power of DAC path */
498 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
499 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
500 		NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK |
501 		NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR |
502 		NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC |
503 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK);
504 	/* Prevent startup click by letting charge pump to ramp up and
505 	 * change bump enable
506 	 */
507 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
508 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN,
509 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN);
510 	/* Enable clock sync of DAC and DAC clock */
511 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
512 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN |
513 		NAU8825_RDAC_FS_BCLK_ENB,
514 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN);
515 	/* Power up output driver with 2 stage */
516 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
517 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
518 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L,
519 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
520 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L);
521 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
522 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L,
523 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L);
524 	/* HP outputs not shouted to ground  */
525 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
526 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0);
527 	/* Enable HP boost driver */
528 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
529 		NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS);
530 	/* Enable class G compare path to supply 1.8V or 0.9V. */
531 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL,
532 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN,
533 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN);
534 }
535 
536 static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825)
537 {
538 	/* Power up left ADC and raise 5dB than Vmid for Vref  */
539 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
540 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK,
541 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB);
542 }
543 
544 static void nau8825_xtalk_clock(struct nau8825 *nau8825)
545 {
546 	/* Recover FLL default value */
547 	regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0);
548 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126);
549 	regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008);
550 	regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010);
551 	regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0);
552 	regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000);
553 	/* Enable internal VCO clock for detection signal generated */
554 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
555 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
556 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN,
557 		NAU8825_DCO_EN);
558 	/* Given specific clock frequency of internal clock to
559 	 * generate signal.
560 	 */
561 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
562 		NAU8825_CLK_MCLK_SRC_MASK, 0xf);
563 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
564 		NAU8825_FLL_RATIO_MASK, 0x10);
565 }
566 
567 static void nau8825_xtalk_prepare(struct nau8825 *nau8825)
568 {
569 	int volume, index;
570 
571 	/* Backup those registers changed by cross talk detection */
572 	nau8825_xtalk_backup(nau8825);
573 	/* Config IIS as master to output signal by codec */
574 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
575 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
576 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER |
577 		(0x2 << NAU8825_I2S_LRC_DIV_SFT) | 0x1);
578 	/* Ramp up headphone volume to 0dB to get better performance and
579 	 * avoid pop noise in headphone.
580 	 */
581 	index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL);
582 	if (index != -EINVAL) {
583 		volume = nau8825_xtalk_baktab[index].def &
584 				NAU8825_HPR_VOL_MASK;
585 		nau8825_hpvol_ramp(nau8825, volume, 0, 3);
586 	}
587 	nau8825_xtalk_clock(nau8825);
588 	nau8825_xtalk_prepare_dac(nau8825);
589 	nau8825_xtalk_prepare_adc(nau8825);
590 	/* Config channel path and digital gain */
591 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
592 		NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK,
593 		NAU8825_DACL_CH_SEL_L | 0xab);
594 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
595 		NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK,
596 		NAU8825_DACR_CH_SEL_R | 0xab);
597 	/* Config cross talk parameters and generate the 23Hz sine wave with
598 	 * 1/16 full scale of signal level for impedance measurement.
599 	 */
600 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
601 		NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK |
602 		NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK,
603 		(0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th |
604 		NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN);
605 	/* RMS intrruption enable */
606 	regmap_update_bits(nau8825->regmap,
607 		NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0);
608 	/* Power up left and right DAC */
609 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
610 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0);
611 }
612 
613 static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825)
614 {
615 	/* Disable HP boost driver */
616 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
617 		NAU8825_HP_BOOST_DIS, 0);
618 	/* HP outputs shouted to ground  */
619 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
620 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
621 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
622 	/* Power down left and right DAC */
623 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
624 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
625 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
626 	/* Enable the TESTDAC and  disable L/R HP impedance */
627 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
628 		NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP |
629 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
630 	/* Power down output driver with 2 stage */
631 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
632 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0);
633 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
634 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
635 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0);
636 	/* Disable clock sync of DAC and DAC clock */
637 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
638 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0);
639 	/* Disable charge pump ramp up function and change bump */
640 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
641 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0);
642 	/* Disable power of DAC path */
643 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
644 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
645 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0);
646 	if (!nau8825->irq)
647 		regmap_update_bits(nau8825->regmap,
648 			NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
649 }
650 
651 static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825)
652 {
653 	/* Power down left ADC and restore voltage to Vmid */
654 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
655 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0);
656 }
657 
658 static void nau8825_xtalk_clean(struct nau8825 *nau8825, bool cause_cancel)
659 {
660 	/* Enable internal VCO needed for interruptions */
661 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
662 	nau8825_xtalk_clean_dac(nau8825);
663 	nau8825_xtalk_clean_adc(nau8825);
664 	/* Clear cross talk parameters and disable */
665 	regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0);
666 	/* RMS intrruption disable */
667 	regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK,
668 		NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN);
669 	/* Recover default value for IIS */
670 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
671 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
672 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE);
673 	/* Restore value of specific register for cross talk */
674 	nau8825_xtalk_restore(nau8825, cause_cancel);
675 }
676 
677 static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol)
678 {
679 	/* Apply ADC volume for better cross talk performance */
680 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL,
681 				NAU8825_ADC_DIG_VOL_MASK, vol);
682 	/* Disables JKTIP(HPL) DAC channel for right to left measurement.
683 	 * Do it before sending signal in order to erase pop noise.
684 	 */
685 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
686 		NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN,
687 		NAU8825_BIAS_TESTDACL_EN);
688 	switch (nau8825->xtalk_state) {
689 	case NAU8825_XTALK_HPR_R2L:
690 		/* Enable right headphone impedance */
691 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
692 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
693 			NAU8825_BIAS_HPR_IMP);
694 		break;
695 	case NAU8825_XTALK_HPL_R2L:
696 		/* Enable left headphone impedance */
697 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
698 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
699 			NAU8825_BIAS_HPL_IMP);
700 		break;
701 	default:
702 		break;
703 	}
704 	msleep(100);
705 	/* Impedance measurement mode enable */
706 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
707 				NAU8825_IMM_EN, NAU8825_IMM_EN);
708 }
709 
710 static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825)
711 {
712 	/* Impedance measurement mode disable */
713 	regmap_update_bits(nau8825->regmap,
714 		NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0);
715 }
716 
717 /* The cross talk measurement function can reduce cross talk across the
718  * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal
719  * level to determine what cross talk reduction gain is. This system works by
720  * sending a 23Hz -24dBV sine wave into the headset output DAC and through
721  * the PGA. The output of the PGA is then connected to an internal current
722  * sense which measures the attenuated 23Hz signal and passing the output to
723  * an ADC which converts the measurement to a binary code. With two separated
724  * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data
725  * can be separated read in IMM_RMS_L for HSR and HSL after each measurement.
726  * Thus, the measurement function has four states to complete whole sequence.
727  * 1. Prepare state : Prepare the resource for detection and transfer to HPR
728  *     IMM stat to make JKR1(HPR) impedance measure.
729  * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer
730  *     to HPL IMM state to make JKTIP(HPL) impedance measure.
731  * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and
732  *     transfer to IMM state to determine suppression sidetone gain.
733  * 4. IMM state : Computes cross talk suppression sidetone gain with orignal
734  *     and cross talk signal level. Apply this gain and then restore codec
735  *     configuration. Then transfer to Done state for ending.
736  */
737 static void nau8825_xtalk_measure(struct nau8825 *nau8825)
738 {
739 	u32 sidetone;
740 
741 	switch (nau8825->xtalk_state) {
742 	case NAU8825_XTALK_PREPARE:
743 		/* In prepare state, set up clock, intrruption, DAC path, ADC
744 		 * path and cross talk detection parameters for preparation.
745 		 */
746 		nau8825_xtalk_prepare(nau8825);
747 		msleep(280);
748 		/* Trigger right headphone impedance detection */
749 		nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L;
750 		nau8825_xtalk_imm_start(nau8825, 0x00d2);
751 		break;
752 	case NAU8825_XTALK_HPR_R2L:
753 		/* In right headphone IMM state, read out right headphone
754 		 * impedance measure result, and then start up left side.
755 		 */
756 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
757 			&nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
758 		dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n",
759 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
760 		/* Disable then re-enable IMM mode to update */
761 		nau8825_xtalk_imm_stop(nau8825);
762 		/* Trigger left headphone impedance detection */
763 		nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L;
764 		nau8825_xtalk_imm_start(nau8825, 0x00ff);
765 		break;
766 	case NAU8825_XTALK_HPL_R2L:
767 		/* In left headphone IMM state, read out left headphone
768 		 * impedance measure result, and delay some time to wait
769 		 * detection sine wave output finish. Then, we can calculate
770 		 * the cross talk suppresstion side tone according to the L/R
771 		 * headphone imedance.
772 		 */
773 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
774 			&nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
775 		dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n",
776 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
777 		nau8825_xtalk_imm_stop(nau8825);
778 		msleep(150);
779 		nau8825->xtalk_state = NAU8825_XTALK_IMM;
780 		break;
781 	case NAU8825_XTALK_IMM:
782 		/* In impedance measure state, the orignal and cross talk
783 		 * signal level vlues are ready. The side tone gain is deter-
784 		 * mined with these signal level. After all, restore codec
785 		 * configuration.
786 		 */
787 		sidetone = nau8825_xtalk_sidetone(
788 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L],
789 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
790 		dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone);
791 		regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL,
792 					(sidetone << 8) | sidetone);
793 		nau8825_xtalk_clean(nau8825, false);
794 		nau8825->xtalk_state = NAU8825_XTALK_DONE;
795 		break;
796 	default:
797 		break;
798 	}
799 }
800 
801 static void nau8825_xtalk_work(struct work_struct *work)
802 {
803 	struct nau8825 *nau8825 = container_of(
804 		work, struct nau8825, xtalk_work);
805 
806 	nau8825_xtalk_measure(nau8825);
807 	/* To determine the cross talk side tone gain when reach
808 	 * the impedance measure state.
809 	 */
810 	if (nau8825->xtalk_state == NAU8825_XTALK_IMM)
811 		nau8825_xtalk_measure(nau8825);
812 
813 	/* Delay jack report until cross talk detection process
814 	 * completed. It can avoid application to do playback
815 	 * preparation before cross talk detection is still working.
816 	 * Meanwhile, the protection of the cross talk detection
817 	 * is released.
818 	 */
819 	if (nau8825->xtalk_state == NAU8825_XTALK_DONE) {
820 		snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event,
821 				nau8825->xtalk_event_mask);
822 		nau8825_sema_release(nau8825);
823 		nau8825->xtalk_protect = false;
824 	}
825 }
826 
827 static void nau8825_xtalk_cancel(struct nau8825 *nau8825)
828 {
829 	/* If the crosstalk is eanbled and the process is on going,
830 	 * the driver forces to cancel the crosstalk task and
831 	 * restores the configuration to original status.
832 	 */
833 	if (nau8825->xtalk_enable && nau8825->xtalk_state !=
834 		NAU8825_XTALK_DONE) {
835 		cancel_work_sync(&nau8825->xtalk_work);
836 		nau8825_xtalk_clean(nau8825, true);
837 	}
838 	/* Reset parameters for cross talk suppression function */
839 	nau8825_sema_reset(nau8825);
840 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
841 	nau8825->xtalk_protect = false;
842 }
843 
844 static bool nau8825_readable_reg(struct device *dev, unsigned int reg)
845 {
846 	switch (reg) {
847 	case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV:
848 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
849 	case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL:
850 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
851 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
852 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
853 	case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R:
854 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
855 	case NAU8825_REG_MISC_CTRL:
856 	case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS:
857 	case NAU8825_REG_BIAS_ADJ:
858 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
859 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
860 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
861 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS:
862 		return true;
863 	default:
864 		return false;
865 	}
866 
867 }
868 
869 static bool nau8825_writeable_reg(struct device *dev, unsigned int reg)
870 {
871 	switch (reg) {
872 	case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV:
873 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
874 	case NAU8825_REG_INTERRUPT_MASK:
875 	case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL:
876 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
877 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
878 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
879 	case NAU8825_REG_IMM_MODE_CTRL:
880 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
881 	case NAU8825_REG_MISC_CTRL:
882 	case NAU8825_REG_BIAS_ADJ:
883 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
884 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
885 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
886 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP:
887 		return true;
888 	default:
889 		return false;
890 	}
891 }
892 
893 static bool nau8825_volatile_reg(struct device *dev, unsigned int reg)
894 {
895 	switch (reg) {
896 	case NAU8825_REG_RESET:
897 	case NAU8825_REG_IRQ_STATUS:
898 	case NAU8825_REG_INT_CLR_KEY_STATUS:
899 	case NAU8825_REG_IMM_RMS_L:
900 	case NAU8825_REG_IMM_RMS_R:
901 	case NAU8825_REG_I2C_DEVICE_ID:
902 	case NAU8825_REG_SARDOUT_RAM_STATUS:
903 	case NAU8825_REG_CHARGE_PUMP_INPUT_READ:
904 	case NAU8825_REG_GENERAL_STATUS:
905 	case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10:
906 		return true;
907 	default:
908 		return false;
909 	}
910 }
911 
912 static int nau8825_adc_event(struct snd_soc_dapm_widget *w,
913 		struct snd_kcontrol *kcontrol, int event)
914 {
915 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
916 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
917 
918 	switch (event) {
919 	case SND_SOC_DAPM_POST_PMU:
920 		msleep(125);
921 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
922 			NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
923 		break;
924 	case SND_SOC_DAPM_POST_PMD:
925 		if (!nau8825->irq)
926 			regmap_update_bits(nau8825->regmap,
927 				NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
928 		break;
929 	default:
930 		return -EINVAL;
931 	}
932 
933 	return 0;
934 }
935 
936 static int nau8825_pump_event(struct snd_soc_dapm_widget *w,
937 	struct snd_kcontrol *kcontrol, int event)
938 {
939 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
940 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
941 
942 	switch (event) {
943 	case SND_SOC_DAPM_POST_PMU:
944 		/* Prevent startup click by letting charge pump to ramp up */
945 		msleep(10);
946 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
947 			NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW);
948 		break;
949 	case SND_SOC_DAPM_PRE_PMD:
950 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
951 			NAU8825_JAMNODCLOW, 0);
952 		break;
953 	default:
954 		return -EINVAL;
955 	}
956 
957 	return 0;
958 }
959 
960 static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w,
961 	struct snd_kcontrol *kcontrol, int event)
962 {
963 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
964 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
965 
966 	switch (event) {
967 	case SND_SOC_DAPM_PRE_PMU:
968 		/* Disables the TESTDAC to let DAC signal pass through. */
969 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
970 			NAU8825_BIAS_TESTDAC_EN, 0);
971 		break;
972 	case SND_SOC_DAPM_POST_PMD:
973 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
974 			NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
975 		break;
976 	default:
977 		return -EINVAL;
978 	}
979 
980 	return 0;
981 }
982 
983 static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol,
984 				     struct snd_ctl_elem_value *ucontrol)
985 {
986 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
987 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
988 
989 	if (!component->regmap)
990 		return -EINVAL;
991 
992 	regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1,
993 		ucontrol->value.bytes.data, params->max);
994 	return 0;
995 }
996 
997 static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol,
998 				     struct snd_ctl_elem_value *ucontrol)
999 {
1000 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1001 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
1002 	void *data;
1003 
1004 	if (!component->regmap)
1005 		return -EINVAL;
1006 
1007 	data = kmemdup(ucontrol->value.bytes.data,
1008 		params->max, GFP_KERNEL | GFP_DMA);
1009 	if (!data)
1010 		return -ENOMEM;
1011 
1012 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1013 		NAU8825_BIQ_WRT_EN, 0);
1014 	regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1,
1015 		data, params->max);
1016 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1017 		NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN);
1018 
1019 	kfree(data);
1020 	return 0;
1021 }
1022 
1023 static const char * const nau8825_biq_path[] = {
1024 	"ADC", "DAC"
1025 };
1026 
1027 static const struct soc_enum nau8825_biq_path_enum =
1028 	SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT,
1029 		ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path);
1030 
1031 static const char * const nau8825_adc_decimation[] = {
1032 	"32", "64", "128", "256"
1033 };
1034 
1035 static const struct soc_enum nau8825_adc_decimation_enum =
1036 	SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT,
1037 		ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation);
1038 
1039 static const char * const nau8825_dac_oversampl[] = {
1040 	"64", "256", "128", "", "32"
1041 };
1042 
1043 static const struct soc_enum nau8825_dac_oversampl_enum =
1044 	SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT,
1045 		ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl);
1046 
1047 static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400);
1048 static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0);
1049 static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0);
1050 static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
1051 static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400);
1052 
1053 static const struct snd_kcontrol_new nau8825_controls[] = {
1054 	SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1055 		0, 0xff, 0, adc_vol_tlv),
1056 	SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1057 		12, 8, 0x0f, 0, sidetone_vol_tlv),
1058 	SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL,
1059 		6, 0, 0x3f, 1, dac_vol_tlv),
1060 	SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL,
1061 		8, 37, 0, fepga_gain_tlv),
1062 	SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL,
1063 		0, 8, 0xff, 0, crosstalk_vol_tlv),
1064 
1065 	SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum),
1066 	SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum),
1067 	/* programmable biquad filter */
1068 	SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum),
1069 	SND_SOC_BYTES_EXT("BIQ Coefficients", 20,
1070 		  nau8825_biq_coeff_get, nau8825_biq_coeff_put),
1071 };
1072 
1073 /* DAC Mux 0x33[9] and 0x34[9] */
1074 static const char * const nau8825_dac_src[] = {
1075 	"DACL", "DACR",
1076 };
1077 
1078 static SOC_ENUM_SINGLE_DECL(
1079 	nau8825_dacl_enum, NAU8825_REG_DACL_CTRL,
1080 	NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src);
1081 
1082 static SOC_ENUM_SINGLE_DECL(
1083 	nau8825_dacr_enum, NAU8825_REG_DACR_CTRL,
1084 	NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src);
1085 
1086 static const struct snd_kcontrol_new nau8825_dacl_mux =
1087 	SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum);
1088 
1089 static const struct snd_kcontrol_new nau8825_dacr_mux =
1090 	SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum);
1091 
1092 
1093 static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = {
1094 	SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2,
1095 		15, 1),
1096 
1097 	SND_SOC_DAPM_INPUT("MIC"),
1098 	SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0),
1099 
1100 	SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0,
1101 		NULL, 0),
1102 
1103 	SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0,
1104 		nau8825_adc_event, SND_SOC_DAPM_POST_PMU |
1105 		SND_SOC_DAPM_POST_PMD),
1106 	SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0),
1107 	SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL,
1108 		0),
1109 
1110 	/* ADC for button press detection. A dapm supply widget is used to
1111 	 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON
1112 	 * during suspend.
1113 	 */
1114 	SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL,
1115 		NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0),
1116 
1117 	SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0),
1118 	SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0),
1119 	SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0),
1120 	SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0),
1121 
1122 	SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL,
1123 		NAU8825_ENABLE_DACR_SFT, 0),
1124 	SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL,
1125 		NAU8825_ENABLE_DACL_SFT, 0),
1126 	SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0),
1127 
1128 	SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux),
1129 	SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux),
1130 
1131 	SND_SOC_DAPM_PGA_S("HP amp L", 0,
1132 		NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0),
1133 	SND_SOC_DAPM_PGA_S("HP amp R", 0,
1134 		NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0),
1135 
1136 	SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0,
1137 		nau8825_pump_event, SND_SOC_DAPM_POST_PMU |
1138 		SND_SOC_DAPM_PRE_PMD),
1139 
1140 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4,
1141 		NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0),
1142 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4,
1143 		NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0),
1144 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5,
1145 		NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
1146 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5,
1147 		NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
1148 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6,
1149 		NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
1150 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6,
1151 		NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
1152 
1153 	SND_SOC_DAPM_PGA_S("Output DACL", 7,
1154 		NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event,
1155 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1156 	SND_SOC_DAPM_PGA_S("Output DACR", 7,
1157 		NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event,
1158 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1159 
1160 	/* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */
1161 	SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8,
1162 		NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0),
1163 	SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8,
1164 		NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0),
1165 
1166 	/* High current HPOL/R boost driver */
1167 	SND_SOC_DAPM_PGA_S("HP Boost Driver", 9,
1168 		NAU8825_REG_BOOST, 9, 1, NULL, 0),
1169 
1170 	/* Class G operation control*/
1171 	SND_SOC_DAPM_PGA_S("Class G", 10,
1172 		NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0),
1173 
1174 	SND_SOC_DAPM_OUTPUT("HPOL"),
1175 	SND_SOC_DAPM_OUTPUT("HPOR"),
1176 };
1177 
1178 static const struct snd_soc_dapm_route nau8825_dapm_routes[] = {
1179 	{"Frontend PGA", NULL, "MIC"},
1180 	{"ADC", NULL, "Frontend PGA"},
1181 	{"ADC", NULL, "ADC Clock"},
1182 	{"ADC", NULL, "ADC Power"},
1183 	{"AIFTX", NULL, "ADC"},
1184 
1185 	{"DDACL", NULL, "Playback"},
1186 	{"DDACR", NULL, "Playback"},
1187 	{"DDACL", NULL, "DDAC Clock"},
1188 	{"DDACR", NULL, "DDAC Clock"},
1189 	{"DACL Mux", "DACL", "DDACL"},
1190 	{"DACL Mux", "DACR", "DDACR"},
1191 	{"DACR Mux", "DACL", "DDACL"},
1192 	{"DACR Mux", "DACR", "DDACR"},
1193 	{"HP amp L", NULL, "DACL Mux"},
1194 	{"HP amp R", NULL, "DACR Mux"},
1195 	{"Charge Pump", NULL, "HP amp L"},
1196 	{"Charge Pump", NULL, "HP amp R"},
1197 	{"ADACL", NULL, "Charge Pump"},
1198 	{"ADACR", NULL, "Charge Pump"},
1199 	{"ADACL Clock", NULL, "ADACL"},
1200 	{"ADACR Clock", NULL, "ADACR"},
1201 	{"Output Driver L Stage 1", NULL, "ADACL Clock"},
1202 	{"Output Driver R Stage 1", NULL, "ADACR Clock"},
1203 	{"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"},
1204 	{"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"},
1205 	{"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"},
1206 	{"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"},
1207 	{"Output DACL", NULL, "Output Driver L Stage 3"},
1208 	{"Output DACR", NULL, "Output Driver R Stage 3"},
1209 	{"HPOL Pulldown", NULL, "Output DACL"},
1210 	{"HPOR Pulldown", NULL, "Output DACR"},
1211 	{"HP Boost Driver", NULL, "HPOL Pulldown"},
1212 	{"HP Boost Driver", NULL, "HPOR Pulldown"},
1213 	{"Class G", NULL, "HP Boost Driver"},
1214 	{"HPOL", NULL, "Class G"},
1215 	{"HPOR", NULL, "Class G"},
1216 };
1217 
1218 static int nau8825_clock_check(struct nau8825 *nau8825,
1219 	int stream, int rate, int osr)
1220 {
1221 	int osrate;
1222 
1223 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
1224 		if (osr >= ARRAY_SIZE(osr_dac_sel))
1225 			return -EINVAL;
1226 		osrate = osr_dac_sel[osr].osr;
1227 	} else {
1228 		if (osr >= ARRAY_SIZE(osr_adc_sel))
1229 			return -EINVAL;
1230 		osrate = osr_adc_sel[osr].osr;
1231 	}
1232 
1233 	if (!osrate || rate * osr > CLK_DA_AD_MAX) {
1234 		dev_err(nau8825->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC\n");
1235 		return -EINVAL;
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 static int nau8825_hw_params(struct snd_pcm_substream *substream,
1242 				struct snd_pcm_hw_params *params,
1243 				struct snd_soc_dai *dai)
1244 {
1245 	struct snd_soc_component *component = dai->component;
1246 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1247 	unsigned int val_len = 0, osr, ctrl_val, bclk_fs, bclk_div;
1248 
1249 	nau8825_sema_acquire(nau8825, 3 * HZ);
1250 
1251 	/* CLK_DAC or CLK_ADC = OSR * FS
1252 	 * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR)
1253 	 * multiplied by the audio sample rate (Fs). Note that the OSR and Fs
1254 	 * values must be selected such that the maximum frequency is less
1255 	 * than 6.144 MHz.
1256 	 */
1257 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1258 		regmap_read(nau8825->regmap, NAU8825_REG_DAC_CTRL1, &osr);
1259 		osr &= NAU8825_DAC_OVERSAMPLE_MASK;
1260 		if (nau8825_clock_check(nau8825, substream->stream,
1261 			params_rate(params), osr)) {
1262 			nau8825_sema_release(nau8825);
1263 			return -EINVAL;
1264 		}
1265 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1266 			NAU8825_CLK_DAC_SRC_MASK,
1267 			osr_dac_sel[osr].clk_src << NAU8825_CLK_DAC_SRC_SFT);
1268 	} else {
1269 		regmap_read(nau8825->regmap, NAU8825_REG_ADC_RATE, &osr);
1270 		osr &= NAU8825_ADC_SYNC_DOWN_MASK;
1271 		if (nau8825_clock_check(nau8825, substream->stream,
1272 			params_rate(params), osr)) {
1273 			nau8825_sema_release(nau8825);
1274 			return -EINVAL;
1275 		}
1276 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1277 			NAU8825_CLK_ADC_SRC_MASK,
1278 			osr_adc_sel[osr].clk_src << NAU8825_CLK_ADC_SRC_SFT);
1279 	}
1280 
1281 	/* make BCLK and LRC divde configuration if the codec as master. */
1282 	regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, &ctrl_val);
1283 	if (ctrl_val & NAU8825_I2S_MS_MASTER) {
1284 		/* get the bclk and fs ratio */
1285 		bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params);
1286 		if (bclk_fs <= 32)
1287 			bclk_div = 2;
1288 		else if (bclk_fs <= 64)
1289 			bclk_div = 1;
1290 		else if (bclk_fs <= 128)
1291 			bclk_div = 0;
1292 		else {
1293 			nau8825_sema_release(nau8825);
1294 			return -EINVAL;
1295 		}
1296 		regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1297 			NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK,
1298 			((bclk_div + 1) << NAU8825_I2S_LRC_DIV_SFT) | bclk_div);
1299 	}
1300 
1301 	switch (params_width(params)) {
1302 	case 16:
1303 		val_len |= NAU8825_I2S_DL_16;
1304 		break;
1305 	case 20:
1306 		val_len |= NAU8825_I2S_DL_20;
1307 		break;
1308 	case 24:
1309 		val_len |= NAU8825_I2S_DL_24;
1310 		break;
1311 	case 32:
1312 		val_len |= NAU8825_I2S_DL_32;
1313 		break;
1314 	default:
1315 		nau8825_sema_release(nau8825);
1316 		return -EINVAL;
1317 	}
1318 
1319 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1320 		NAU8825_I2S_DL_MASK, val_len);
1321 
1322 	/* Release the semaphore. */
1323 	nau8825_sema_release(nau8825);
1324 
1325 	return 0;
1326 }
1327 
1328 static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
1329 {
1330 	struct snd_soc_component *component = codec_dai->component;
1331 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1332 	unsigned int ctrl1_val = 0, ctrl2_val = 0;
1333 
1334 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1335 	case SND_SOC_DAIFMT_CBM_CFM:
1336 		ctrl2_val |= NAU8825_I2S_MS_MASTER;
1337 		break;
1338 	case SND_SOC_DAIFMT_CBS_CFS:
1339 		break;
1340 	default:
1341 		return -EINVAL;
1342 	}
1343 
1344 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1345 	case SND_SOC_DAIFMT_NB_NF:
1346 		break;
1347 	case SND_SOC_DAIFMT_IB_NF:
1348 		ctrl1_val |= NAU8825_I2S_BP_INV;
1349 		break;
1350 	default:
1351 		return -EINVAL;
1352 	}
1353 
1354 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1355 	case SND_SOC_DAIFMT_I2S:
1356 		ctrl1_val |= NAU8825_I2S_DF_I2S;
1357 		break;
1358 	case SND_SOC_DAIFMT_LEFT_J:
1359 		ctrl1_val |= NAU8825_I2S_DF_LEFT;
1360 		break;
1361 	case SND_SOC_DAIFMT_RIGHT_J:
1362 		ctrl1_val |= NAU8825_I2S_DF_RIGTH;
1363 		break;
1364 	case SND_SOC_DAIFMT_DSP_A:
1365 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1366 		break;
1367 	case SND_SOC_DAIFMT_DSP_B:
1368 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1369 		ctrl1_val |= NAU8825_I2S_PCMB_EN;
1370 		break;
1371 	default:
1372 		return -EINVAL;
1373 	}
1374 
1375 	nau8825_sema_acquire(nau8825, 3 * HZ);
1376 
1377 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1378 		NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK |
1379 		NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK,
1380 		ctrl1_val);
1381 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1382 		NAU8825_I2S_MS_MASK, ctrl2_val);
1383 
1384 	/* Release the semaphore. */
1385 	nau8825_sema_release(nau8825);
1386 
1387 	return 0;
1388 }
1389 
1390 static const struct snd_soc_dai_ops nau8825_dai_ops = {
1391 	.hw_params	= nau8825_hw_params,
1392 	.set_fmt	= nau8825_set_dai_fmt,
1393 };
1394 
1395 #define NAU8825_RATES	SNDRV_PCM_RATE_8000_192000
1396 #define NAU8825_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
1397 			 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1398 
1399 static struct snd_soc_dai_driver nau8825_dai = {
1400 	.name = "nau8825-hifi",
1401 	.playback = {
1402 		.stream_name	 = "Playback",
1403 		.channels_min	 = 1,
1404 		.channels_max	 = 2,
1405 		.rates		 = NAU8825_RATES,
1406 		.formats	 = NAU8825_FORMATS,
1407 	},
1408 	.capture = {
1409 		.stream_name	 = "Capture",
1410 		.channels_min	 = 1,
1411 		.channels_max	 = 1,
1412 		.rates		 = NAU8825_RATES,
1413 		.formats	 = NAU8825_FORMATS,
1414 	},
1415 	.ops = &nau8825_dai_ops,
1416 };
1417 
1418 /**
1419  * nau8825_enable_jack_detect - Specify a jack for event reporting
1420  *
1421  * @component:  component to register the jack with
1422  * @jack: jack to use to report headset and button events on
1423  *
1424  * After this function has been called the headset insert/remove and button
1425  * events will be routed to the given jack.  Jack can be null to stop
1426  * reporting.
1427  */
1428 int nau8825_enable_jack_detect(struct snd_soc_component *component,
1429 				struct snd_soc_jack *jack)
1430 {
1431 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1432 	struct regmap *regmap = nau8825->regmap;
1433 
1434 	nau8825->jack = jack;
1435 
1436 	/* Ground HP Outputs[1:0], needed for headset auto detection
1437 	 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6]
1438 	 */
1439 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1440 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
1441 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
1442 
1443 	return 0;
1444 }
1445 EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect);
1446 
1447 
1448 static bool nau8825_is_jack_inserted(struct regmap *regmap)
1449 {
1450 	bool active_high, is_high;
1451 	int status, jkdet;
1452 
1453 	regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet);
1454 	active_high = jkdet & NAU8825_JACK_POLARITY;
1455 	regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status);
1456 	is_high = status & NAU8825_GPIO2JD1;
1457 	/* return jack connection status according to jack insertion logic
1458 	 * active high or active low.
1459 	 */
1460 	return active_high == is_high;
1461 }
1462 
1463 static void nau8825_restart_jack_detection(struct regmap *regmap)
1464 {
1465 	/* this will restart the entire jack detection process including MIC/GND
1466 	 * switching and create interrupts. We have to go from 0 to 1 and back
1467 	 * to 0 to restart.
1468 	 */
1469 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1470 		NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART);
1471 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1472 		NAU8825_JACK_DET_RESTART, 0);
1473 }
1474 
1475 static void nau8825_int_status_clear_all(struct regmap *regmap)
1476 {
1477 	int active_irq, clear_irq, i;
1478 
1479 	/* Reset the intrruption status from rightmost bit if the corres-
1480 	 * ponding irq event occurs.
1481 	 */
1482 	regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq);
1483 	for (i = 0; i < NAU8825_REG_DATA_LEN; i++) {
1484 		clear_irq = (0x1 << i);
1485 		if (active_irq & clear_irq)
1486 			regmap_write(regmap,
1487 				NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1488 	}
1489 }
1490 
1491 static void nau8825_eject_jack(struct nau8825 *nau8825)
1492 {
1493 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1494 	struct regmap *regmap = nau8825->regmap;
1495 
1496 	/* Force to cancel the cross talk detection process */
1497 	nau8825_xtalk_cancel(nau8825);
1498 
1499 	snd_soc_dapm_disable_pin(dapm, "SAR");
1500 	snd_soc_dapm_disable_pin(dapm, "MICBIAS");
1501 	/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
1502 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1503 		NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
1504 	/* ground HPL/HPR, MICGRND1/2 */
1505 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf);
1506 
1507 	snd_soc_dapm_sync(dapm);
1508 
1509 	/* Clear all interruption status */
1510 	nau8825_int_status_clear_all(regmap);
1511 
1512 	/* Enable the insertion interruption, disable the ejection inter-
1513 	 * ruption, and then bypass de-bounce circuit.
1514 	 */
1515 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
1516 		NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS,
1517 		NAU8825_IRQ_EJECT_DIS);
1518 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1519 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1520 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN,
1521 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1522 		NAU8825_IRQ_HEADSET_COMPLETE_EN);
1523 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1524 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
1525 
1526 	/* Disable ADC needed for interruptions at audo mode */
1527 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1528 		NAU8825_ENABLE_ADC, 0);
1529 
1530 	/* Close clock for jack type detection at manual mode */
1531 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1532 }
1533 
1534 /* Enable audo mode interruptions with internal clock. */
1535 static void nau8825_setup_auto_irq(struct nau8825 *nau8825)
1536 {
1537 	struct regmap *regmap = nau8825->regmap;
1538 
1539 	/* Enable headset jack type detection complete interruption and
1540 	 * jack ejection interruption.
1541 	 */
1542 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1543 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0);
1544 
1545 	/* Enable internal VCO needed for interruptions */
1546 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
1547 
1548 	/* Enable ADC needed for interruptions */
1549 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1550 		NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
1551 
1552 	/* Chip needs one FSCLK cycle in order to generate interruptions,
1553 	 * as we cannot guarantee one will be provided by the system. Turning
1554 	 * master mode on then off enables us to generate that FSCLK cycle
1555 	 * with a minimum of contention on the clock bus.
1556 	 */
1557 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1558 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER);
1559 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1560 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE);
1561 
1562 	/* Not bypass de-bounce circuit */
1563 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1564 		NAU8825_JACK_DET_DB_BYPASS, 0);
1565 
1566 	/* Unmask all interruptions */
1567 	regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0);
1568 
1569 	/* Restart the jack detection process at auto mode */
1570 	nau8825_restart_jack_detection(regmap);
1571 }
1572 
1573 static int nau8825_button_decode(int value)
1574 {
1575 	int buttons = 0;
1576 
1577 	/* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */
1578 	if (value & BIT(0))
1579 		buttons |= SND_JACK_BTN_0;
1580 	if (value & BIT(1))
1581 		buttons |= SND_JACK_BTN_1;
1582 	if (value & BIT(2))
1583 		buttons |= SND_JACK_BTN_2;
1584 	if (value & BIT(3))
1585 		buttons |= SND_JACK_BTN_3;
1586 	if (value & BIT(4))
1587 		buttons |= SND_JACK_BTN_4;
1588 	if (value & BIT(5))
1589 		buttons |= SND_JACK_BTN_5;
1590 
1591 	return buttons;
1592 }
1593 
1594 static int nau8825_jack_insert(struct nau8825 *nau8825)
1595 {
1596 	struct regmap *regmap = nau8825->regmap;
1597 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1598 	int jack_status_reg, mic_detected;
1599 	int type = 0;
1600 
1601 	regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg);
1602 	mic_detected = (jack_status_reg >> 10) & 3;
1603 	/* The JKSLV and JKR2 all detected in high impedance headset */
1604 	if (mic_detected == 0x3)
1605 		nau8825->high_imped = true;
1606 	else
1607 		nau8825->high_imped = false;
1608 
1609 	switch (mic_detected) {
1610 	case 0:
1611 		/* no mic */
1612 		type = SND_JACK_HEADPHONE;
1613 		break;
1614 	case 1:
1615 		dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n");
1616 		type = SND_JACK_HEADSET;
1617 
1618 		/* Unground MICGND1 */
1619 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1620 			1 << 2);
1621 		/* Attach 2kOhm Resistor from MICBIAS to MICGND1 */
1622 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1623 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1624 			NAU8825_MICBIAS_JKR2);
1625 		/* Attach SARADC to MICGND1 */
1626 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1627 			NAU8825_SAR_INPUT_MASK,
1628 			NAU8825_SAR_INPUT_JKR2);
1629 
1630 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1631 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1632 		snd_soc_dapm_sync(dapm);
1633 		break;
1634 	case 2:
1635 		dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n");
1636 		type = SND_JACK_HEADSET;
1637 
1638 		/* Unground MICGND2 */
1639 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1640 			2 << 2);
1641 		/* Attach 2kOhm Resistor from MICBIAS to MICGND2 */
1642 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1643 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1644 			NAU8825_MICBIAS_JKSLV);
1645 		/* Attach SARADC to MICGND2 */
1646 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1647 			NAU8825_SAR_INPUT_MASK,
1648 			NAU8825_SAR_INPUT_JKSLV);
1649 
1650 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1651 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1652 		snd_soc_dapm_sync(dapm);
1653 		break;
1654 	case 3:
1655 		/* detect error case */
1656 		dev_err(nau8825->dev, "detection error; disable mic function\n");
1657 		type = SND_JACK_HEADPHONE;
1658 		break;
1659 	}
1660 
1661 	/* Leaving HPOL/R grounded after jack insert by default. They will be
1662 	 * ungrounded as part of the widget power up sequence at the beginning
1663 	 * of playback to reduce pop.
1664 	 */
1665 	return type;
1666 }
1667 
1668 #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
1669 		SND_JACK_BTN_2 | SND_JACK_BTN_3)
1670 
1671 static irqreturn_t nau8825_interrupt(int irq, void *data)
1672 {
1673 	struct nau8825 *nau8825 = (struct nau8825 *)data;
1674 	struct regmap *regmap = nau8825->regmap;
1675 	int active_irq, clear_irq = 0, event = 0, event_mask = 0;
1676 
1677 	if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) {
1678 		dev_err(nau8825->dev, "failed to read irq status\n");
1679 		return IRQ_NONE;
1680 	}
1681 
1682 	if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) ==
1683 		NAU8825_JACK_EJECTION_DETECTED) {
1684 
1685 		nau8825_eject_jack(nau8825);
1686 		event_mask |= SND_JACK_HEADSET;
1687 		clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK;
1688 	} else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) {
1689 		int key_status;
1690 
1691 		regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS,
1692 			&key_status);
1693 
1694 		/* upper 8 bits of the register are for short pressed keys,
1695 		 * lower 8 bits - for long pressed buttons
1696 		 */
1697 		nau8825->button_pressed = nau8825_button_decode(
1698 			key_status >> 8);
1699 
1700 		event |= nau8825->button_pressed;
1701 		event_mask |= NAU8825_BUTTONS;
1702 		clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ;
1703 	} else if (active_irq & NAU8825_KEY_RELEASE_IRQ) {
1704 		event_mask = NAU8825_BUTTONS;
1705 		clear_irq = NAU8825_KEY_RELEASE_IRQ;
1706 	} else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) {
1707 		if (nau8825_is_jack_inserted(regmap)) {
1708 			event |= nau8825_jack_insert(nau8825);
1709 			if (nau8825->xtalk_enable && !nau8825->high_imped) {
1710 				/* Apply the cross talk suppression in the
1711 				 * headset without high impedance.
1712 				 */
1713 				if (!nau8825->xtalk_protect) {
1714 					/* Raise protection for cross talk de-
1715 					 * tection if no protection before.
1716 					 * The driver has to cancel the pro-
1717 					 * cess and restore changes if process
1718 					 * is ongoing when ejection.
1719 					 */
1720 					int ret;
1721 					nau8825->xtalk_protect = true;
1722 					ret = nau8825_sema_acquire(nau8825, 0);
1723 					if (ret)
1724 						nau8825->xtalk_protect = false;
1725 				}
1726 				/* Startup cross talk detection process */
1727 				if (nau8825->xtalk_protect) {
1728 					nau8825->xtalk_state =
1729 						NAU8825_XTALK_PREPARE;
1730 					schedule_work(&nau8825->xtalk_work);
1731 				}
1732 			} else {
1733 				/* The cross talk suppression shouldn't apply
1734 				 * in the headset with high impedance. Thus,
1735 				 * relieve the protection raised before.
1736 				 */
1737 				if (nau8825->xtalk_protect) {
1738 					nau8825_sema_release(nau8825);
1739 					nau8825->xtalk_protect = false;
1740 				}
1741 			}
1742 		} else {
1743 			dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n");
1744 			nau8825_eject_jack(nau8825);
1745 		}
1746 
1747 		event_mask |= SND_JACK_HEADSET;
1748 		clear_irq = NAU8825_HEADSET_COMPLETION_IRQ;
1749 		/* Record the interruption report event for driver to report
1750 		 * the event later. The jack report will delay until cross
1751 		 * talk detection process is done.
1752 		 */
1753 		if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) {
1754 			nau8825->xtalk_event = event;
1755 			nau8825->xtalk_event_mask = event_mask;
1756 		}
1757 	} else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) {
1758 		/* crosstalk detection enable and process on going */
1759 		if (nau8825->xtalk_enable && nau8825->xtalk_protect)
1760 			schedule_work(&nau8825->xtalk_work);
1761 		clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ;
1762 	} else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) ==
1763 		NAU8825_JACK_INSERTION_DETECTED) {
1764 		/* One more step to check GPIO status directly. Thus, the
1765 		 * driver can confirm the real insertion interruption because
1766 		 * the intrruption at manual mode has bypassed debounce
1767 		 * circuit which can get rid of unstable status.
1768 		 */
1769 		if (nau8825_is_jack_inserted(regmap)) {
1770 			/* Turn off insertion interruption at manual mode */
1771 			regmap_update_bits(regmap,
1772 				NAU8825_REG_INTERRUPT_DIS_CTRL,
1773 				NAU8825_IRQ_INSERT_DIS,
1774 				NAU8825_IRQ_INSERT_DIS);
1775 			regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1776 				NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN);
1777 			/* Enable interruption for jack type detection at audo
1778 			 * mode which can detect microphone and jack type.
1779 			 */
1780 			nau8825_setup_auto_irq(nau8825);
1781 		}
1782 	}
1783 
1784 	if (!clear_irq)
1785 		clear_irq = active_irq;
1786 	/* clears the rightmost interruption */
1787 	regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1788 
1789 	/* Delay jack report until cross talk detection is done. It can avoid
1790 	 * application to do playback preparation when cross talk detection
1791 	 * process is still working. Otherwise, the resource like clock and
1792 	 * power will be issued by them at the same time and conflict happens.
1793 	 */
1794 	if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE)
1795 		snd_soc_jack_report(nau8825->jack, event, event_mask);
1796 
1797 	return IRQ_HANDLED;
1798 }
1799 
1800 static void nau8825_setup_buttons(struct nau8825 *nau8825)
1801 {
1802 	struct regmap *regmap = nau8825->regmap;
1803 
1804 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1805 		NAU8825_SAR_TRACKING_GAIN_MASK,
1806 		nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT);
1807 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1808 		NAU8825_SAR_COMPARE_TIME_MASK,
1809 		nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT);
1810 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1811 		NAU8825_SAR_SAMPLING_TIME_MASK,
1812 		nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT);
1813 
1814 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1815 		NAU8825_KEYDET_LEVELS_NR_MASK,
1816 		(nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT);
1817 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1818 		NAU8825_KEYDET_HYSTERESIS_MASK,
1819 		nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT);
1820 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1821 		NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK,
1822 		nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT);
1823 
1824 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1,
1825 		(nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]);
1826 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2,
1827 		(nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]);
1828 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3,
1829 		(nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]);
1830 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4,
1831 		(nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]);
1832 
1833 	/* Enable short press and release interruptions */
1834 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1835 		NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN,
1836 		0);
1837 }
1838 
1839 static void nau8825_init_regs(struct nau8825 *nau8825)
1840 {
1841 	struct regmap *regmap = nau8825->regmap;
1842 
1843 	/* Latch IIC LSB value */
1844 	regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001);
1845 	/* Enable Bias/Vmid */
1846 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1847 		NAU8825_BIAS_VMID, NAU8825_BIAS_VMID);
1848 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
1849 		NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN);
1850 
1851 	/* VMID Tieoff */
1852 	regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ,
1853 		NAU8825_BIAS_VMID_SEL_MASK,
1854 		nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT);
1855 	/* Disable Boost Driver, Automatic Short circuit protection enable */
1856 	regmap_update_bits(regmap, NAU8825_REG_BOOST,
1857 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1858 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN,
1859 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1860 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN);
1861 
1862 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1863 		NAU8825_JKDET_OUTPUT_EN,
1864 		nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN);
1865 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1866 		NAU8825_JKDET_PULL_EN,
1867 		nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN);
1868 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1869 		NAU8825_JKDET_PULL_UP,
1870 		nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0);
1871 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1872 		NAU8825_JACK_POLARITY,
1873 		/* jkdet_polarity - 1  is for active-low */
1874 		nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY);
1875 
1876 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1877 		NAU8825_JACK_INSERT_DEBOUNCE_MASK,
1878 		nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT);
1879 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1880 		NAU8825_JACK_EJECT_DEBOUNCE_MASK,
1881 		nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT);
1882 
1883 	/* Pull up IRQ pin */
1884 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1885 		NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN,
1886 		NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN);
1887 	/* Mask unneeded IRQs: 1 - disable, 0 - enable */
1888 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff);
1889 
1890 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1891 		NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage);
1892 
1893 	if (nau8825->sar_threshold_num)
1894 		nau8825_setup_buttons(nau8825);
1895 
1896 	/* Default oversampling/decimations settings are unusable
1897 	 * (audible hiss). Set it to something better.
1898 	 */
1899 	regmap_update_bits(regmap, NAU8825_REG_ADC_RATE,
1900 		NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN,
1901 		NAU8825_ADC_SYNC_DOWN_64);
1902 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1903 		NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64);
1904 	/* Disable DACR/L power */
1905 	regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
1906 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
1907 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
1908 	/* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
1909 	 * signal to avoid any glitches due to power up transients in both
1910 	 * the analog and digital DAC circuit.
1911 	 */
1912 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1913 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
1914 	/* CICCLP off */
1915 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1916 		NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF);
1917 
1918 	/* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */
1919 	regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2,
1920 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1921 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB,
1922 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1923 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB);
1924 	/* Class G timer 64ms */
1925 	regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL,
1926 		NAU8825_CLASSG_TIMER_MASK,
1927 		0x20 << NAU8825_CLASSG_TIMER_SFT);
1928 	/* DAC clock delay 2ns, VREF */
1929 	regmap_update_bits(regmap, NAU8825_REG_RDAC,
1930 		NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK,
1931 		(0x2 << NAU8825_RDAC_CLK_DELAY_SFT) |
1932 		(0x3 << NAU8825_RDAC_VREF_SFT));
1933 	/* Config L/R channel */
1934 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
1935 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L);
1936 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
1937 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R);
1938 	/* Disable short Frame Sync detection logic */
1939 	regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT,
1940 		NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET);
1941 }
1942 
1943 static const struct regmap_config nau8825_regmap_config = {
1944 	.val_bits = NAU8825_REG_DATA_LEN,
1945 	.reg_bits = NAU8825_REG_ADDR_LEN,
1946 
1947 	.max_register = NAU8825_REG_MAX,
1948 	.readable_reg = nau8825_readable_reg,
1949 	.writeable_reg = nau8825_writeable_reg,
1950 	.volatile_reg = nau8825_volatile_reg,
1951 
1952 	.cache_type = REGCACHE_RBTREE,
1953 	.reg_defaults = nau8825_reg_defaults,
1954 	.num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults),
1955 };
1956 
1957 static int nau8825_component_probe(struct snd_soc_component *component)
1958 {
1959 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1960 	struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
1961 
1962 	nau8825->dapm = dapm;
1963 
1964 	return 0;
1965 }
1966 
1967 static void nau8825_component_remove(struct snd_soc_component *component)
1968 {
1969 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1970 
1971 	/* Cancel and reset cross tak suppresstion detection funciton */
1972 	nau8825_xtalk_cancel(nau8825);
1973 }
1974 
1975 /**
1976  * nau8825_calc_fll_param - Calculate FLL parameters.
1977  * @fll_in: external clock provided to codec.
1978  * @fs: sampling rate.
1979  * @fll_param: Pointer to structure of FLL parameters.
1980  *
1981  * Calculate FLL parameters to configure codec.
1982  *
1983  * Returns 0 for success or negative error code.
1984  */
1985 static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs,
1986 		struct nau8825_fll *fll_param)
1987 {
1988 	u64 fvco, fvco_max;
1989 	unsigned int fref, i, fvco_sel;
1990 
1991 	/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
1992 	 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
1993 	 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK
1994 	 */
1995 	for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
1996 		fref = fll_in / fll_pre_scalar[i].param;
1997 		if (fref <= NAU_FREF_MAX)
1998 			break;
1999 	}
2000 	if (i == ARRAY_SIZE(fll_pre_scalar))
2001 		return -EINVAL;
2002 	fll_param->clk_ref_div = fll_pre_scalar[i].val;
2003 
2004 	/* Choose the FLL ratio based on FREF */
2005 	for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
2006 		if (fref >= fll_ratio[i].param)
2007 			break;
2008 	}
2009 	if (i == ARRAY_SIZE(fll_ratio))
2010 		return -EINVAL;
2011 	fll_param->ratio = fll_ratio[i].val;
2012 
2013 	/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
2014 	 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be
2015 	 * guaranteed across the full range of operation.
2016 	 * FDCO = freq_out * 2 * mclk_src_scaling
2017 	 */
2018 	fvco_max = 0;
2019 	fvco_sel = ARRAY_SIZE(mclk_src_scaling);
2020 	for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
2021 		fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param;
2022 		if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
2023 			fvco_max < fvco) {
2024 			fvco_max = fvco;
2025 			fvco_sel = i;
2026 		}
2027 	}
2028 	if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
2029 		return -EINVAL;
2030 	fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
2031 
2032 	/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
2033 	 * input based on FDCO, FREF and FLL ratio.
2034 	 */
2035 	fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
2036 	fll_param->fll_int = (fvco >> 16) & 0x3FF;
2037 	fll_param->fll_frac = fvco & 0xFFFF;
2038 	return 0;
2039 }
2040 
2041 static void nau8825_fll_apply(struct nau8825 *nau8825,
2042 		struct nau8825_fll *fll_param)
2043 {
2044 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2045 		NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK,
2046 		NAU8825_CLK_SRC_MCLK | fll_param->mclk_src);
2047 	/* Make DSP operate at high speed for better performance. */
2048 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
2049 		NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK,
2050 		fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT));
2051 	/* FLL 16-bit fractional input */
2052 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac);
2053 	/* FLL 10-bit integer input */
2054 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3,
2055 			NAU8825_FLL_INTEGER_MASK, fll_param->fll_int);
2056 	/* FLL pre-scaler */
2057 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4,
2058 			NAU8825_FLL_REF_DIV_MASK,
2059 			fll_param->clk_ref_div << NAU8825_FLL_REF_DIV_SFT);
2060 	/* select divided VCO input */
2061 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2062 		NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF);
2063 	/* Disable free-running mode */
2064 	regmap_update_bits(nau8825->regmap,
2065 		NAU8825_REG_FLL6, NAU8825_DCO_EN, 0);
2066 	if (fll_param->fll_frac) {
2067 		/* set FLL loop filter enable and cutoff frequency at 500Khz */
2068 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2069 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2070 			NAU8825_FLL_FTR_SW_MASK,
2071 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2072 			NAU8825_FLL_FTR_SW_FILTER);
2073 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2074 			NAU8825_SDM_EN | NAU8825_CUTOFF500,
2075 			NAU8825_SDM_EN | NAU8825_CUTOFF500);
2076 	} else {
2077 		/* disable FLL loop filter and cutoff frequency */
2078 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2079 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2080 			NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU);
2081 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2082 			NAU8825_SDM_EN | NAU8825_CUTOFF500, 0);
2083 	}
2084 }
2085 
2086 /* freq_out must be 256*Fs in order to achieve the best performance */
2087 static int nau8825_set_pll(struct snd_soc_component *component, int pll_id, int source,
2088 		unsigned int freq_in, unsigned int freq_out)
2089 {
2090 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2091 	struct nau8825_fll fll_param;
2092 	int ret, fs;
2093 
2094 	fs = freq_out / 256;
2095 	ret = nau8825_calc_fll_param(freq_in, fs, &fll_param);
2096 	if (ret < 0) {
2097 		dev_err(component->dev, "Unsupported input clock %d\n", freq_in);
2098 		return ret;
2099 	}
2100 	dev_dbg(component->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
2101 		fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
2102 		fll_param.fll_int, fll_param.clk_ref_div);
2103 
2104 	nau8825_fll_apply(nau8825, &fll_param);
2105 	mdelay(2);
2106 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2107 			NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2108 	return 0;
2109 }
2110 
2111 static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq)
2112 {
2113 	int ret = 0;
2114 
2115 	nau8825->mclk = devm_clk_get(nau8825->dev, "mclk");
2116 	if (IS_ERR(nau8825->mclk)) {
2117 		dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally");
2118 		return 0;
2119 	}
2120 
2121 	if (!nau8825->mclk_freq) {
2122 		ret = clk_prepare_enable(nau8825->mclk);
2123 		if (ret) {
2124 			dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2125 			return ret;
2126 		}
2127 	}
2128 
2129 	if (nau8825->mclk_freq != freq) {
2130 		freq = clk_round_rate(nau8825->mclk, freq);
2131 		ret = clk_set_rate(nau8825->mclk, freq);
2132 		if (ret) {
2133 			dev_err(nau8825->dev, "Unable to set mclk rate\n");
2134 			return ret;
2135 		}
2136 		nau8825->mclk_freq = freq;
2137 	}
2138 
2139 	return 0;
2140 }
2141 
2142 static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap)
2143 {
2144 	regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2145 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK);
2146 	regmap_update_bits(regmap, NAU8825_REG_FLL6,
2147 		NAU8825_DCO_EN, 0);
2148 	/* Make DSP operate as default setting for power saving. */
2149 	regmap_update_bits(regmap, NAU8825_REG_FLL1,
2150 		NAU8825_ICTRL_LATCH_MASK, 0);
2151 }
2152 
2153 static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id,
2154 	unsigned int freq)
2155 {
2156 	struct regmap *regmap = nau8825->regmap;
2157 	int ret;
2158 
2159 	switch (clk_id) {
2160 	case NAU8825_CLK_DIS:
2161 		/* Clock provided externally and disable internal VCO clock */
2162 		nau8825_configure_mclk_as_sysclk(regmap);
2163 		if (nau8825->mclk_freq) {
2164 			clk_disable_unprepare(nau8825->mclk);
2165 			nau8825->mclk_freq = 0;
2166 		}
2167 
2168 		break;
2169 	case NAU8825_CLK_MCLK:
2170 		/* Acquire the semaphore to synchronize the playback and
2171 		 * interrupt handler. In order to avoid the playback inter-
2172 		 * fered by cross talk process, the driver make the playback
2173 		 * preparation halted until cross talk process finish.
2174 		 */
2175 		nau8825_sema_acquire(nau8825, 3 * HZ);
2176 		nau8825_configure_mclk_as_sysclk(regmap);
2177 		/* MCLK not changed by clock tree */
2178 		regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2179 			NAU8825_CLK_MCLK_SRC_MASK, 0);
2180 		/* Release the semaphore. */
2181 		nau8825_sema_release(nau8825);
2182 
2183 		ret = nau8825_mclk_prepare(nau8825, freq);
2184 		if (ret)
2185 			return ret;
2186 
2187 		break;
2188 	case NAU8825_CLK_INTERNAL:
2189 		if (nau8825_is_jack_inserted(nau8825->regmap)) {
2190 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2191 				NAU8825_DCO_EN, NAU8825_DCO_EN);
2192 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2193 				NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2194 			/* Decrease the VCO frequency and make DSP operate
2195 			 * as default setting for power saving.
2196 			 */
2197 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2198 				NAU8825_CLK_MCLK_SRC_MASK, 0xf);
2199 			regmap_update_bits(regmap, NAU8825_REG_FLL1,
2200 				NAU8825_ICTRL_LATCH_MASK |
2201 				NAU8825_FLL_RATIO_MASK, 0x10);
2202 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2203 				NAU8825_SDM_EN, NAU8825_SDM_EN);
2204 		} else {
2205 			/* The clock turns off intentionally for power saving
2206 			 * when no headset connected.
2207 			 */
2208 			nau8825_configure_mclk_as_sysclk(regmap);
2209 			dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n");
2210 		}
2211 		if (nau8825->mclk_freq) {
2212 			clk_disable_unprepare(nau8825->mclk);
2213 			nau8825->mclk_freq = 0;
2214 		}
2215 
2216 		break;
2217 	case NAU8825_CLK_FLL_MCLK:
2218 		/* Acquire the semaphore to synchronize the playback and
2219 		 * interrupt handler. In order to avoid the playback inter-
2220 		 * fered by cross talk process, the driver make the playback
2221 		 * preparation halted until cross talk process finish.
2222 		 */
2223 		nau8825_sema_acquire(nau8825, 3 * HZ);
2224 		/* Higher FLL reference input frequency can only set lower
2225 		 * gain error, such as 0000 for input reference from MCLK
2226 		 * 12.288Mhz.
2227 		 */
2228 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2229 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2230 			NAU8825_FLL_CLK_SRC_MCLK | 0);
2231 		/* Release the semaphore. */
2232 		nau8825_sema_release(nau8825);
2233 
2234 		ret = nau8825_mclk_prepare(nau8825, freq);
2235 		if (ret)
2236 			return ret;
2237 
2238 		break;
2239 	case NAU8825_CLK_FLL_BLK:
2240 		/* Acquire the semaphore to synchronize the playback and
2241 		 * interrupt handler. In order to avoid the playback inter-
2242 		 * fered by cross talk process, the driver make the playback
2243 		 * preparation halted until cross talk process finish.
2244 		 */
2245 		nau8825_sema_acquire(nau8825, 3 * HZ);
2246 		/* If FLL reference input is from low frequency source,
2247 		 * higher error gain can apply such as 0xf which has
2248 		 * the most sensitive gain error correction threshold,
2249 		 * Therefore, FLL has the most accurate DCO to
2250 		 * target frequency.
2251 		 */
2252 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2253 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2254 			NAU8825_FLL_CLK_SRC_BLK |
2255 			(0xf << NAU8825_GAIN_ERR_SFT));
2256 		/* Release the semaphore. */
2257 		nau8825_sema_release(nau8825);
2258 
2259 		if (nau8825->mclk_freq) {
2260 			clk_disable_unprepare(nau8825->mclk);
2261 			nau8825->mclk_freq = 0;
2262 		}
2263 
2264 		break;
2265 	case NAU8825_CLK_FLL_FS:
2266 		/* Acquire the semaphore to synchronize the playback and
2267 		 * interrupt handler. In order to avoid the playback inter-
2268 		 * fered by cross talk process, the driver make the playback
2269 		 * preparation halted until cross talk process finish.
2270 		 */
2271 		nau8825_sema_acquire(nau8825, 3 * HZ);
2272 		/* If FLL reference input is from low frequency source,
2273 		 * higher error gain can apply such as 0xf which has
2274 		 * the most sensitive gain error correction threshold,
2275 		 * Therefore, FLL has the most accurate DCO to
2276 		 * target frequency.
2277 		 */
2278 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2279 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2280 			NAU8825_FLL_CLK_SRC_FS |
2281 			(0xf << NAU8825_GAIN_ERR_SFT));
2282 		/* Release the semaphore. */
2283 		nau8825_sema_release(nau8825);
2284 
2285 		if (nau8825->mclk_freq) {
2286 			clk_disable_unprepare(nau8825->mclk);
2287 			nau8825->mclk_freq = 0;
2288 		}
2289 
2290 		break;
2291 	default:
2292 		dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id);
2293 		return -EINVAL;
2294 	}
2295 
2296 	dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq,
2297 		clk_id);
2298 	return 0;
2299 }
2300 
2301 static int nau8825_set_sysclk(struct snd_soc_component *component, int clk_id,
2302 	int source, unsigned int freq, int dir)
2303 {
2304 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2305 
2306 	return nau8825_configure_sysclk(nau8825, clk_id, freq);
2307 }
2308 
2309 static int nau8825_resume_setup(struct nau8825 *nau8825)
2310 {
2311 	struct regmap *regmap = nau8825->regmap;
2312 
2313 	/* Close clock when jack type detection at manual mode */
2314 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
2315 
2316 	/* Clear all interruption status */
2317 	nau8825_int_status_clear_all(regmap);
2318 
2319 	/* Enable both insertion and ejection interruptions, and then
2320 	 * bypass de-bounce circuit.
2321 	 */
2322 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2323 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN |
2324 		NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN,
2325 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN);
2326 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2327 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
2328 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
2329 		NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0);
2330 
2331 	return 0;
2332 }
2333 
2334 static int nau8825_set_bias_level(struct snd_soc_component *component,
2335 				   enum snd_soc_bias_level level)
2336 {
2337 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2338 	int ret;
2339 
2340 	switch (level) {
2341 	case SND_SOC_BIAS_ON:
2342 		break;
2343 
2344 	case SND_SOC_BIAS_PREPARE:
2345 		break;
2346 
2347 	case SND_SOC_BIAS_STANDBY:
2348 		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
2349 			if (nau8825->mclk_freq) {
2350 				ret = clk_prepare_enable(nau8825->mclk);
2351 				if (ret) {
2352 					dev_err(nau8825->dev, "Unable to prepare component mclk\n");
2353 					return ret;
2354 				}
2355 			}
2356 			/* Setup codec configuration after resume */
2357 			nau8825_resume_setup(nau8825);
2358 		}
2359 		break;
2360 
2361 	case SND_SOC_BIAS_OFF:
2362 		/* Reset the configuration of jack type for detection */
2363 		/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
2364 		regmap_update_bits(nau8825->regmap, NAU8825_REG_MIC_BIAS,
2365 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
2366 		/* ground HPL/HPR, MICGRND1/2 */
2367 		regmap_update_bits(nau8825->regmap,
2368 			NAU8825_REG_HSD_CTRL, 0xf, 0xf);
2369 		/* Cancel and reset cross talk detection funciton */
2370 		nau8825_xtalk_cancel(nau8825);
2371 		/* Turn off all interruptions before system shutdown. Keep the
2372 		 * interruption quiet before resume setup completes.
2373 		 */
2374 		regmap_write(nau8825->regmap,
2375 			NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff);
2376 		/* Disable ADC needed for interruptions at audo mode */
2377 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
2378 			NAU8825_ENABLE_ADC, 0);
2379 		if (nau8825->mclk_freq)
2380 			clk_disable_unprepare(nau8825->mclk);
2381 		break;
2382 	}
2383 	return 0;
2384 }
2385 
2386 static int __maybe_unused nau8825_suspend(struct snd_soc_component *component)
2387 {
2388 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2389 
2390 	disable_irq(nau8825->irq);
2391 	snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF);
2392 	/* Power down codec power; don't suppoet button wakeup */
2393 	snd_soc_dapm_disable_pin(nau8825->dapm, "SAR");
2394 	snd_soc_dapm_disable_pin(nau8825->dapm, "MICBIAS");
2395 	snd_soc_dapm_sync(nau8825->dapm);
2396 	regcache_cache_only(nau8825->regmap, true);
2397 	regcache_mark_dirty(nau8825->regmap);
2398 
2399 	return 0;
2400 }
2401 
2402 static int __maybe_unused nau8825_resume(struct snd_soc_component *component)
2403 {
2404 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2405 	int ret;
2406 
2407 	regcache_cache_only(nau8825->regmap, false);
2408 	regcache_sync(nau8825->regmap);
2409 	nau8825->xtalk_protect = true;
2410 	ret = nau8825_sema_acquire(nau8825, 0);
2411 	if (ret)
2412 		nau8825->xtalk_protect = false;
2413 	enable_irq(nau8825->irq);
2414 
2415 	return 0;
2416 }
2417 
2418 static const struct snd_soc_component_driver nau8825_component_driver = {
2419 	.probe			= nau8825_component_probe,
2420 	.remove			= nau8825_component_remove,
2421 	.set_sysclk		= nau8825_set_sysclk,
2422 	.set_pll		= nau8825_set_pll,
2423 	.set_bias_level		= nau8825_set_bias_level,
2424 	.suspend		= nau8825_suspend,
2425 	.resume			= nau8825_resume,
2426 	.controls		= nau8825_controls,
2427 	.num_controls		= ARRAY_SIZE(nau8825_controls),
2428 	.dapm_widgets		= nau8825_dapm_widgets,
2429 	.num_dapm_widgets	= ARRAY_SIZE(nau8825_dapm_widgets),
2430 	.dapm_routes		= nau8825_dapm_routes,
2431 	.num_dapm_routes	= ARRAY_SIZE(nau8825_dapm_routes),
2432 	.suspend_bias_off	= 1,
2433 	.idle_bias_on		= 1,
2434 	.use_pmdown_time	= 1,
2435 	.endianness		= 1,
2436 	.non_legacy_dai_naming	= 1,
2437 };
2438 
2439 static void nau8825_reset_chip(struct regmap *regmap)
2440 {
2441 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2442 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2443 }
2444 
2445 static void nau8825_print_device_properties(struct nau8825 *nau8825)
2446 {
2447 	int i;
2448 	struct device *dev = nau8825->dev;
2449 
2450 	dev_dbg(dev, "jkdet-enable:         %d\n", nau8825->jkdet_enable);
2451 	dev_dbg(dev, "jkdet-pull-enable:    %d\n", nau8825->jkdet_pull_enable);
2452 	dev_dbg(dev, "jkdet-pull-up:        %d\n", nau8825->jkdet_pull_up);
2453 	dev_dbg(dev, "jkdet-polarity:       %d\n", nau8825->jkdet_polarity);
2454 	dev_dbg(dev, "micbias-voltage:      %d\n", nau8825->micbias_voltage);
2455 	dev_dbg(dev, "vref-impedance:       %d\n", nau8825->vref_impedance);
2456 
2457 	dev_dbg(dev, "sar-threshold-num:    %d\n", nau8825->sar_threshold_num);
2458 	for (i = 0; i < nau8825->sar_threshold_num; i++)
2459 		dev_dbg(dev, "sar-threshold[%d]=%d\n", i,
2460 				nau8825->sar_threshold[i]);
2461 
2462 	dev_dbg(dev, "sar-hysteresis:       %d\n", nau8825->sar_hysteresis);
2463 	dev_dbg(dev, "sar-voltage:          %d\n", nau8825->sar_voltage);
2464 	dev_dbg(dev, "sar-compare-time:     %d\n", nau8825->sar_compare_time);
2465 	dev_dbg(dev, "sar-sampling-time:    %d\n", nau8825->sar_sampling_time);
2466 	dev_dbg(dev, "short-key-debounce:   %d\n", nau8825->key_debounce);
2467 	dev_dbg(dev, "jack-insert-debounce: %d\n",
2468 			nau8825->jack_insert_debounce);
2469 	dev_dbg(dev, "jack-eject-debounce:  %d\n",
2470 			nau8825->jack_eject_debounce);
2471 	dev_dbg(dev, "crosstalk-enable:     %d\n",
2472 			nau8825->xtalk_enable);
2473 }
2474 
2475 static int nau8825_read_device_properties(struct device *dev,
2476 	struct nau8825 *nau8825) {
2477 	int ret;
2478 
2479 	nau8825->jkdet_enable = device_property_read_bool(dev,
2480 		"nuvoton,jkdet-enable");
2481 	nau8825->jkdet_pull_enable = device_property_read_bool(dev,
2482 		"nuvoton,jkdet-pull-enable");
2483 	nau8825->jkdet_pull_up = device_property_read_bool(dev,
2484 		"nuvoton,jkdet-pull-up");
2485 	ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity",
2486 		&nau8825->jkdet_polarity);
2487 	if (ret)
2488 		nau8825->jkdet_polarity = 1;
2489 	ret = device_property_read_u32(dev, "nuvoton,micbias-voltage",
2490 		&nau8825->micbias_voltage);
2491 	if (ret)
2492 		nau8825->micbias_voltage = 6;
2493 	ret = device_property_read_u32(dev, "nuvoton,vref-impedance",
2494 		&nau8825->vref_impedance);
2495 	if (ret)
2496 		nau8825->vref_impedance = 2;
2497 	ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num",
2498 		&nau8825->sar_threshold_num);
2499 	if (ret)
2500 		nau8825->sar_threshold_num = 4;
2501 	ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold",
2502 		nau8825->sar_threshold, nau8825->sar_threshold_num);
2503 	if (ret) {
2504 		nau8825->sar_threshold[0] = 0x08;
2505 		nau8825->sar_threshold[1] = 0x12;
2506 		nau8825->sar_threshold[2] = 0x26;
2507 		nau8825->sar_threshold[3] = 0x73;
2508 	}
2509 	ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis",
2510 		&nau8825->sar_hysteresis);
2511 	if (ret)
2512 		nau8825->sar_hysteresis = 0;
2513 	ret = device_property_read_u32(dev, "nuvoton,sar-voltage",
2514 		&nau8825->sar_voltage);
2515 	if (ret)
2516 		nau8825->sar_voltage = 6;
2517 	ret = device_property_read_u32(dev, "nuvoton,sar-compare-time",
2518 		&nau8825->sar_compare_time);
2519 	if (ret)
2520 		nau8825->sar_compare_time = 1;
2521 	ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time",
2522 		&nau8825->sar_sampling_time);
2523 	if (ret)
2524 		nau8825->sar_sampling_time = 1;
2525 	ret = device_property_read_u32(dev, "nuvoton,short-key-debounce",
2526 		&nau8825->key_debounce);
2527 	if (ret)
2528 		nau8825->key_debounce = 3;
2529 	ret = device_property_read_u32(dev, "nuvoton,jack-insert-debounce",
2530 		&nau8825->jack_insert_debounce);
2531 	if (ret)
2532 		nau8825->jack_insert_debounce = 7;
2533 	ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
2534 		&nau8825->jack_eject_debounce);
2535 	if (ret)
2536 		nau8825->jack_eject_debounce = 0;
2537 	nau8825->xtalk_enable = device_property_read_bool(dev,
2538 		"nuvoton,crosstalk-enable");
2539 
2540 	nau8825->mclk = devm_clk_get(dev, "mclk");
2541 	if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) {
2542 		return -EPROBE_DEFER;
2543 	} else if (PTR_ERR(nau8825->mclk) == -ENOENT) {
2544 		/* The MCLK is managed externally or not used at all */
2545 		nau8825->mclk = NULL;
2546 		dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally");
2547 	} else if (IS_ERR(nau8825->mclk)) {
2548 		return -EINVAL;
2549 	}
2550 
2551 	return 0;
2552 }
2553 
2554 static int nau8825_setup_irq(struct nau8825 *nau8825)
2555 {
2556 	int ret;
2557 
2558 	ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL,
2559 		nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2560 		"nau8825", nau8825);
2561 
2562 	if (ret) {
2563 		dev_err(nau8825->dev, "Cannot request irq %d (%d)\n",
2564 			nau8825->irq, ret);
2565 		return ret;
2566 	}
2567 
2568 	return 0;
2569 }
2570 
2571 static int nau8825_i2c_probe(struct i2c_client *i2c,
2572 	const struct i2c_device_id *id)
2573 {
2574 	struct device *dev = &i2c->dev;
2575 	struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev);
2576 	int ret, value;
2577 
2578 	if (!nau8825) {
2579 		nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL);
2580 		if (!nau8825)
2581 			return -ENOMEM;
2582 		ret = nau8825_read_device_properties(dev, nau8825);
2583 		if (ret)
2584 			return ret;
2585 	}
2586 
2587 	i2c_set_clientdata(i2c, nau8825);
2588 
2589 	nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config);
2590 	if (IS_ERR(nau8825->regmap))
2591 		return PTR_ERR(nau8825->regmap);
2592 	nau8825->dev = dev;
2593 	nau8825->irq = i2c->irq;
2594 	/* Initiate parameters, semaphore and work queue which are needed in
2595 	 * cross talk suppression measurment function.
2596 	 */
2597 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
2598 	nau8825->xtalk_protect = false;
2599 	nau8825->xtalk_baktab_initialized = false;
2600 	sema_init(&nau8825->xtalk_sem, 1);
2601 	INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work);
2602 
2603 	nau8825_print_device_properties(nau8825);
2604 
2605 	nau8825_reset_chip(nau8825->regmap);
2606 	ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value);
2607 	if (ret < 0) {
2608 		dev_err(dev, "Failed to read device id from the NAU8825: %d\n",
2609 			ret);
2610 		return ret;
2611 	}
2612 	if ((value & NAU8825_SOFTWARE_ID_MASK) !=
2613 			NAU8825_SOFTWARE_ID_NAU8825) {
2614 		dev_err(dev, "Not a NAU8825 chip\n");
2615 		return -ENODEV;
2616 	}
2617 
2618 	nau8825_init_regs(nau8825);
2619 
2620 	if (i2c->irq)
2621 		nau8825_setup_irq(nau8825);
2622 
2623 	return devm_snd_soc_register_component(&i2c->dev,
2624 		&nau8825_component_driver,
2625 		&nau8825_dai, 1);
2626 }
2627 
2628 static int nau8825_i2c_remove(struct i2c_client *client)
2629 {
2630 	return 0;
2631 }
2632 
2633 static const struct i2c_device_id nau8825_i2c_ids[] = {
2634 	{ "nau8825", 0 },
2635 	{ }
2636 };
2637 MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids);
2638 
2639 #ifdef CONFIG_OF
2640 static const struct of_device_id nau8825_of_ids[] = {
2641 	{ .compatible = "nuvoton,nau8825", },
2642 	{}
2643 };
2644 MODULE_DEVICE_TABLE(of, nau8825_of_ids);
2645 #endif
2646 
2647 #ifdef CONFIG_ACPI
2648 static const struct acpi_device_id nau8825_acpi_match[] = {
2649 	{ "10508825", 0 },
2650 	{},
2651 };
2652 MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match);
2653 #endif
2654 
2655 static struct i2c_driver nau8825_driver = {
2656 	.driver = {
2657 		.name = "nau8825",
2658 		.of_match_table = of_match_ptr(nau8825_of_ids),
2659 		.acpi_match_table = ACPI_PTR(nau8825_acpi_match),
2660 	},
2661 	.probe = nau8825_i2c_probe,
2662 	.remove = nau8825_i2c_remove,
2663 	.id_table = nau8825_i2c_ids,
2664 };
2665 module_i2c_driver(nau8825_driver);
2666 
2667 MODULE_DESCRIPTION("ASoC nau8825 driver");
2668 MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>");
2669 MODULE_LICENSE("GPL");
2670