xref: /linux/sound/soc/codecs/nau8825.c (revision d6a5c562214f26e442c8ec3ff1e28e16675d1bcf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Nuvoton NAU8825 audio codec driver
4  *
5  * Copyright 2015 Google Chromium project.
6  *  Author: Anatol Pomozov <anatol@chromium.org>
7  * Copyright 2015 Nuvoton Technology Corp.
8  *  Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com>
9  */
10 
11 #include <linux/module.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/i2c.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <linux/clk.h>
18 #include <linux/acpi.h>
19 #include <linux/math64.h>
20 #include <linux/semaphore.h>
21 
22 #include <sound/initval.h>
23 #include <sound/tlv.h>
24 #include <sound/core.h>
25 #include <sound/pcm.h>
26 #include <sound/pcm_params.h>
27 #include <sound/soc.h>
28 #include <sound/jack.h>
29 
30 
31 #include "nau8825.h"
32 
33 
34 #define NUVOTON_CODEC_DAI "nau8825-hifi"
35 
36 #define NAU_FREF_MAX 13500000
37 #define NAU_FVCO_MAX 124000000
38 #define NAU_FVCO_MIN 90000000
39 
40 /* cross talk suppression detection */
41 #define LOG10_MAGIC 646456993
42 #define GAIN_AUGMENT 22500
43 #define SIDETONE_BASE 207000
44 
45 /* the maximum frequency of CLK_ADC and CLK_DAC */
46 #define CLK_DA_AD_MAX 6144000
47 
48 static int nau8825_configure_sysclk(struct nau8825 *nau8825,
49 		int clk_id, unsigned int freq);
50 static bool nau8825_is_jack_inserted(struct regmap *regmap);
51 
52 struct nau8825_fll {
53 	int mclk_src;
54 	int ratio;
55 	int fll_frac;
56 	int fll_int;
57 	int clk_ref_div;
58 };
59 
60 struct nau8825_fll_attr {
61 	unsigned int param;
62 	unsigned int val;
63 };
64 
65 /* scaling for mclk from sysclk_src output */
66 static const struct nau8825_fll_attr mclk_src_scaling[] = {
67 	{ 1, 0x0 },
68 	{ 2, 0x2 },
69 	{ 4, 0x3 },
70 	{ 8, 0x4 },
71 	{ 16, 0x5 },
72 	{ 32, 0x6 },
73 	{ 3, 0x7 },
74 	{ 6, 0xa },
75 	{ 12, 0xb },
76 	{ 24, 0xc },
77 	{ 48, 0xd },
78 	{ 96, 0xe },
79 	{ 5, 0xf },
80 };
81 
82 /* ratio for input clk freq */
83 static const struct nau8825_fll_attr fll_ratio[] = {
84 	{ 512000, 0x01 },
85 	{ 256000, 0x02 },
86 	{ 128000, 0x04 },
87 	{ 64000, 0x08 },
88 	{ 32000, 0x10 },
89 	{ 8000, 0x20 },
90 	{ 4000, 0x40 },
91 };
92 
93 static const struct nau8825_fll_attr fll_pre_scalar[] = {
94 	{ 1, 0x0 },
95 	{ 2, 0x1 },
96 	{ 4, 0x2 },
97 	{ 8, 0x3 },
98 };
99 
100 /* over sampling rate */
101 struct nau8825_osr_attr {
102 	unsigned int osr;
103 	unsigned int clk_src;
104 };
105 
106 static const struct nau8825_osr_attr osr_dac_sel[] = {
107 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
108 	{ 256, 0 },	/* OSR 256, SRC 1 */
109 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
110 	{ 0, 0 },
111 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
112 };
113 
114 static const struct nau8825_osr_attr osr_adc_sel[] = {
115 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
116 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
117 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
118 	{ 256, 0 },	/* OSR 256, SRC 1 */
119 };
120 
121 static const struct reg_default nau8825_reg_defaults[] = {
122 	{ NAU8825_REG_ENA_CTRL, 0x00ff },
123 	{ NAU8825_REG_IIC_ADDR_SET, 0x0 },
124 	{ NAU8825_REG_CLK_DIVIDER, 0x0050 },
125 	{ NAU8825_REG_FLL1, 0x0 },
126 	{ NAU8825_REG_FLL2, 0x3126 },
127 	{ NAU8825_REG_FLL3, 0x0008 },
128 	{ NAU8825_REG_FLL4, 0x0010 },
129 	{ NAU8825_REG_FLL5, 0x0 },
130 	{ NAU8825_REG_FLL6, 0x6000 },
131 	{ NAU8825_REG_FLL_VCO_RSV, 0xf13c },
132 	{ NAU8825_REG_HSD_CTRL, 0x000c },
133 	{ NAU8825_REG_JACK_DET_CTRL, 0x0 },
134 	{ NAU8825_REG_INTERRUPT_MASK, 0x0 },
135 	{ NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff },
136 	{ NAU8825_REG_SAR_CTRL, 0x0015 },
137 	{ NAU8825_REG_KEYDET_CTRL, 0x0110 },
138 	{ NAU8825_REG_VDET_THRESHOLD_1, 0x0 },
139 	{ NAU8825_REG_VDET_THRESHOLD_2, 0x0 },
140 	{ NAU8825_REG_VDET_THRESHOLD_3, 0x0 },
141 	{ NAU8825_REG_VDET_THRESHOLD_4, 0x0 },
142 	{ NAU8825_REG_GPIO34_CTRL, 0x0 },
143 	{ NAU8825_REG_GPIO12_CTRL, 0x0 },
144 	{ NAU8825_REG_TDM_CTRL, 0x0 },
145 	{ NAU8825_REG_I2S_PCM_CTRL1, 0x000b },
146 	{ NAU8825_REG_I2S_PCM_CTRL2, 0x8010 },
147 	{ NAU8825_REG_LEFT_TIME_SLOT, 0x0 },
148 	{ NAU8825_REG_RIGHT_TIME_SLOT, 0x0 },
149 	{ NAU8825_REG_BIQ_CTRL, 0x0 },
150 	{ NAU8825_REG_BIQ_COF1, 0x0 },
151 	{ NAU8825_REG_BIQ_COF2, 0x0 },
152 	{ NAU8825_REG_BIQ_COF3, 0x0 },
153 	{ NAU8825_REG_BIQ_COF4, 0x0 },
154 	{ NAU8825_REG_BIQ_COF5, 0x0 },
155 	{ NAU8825_REG_BIQ_COF6, 0x0 },
156 	{ NAU8825_REG_BIQ_COF7, 0x0 },
157 	{ NAU8825_REG_BIQ_COF8, 0x0 },
158 	{ NAU8825_REG_BIQ_COF9, 0x0 },
159 	{ NAU8825_REG_BIQ_COF10, 0x0 },
160 	{ NAU8825_REG_ADC_RATE, 0x0010 },
161 	{ NAU8825_REG_DAC_CTRL1, 0x0001 },
162 	{ NAU8825_REG_DAC_CTRL2, 0x0 },
163 	{ NAU8825_REG_DAC_DGAIN_CTRL, 0x0 },
164 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
165 	{ NAU8825_REG_MUTE_CTRL, 0x0 },
166 	{ NAU8825_REG_HSVOL_CTRL, 0x0 },
167 	{ NAU8825_REG_DACL_CTRL, 0x02cf },
168 	{ NAU8825_REG_DACR_CTRL, 0x00cf },
169 	{ NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 },
170 	{ NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 },
171 	{ NAU8825_REG_ADC_DRC_SLOPES, 0x25ff },
172 	{ NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 },
173 	{ NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 },
174 	{ NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 },
175 	{ NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 },
176 	{ NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 },
177 	{ NAU8825_REG_IMM_MODE_CTRL, 0x0 },
178 	{ NAU8825_REG_CLASSG_CTRL, 0x0 },
179 	{ NAU8825_REG_OPT_EFUSE_CTRL, 0x0 },
180 	{ NAU8825_REG_MISC_CTRL, 0x0 },
181 	{ NAU8825_REG_BIAS_ADJ, 0x0 },
182 	{ NAU8825_REG_TRIM_SETTINGS, 0x0 },
183 	{ NAU8825_REG_ANALOG_CONTROL_1, 0x0 },
184 	{ NAU8825_REG_ANALOG_CONTROL_2, 0x0 },
185 	{ NAU8825_REG_ANALOG_ADC_1, 0x0011 },
186 	{ NAU8825_REG_ANALOG_ADC_2, 0x0020 },
187 	{ NAU8825_REG_RDAC, 0x0008 },
188 	{ NAU8825_REG_MIC_BIAS, 0x0006 },
189 	{ NAU8825_REG_BOOST, 0x0 },
190 	{ NAU8825_REG_FEPGA, 0x0 },
191 	{ NAU8825_REG_POWER_UP_CONTROL, 0x0 },
192 	{ NAU8825_REG_CHARGE_PUMP, 0x0 },
193 };
194 
195 /* register backup table when cross talk detection */
196 static struct reg_default nau8825_xtalk_baktab[] = {
197 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
198 	{ NAU8825_REG_HSVOL_CTRL, 0 },
199 	{ NAU8825_REG_DACL_CTRL, 0x00cf },
200 	{ NAU8825_REG_DACR_CTRL, 0x02cf },
201 };
202 
203 static const unsigned short logtable[256] = {
204 	0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7,
205 	0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508,
206 	0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6,
207 	0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37,
208 	0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f,
209 	0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41,
210 	0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1,
211 	0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142,
212 	0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68,
213 	0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355,
214 	0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c,
215 	0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490,
216 	0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3,
217 	0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507,
218 	0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe,
219 	0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca,
220 	0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c,
221 	0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7,
222 	0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c,
223 	0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c,
224 	0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a,
225 	0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065,
226 	0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730,
227 	0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc,
228 	0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469,
229 	0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9,
230 	0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c,
231 	0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765,
232 	0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83,
233 	0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387,
234 	0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973,
235 	0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47
236 };
237 
238 /**
239  * nau8825_sema_acquire - acquire the semaphore of nau88l25
240  * @nau8825:  component to register the codec private data with
241  * @timeout: how long in jiffies to wait before failure or zero to wait
242  * until release
243  *
244  * Attempts to acquire the semaphore with number of jiffies. If no more
245  * tasks are allowed to acquire the semaphore, calling this function will
246  * put the task to sleep. If the semaphore is not released within the
247  * specified number of jiffies, this function returns.
248  * If the semaphore is not released within the specified number of jiffies,
249  * this function returns -ETIME. If the sleep is interrupted by a signal,
250  * this function will return -EINTR. It returns 0 if the semaphore was
251  * acquired successfully.
252  *
253  * Acquires the semaphore without jiffies. Try to acquire the semaphore
254  * atomically. Returns 0 if the semaphore has been acquired successfully
255  * or 1 if it cannot be acquired.
256  */
257 static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout)
258 {
259 	int ret;
260 
261 	if (timeout) {
262 		ret = down_timeout(&nau8825->xtalk_sem, timeout);
263 		if (ret < 0)
264 			dev_warn(nau8825->dev, "Acquire semaphore timeout\n");
265 	} else {
266 		ret = down_trylock(&nau8825->xtalk_sem);
267 		if (ret)
268 			dev_warn(nau8825->dev, "Acquire semaphore fail\n");
269 	}
270 
271 	return ret;
272 }
273 
274 /**
275  * nau8825_sema_release - release the semaphore of nau88l25
276  * @nau8825:  component to register the codec private data with
277  *
278  * Release the semaphore which may be called from any context and
279  * even by tasks which have never called down().
280  */
281 static inline void nau8825_sema_release(struct nau8825 *nau8825)
282 {
283 	up(&nau8825->xtalk_sem);
284 }
285 
286 /**
287  * nau8825_sema_reset - reset the semaphore for nau88l25
288  * @nau8825:  component to register the codec private data with
289  *
290  * Reset the counter of the semaphore. Call this function to restart
291  * a new round task management.
292  */
293 static inline void nau8825_sema_reset(struct nau8825 *nau8825)
294 {
295 	nau8825->xtalk_sem.count = 1;
296 }
297 
298 /**
299  * nau8825_hpvol_ramp - Ramp up the headphone volume change gradually to target level.
300  *
301  * @nau8825:  component to register the codec private data with
302  * @vol_from: the volume to start up
303  * @vol_to: the target volume
304  * @step: the volume span to move on
305  *
306  * The headphone volume is from 0dB to minimum -54dB and -1dB per step.
307  * If the volume changes sharp, there is a pop noise heard in headphone. We
308  * provide the function to ramp up the volume up or down by delaying 10ms
309  * per step.
310  */
311 static void nau8825_hpvol_ramp(struct nau8825 *nau8825,
312 	unsigned int vol_from, unsigned int vol_to, unsigned int step)
313 {
314 	unsigned int value, volume, ramp_up, from, to;
315 
316 	if (vol_from == vol_to || step == 0) {
317 		return;
318 	} else if (vol_from < vol_to) {
319 		ramp_up = true;
320 		from = vol_from;
321 		to = vol_to;
322 	} else {
323 		ramp_up = false;
324 		from = vol_to;
325 		to = vol_from;
326 	}
327 	/* only handle volume from 0dB to minimum -54dB */
328 	if (to > NAU8825_HP_VOL_MIN)
329 		to = NAU8825_HP_VOL_MIN;
330 
331 	for (volume = from; volume < to; volume += step) {
332 		if (ramp_up)
333 			value = volume;
334 		else
335 			value = to - volume + from;
336 		regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
337 			NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
338 			(value << NAU8825_HPL_VOL_SFT) | value);
339 		usleep_range(10000, 10500);
340 	}
341 	if (ramp_up)
342 		value = to;
343 	else
344 		value = from;
345 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
346 		NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
347 		(value << NAU8825_HPL_VOL_SFT) | value);
348 }
349 
350 /**
351  * nau8825_intlog10_dec3 - Computes log10 of a value
352  * the result is round off to 3 decimal. This function takes reference to
353  * dvb-math. The source code locates as the following.
354  * Linux/drivers/media/dvb-core/dvb_math.c
355  * @value:  input for log10
356  *
357  * return log10(value) * 1000
358  */
359 static u32 nau8825_intlog10_dec3(u32 value)
360 {
361 	u32 msb, logentry, significand, interpolation, log10val;
362 	u64 log2val;
363 
364 	/* first detect the msb (count begins at 0) */
365 	msb = fls(value) - 1;
366 	/**
367 	 *      now we use a logtable after the following method:
368 	 *
369 	 *      log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24
370 	 *      where x = msb and therefore 1 <= y < 2
371 	 *      first y is determined by shifting the value left
372 	 *      so that msb is bit 31
373 	 *              0x00231f56 -> 0x8C7D5800
374 	 *      the result is y * 2^31 -> "significand"
375 	 *      then the highest 9 bits are used for a table lookup
376 	 *      the highest bit is discarded because it's always set
377 	 *      the highest nine bits in our example are 100011000
378 	 *      so we would use the entry 0x18
379 	 */
380 	significand = value << (31 - msb);
381 	logentry = (significand >> 23) & 0xff;
382 	/**
383 	 *      last step we do is interpolation because of the
384 	 *      limitations of the log table the error is that part of
385 	 *      the significand which isn't used for lookup then we
386 	 *      compute the ratio between the error and the next table entry
387 	 *      and interpolate it between the log table entry used and the
388 	 *      next one the biggest error possible is 0x7fffff
389 	 *      (in our example it's 0x7D5800)
390 	 *      needed value for next table entry is 0x800000
391 	 *      so the interpolation is
392 	 *      (error / 0x800000) * (logtable_next - logtable_current)
393 	 *      in the implementation the division is moved to the end for
394 	 *      better accuracy there is also an overflow correction if
395 	 *      logtable_next is 256
396 	 */
397 	interpolation = ((significand & 0x7fffff) *
398 		((logtable[(logentry + 1) & 0xff] -
399 		logtable[logentry]) & 0xffff)) >> 15;
400 
401 	log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation);
402 	/**
403 	 *      log10(x) = log2(x) * log10(2)
404 	 */
405 	log10val = (log2val * LOG10_MAGIC) >> 31;
406 	/**
407 	 *      the result is round off to 3 decimal
408 	 */
409 	return log10val / ((1 << 24) / 1000);
410 }
411 
412 /**
413  * nau8825_xtalk_sidetone - computes cross talk suppression sidetone gain.
414  *
415  * @sig_org: orignal signal level
416  * @sig_cros: cross talk signal level
417  *
418  * The orignal and cross talk signal vlues need to be characterized.
419  * Once these values have been characterized, this sidetone value
420  * can be converted to decibel with the equation below.
421  * sidetone = 20 * log (original signal level / crosstalk signal level)
422  *
423  * return cross talk sidetone gain
424  */
425 static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros)
426 {
427 	u32 gain, sidetone;
428 
429 	if (WARN_ON(sig_org == 0 || sig_cros == 0))
430 		return 0;
431 
432 	sig_org = nau8825_intlog10_dec3(sig_org);
433 	sig_cros = nau8825_intlog10_dec3(sig_cros);
434 	if (sig_org >= sig_cros)
435 		gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT;
436 	else
437 		gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT;
438 	sidetone = SIDETONE_BASE - gain * 2;
439 	sidetone /= 1000;
440 
441 	return sidetone;
442 }
443 
444 static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg)
445 {
446 	int index;
447 
448 	for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++)
449 		if (nau8825_xtalk_baktab[index].reg == reg)
450 			return index;
451 	return -EINVAL;
452 }
453 
454 static void nau8825_xtalk_backup(struct nau8825 *nau8825)
455 {
456 	int i;
457 
458 	if (nau8825->xtalk_baktab_initialized)
459 		return;
460 
461 	/* Backup some register values to backup table */
462 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++)
463 		regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
464 				&nau8825_xtalk_baktab[i].def);
465 
466 	nau8825->xtalk_baktab_initialized = true;
467 }
468 
469 static void nau8825_xtalk_restore(struct nau8825 *nau8825, bool cause_cancel)
470 {
471 	int i, volume;
472 
473 	if (!nau8825->xtalk_baktab_initialized)
474 		return;
475 
476 	/* Restore register values from backup table; When the driver restores
477 	 * the headphone volume in XTALK_DONE state, it needs recover to
478 	 * original level gradually with 3dB per step for less pop noise.
479 	 * Otherwise, the restore should do ASAP.
480 	 */
481 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) {
482 		if (!cause_cancel && nau8825_xtalk_baktab[i].reg ==
483 			NAU8825_REG_HSVOL_CTRL) {
484 			/* Ramping up the volume change to reduce pop noise */
485 			volume = nau8825_xtalk_baktab[i].def &
486 				NAU8825_HPR_VOL_MASK;
487 			nau8825_hpvol_ramp(nau8825, 0, volume, 3);
488 			continue;
489 		}
490 		regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
491 				nau8825_xtalk_baktab[i].def);
492 	}
493 
494 	nau8825->xtalk_baktab_initialized = false;
495 }
496 
497 static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825)
498 {
499 	/* Enable power of DAC path */
500 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
501 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
502 		NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK |
503 		NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR |
504 		NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC |
505 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK);
506 	/* Prevent startup click by letting charge pump to ramp up and
507 	 * change bump enable
508 	 */
509 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
510 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN,
511 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN);
512 	/* Enable clock sync of DAC and DAC clock */
513 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
514 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN |
515 		NAU8825_RDAC_FS_BCLK_ENB,
516 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN);
517 	/* Power up output driver with 2 stage */
518 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
519 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
520 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L,
521 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
522 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L);
523 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
524 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L,
525 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L);
526 	/* HP outputs not shouted to ground  */
527 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
528 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0);
529 	/* Enable HP boost driver */
530 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
531 		NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS);
532 	/* Enable class G compare path to supply 1.8V or 0.9V. */
533 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL,
534 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN,
535 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN);
536 }
537 
538 static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825)
539 {
540 	/* Power up left ADC and raise 5dB than Vmid for Vref  */
541 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
542 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK,
543 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB);
544 }
545 
546 static void nau8825_xtalk_clock(struct nau8825 *nau8825)
547 {
548 	/* Recover FLL default value */
549 	regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0);
550 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126);
551 	regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008);
552 	regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010);
553 	regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0);
554 	regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000);
555 	/* Enable internal VCO clock for detection signal generated */
556 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
557 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
558 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN,
559 		NAU8825_DCO_EN);
560 	/* Given specific clock frequency of internal clock to
561 	 * generate signal.
562 	 */
563 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
564 		NAU8825_CLK_MCLK_SRC_MASK, 0xf);
565 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
566 		NAU8825_FLL_RATIO_MASK, 0x10);
567 }
568 
569 static void nau8825_xtalk_prepare(struct nau8825 *nau8825)
570 {
571 	int volume, index;
572 
573 	/* Backup those registers changed by cross talk detection */
574 	nau8825_xtalk_backup(nau8825);
575 	/* Config IIS as master to output signal by codec */
576 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
577 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
578 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER |
579 		(0x2 << NAU8825_I2S_LRC_DIV_SFT) | 0x1);
580 	/* Ramp up headphone volume to 0dB to get better performance and
581 	 * avoid pop noise in headphone.
582 	 */
583 	index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL);
584 	if (index != -EINVAL) {
585 		volume = nau8825_xtalk_baktab[index].def &
586 				NAU8825_HPR_VOL_MASK;
587 		nau8825_hpvol_ramp(nau8825, volume, 0, 3);
588 	}
589 	nau8825_xtalk_clock(nau8825);
590 	nau8825_xtalk_prepare_dac(nau8825);
591 	nau8825_xtalk_prepare_adc(nau8825);
592 	/* Config channel path and digital gain */
593 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
594 		NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK,
595 		NAU8825_DACL_CH_SEL_L | 0xab);
596 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
597 		NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK,
598 		NAU8825_DACR_CH_SEL_R | 0xab);
599 	/* Config cross talk parameters and generate the 23Hz sine wave with
600 	 * 1/16 full scale of signal level for impedance measurement.
601 	 */
602 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
603 		NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK |
604 		NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK,
605 		(0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th |
606 		NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN);
607 	/* RMS intrruption enable */
608 	regmap_update_bits(nau8825->regmap,
609 		NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0);
610 	/* Power up left and right DAC */
611 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
612 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0);
613 }
614 
615 static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825)
616 {
617 	/* Disable HP boost driver */
618 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
619 		NAU8825_HP_BOOST_DIS, 0);
620 	/* HP outputs shouted to ground  */
621 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
622 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
623 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
624 	/* Power down left and right DAC */
625 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
626 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
627 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
628 	/* Enable the TESTDAC and  disable L/R HP impedance */
629 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
630 		NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP |
631 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
632 	/* Power down output driver with 2 stage */
633 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
634 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0);
635 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
636 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
637 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0);
638 	/* Disable clock sync of DAC and DAC clock */
639 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
640 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0);
641 	/* Disable charge pump ramp up function and change bump */
642 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
643 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0);
644 	/* Disable power of DAC path */
645 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
646 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
647 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0);
648 	if (!nau8825->irq)
649 		regmap_update_bits(nau8825->regmap,
650 			NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
651 }
652 
653 static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825)
654 {
655 	/* Power down left ADC and restore voltage to Vmid */
656 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
657 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0);
658 }
659 
660 static void nau8825_xtalk_clean(struct nau8825 *nau8825, bool cause_cancel)
661 {
662 	/* Enable internal VCO needed for interruptions */
663 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
664 	nau8825_xtalk_clean_dac(nau8825);
665 	nau8825_xtalk_clean_adc(nau8825);
666 	/* Clear cross talk parameters and disable */
667 	regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0);
668 	/* RMS intrruption disable */
669 	regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK,
670 		NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN);
671 	/* Recover default value for IIS */
672 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
673 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
674 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE);
675 	/* Restore value of specific register for cross talk */
676 	nau8825_xtalk_restore(nau8825, cause_cancel);
677 }
678 
679 static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol)
680 {
681 	/* Apply ADC volume for better cross talk performance */
682 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL,
683 				NAU8825_ADC_DIG_VOL_MASK, vol);
684 	/* Disables JKTIP(HPL) DAC channel for right to left measurement.
685 	 * Do it before sending signal in order to erase pop noise.
686 	 */
687 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
688 		NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN,
689 		NAU8825_BIAS_TESTDACL_EN);
690 	switch (nau8825->xtalk_state) {
691 	case NAU8825_XTALK_HPR_R2L:
692 		/* Enable right headphone impedance */
693 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
694 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
695 			NAU8825_BIAS_HPR_IMP);
696 		break;
697 	case NAU8825_XTALK_HPL_R2L:
698 		/* Enable left headphone impedance */
699 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
700 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
701 			NAU8825_BIAS_HPL_IMP);
702 		break;
703 	default:
704 		break;
705 	}
706 	msleep(100);
707 	/* Impedance measurement mode enable */
708 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
709 				NAU8825_IMM_EN, NAU8825_IMM_EN);
710 }
711 
712 static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825)
713 {
714 	/* Impedance measurement mode disable */
715 	regmap_update_bits(nau8825->regmap,
716 		NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0);
717 }
718 
719 /* The cross talk measurement function can reduce cross talk across the
720  * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal
721  * level to determine what cross talk reduction gain is. This system works by
722  * sending a 23Hz -24dBV sine wave into the headset output DAC and through
723  * the PGA. The output of the PGA is then connected to an internal current
724  * sense which measures the attenuated 23Hz signal and passing the output to
725  * an ADC which converts the measurement to a binary code. With two separated
726  * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data
727  * can be separated read in IMM_RMS_L for HSR and HSL after each measurement.
728  * Thus, the measurement function has four states to complete whole sequence.
729  * 1. Prepare state : Prepare the resource for detection and transfer to HPR
730  *     IMM stat to make JKR1(HPR) impedance measure.
731  * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer
732  *     to HPL IMM state to make JKTIP(HPL) impedance measure.
733  * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and
734  *     transfer to IMM state to determine suppression sidetone gain.
735  * 4. IMM state : Computes cross talk suppression sidetone gain with orignal
736  *     and cross talk signal level. Apply this gain and then restore codec
737  *     configuration. Then transfer to Done state for ending.
738  */
739 static void nau8825_xtalk_measure(struct nau8825 *nau8825)
740 {
741 	u32 sidetone;
742 
743 	switch (nau8825->xtalk_state) {
744 	case NAU8825_XTALK_PREPARE:
745 		/* In prepare state, set up clock, intrruption, DAC path, ADC
746 		 * path and cross talk detection parameters for preparation.
747 		 */
748 		nau8825_xtalk_prepare(nau8825);
749 		msleep(280);
750 		/* Trigger right headphone impedance detection */
751 		nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L;
752 		nau8825_xtalk_imm_start(nau8825, 0x00d2);
753 		break;
754 	case NAU8825_XTALK_HPR_R2L:
755 		/* In right headphone IMM state, read out right headphone
756 		 * impedance measure result, and then start up left side.
757 		 */
758 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
759 			&nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
760 		dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n",
761 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
762 		/* Disable then re-enable IMM mode to update */
763 		nau8825_xtalk_imm_stop(nau8825);
764 		/* Trigger left headphone impedance detection */
765 		nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L;
766 		nau8825_xtalk_imm_start(nau8825, 0x00ff);
767 		break;
768 	case NAU8825_XTALK_HPL_R2L:
769 		/* In left headphone IMM state, read out left headphone
770 		 * impedance measure result, and delay some time to wait
771 		 * detection sine wave output finish. Then, we can calculate
772 		 * the cross talk suppresstion side tone according to the L/R
773 		 * headphone imedance.
774 		 */
775 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
776 			&nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
777 		dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n",
778 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
779 		nau8825_xtalk_imm_stop(nau8825);
780 		msleep(150);
781 		nau8825->xtalk_state = NAU8825_XTALK_IMM;
782 		break;
783 	case NAU8825_XTALK_IMM:
784 		/* In impedance measure state, the orignal and cross talk
785 		 * signal level vlues are ready. The side tone gain is deter-
786 		 * mined with these signal level. After all, restore codec
787 		 * configuration.
788 		 */
789 		sidetone = nau8825_xtalk_sidetone(
790 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L],
791 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
792 		dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone);
793 		regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL,
794 					(sidetone << 8) | sidetone);
795 		nau8825_xtalk_clean(nau8825, false);
796 		nau8825->xtalk_state = NAU8825_XTALK_DONE;
797 		break;
798 	default:
799 		break;
800 	}
801 }
802 
803 static void nau8825_xtalk_work(struct work_struct *work)
804 {
805 	struct nau8825 *nau8825 = container_of(
806 		work, struct nau8825, xtalk_work);
807 
808 	nau8825_xtalk_measure(nau8825);
809 	/* To determine the cross talk side tone gain when reach
810 	 * the impedance measure state.
811 	 */
812 	if (nau8825->xtalk_state == NAU8825_XTALK_IMM)
813 		nau8825_xtalk_measure(nau8825);
814 
815 	/* Delay jack report until cross talk detection process
816 	 * completed. It can avoid application to do playback
817 	 * preparation before cross talk detection is still working.
818 	 * Meanwhile, the protection of the cross talk detection
819 	 * is released.
820 	 */
821 	if (nau8825->xtalk_state == NAU8825_XTALK_DONE) {
822 		snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event,
823 				nau8825->xtalk_event_mask);
824 		nau8825_sema_release(nau8825);
825 		nau8825->xtalk_protect = false;
826 	}
827 }
828 
829 static void nau8825_xtalk_cancel(struct nau8825 *nau8825)
830 {
831 	/* If the crosstalk is eanbled and the process is on going,
832 	 * the driver forces to cancel the crosstalk task and
833 	 * restores the configuration to original status.
834 	 */
835 	if (nau8825->xtalk_enable && nau8825->xtalk_state !=
836 		NAU8825_XTALK_DONE) {
837 		cancel_work_sync(&nau8825->xtalk_work);
838 		nau8825_xtalk_clean(nau8825, true);
839 	}
840 	/* Reset parameters for cross talk suppression function */
841 	nau8825_sema_reset(nau8825);
842 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
843 	nau8825->xtalk_protect = false;
844 }
845 
846 static bool nau8825_readable_reg(struct device *dev, unsigned int reg)
847 {
848 	switch (reg) {
849 	case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV:
850 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
851 	case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL:
852 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
853 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
854 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
855 	case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R:
856 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
857 	case NAU8825_REG_MISC_CTRL:
858 	case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS:
859 	case NAU8825_REG_BIAS_ADJ:
860 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
861 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
862 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
863 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS:
864 		return true;
865 	default:
866 		return false;
867 	}
868 
869 }
870 
871 static bool nau8825_writeable_reg(struct device *dev, unsigned int reg)
872 {
873 	switch (reg) {
874 	case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV:
875 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
876 	case NAU8825_REG_INTERRUPT_MASK:
877 	case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL:
878 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
879 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
880 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
881 	case NAU8825_REG_IMM_MODE_CTRL:
882 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
883 	case NAU8825_REG_MISC_CTRL:
884 	case NAU8825_REG_BIAS_ADJ:
885 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
886 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
887 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
888 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP:
889 		return true;
890 	default:
891 		return false;
892 	}
893 }
894 
895 static bool nau8825_volatile_reg(struct device *dev, unsigned int reg)
896 {
897 	switch (reg) {
898 	case NAU8825_REG_RESET:
899 	case NAU8825_REG_IRQ_STATUS:
900 	case NAU8825_REG_INT_CLR_KEY_STATUS:
901 	case NAU8825_REG_IMM_RMS_L:
902 	case NAU8825_REG_IMM_RMS_R:
903 	case NAU8825_REG_I2C_DEVICE_ID:
904 	case NAU8825_REG_SARDOUT_RAM_STATUS:
905 	case NAU8825_REG_CHARGE_PUMP_INPUT_READ:
906 	case NAU8825_REG_GENERAL_STATUS:
907 	case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10:
908 		return true;
909 	default:
910 		return false;
911 	}
912 }
913 
914 static int nau8825_adc_event(struct snd_soc_dapm_widget *w,
915 		struct snd_kcontrol *kcontrol, int event)
916 {
917 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
918 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
919 
920 	switch (event) {
921 	case SND_SOC_DAPM_POST_PMU:
922 		msleep(125);
923 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
924 			NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
925 		break;
926 	case SND_SOC_DAPM_POST_PMD:
927 		if (!nau8825->irq)
928 			regmap_update_bits(nau8825->regmap,
929 				NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
930 		break;
931 	default:
932 		return -EINVAL;
933 	}
934 
935 	return 0;
936 }
937 
938 static int nau8825_pump_event(struct snd_soc_dapm_widget *w,
939 	struct snd_kcontrol *kcontrol, int event)
940 {
941 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
942 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
943 
944 	switch (event) {
945 	case SND_SOC_DAPM_POST_PMU:
946 		/* Prevent startup click by letting charge pump to ramp up */
947 		msleep(10);
948 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
949 			NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW);
950 		break;
951 	case SND_SOC_DAPM_PRE_PMD:
952 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
953 			NAU8825_JAMNODCLOW, 0);
954 		break;
955 	default:
956 		return -EINVAL;
957 	}
958 
959 	return 0;
960 }
961 
962 static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w,
963 	struct snd_kcontrol *kcontrol, int event)
964 {
965 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
966 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
967 
968 	switch (event) {
969 	case SND_SOC_DAPM_PRE_PMU:
970 		/* Disables the TESTDAC to let DAC signal pass through. */
971 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
972 			NAU8825_BIAS_TESTDAC_EN, 0);
973 		break;
974 	case SND_SOC_DAPM_POST_PMD:
975 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
976 			NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
977 		break;
978 	default:
979 		return -EINVAL;
980 	}
981 
982 	return 0;
983 }
984 
985 static int system_clock_control(struct snd_soc_dapm_widget *w,
986 				struct snd_kcontrol *k, int  event)
987 {
988 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
989 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
990 	struct regmap *regmap = nau8825->regmap;
991 
992 	if (SND_SOC_DAPM_EVENT_OFF(event)) {
993 		dev_dbg(nau8825->dev, "system clock control : POWER OFF\n");
994 		/* Set clock source to disable or internal clock before the
995 		 * playback or capture end. Codec needs clock for Jack
996 		 * detection and button press if jack inserted; otherwise,
997 		 * the clock should be closed.
998 		 */
999 		if (nau8825_is_jack_inserted(regmap)) {
1000 			nau8825_configure_sysclk(nau8825,
1001 						 NAU8825_CLK_INTERNAL, 0);
1002 		} else {
1003 			nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1004 		}
1005 	}
1006 
1007 	return 0;
1008 }
1009 
1010 static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol,
1011 				     struct snd_ctl_elem_value *ucontrol)
1012 {
1013 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1014 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
1015 
1016 	if (!component->regmap)
1017 		return -EINVAL;
1018 
1019 	regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1,
1020 		ucontrol->value.bytes.data, params->max);
1021 	return 0;
1022 }
1023 
1024 static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol,
1025 				     struct snd_ctl_elem_value *ucontrol)
1026 {
1027 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1028 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
1029 	void *data;
1030 
1031 	if (!component->regmap)
1032 		return -EINVAL;
1033 
1034 	data = kmemdup(ucontrol->value.bytes.data,
1035 		params->max, GFP_KERNEL | GFP_DMA);
1036 	if (!data)
1037 		return -ENOMEM;
1038 
1039 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1040 		NAU8825_BIQ_WRT_EN, 0);
1041 	regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1,
1042 		data, params->max);
1043 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1044 		NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN);
1045 
1046 	kfree(data);
1047 	return 0;
1048 }
1049 
1050 static const char * const nau8825_biq_path[] = {
1051 	"ADC", "DAC"
1052 };
1053 
1054 static const struct soc_enum nau8825_biq_path_enum =
1055 	SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT,
1056 		ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path);
1057 
1058 static const char * const nau8825_adc_decimation[] = {
1059 	"32", "64", "128", "256"
1060 };
1061 
1062 static const struct soc_enum nau8825_adc_decimation_enum =
1063 	SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT,
1064 		ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation);
1065 
1066 static const char * const nau8825_dac_oversampl[] = {
1067 	"64", "256", "128", "", "32"
1068 };
1069 
1070 static const struct soc_enum nau8825_dac_oversampl_enum =
1071 	SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT,
1072 		ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl);
1073 
1074 static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400);
1075 static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0);
1076 static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0);
1077 static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
1078 static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400);
1079 
1080 static const struct snd_kcontrol_new nau8825_controls[] = {
1081 	SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1082 		0, 0xff, 0, adc_vol_tlv),
1083 	SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1084 		12, 8, 0x0f, 0, sidetone_vol_tlv),
1085 	SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL,
1086 		6, 0, 0x3f, 1, dac_vol_tlv),
1087 	SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL,
1088 		8, 37, 0, fepga_gain_tlv),
1089 	SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL,
1090 		0, 8, 0xff, 0, crosstalk_vol_tlv),
1091 
1092 	SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum),
1093 	SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum),
1094 	/* programmable biquad filter */
1095 	SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum),
1096 	SND_SOC_BYTES_EXT("BIQ Coefficients", 20,
1097 		  nau8825_biq_coeff_get, nau8825_biq_coeff_put),
1098 };
1099 
1100 /* DAC Mux 0x33[9] and 0x34[9] */
1101 static const char * const nau8825_dac_src[] = {
1102 	"DACL", "DACR",
1103 };
1104 
1105 static SOC_ENUM_SINGLE_DECL(
1106 	nau8825_dacl_enum, NAU8825_REG_DACL_CTRL,
1107 	NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src);
1108 
1109 static SOC_ENUM_SINGLE_DECL(
1110 	nau8825_dacr_enum, NAU8825_REG_DACR_CTRL,
1111 	NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src);
1112 
1113 static const struct snd_kcontrol_new nau8825_dacl_mux =
1114 	SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum);
1115 
1116 static const struct snd_kcontrol_new nau8825_dacr_mux =
1117 	SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum);
1118 
1119 
1120 static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = {
1121 	SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2,
1122 		15, 1),
1123 	SND_SOC_DAPM_AIF_IN("AIFRX", "Playback", 0, SND_SOC_NOPM, 0, 0),
1124 	SND_SOC_DAPM_SUPPLY("System Clock", SND_SOC_NOPM, 0, 0,
1125 			    system_clock_control, SND_SOC_DAPM_POST_PMD),
1126 
1127 	SND_SOC_DAPM_INPUT("MIC"),
1128 	SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0),
1129 
1130 	SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0,
1131 		NULL, 0),
1132 
1133 	SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0,
1134 		nau8825_adc_event, SND_SOC_DAPM_POST_PMU |
1135 		SND_SOC_DAPM_POST_PMD),
1136 	SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0),
1137 	SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL,
1138 		0),
1139 
1140 	/* ADC for button press detection. A dapm supply widget is used to
1141 	 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON
1142 	 * during suspend.
1143 	 */
1144 	SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL,
1145 		NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0),
1146 
1147 	SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0),
1148 	SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0),
1149 	SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0),
1150 	SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0),
1151 
1152 	SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL,
1153 		NAU8825_ENABLE_DACR_SFT, 0),
1154 	SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL,
1155 		NAU8825_ENABLE_DACL_SFT, 0),
1156 	SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0),
1157 
1158 	SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux),
1159 	SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux),
1160 
1161 	SND_SOC_DAPM_PGA_S("HP amp L", 0,
1162 		NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0),
1163 	SND_SOC_DAPM_PGA_S("HP amp R", 0,
1164 		NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0),
1165 
1166 	SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0,
1167 		nau8825_pump_event, SND_SOC_DAPM_POST_PMU |
1168 		SND_SOC_DAPM_PRE_PMD),
1169 
1170 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4,
1171 		NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0),
1172 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4,
1173 		NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0),
1174 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5,
1175 		NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
1176 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5,
1177 		NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
1178 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6,
1179 		NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
1180 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6,
1181 		NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
1182 
1183 	SND_SOC_DAPM_PGA_S("Output DACL", 7,
1184 		NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event,
1185 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1186 	SND_SOC_DAPM_PGA_S("Output DACR", 7,
1187 		NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event,
1188 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1189 
1190 	/* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */
1191 	SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8,
1192 		NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0),
1193 	SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8,
1194 		NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0),
1195 
1196 	/* High current HPOL/R boost driver */
1197 	SND_SOC_DAPM_PGA_S("HP Boost Driver", 9,
1198 		NAU8825_REG_BOOST, 9, 1, NULL, 0),
1199 
1200 	/* Class G operation control*/
1201 	SND_SOC_DAPM_PGA_S("Class G", 10,
1202 		NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0),
1203 
1204 	SND_SOC_DAPM_OUTPUT("HPOL"),
1205 	SND_SOC_DAPM_OUTPUT("HPOR"),
1206 };
1207 
1208 static const struct snd_soc_dapm_route nau8825_dapm_routes[] = {
1209 	{"Frontend PGA", NULL, "MIC"},
1210 	{"ADC", NULL, "Frontend PGA"},
1211 	{"ADC", NULL, "ADC Clock"},
1212 	{"ADC", NULL, "ADC Power"},
1213 	{"AIFTX", NULL, "ADC"},
1214 	{"AIFTX", NULL, "System Clock"},
1215 
1216 	{"AIFRX", NULL, "System Clock"},
1217 	{"DDACL", NULL, "AIFRX"},
1218 	{"DDACR", NULL, "AIFRX"},
1219 	{"DDACL", NULL, "DDAC Clock"},
1220 	{"DDACR", NULL, "DDAC Clock"},
1221 	{"DACL Mux", "DACL", "DDACL"},
1222 	{"DACL Mux", "DACR", "DDACR"},
1223 	{"DACR Mux", "DACL", "DDACL"},
1224 	{"DACR Mux", "DACR", "DDACR"},
1225 	{"HP amp L", NULL, "DACL Mux"},
1226 	{"HP amp R", NULL, "DACR Mux"},
1227 	{"Charge Pump", NULL, "HP amp L"},
1228 	{"Charge Pump", NULL, "HP amp R"},
1229 	{"ADACL", NULL, "Charge Pump"},
1230 	{"ADACR", NULL, "Charge Pump"},
1231 	{"ADACL Clock", NULL, "ADACL"},
1232 	{"ADACR Clock", NULL, "ADACR"},
1233 	{"Output Driver L Stage 1", NULL, "ADACL Clock"},
1234 	{"Output Driver R Stage 1", NULL, "ADACR Clock"},
1235 	{"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"},
1236 	{"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"},
1237 	{"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"},
1238 	{"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"},
1239 	{"Output DACL", NULL, "Output Driver L Stage 3"},
1240 	{"Output DACR", NULL, "Output Driver R Stage 3"},
1241 	{"HPOL Pulldown", NULL, "Output DACL"},
1242 	{"HPOR Pulldown", NULL, "Output DACR"},
1243 	{"HP Boost Driver", NULL, "HPOL Pulldown"},
1244 	{"HP Boost Driver", NULL, "HPOR Pulldown"},
1245 	{"Class G", NULL, "HP Boost Driver"},
1246 	{"HPOL", NULL, "Class G"},
1247 	{"HPOR", NULL, "Class G"},
1248 };
1249 
1250 static const struct nau8825_osr_attr *
1251 nau8825_get_osr(struct nau8825 *nau8825, int stream)
1252 {
1253 	unsigned int osr;
1254 
1255 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
1256 		regmap_read(nau8825->regmap,
1257 			    NAU8825_REG_DAC_CTRL1, &osr);
1258 		osr &= NAU8825_DAC_OVERSAMPLE_MASK;
1259 		if (osr >= ARRAY_SIZE(osr_dac_sel))
1260 			return NULL;
1261 		return &osr_dac_sel[osr];
1262 	} else {
1263 		regmap_read(nau8825->regmap,
1264 			    NAU8825_REG_ADC_RATE, &osr);
1265 		osr &= NAU8825_ADC_SYNC_DOWN_MASK;
1266 		if (osr >= ARRAY_SIZE(osr_adc_sel))
1267 			return NULL;
1268 		return &osr_adc_sel[osr];
1269 	}
1270 }
1271 
1272 static int nau8825_dai_startup(struct snd_pcm_substream *substream,
1273 			       struct snd_soc_dai *dai)
1274 {
1275 	struct snd_soc_component *component = dai->component;
1276 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1277 	const struct nau8825_osr_attr *osr;
1278 
1279 	osr = nau8825_get_osr(nau8825, substream->stream);
1280 	if (!osr || !osr->osr)
1281 		return -EINVAL;
1282 
1283 	return snd_pcm_hw_constraint_minmax(substream->runtime,
1284 					    SNDRV_PCM_HW_PARAM_RATE,
1285 					    0, CLK_DA_AD_MAX / osr->osr);
1286 }
1287 
1288 static int nau8825_hw_params(struct snd_pcm_substream *substream,
1289 				struct snd_pcm_hw_params *params,
1290 				struct snd_soc_dai *dai)
1291 {
1292 	struct snd_soc_component *component = dai->component;
1293 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1294 	unsigned int val_len = 0, ctrl_val, bclk_fs, bclk_div;
1295 	const struct nau8825_osr_attr *osr;
1296 	int err = -EINVAL;
1297 
1298 	nau8825_sema_acquire(nau8825, 3 * HZ);
1299 
1300 	/* CLK_DAC or CLK_ADC = OSR * FS
1301 	 * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR)
1302 	 * multiplied by the audio sample rate (Fs). Note that the OSR and Fs
1303 	 * values must be selected such that the maximum frequency is less
1304 	 * than 6.144 MHz.
1305 	 */
1306 	osr = nau8825_get_osr(nau8825, substream->stream);
1307 	if (!osr || !osr->osr)
1308 		goto error;
1309 	if (params_rate(params) * osr->osr > CLK_DA_AD_MAX)
1310 		goto error;
1311 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1312 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1313 			NAU8825_CLK_DAC_SRC_MASK,
1314 			osr->clk_src << NAU8825_CLK_DAC_SRC_SFT);
1315 	else
1316 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1317 			NAU8825_CLK_ADC_SRC_MASK,
1318 			osr->clk_src << NAU8825_CLK_ADC_SRC_SFT);
1319 
1320 	/* make BCLK and LRC divde configuration if the codec as master. */
1321 	regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, &ctrl_val);
1322 	if (ctrl_val & NAU8825_I2S_MS_MASTER) {
1323 		/* get the bclk and fs ratio */
1324 		bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params);
1325 		if (bclk_fs <= 32)
1326 			bclk_div = 2;
1327 		else if (bclk_fs <= 64)
1328 			bclk_div = 1;
1329 		else if (bclk_fs <= 128)
1330 			bclk_div = 0;
1331 		else
1332 			goto error;
1333 		regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1334 			NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK,
1335 			((bclk_div + 1) << NAU8825_I2S_LRC_DIV_SFT) | bclk_div);
1336 	}
1337 
1338 	switch (params_width(params)) {
1339 	case 16:
1340 		val_len |= NAU8825_I2S_DL_16;
1341 		break;
1342 	case 20:
1343 		val_len |= NAU8825_I2S_DL_20;
1344 		break;
1345 	case 24:
1346 		val_len |= NAU8825_I2S_DL_24;
1347 		break;
1348 	case 32:
1349 		val_len |= NAU8825_I2S_DL_32;
1350 		break;
1351 	default:
1352 		goto error;
1353 	}
1354 
1355 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1356 		NAU8825_I2S_DL_MASK, val_len);
1357 	err = 0;
1358 
1359  error:
1360 	/* Release the semaphore. */
1361 	nau8825_sema_release(nau8825);
1362 
1363 	return err;
1364 }
1365 
1366 static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
1367 {
1368 	struct snd_soc_component *component = codec_dai->component;
1369 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1370 	unsigned int ctrl1_val = 0, ctrl2_val = 0;
1371 
1372 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1373 	case SND_SOC_DAIFMT_CBM_CFM:
1374 		ctrl2_val |= NAU8825_I2S_MS_MASTER;
1375 		break;
1376 	case SND_SOC_DAIFMT_CBS_CFS:
1377 		break;
1378 	default:
1379 		return -EINVAL;
1380 	}
1381 
1382 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1383 	case SND_SOC_DAIFMT_NB_NF:
1384 		break;
1385 	case SND_SOC_DAIFMT_IB_NF:
1386 		ctrl1_val |= NAU8825_I2S_BP_INV;
1387 		break;
1388 	default:
1389 		return -EINVAL;
1390 	}
1391 
1392 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1393 	case SND_SOC_DAIFMT_I2S:
1394 		ctrl1_val |= NAU8825_I2S_DF_I2S;
1395 		break;
1396 	case SND_SOC_DAIFMT_LEFT_J:
1397 		ctrl1_val |= NAU8825_I2S_DF_LEFT;
1398 		break;
1399 	case SND_SOC_DAIFMT_RIGHT_J:
1400 		ctrl1_val |= NAU8825_I2S_DF_RIGTH;
1401 		break;
1402 	case SND_SOC_DAIFMT_DSP_A:
1403 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1404 		break;
1405 	case SND_SOC_DAIFMT_DSP_B:
1406 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1407 		ctrl1_val |= NAU8825_I2S_PCMB_EN;
1408 		break;
1409 	default:
1410 		return -EINVAL;
1411 	}
1412 
1413 	nau8825_sema_acquire(nau8825, 3 * HZ);
1414 
1415 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1416 		NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK |
1417 		NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK,
1418 		ctrl1_val);
1419 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1420 		NAU8825_I2S_MS_MASK, ctrl2_val);
1421 
1422 	/* Release the semaphore. */
1423 	nau8825_sema_release(nau8825);
1424 
1425 	return 0;
1426 }
1427 
1428 /**
1429  * nau8825_set_tdm_slot - configure DAI TDM.
1430  * @dai: DAI
1431  * @tx_mask: bitmask representing active TX slots.
1432  * @rx_mask: bitmask representing active RX slots.
1433  * @slots: Number of slots in use.
1434  * @slot_width: Width in bits for each slot.
1435  *
1436  * Configures a DAI for TDM operation. Support TDM 4/8 slots.
1437  * The limitation is DAC and ADC need shift 4 slots at 8 slots mode.
1438  */
1439 static int nau8825_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
1440 				unsigned int rx_mask, int slots, int slot_width)
1441 {
1442 	struct snd_soc_component *component = dai->component;
1443 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1444 	unsigned int ctrl_val = 0, ctrl_offset = 0, value = 0, dac_s, adc_s;
1445 
1446 	if (slots != 4 && slots != 8) {
1447 		dev_err(nau8825->dev, "Only support 4 or 8 slots!\n");
1448 		return -EINVAL;
1449 	}
1450 
1451 	/* The driver is limited to 1-channel for ADC, and 2-channel for DAC on TDM mode */
1452 	if (hweight_long((unsigned long) tx_mask) != 1 ||
1453 	    hweight_long((unsigned long) rx_mask) != 2) {
1454 		dev_err(nau8825->dev,
1455 			"The limitation is 1-channel for ADC, and 2-channel for DAC on TDM mode.\n");
1456 		return -EINVAL;
1457 	}
1458 
1459 	if (((tx_mask & 0xf) && (tx_mask & 0xf0)) ||
1460 	    ((rx_mask & 0xf) && (rx_mask & 0xf0)) ||
1461 	    ((tx_mask & 0xf) && (rx_mask & 0xf0)) ||
1462 	    ((rx_mask & 0xf) && (tx_mask & 0xf0))) {
1463 		dev_err(nau8825->dev,
1464 			"Slot assignment of DAC and ADC need to set same interval.\n");
1465 		return -EINVAL;
1466 	}
1467 
1468 	/* The offset of fixed 4 slots for 8 slots support */
1469 	if (rx_mask & 0xf0) {
1470 		regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1471 				   NAU8825_I2S_PCM_TS_EN_MASK, NAU8825_I2S_PCM_TS_EN);
1472 		regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1, &value);
1473 		ctrl_val |= NAU8825_TDM_OFFSET_EN;
1474 		ctrl_offset = 4 * slot_width;
1475 		if (!(value & NAU8825_I2S_PCMB_MASK))
1476 			ctrl_offset += 1;
1477 		dac_s = (rx_mask & 0xf0) >> 4;
1478 		adc_s = fls((tx_mask & 0xf0) >> 4);
1479 	} else {
1480 		dac_s = rx_mask & 0xf;
1481 		adc_s = fls(tx_mask & 0xf);
1482 	}
1483 
1484 	ctrl_val |= NAU8825_TDM_MODE;
1485 
1486 	switch (dac_s) {
1487 	case 0x3:
1488 		ctrl_val |= 1 << NAU8825_TDM_DACR_RX_SFT;
1489 		break;
1490 	case 0x5:
1491 		ctrl_val |= 2 << NAU8825_TDM_DACR_RX_SFT;
1492 		break;
1493 	case 0x6:
1494 		ctrl_val |= 1 << NAU8825_TDM_DACL_RX_SFT;
1495 		ctrl_val |= 2 << NAU8825_TDM_DACR_RX_SFT;
1496 		break;
1497 	case 0x9:
1498 		ctrl_val |= 3 << NAU8825_TDM_DACR_RX_SFT;
1499 		break;
1500 	case 0xa:
1501 		ctrl_val |= 1 << NAU8825_TDM_DACL_RX_SFT;
1502 		ctrl_val |= 3 << NAU8825_TDM_DACR_RX_SFT;
1503 		break;
1504 	case 0xc:
1505 		ctrl_val |= 2 << NAU8825_TDM_DACL_RX_SFT;
1506 		ctrl_val |= 3 << NAU8825_TDM_DACR_RX_SFT;
1507 		break;
1508 	default:
1509 		return -EINVAL;
1510 	}
1511 
1512 	ctrl_val |= adc_s - 1;
1513 
1514 	regmap_update_bits(nau8825->regmap, NAU8825_REG_TDM_CTRL,
1515 			   NAU8825_TDM_MODE | NAU8825_TDM_OFFSET_EN |
1516 			   NAU8825_TDM_DACL_RX_MASK | NAU8825_TDM_DACR_RX_MASK |
1517 			   NAU8825_TDM_TX_MASK, ctrl_val);
1518 	regmap_update_bits(nau8825->regmap, NAU8825_REG_LEFT_TIME_SLOT,
1519 			   NAU8825_TSLOT_L0_MASK, ctrl_offset);
1520 
1521 	return 0;
1522 }
1523 
1524 static const struct snd_soc_dai_ops nau8825_dai_ops = {
1525 	.startup	= nau8825_dai_startup,
1526 	.hw_params	= nau8825_hw_params,
1527 	.set_fmt	= nau8825_set_dai_fmt,
1528 	.set_tdm_slot	= nau8825_set_tdm_slot,
1529 };
1530 
1531 #define NAU8825_RATES	SNDRV_PCM_RATE_8000_192000
1532 #define NAU8825_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
1533 			 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1534 
1535 static struct snd_soc_dai_driver nau8825_dai = {
1536 	.name = "nau8825-hifi",
1537 	.playback = {
1538 		.stream_name	 = "Playback",
1539 		.channels_min	 = 1,
1540 		.channels_max	 = 2,
1541 		.rates		 = NAU8825_RATES,
1542 		.formats	 = NAU8825_FORMATS,
1543 	},
1544 	.capture = {
1545 		.stream_name	 = "Capture",
1546 		.channels_min	 = 1,
1547 		.channels_max	 = 2,   /* Only 1 channel of data */
1548 		.rates		 = NAU8825_RATES,
1549 		.formats	 = NAU8825_FORMATS,
1550 	},
1551 	.ops = &nau8825_dai_ops,
1552 };
1553 
1554 /**
1555  * nau8825_enable_jack_detect - Specify a jack for event reporting
1556  *
1557  * @component:  component to register the jack with
1558  * @jack: jack to use to report headset and button events on
1559  *
1560  * After this function has been called the headset insert/remove and button
1561  * events will be routed to the given jack.  Jack can be null to stop
1562  * reporting.
1563  */
1564 int nau8825_enable_jack_detect(struct snd_soc_component *component,
1565 				struct snd_soc_jack *jack)
1566 {
1567 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1568 	struct regmap *regmap = nau8825->regmap;
1569 
1570 	nau8825->jack = jack;
1571 
1572 	if (!nau8825->jack) {
1573 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1574 				   NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R |
1575 				   NAU8825_SPKR_DWN1L, 0);
1576 		return 0;
1577 	}
1578 	/* Ground HP Outputs[1:0], needed for headset auto detection
1579 	 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6]
1580 	 */
1581 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1582 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
1583 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
1584 
1585 	return 0;
1586 }
1587 EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect);
1588 
1589 
1590 static bool nau8825_is_jack_inserted(struct regmap *regmap)
1591 {
1592 	bool active_high, is_high;
1593 	int status, jkdet;
1594 
1595 	regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet);
1596 	active_high = jkdet & NAU8825_JACK_POLARITY;
1597 	regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status);
1598 	is_high = status & NAU8825_GPIO2JD1;
1599 	/* return jack connection status according to jack insertion logic
1600 	 * active high or active low.
1601 	 */
1602 	return active_high == is_high;
1603 }
1604 
1605 static void nau8825_restart_jack_detection(struct regmap *regmap)
1606 {
1607 	/* this will restart the entire jack detection process including MIC/GND
1608 	 * switching and create interrupts. We have to go from 0 to 1 and back
1609 	 * to 0 to restart.
1610 	 */
1611 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1612 		NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART);
1613 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1614 		NAU8825_JACK_DET_RESTART, 0);
1615 }
1616 
1617 static void nau8825_int_status_clear_all(struct regmap *regmap)
1618 {
1619 	int active_irq, clear_irq, i;
1620 
1621 	/* Reset the intrruption status from rightmost bit if the corres-
1622 	 * ponding irq event occurs.
1623 	 */
1624 	regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq);
1625 	for (i = 0; i < NAU8825_REG_DATA_LEN; i++) {
1626 		clear_irq = (0x1 << i);
1627 		if (active_irq & clear_irq)
1628 			regmap_write(regmap,
1629 				NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1630 	}
1631 }
1632 
1633 static void nau8825_eject_jack(struct nau8825 *nau8825)
1634 {
1635 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1636 	struct regmap *regmap = nau8825->regmap;
1637 
1638 	/* Force to cancel the cross talk detection process */
1639 	nau8825_xtalk_cancel(nau8825);
1640 
1641 	snd_soc_dapm_disable_pin(dapm, "SAR");
1642 	snd_soc_dapm_disable_pin(dapm, "MICBIAS");
1643 	/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
1644 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1645 		NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
1646 	/* ground HPL/HPR, MICGRND1/2 */
1647 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf);
1648 
1649 	snd_soc_dapm_sync(dapm);
1650 
1651 	/* Clear all interruption status */
1652 	nau8825_int_status_clear_all(regmap);
1653 
1654 	/* Enable the insertion interruption, disable the ejection inter-
1655 	 * ruption, and then bypass de-bounce circuit.
1656 	 */
1657 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
1658 		NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS,
1659 		NAU8825_IRQ_EJECT_DIS);
1660 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1661 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1662 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN,
1663 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1664 		NAU8825_IRQ_HEADSET_COMPLETE_EN);
1665 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1666 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
1667 
1668 	/* Disable ADC needed for interruptions at audo mode */
1669 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1670 		NAU8825_ENABLE_ADC, 0);
1671 
1672 	/* Close clock for jack type detection at manual mode */
1673 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1674 }
1675 
1676 /* Enable audo mode interruptions with internal clock. */
1677 static void nau8825_setup_auto_irq(struct nau8825 *nau8825)
1678 {
1679 	struct regmap *regmap = nau8825->regmap;
1680 
1681 	/* Enable headset jack type detection complete interruption and
1682 	 * jack ejection interruption.
1683 	 */
1684 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1685 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0);
1686 
1687 	/* Enable internal VCO needed for interruptions */
1688 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
1689 
1690 	/* Enable ADC needed for interruptions */
1691 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1692 		NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
1693 
1694 	/* Chip needs one FSCLK cycle in order to generate interruptions,
1695 	 * as we cannot guarantee one will be provided by the system. Turning
1696 	 * master mode on then off enables us to generate that FSCLK cycle
1697 	 * with a minimum of contention on the clock bus.
1698 	 */
1699 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1700 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER);
1701 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1702 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE);
1703 
1704 	/* Not bypass de-bounce circuit */
1705 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1706 		NAU8825_JACK_DET_DB_BYPASS, 0);
1707 
1708 	/* Unmask all interruptions */
1709 	regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0);
1710 
1711 	/* Restart the jack detection process at auto mode */
1712 	nau8825_restart_jack_detection(regmap);
1713 }
1714 
1715 static int nau8825_button_decode(int value)
1716 {
1717 	int buttons = 0;
1718 
1719 	/* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */
1720 	if (value & BIT(0))
1721 		buttons |= SND_JACK_BTN_0;
1722 	if (value & BIT(1))
1723 		buttons |= SND_JACK_BTN_1;
1724 	if (value & BIT(2))
1725 		buttons |= SND_JACK_BTN_2;
1726 	if (value & BIT(3))
1727 		buttons |= SND_JACK_BTN_3;
1728 	if (value & BIT(4))
1729 		buttons |= SND_JACK_BTN_4;
1730 	if (value & BIT(5))
1731 		buttons |= SND_JACK_BTN_5;
1732 
1733 	return buttons;
1734 }
1735 
1736 static int nau8825_jack_insert(struct nau8825 *nau8825)
1737 {
1738 	struct regmap *regmap = nau8825->regmap;
1739 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1740 	int jack_status_reg, mic_detected;
1741 	int type = 0;
1742 
1743 	regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg);
1744 	mic_detected = (jack_status_reg >> 10) & 3;
1745 	/* The JKSLV and JKR2 all detected in high impedance headset */
1746 	if (mic_detected == 0x3)
1747 		nau8825->high_imped = true;
1748 	else
1749 		nau8825->high_imped = false;
1750 
1751 	switch (mic_detected) {
1752 	case 0:
1753 		/* no mic */
1754 		type = SND_JACK_HEADPHONE;
1755 		break;
1756 	case 1:
1757 		dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n");
1758 		type = SND_JACK_HEADSET;
1759 
1760 		/* Unground MICGND1 */
1761 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1762 			1 << 2);
1763 		/* Attach 2kOhm Resistor from MICBIAS to MICGND1 */
1764 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1765 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1766 			NAU8825_MICBIAS_JKR2);
1767 		/* Attach SARADC to MICGND1 */
1768 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1769 			NAU8825_SAR_INPUT_MASK,
1770 			NAU8825_SAR_INPUT_JKR2);
1771 
1772 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1773 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1774 		snd_soc_dapm_sync(dapm);
1775 		break;
1776 	case 2:
1777 		dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n");
1778 		type = SND_JACK_HEADSET;
1779 
1780 		/* Unground MICGND2 */
1781 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1782 			2 << 2);
1783 		/* Attach 2kOhm Resistor from MICBIAS to MICGND2 */
1784 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1785 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1786 			NAU8825_MICBIAS_JKSLV);
1787 		/* Attach SARADC to MICGND2 */
1788 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1789 			NAU8825_SAR_INPUT_MASK,
1790 			NAU8825_SAR_INPUT_JKSLV);
1791 
1792 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1793 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1794 		snd_soc_dapm_sync(dapm);
1795 		break;
1796 	case 3:
1797 		/* detect error case */
1798 		dev_err(nau8825->dev, "detection error; disable mic function\n");
1799 		type = SND_JACK_HEADPHONE;
1800 		break;
1801 	}
1802 
1803 	/* Leaving HPOL/R grounded after jack insert by default. They will be
1804 	 * ungrounded as part of the widget power up sequence at the beginning
1805 	 * of playback to reduce pop.
1806 	 */
1807 	return type;
1808 }
1809 
1810 #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
1811 		SND_JACK_BTN_2 | SND_JACK_BTN_3)
1812 
1813 static irqreturn_t nau8825_interrupt(int irq, void *data)
1814 {
1815 	struct nau8825 *nau8825 = (struct nau8825 *)data;
1816 	struct regmap *regmap = nau8825->regmap;
1817 	int active_irq, clear_irq = 0, event = 0, event_mask = 0;
1818 
1819 	if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) {
1820 		dev_err(nau8825->dev, "failed to read irq status\n");
1821 		return IRQ_NONE;
1822 	}
1823 
1824 	if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) ==
1825 		NAU8825_JACK_EJECTION_DETECTED) {
1826 
1827 		nau8825_eject_jack(nau8825);
1828 		event_mask |= SND_JACK_HEADSET;
1829 		clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK;
1830 	} else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) {
1831 		int key_status;
1832 
1833 		regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS,
1834 			&key_status);
1835 
1836 		/* upper 8 bits of the register are for short pressed keys,
1837 		 * lower 8 bits - for long pressed buttons
1838 		 */
1839 		nau8825->button_pressed = nau8825_button_decode(
1840 			key_status >> 8);
1841 
1842 		event |= nau8825->button_pressed;
1843 		event_mask |= NAU8825_BUTTONS;
1844 		clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ;
1845 	} else if (active_irq & NAU8825_KEY_RELEASE_IRQ) {
1846 		event_mask = NAU8825_BUTTONS;
1847 		clear_irq = NAU8825_KEY_RELEASE_IRQ;
1848 	} else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) {
1849 		if (nau8825_is_jack_inserted(regmap)) {
1850 			event |= nau8825_jack_insert(nau8825);
1851 			if (nau8825->xtalk_enable && !nau8825->high_imped) {
1852 				/* Apply the cross talk suppression in the
1853 				 * headset without high impedance.
1854 				 */
1855 				if (!nau8825->xtalk_protect) {
1856 					/* Raise protection for cross talk de-
1857 					 * tection if no protection before.
1858 					 * The driver has to cancel the pro-
1859 					 * cess and restore changes if process
1860 					 * is ongoing when ejection.
1861 					 */
1862 					int ret;
1863 					nau8825->xtalk_protect = true;
1864 					ret = nau8825_sema_acquire(nau8825, 0);
1865 					if (ret)
1866 						nau8825->xtalk_protect = false;
1867 				}
1868 				/* Startup cross talk detection process */
1869 				if (nau8825->xtalk_protect) {
1870 					nau8825->xtalk_state =
1871 						NAU8825_XTALK_PREPARE;
1872 					schedule_work(&nau8825->xtalk_work);
1873 				}
1874 			} else {
1875 				/* The cross talk suppression shouldn't apply
1876 				 * in the headset with high impedance. Thus,
1877 				 * relieve the protection raised before.
1878 				 */
1879 				if (nau8825->xtalk_protect) {
1880 					nau8825_sema_release(nau8825);
1881 					nau8825->xtalk_protect = false;
1882 				}
1883 			}
1884 		} else {
1885 			dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n");
1886 			nau8825_eject_jack(nau8825);
1887 		}
1888 
1889 		event_mask |= SND_JACK_HEADSET;
1890 		clear_irq = NAU8825_HEADSET_COMPLETION_IRQ;
1891 		/* Record the interruption report event for driver to report
1892 		 * the event later. The jack report will delay until cross
1893 		 * talk detection process is done.
1894 		 */
1895 		if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) {
1896 			nau8825->xtalk_event = event;
1897 			nau8825->xtalk_event_mask = event_mask;
1898 		}
1899 	} else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) {
1900 		/* crosstalk detection enable and process on going */
1901 		if (nau8825->xtalk_enable && nau8825->xtalk_protect)
1902 			schedule_work(&nau8825->xtalk_work);
1903 		clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ;
1904 	} else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) ==
1905 		NAU8825_JACK_INSERTION_DETECTED) {
1906 		/* One more step to check GPIO status directly. Thus, the
1907 		 * driver can confirm the real insertion interruption because
1908 		 * the intrruption at manual mode has bypassed debounce
1909 		 * circuit which can get rid of unstable status.
1910 		 */
1911 		if (nau8825_is_jack_inserted(regmap)) {
1912 			/* Turn off insertion interruption at manual mode */
1913 			regmap_update_bits(regmap,
1914 				NAU8825_REG_INTERRUPT_DIS_CTRL,
1915 				NAU8825_IRQ_INSERT_DIS,
1916 				NAU8825_IRQ_INSERT_DIS);
1917 			regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1918 				NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN);
1919 			/* Enable interruption for jack type detection at audo
1920 			 * mode which can detect microphone and jack type.
1921 			 */
1922 			nau8825_setup_auto_irq(nau8825);
1923 		}
1924 	}
1925 
1926 	if (!clear_irq)
1927 		clear_irq = active_irq;
1928 	/* clears the rightmost interruption */
1929 	regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1930 
1931 	/* Delay jack report until cross talk detection is done. It can avoid
1932 	 * application to do playback preparation when cross talk detection
1933 	 * process is still working. Otherwise, the resource like clock and
1934 	 * power will be issued by them at the same time and conflict happens.
1935 	 */
1936 	if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE)
1937 		snd_soc_jack_report(nau8825->jack, event, event_mask);
1938 
1939 	return IRQ_HANDLED;
1940 }
1941 
1942 static void nau8825_setup_buttons(struct nau8825 *nau8825)
1943 {
1944 	struct regmap *regmap = nau8825->regmap;
1945 
1946 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1947 		NAU8825_SAR_TRACKING_GAIN_MASK,
1948 		nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT);
1949 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1950 		NAU8825_SAR_COMPARE_TIME_MASK,
1951 		nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT);
1952 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1953 		NAU8825_SAR_SAMPLING_TIME_MASK,
1954 		nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT);
1955 
1956 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1957 		NAU8825_KEYDET_LEVELS_NR_MASK,
1958 		(nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT);
1959 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1960 		NAU8825_KEYDET_HYSTERESIS_MASK,
1961 		nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT);
1962 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1963 		NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK,
1964 		nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT);
1965 
1966 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1,
1967 		(nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]);
1968 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2,
1969 		(nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]);
1970 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3,
1971 		(nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]);
1972 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4,
1973 		(nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]);
1974 
1975 	/* Enable short press and release interruptions */
1976 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1977 		NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN,
1978 		0);
1979 }
1980 
1981 static void nau8825_init_regs(struct nau8825 *nau8825)
1982 {
1983 	struct regmap *regmap = nau8825->regmap;
1984 
1985 	/* Latch IIC LSB value */
1986 	regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001);
1987 	/* Enable Bias/Vmid */
1988 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1989 		NAU8825_BIAS_VMID, NAU8825_BIAS_VMID);
1990 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
1991 		NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN);
1992 
1993 	/* VMID Tieoff */
1994 	regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ,
1995 		NAU8825_BIAS_VMID_SEL_MASK,
1996 		nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT);
1997 	/* Disable Boost Driver, Automatic Short circuit protection enable */
1998 	regmap_update_bits(regmap, NAU8825_REG_BOOST,
1999 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
2000 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN,
2001 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
2002 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN);
2003 
2004 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
2005 		NAU8825_JKDET_OUTPUT_EN,
2006 		nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN);
2007 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
2008 		NAU8825_JKDET_PULL_EN,
2009 		nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN);
2010 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
2011 		NAU8825_JKDET_PULL_UP,
2012 		nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0);
2013 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2014 		NAU8825_JACK_POLARITY,
2015 		/* jkdet_polarity - 1  is for active-low */
2016 		nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY);
2017 
2018 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2019 		NAU8825_JACK_INSERT_DEBOUNCE_MASK,
2020 		nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT);
2021 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2022 		NAU8825_JACK_EJECT_DEBOUNCE_MASK,
2023 		nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT);
2024 
2025 	/* Pull up IRQ pin */
2026 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2027 		NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN,
2028 		NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN);
2029 	/* Mask unneeded IRQs: 1 - disable, 0 - enable */
2030 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff);
2031 
2032 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
2033 		NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage);
2034 
2035 	if (nau8825->sar_threshold_num)
2036 		nau8825_setup_buttons(nau8825);
2037 
2038 	/* Default oversampling/decimations settings are unusable
2039 	 * (audible hiss). Set it to something better.
2040 	 */
2041 	regmap_update_bits(regmap, NAU8825_REG_ADC_RATE,
2042 		NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN,
2043 		NAU8825_ADC_SYNC_DOWN_64);
2044 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
2045 		NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64);
2046 	/* Disable DACR/L power */
2047 	regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
2048 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
2049 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
2050 	/* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
2051 	 * signal to avoid any glitches due to power up transients in both
2052 	 * the analog and digital DAC circuit.
2053 	 */
2054 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
2055 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
2056 	/* CICCLP off */
2057 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
2058 		NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF);
2059 
2060 	/* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */
2061 	regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2,
2062 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
2063 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB,
2064 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
2065 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB);
2066 	/* Class G timer 64ms */
2067 	regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL,
2068 		NAU8825_CLASSG_TIMER_MASK,
2069 		0x20 << NAU8825_CLASSG_TIMER_SFT);
2070 	/* DAC clock delay 2ns, VREF */
2071 	regmap_update_bits(regmap, NAU8825_REG_RDAC,
2072 		NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK,
2073 		(0x2 << NAU8825_RDAC_CLK_DELAY_SFT) |
2074 		(0x3 << NAU8825_RDAC_VREF_SFT));
2075 	/* Config L/R channel */
2076 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
2077 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L);
2078 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
2079 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R);
2080 	/* Disable short Frame Sync detection logic */
2081 	regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT,
2082 		NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET);
2083 	/* ADCDAT IO drive strength control */
2084 	regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
2085 			   NAU8825_ADCOUT_DS_MASK,
2086 			   nau8825->adcout_ds << NAU8825_ADCOUT_DS_SFT);
2087 }
2088 
2089 static const struct regmap_config nau8825_regmap_config = {
2090 	.val_bits = NAU8825_REG_DATA_LEN,
2091 	.reg_bits = NAU8825_REG_ADDR_LEN,
2092 
2093 	.max_register = NAU8825_REG_MAX,
2094 	.readable_reg = nau8825_readable_reg,
2095 	.writeable_reg = nau8825_writeable_reg,
2096 	.volatile_reg = nau8825_volatile_reg,
2097 
2098 	.cache_type = REGCACHE_RBTREE,
2099 	.reg_defaults = nau8825_reg_defaults,
2100 	.num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults),
2101 };
2102 
2103 static int nau8825_component_probe(struct snd_soc_component *component)
2104 {
2105 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2106 	struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
2107 
2108 	nau8825->dapm = dapm;
2109 
2110 	return 0;
2111 }
2112 
2113 static void nau8825_component_remove(struct snd_soc_component *component)
2114 {
2115 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2116 
2117 	/* Cancel and reset cross tak suppresstion detection funciton */
2118 	nau8825_xtalk_cancel(nau8825);
2119 }
2120 
2121 /**
2122  * nau8825_calc_fll_param - Calculate FLL parameters.
2123  * @fll_in: external clock provided to codec.
2124  * @fs: sampling rate.
2125  * @fll_param: Pointer to structure of FLL parameters.
2126  *
2127  * Calculate FLL parameters to configure codec.
2128  *
2129  * Returns 0 for success or negative error code.
2130  */
2131 static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs,
2132 		struct nau8825_fll *fll_param)
2133 {
2134 	u64 fvco, fvco_max;
2135 	unsigned int fref, i, fvco_sel;
2136 
2137 	/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
2138 	 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
2139 	 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK
2140 	 */
2141 	for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
2142 		fref = fll_in / fll_pre_scalar[i].param;
2143 		if (fref <= NAU_FREF_MAX)
2144 			break;
2145 	}
2146 	if (i == ARRAY_SIZE(fll_pre_scalar))
2147 		return -EINVAL;
2148 	fll_param->clk_ref_div = fll_pre_scalar[i].val;
2149 
2150 	/* Choose the FLL ratio based on FREF */
2151 	for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
2152 		if (fref >= fll_ratio[i].param)
2153 			break;
2154 	}
2155 	if (i == ARRAY_SIZE(fll_ratio))
2156 		return -EINVAL;
2157 	fll_param->ratio = fll_ratio[i].val;
2158 
2159 	/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
2160 	 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be
2161 	 * guaranteed across the full range of operation.
2162 	 * FDCO = freq_out * 2 * mclk_src_scaling
2163 	 */
2164 	fvco_max = 0;
2165 	fvco_sel = ARRAY_SIZE(mclk_src_scaling);
2166 	for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
2167 		fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param;
2168 		if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
2169 			fvco_max < fvco) {
2170 			fvco_max = fvco;
2171 			fvco_sel = i;
2172 		}
2173 	}
2174 	if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
2175 		return -EINVAL;
2176 	fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
2177 
2178 	/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
2179 	 * input based on FDCO, FREF and FLL ratio.
2180 	 */
2181 	fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
2182 	fll_param->fll_int = (fvco >> 16) & 0x3FF;
2183 	fll_param->fll_frac = fvco & 0xFFFF;
2184 	return 0;
2185 }
2186 
2187 static void nau8825_fll_apply(struct nau8825 *nau8825,
2188 		struct nau8825_fll *fll_param)
2189 {
2190 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2191 		NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK,
2192 		NAU8825_CLK_SRC_MCLK | fll_param->mclk_src);
2193 	/* Make DSP operate at high speed for better performance. */
2194 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
2195 		NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK,
2196 		fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT));
2197 	/* FLL 16-bit fractional input */
2198 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac);
2199 	/* FLL 10-bit integer input */
2200 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3,
2201 			NAU8825_FLL_INTEGER_MASK, fll_param->fll_int);
2202 	/* FLL pre-scaler */
2203 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4,
2204 			NAU8825_FLL_REF_DIV_MASK,
2205 			fll_param->clk_ref_div << NAU8825_FLL_REF_DIV_SFT);
2206 	/* select divided VCO input */
2207 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2208 		NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF);
2209 	/* Disable free-running mode */
2210 	regmap_update_bits(nau8825->regmap,
2211 		NAU8825_REG_FLL6, NAU8825_DCO_EN, 0);
2212 	if (fll_param->fll_frac) {
2213 		/* set FLL loop filter enable and cutoff frequency at 500Khz */
2214 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2215 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2216 			NAU8825_FLL_FTR_SW_MASK,
2217 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2218 			NAU8825_FLL_FTR_SW_FILTER);
2219 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2220 			NAU8825_SDM_EN | NAU8825_CUTOFF500,
2221 			NAU8825_SDM_EN | NAU8825_CUTOFF500);
2222 	} else {
2223 		/* disable FLL loop filter and cutoff frequency */
2224 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2225 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2226 			NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU);
2227 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2228 			NAU8825_SDM_EN | NAU8825_CUTOFF500, 0);
2229 	}
2230 }
2231 
2232 /* freq_out must be 256*Fs in order to achieve the best performance */
2233 static int nau8825_set_pll(struct snd_soc_component *component, int pll_id, int source,
2234 		unsigned int freq_in, unsigned int freq_out)
2235 {
2236 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2237 	struct nau8825_fll fll_param;
2238 	int ret, fs;
2239 
2240 	fs = freq_out / 256;
2241 	ret = nau8825_calc_fll_param(freq_in, fs, &fll_param);
2242 	if (ret < 0) {
2243 		dev_err(component->dev, "Unsupported input clock %d\n", freq_in);
2244 		return ret;
2245 	}
2246 	dev_dbg(component->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
2247 		fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
2248 		fll_param.fll_int, fll_param.clk_ref_div);
2249 
2250 	nau8825_fll_apply(nau8825, &fll_param);
2251 	mdelay(2);
2252 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2253 			NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2254 	return 0;
2255 }
2256 
2257 static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq)
2258 {
2259 	int ret;
2260 
2261 	nau8825->mclk = devm_clk_get(nau8825->dev, "mclk");
2262 	if (IS_ERR(nau8825->mclk)) {
2263 		dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally");
2264 		return 0;
2265 	}
2266 
2267 	if (!nau8825->mclk_freq) {
2268 		ret = clk_prepare_enable(nau8825->mclk);
2269 		if (ret) {
2270 			dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2271 			return ret;
2272 		}
2273 	}
2274 
2275 	if (nau8825->mclk_freq != freq) {
2276 		freq = clk_round_rate(nau8825->mclk, freq);
2277 		ret = clk_set_rate(nau8825->mclk, freq);
2278 		if (ret) {
2279 			dev_err(nau8825->dev, "Unable to set mclk rate\n");
2280 			return ret;
2281 		}
2282 		nau8825->mclk_freq = freq;
2283 	}
2284 
2285 	return 0;
2286 }
2287 
2288 static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap)
2289 {
2290 	regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2291 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK);
2292 	regmap_update_bits(regmap, NAU8825_REG_FLL6,
2293 		NAU8825_DCO_EN, 0);
2294 	/* Make DSP operate as default setting for power saving. */
2295 	regmap_update_bits(regmap, NAU8825_REG_FLL1,
2296 		NAU8825_ICTRL_LATCH_MASK, 0);
2297 }
2298 
2299 static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id,
2300 	unsigned int freq)
2301 {
2302 	struct regmap *regmap = nau8825->regmap;
2303 	int ret;
2304 
2305 	switch (clk_id) {
2306 	case NAU8825_CLK_DIS:
2307 		/* Clock provided externally and disable internal VCO clock */
2308 		nau8825_configure_mclk_as_sysclk(regmap);
2309 		if (nau8825->mclk_freq) {
2310 			clk_disable_unprepare(nau8825->mclk);
2311 			nau8825->mclk_freq = 0;
2312 		}
2313 
2314 		break;
2315 	case NAU8825_CLK_MCLK:
2316 		/* Acquire the semaphore to synchronize the playback and
2317 		 * interrupt handler. In order to avoid the playback inter-
2318 		 * fered by cross talk process, the driver make the playback
2319 		 * preparation halted until cross talk process finish.
2320 		 */
2321 		nau8825_sema_acquire(nau8825, 3 * HZ);
2322 		nau8825_configure_mclk_as_sysclk(regmap);
2323 		/* MCLK not changed by clock tree */
2324 		regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2325 			NAU8825_CLK_MCLK_SRC_MASK, 0);
2326 		/* Release the semaphore. */
2327 		nau8825_sema_release(nau8825);
2328 
2329 		ret = nau8825_mclk_prepare(nau8825, freq);
2330 		if (ret)
2331 			return ret;
2332 
2333 		break;
2334 	case NAU8825_CLK_INTERNAL:
2335 		if (nau8825_is_jack_inserted(nau8825->regmap)) {
2336 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2337 				NAU8825_DCO_EN, NAU8825_DCO_EN);
2338 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2339 				NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2340 			/* Decrease the VCO frequency and make DSP operate
2341 			 * as default setting for power saving.
2342 			 */
2343 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2344 				NAU8825_CLK_MCLK_SRC_MASK, 0xf);
2345 			regmap_update_bits(regmap, NAU8825_REG_FLL1,
2346 				NAU8825_ICTRL_LATCH_MASK |
2347 				NAU8825_FLL_RATIO_MASK, 0x10);
2348 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2349 				NAU8825_SDM_EN, NAU8825_SDM_EN);
2350 		} else {
2351 			/* The clock turns off intentionally for power saving
2352 			 * when no headset connected.
2353 			 */
2354 			nau8825_configure_mclk_as_sysclk(regmap);
2355 			dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n");
2356 		}
2357 		if (nau8825->mclk_freq) {
2358 			clk_disable_unprepare(nau8825->mclk);
2359 			nau8825->mclk_freq = 0;
2360 		}
2361 
2362 		break;
2363 	case NAU8825_CLK_FLL_MCLK:
2364 		/* Acquire the semaphore to synchronize the playback and
2365 		 * interrupt handler. In order to avoid the playback inter-
2366 		 * fered by cross talk process, the driver make the playback
2367 		 * preparation halted until cross talk process finish.
2368 		 */
2369 		nau8825_sema_acquire(nau8825, 3 * HZ);
2370 		/* Higher FLL reference input frequency can only set lower
2371 		 * gain error, such as 0000 for input reference from MCLK
2372 		 * 12.288Mhz.
2373 		 */
2374 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2375 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2376 			NAU8825_FLL_CLK_SRC_MCLK | 0);
2377 		/* Release the semaphore. */
2378 		nau8825_sema_release(nau8825);
2379 
2380 		ret = nau8825_mclk_prepare(nau8825, freq);
2381 		if (ret)
2382 			return ret;
2383 
2384 		break;
2385 	case NAU8825_CLK_FLL_BLK:
2386 		/* Acquire the semaphore to synchronize the playback and
2387 		 * interrupt handler. In order to avoid the playback inter-
2388 		 * fered by cross talk process, the driver make the playback
2389 		 * preparation halted until cross talk process finish.
2390 		 */
2391 		nau8825_sema_acquire(nau8825, 3 * HZ);
2392 		/* If FLL reference input is from low frequency source,
2393 		 * higher error gain can apply such as 0xf which has
2394 		 * the most sensitive gain error correction threshold,
2395 		 * Therefore, FLL has the most accurate DCO to
2396 		 * target frequency.
2397 		 */
2398 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2399 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2400 			NAU8825_FLL_CLK_SRC_BLK |
2401 			(0xf << NAU8825_GAIN_ERR_SFT));
2402 		/* Release the semaphore. */
2403 		nau8825_sema_release(nau8825);
2404 
2405 		if (nau8825->mclk_freq) {
2406 			clk_disable_unprepare(nau8825->mclk);
2407 			nau8825->mclk_freq = 0;
2408 		}
2409 
2410 		break;
2411 	case NAU8825_CLK_FLL_FS:
2412 		/* Acquire the semaphore to synchronize the playback and
2413 		 * interrupt handler. In order to avoid the playback inter-
2414 		 * fered by cross talk process, the driver make the playback
2415 		 * preparation halted until cross talk process finish.
2416 		 */
2417 		nau8825_sema_acquire(nau8825, 3 * HZ);
2418 		/* If FLL reference input is from low frequency source,
2419 		 * higher error gain can apply such as 0xf which has
2420 		 * the most sensitive gain error correction threshold,
2421 		 * Therefore, FLL has the most accurate DCO to
2422 		 * target frequency.
2423 		 */
2424 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2425 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2426 			NAU8825_FLL_CLK_SRC_FS |
2427 			(0xf << NAU8825_GAIN_ERR_SFT));
2428 		/* Release the semaphore. */
2429 		nau8825_sema_release(nau8825);
2430 
2431 		if (nau8825->mclk_freq) {
2432 			clk_disable_unprepare(nau8825->mclk);
2433 			nau8825->mclk_freq = 0;
2434 		}
2435 
2436 		break;
2437 	default:
2438 		dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id);
2439 		return -EINVAL;
2440 	}
2441 
2442 	dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq,
2443 		clk_id);
2444 	return 0;
2445 }
2446 
2447 static int nau8825_set_sysclk(struct snd_soc_component *component, int clk_id,
2448 	int source, unsigned int freq, int dir)
2449 {
2450 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2451 
2452 	return nau8825_configure_sysclk(nau8825, clk_id, freq);
2453 }
2454 
2455 static int nau8825_resume_setup(struct nau8825 *nau8825)
2456 {
2457 	struct regmap *regmap = nau8825->regmap;
2458 
2459 	/* Close clock when jack type detection at manual mode */
2460 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
2461 
2462 	/* Clear all interruption status */
2463 	nau8825_int_status_clear_all(regmap);
2464 
2465 	/* Enable both insertion and ejection interruptions, and then
2466 	 * bypass de-bounce circuit.
2467 	 */
2468 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2469 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN |
2470 		NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN,
2471 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN);
2472 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2473 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
2474 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
2475 		NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0);
2476 
2477 	return 0;
2478 }
2479 
2480 static int nau8825_set_bias_level(struct snd_soc_component *component,
2481 				   enum snd_soc_bias_level level)
2482 {
2483 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2484 	int ret;
2485 
2486 	switch (level) {
2487 	case SND_SOC_BIAS_ON:
2488 		break;
2489 
2490 	case SND_SOC_BIAS_PREPARE:
2491 		break;
2492 
2493 	case SND_SOC_BIAS_STANDBY:
2494 		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
2495 			if (nau8825->mclk_freq) {
2496 				ret = clk_prepare_enable(nau8825->mclk);
2497 				if (ret) {
2498 					dev_err(nau8825->dev, "Unable to prepare component mclk\n");
2499 					return ret;
2500 				}
2501 			}
2502 			/* Setup codec configuration after resume */
2503 			nau8825_resume_setup(nau8825);
2504 		}
2505 		break;
2506 
2507 	case SND_SOC_BIAS_OFF:
2508 		/* Reset the configuration of jack type for detection */
2509 		/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
2510 		regmap_update_bits(nau8825->regmap, NAU8825_REG_MIC_BIAS,
2511 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
2512 		/* ground HPL/HPR, MICGRND1/2 */
2513 		regmap_update_bits(nau8825->regmap,
2514 			NAU8825_REG_HSD_CTRL, 0xf, 0xf);
2515 		/* Cancel and reset cross talk detection funciton */
2516 		nau8825_xtalk_cancel(nau8825);
2517 		/* Turn off all interruptions before system shutdown. Keep the
2518 		 * interruption quiet before resume setup completes.
2519 		 */
2520 		regmap_write(nau8825->regmap,
2521 			NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff);
2522 		/* Disable ADC needed for interruptions at audo mode */
2523 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
2524 			NAU8825_ENABLE_ADC, 0);
2525 		if (nau8825->mclk_freq)
2526 			clk_disable_unprepare(nau8825->mclk);
2527 		break;
2528 	}
2529 	return 0;
2530 }
2531 
2532 static int __maybe_unused nau8825_suspend(struct snd_soc_component *component)
2533 {
2534 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2535 
2536 	disable_irq(nau8825->irq);
2537 	snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF);
2538 	/* Power down codec power; don't suppoet button wakeup */
2539 	snd_soc_dapm_disable_pin(nau8825->dapm, "SAR");
2540 	snd_soc_dapm_disable_pin(nau8825->dapm, "MICBIAS");
2541 	snd_soc_dapm_sync(nau8825->dapm);
2542 	regcache_cache_only(nau8825->regmap, true);
2543 	regcache_mark_dirty(nau8825->regmap);
2544 
2545 	return 0;
2546 }
2547 
2548 static int __maybe_unused nau8825_resume(struct snd_soc_component *component)
2549 {
2550 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2551 	int ret;
2552 
2553 	regcache_cache_only(nau8825->regmap, false);
2554 	regcache_sync(nau8825->regmap);
2555 	nau8825->xtalk_protect = true;
2556 	ret = nau8825_sema_acquire(nau8825, 0);
2557 	if (ret)
2558 		nau8825->xtalk_protect = false;
2559 	enable_irq(nau8825->irq);
2560 
2561 	return 0;
2562 }
2563 
2564 static int nau8825_set_jack(struct snd_soc_component *component,
2565 			    struct snd_soc_jack *jack, void *data)
2566 {
2567 	return nau8825_enable_jack_detect(component, jack);
2568 }
2569 
2570 static const struct snd_soc_component_driver nau8825_component_driver = {
2571 	.probe			= nau8825_component_probe,
2572 	.remove			= nau8825_component_remove,
2573 	.set_sysclk		= nau8825_set_sysclk,
2574 	.set_pll		= nau8825_set_pll,
2575 	.set_bias_level		= nau8825_set_bias_level,
2576 	.suspend		= nau8825_suspend,
2577 	.resume			= nau8825_resume,
2578 	.controls		= nau8825_controls,
2579 	.num_controls		= ARRAY_SIZE(nau8825_controls),
2580 	.dapm_widgets		= nau8825_dapm_widgets,
2581 	.num_dapm_widgets	= ARRAY_SIZE(nau8825_dapm_widgets),
2582 	.dapm_routes		= nau8825_dapm_routes,
2583 	.num_dapm_routes	= ARRAY_SIZE(nau8825_dapm_routes),
2584 	.set_jack		= nau8825_set_jack,
2585 	.suspend_bias_off	= 1,
2586 	.idle_bias_on		= 1,
2587 	.use_pmdown_time	= 1,
2588 	.endianness		= 1,
2589 };
2590 
2591 static void nau8825_reset_chip(struct regmap *regmap)
2592 {
2593 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2594 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2595 }
2596 
2597 static void nau8825_print_device_properties(struct nau8825 *nau8825)
2598 {
2599 	int i;
2600 	struct device *dev = nau8825->dev;
2601 
2602 	dev_dbg(dev, "jkdet-enable:         %d\n", nau8825->jkdet_enable);
2603 	dev_dbg(dev, "jkdet-pull-enable:    %d\n", nau8825->jkdet_pull_enable);
2604 	dev_dbg(dev, "jkdet-pull-up:        %d\n", nau8825->jkdet_pull_up);
2605 	dev_dbg(dev, "jkdet-polarity:       %d\n", nau8825->jkdet_polarity);
2606 	dev_dbg(dev, "micbias-voltage:      %d\n", nau8825->micbias_voltage);
2607 	dev_dbg(dev, "vref-impedance:       %d\n", nau8825->vref_impedance);
2608 
2609 	dev_dbg(dev, "sar-threshold-num:    %d\n", nau8825->sar_threshold_num);
2610 	for (i = 0; i < nau8825->sar_threshold_num; i++)
2611 		dev_dbg(dev, "sar-threshold[%d]=%d\n", i,
2612 				nau8825->sar_threshold[i]);
2613 
2614 	dev_dbg(dev, "sar-hysteresis:       %d\n", nau8825->sar_hysteresis);
2615 	dev_dbg(dev, "sar-voltage:          %d\n", nau8825->sar_voltage);
2616 	dev_dbg(dev, "sar-compare-time:     %d\n", nau8825->sar_compare_time);
2617 	dev_dbg(dev, "sar-sampling-time:    %d\n", nau8825->sar_sampling_time);
2618 	dev_dbg(dev, "short-key-debounce:   %d\n", nau8825->key_debounce);
2619 	dev_dbg(dev, "jack-insert-debounce: %d\n",
2620 			nau8825->jack_insert_debounce);
2621 	dev_dbg(dev, "jack-eject-debounce:  %d\n",
2622 			nau8825->jack_eject_debounce);
2623 	dev_dbg(dev, "crosstalk-enable:     %d\n",
2624 			nau8825->xtalk_enable);
2625 	dev_dbg(dev, "adcout-drive-strong:  %d\n", nau8825->adcout_ds);
2626 }
2627 
2628 static int nau8825_read_device_properties(struct device *dev,
2629 	struct nau8825 *nau8825) {
2630 	int ret;
2631 
2632 	nau8825->jkdet_enable = device_property_read_bool(dev,
2633 		"nuvoton,jkdet-enable");
2634 	nau8825->jkdet_pull_enable = device_property_read_bool(dev,
2635 		"nuvoton,jkdet-pull-enable");
2636 	nau8825->jkdet_pull_up = device_property_read_bool(dev,
2637 		"nuvoton,jkdet-pull-up");
2638 	ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity",
2639 		&nau8825->jkdet_polarity);
2640 	if (ret)
2641 		nau8825->jkdet_polarity = 1;
2642 	ret = device_property_read_u32(dev, "nuvoton,micbias-voltage",
2643 		&nau8825->micbias_voltage);
2644 	if (ret)
2645 		nau8825->micbias_voltage = 6;
2646 	ret = device_property_read_u32(dev, "nuvoton,vref-impedance",
2647 		&nau8825->vref_impedance);
2648 	if (ret)
2649 		nau8825->vref_impedance = 2;
2650 	ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num",
2651 		&nau8825->sar_threshold_num);
2652 	if (ret)
2653 		nau8825->sar_threshold_num = 4;
2654 	ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold",
2655 		nau8825->sar_threshold, nau8825->sar_threshold_num);
2656 	if (ret) {
2657 		nau8825->sar_threshold[0] = 0x08;
2658 		nau8825->sar_threshold[1] = 0x12;
2659 		nau8825->sar_threshold[2] = 0x26;
2660 		nau8825->sar_threshold[3] = 0x73;
2661 	}
2662 	ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis",
2663 		&nau8825->sar_hysteresis);
2664 	if (ret)
2665 		nau8825->sar_hysteresis = 0;
2666 	ret = device_property_read_u32(dev, "nuvoton,sar-voltage",
2667 		&nau8825->sar_voltage);
2668 	if (ret)
2669 		nau8825->sar_voltage = 6;
2670 	ret = device_property_read_u32(dev, "nuvoton,sar-compare-time",
2671 		&nau8825->sar_compare_time);
2672 	if (ret)
2673 		nau8825->sar_compare_time = 1;
2674 	ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time",
2675 		&nau8825->sar_sampling_time);
2676 	if (ret)
2677 		nau8825->sar_sampling_time = 1;
2678 	ret = device_property_read_u32(dev, "nuvoton,short-key-debounce",
2679 		&nau8825->key_debounce);
2680 	if (ret)
2681 		nau8825->key_debounce = 3;
2682 	ret = device_property_read_u32(dev, "nuvoton,jack-insert-debounce",
2683 		&nau8825->jack_insert_debounce);
2684 	if (ret)
2685 		nau8825->jack_insert_debounce = 7;
2686 	ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
2687 		&nau8825->jack_eject_debounce);
2688 	if (ret)
2689 		nau8825->jack_eject_debounce = 0;
2690 	nau8825->xtalk_enable = device_property_read_bool(dev,
2691 		"nuvoton,crosstalk-enable");
2692 	nau8825->adcout_ds = device_property_read_bool(dev, "nuvoton,adcout-drive-strong");
2693 
2694 	nau8825->mclk = devm_clk_get(dev, "mclk");
2695 	if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) {
2696 		return -EPROBE_DEFER;
2697 	} else if (PTR_ERR(nau8825->mclk) == -ENOENT) {
2698 		/* The MCLK is managed externally or not used at all */
2699 		nau8825->mclk = NULL;
2700 		dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally");
2701 	} else if (IS_ERR(nau8825->mclk)) {
2702 		return -EINVAL;
2703 	}
2704 
2705 	return 0;
2706 }
2707 
2708 static int nau8825_setup_irq(struct nau8825 *nau8825)
2709 {
2710 	int ret;
2711 
2712 	ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL,
2713 		nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2714 		"nau8825", nau8825);
2715 
2716 	if (ret) {
2717 		dev_err(nau8825->dev, "Cannot request irq %d (%d)\n",
2718 			nau8825->irq, ret);
2719 		return ret;
2720 	}
2721 
2722 	return 0;
2723 }
2724 
2725 static int nau8825_i2c_probe(struct i2c_client *i2c)
2726 {
2727 	struct device *dev = &i2c->dev;
2728 	struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev);
2729 	int ret, value;
2730 
2731 	if (!nau8825) {
2732 		nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL);
2733 		if (!nau8825)
2734 			return -ENOMEM;
2735 		ret = nau8825_read_device_properties(dev, nau8825);
2736 		if (ret)
2737 			return ret;
2738 	}
2739 
2740 	i2c_set_clientdata(i2c, nau8825);
2741 
2742 	nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config);
2743 	if (IS_ERR(nau8825->regmap))
2744 		return PTR_ERR(nau8825->regmap);
2745 	nau8825->dev = dev;
2746 	nau8825->irq = i2c->irq;
2747 	/* Initiate parameters, semaphore and work queue which are needed in
2748 	 * cross talk suppression measurment function.
2749 	 */
2750 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
2751 	nau8825->xtalk_protect = false;
2752 	nau8825->xtalk_baktab_initialized = false;
2753 	sema_init(&nau8825->xtalk_sem, 1);
2754 	INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work);
2755 
2756 	nau8825_print_device_properties(nau8825);
2757 
2758 	nau8825_reset_chip(nau8825->regmap);
2759 	ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value);
2760 	if (ret < 0) {
2761 		dev_err(dev, "Failed to read device id from the NAU8825: %d\n",
2762 			ret);
2763 		return ret;
2764 	}
2765 	if ((value & NAU8825_SOFTWARE_ID_MASK) !=
2766 			NAU8825_SOFTWARE_ID_NAU8825) {
2767 		dev_err(dev, "Not a NAU8825 chip\n");
2768 		return -ENODEV;
2769 	}
2770 
2771 	nau8825_init_regs(nau8825);
2772 
2773 	if (i2c->irq)
2774 		nau8825_setup_irq(nau8825);
2775 
2776 	return devm_snd_soc_register_component(&i2c->dev,
2777 		&nau8825_component_driver,
2778 		&nau8825_dai, 1);
2779 }
2780 
2781 static void nau8825_i2c_remove(struct i2c_client *client)
2782 {}
2783 
2784 static const struct i2c_device_id nau8825_i2c_ids[] = {
2785 	{ "nau8825", 0 },
2786 	{ }
2787 };
2788 MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids);
2789 
2790 #ifdef CONFIG_OF
2791 static const struct of_device_id nau8825_of_ids[] = {
2792 	{ .compatible = "nuvoton,nau8825", },
2793 	{}
2794 };
2795 MODULE_DEVICE_TABLE(of, nau8825_of_ids);
2796 #endif
2797 
2798 #ifdef CONFIG_ACPI
2799 static const struct acpi_device_id nau8825_acpi_match[] = {
2800 	{ "10508825", 0 },
2801 	{},
2802 };
2803 MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match);
2804 #endif
2805 
2806 static struct i2c_driver nau8825_driver = {
2807 	.driver = {
2808 		.name = "nau8825",
2809 		.of_match_table = of_match_ptr(nau8825_of_ids),
2810 		.acpi_match_table = ACPI_PTR(nau8825_acpi_match),
2811 	},
2812 	.probe_new = nau8825_i2c_probe,
2813 	.remove = nau8825_i2c_remove,
2814 	.id_table = nau8825_i2c_ids,
2815 };
2816 module_i2c_driver(nau8825_driver);
2817 
2818 MODULE_DESCRIPTION("ASoC nau8825 driver");
2819 MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>");
2820 MODULE_LICENSE("GPL");
2821