1 /* 2 * Nuvoton NAU8825 audio codec driver 3 * 4 * Copyright 2015 Google Chromium project. 5 * Author: Anatol Pomozov <anatol@chromium.org> 6 * Copyright 2015 Nuvoton Technology Corp. 7 * Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com> 8 * 9 * Licensed under the GPL-2. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/delay.h> 14 #include <linux/init.h> 15 #include <linux/i2c.h> 16 #include <linux/regmap.h> 17 #include <linux/slab.h> 18 #include <linux/clk.h> 19 #include <linux/acpi.h> 20 #include <linux/math64.h> 21 #include <linux/semaphore.h> 22 23 #include <sound/initval.h> 24 #include <sound/tlv.h> 25 #include <sound/core.h> 26 #include <sound/pcm.h> 27 #include <sound/pcm_params.h> 28 #include <sound/soc.h> 29 #include <sound/jack.h> 30 31 32 #include "nau8825.h" 33 34 35 #define NUVOTON_CODEC_DAI "nau8825-hifi" 36 37 #define NAU_FREF_MAX 13500000 38 #define NAU_FVCO_MAX 124000000 39 #define NAU_FVCO_MIN 90000000 40 41 /* cross talk suppression detection */ 42 #define LOG10_MAGIC 646456993 43 #define GAIN_AUGMENT 22500 44 #define SIDETONE_BASE 207000 45 46 /* the maximum frequency of CLK_ADC and CLK_DAC */ 47 #define CLK_DA_AD_MAX 6144000 48 49 static int nau8825_configure_sysclk(struct nau8825 *nau8825, 50 int clk_id, unsigned int freq); 51 52 struct nau8825_fll { 53 int mclk_src; 54 int ratio; 55 int fll_frac; 56 int fll_int; 57 int clk_ref_div; 58 }; 59 60 struct nau8825_fll_attr { 61 unsigned int param; 62 unsigned int val; 63 }; 64 65 /* scaling for mclk from sysclk_src output */ 66 static const struct nau8825_fll_attr mclk_src_scaling[] = { 67 { 1, 0x0 }, 68 { 2, 0x2 }, 69 { 4, 0x3 }, 70 { 8, 0x4 }, 71 { 16, 0x5 }, 72 { 32, 0x6 }, 73 { 3, 0x7 }, 74 { 6, 0xa }, 75 { 12, 0xb }, 76 { 24, 0xc }, 77 { 48, 0xd }, 78 { 96, 0xe }, 79 { 5, 0xf }, 80 }; 81 82 /* ratio for input clk freq */ 83 static const struct nau8825_fll_attr fll_ratio[] = { 84 { 512000, 0x01 }, 85 { 256000, 0x02 }, 86 { 128000, 0x04 }, 87 { 64000, 0x08 }, 88 { 32000, 0x10 }, 89 { 8000, 0x20 }, 90 { 4000, 0x40 }, 91 }; 92 93 static const struct nau8825_fll_attr fll_pre_scalar[] = { 94 { 1, 0x0 }, 95 { 2, 0x1 }, 96 { 4, 0x2 }, 97 { 8, 0x3 }, 98 }; 99 100 /* over sampling rate */ 101 struct nau8825_osr_attr { 102 unsigned int osr; 103 unsigned int clk_src; 104 }; 105 106 static const struct nau8825_osr_attr osr_dac_sel[] = { 107 { 64, 2 }, /* OSR 64, SRC 1/4 */ 108 { 256, 0 }, /* OSR 256, SRC 1 */ 109 { 128, 1 }, /* OSR 128, SRC 1/2 */ 110 { 0, 0 }, 111 { 32, 3 }, /* OSR 32, SRC 1/8 */ 112 }; 113 114 static const struct nau8825_osr_attr osr_adc_sel[] = { 115 { 32, 3 }, /* OSR 32, SRC 1/8 */ 116 { 64, 2 }, /* OSR 64, SRC 1/4 */ 117 { 128, 1 }, /* OSR 128, SRC 1/2 */ 118 { 256, 0 }, /* OSR 256, SRC 1 */ 119 }; 120 121 static const struct reg_default nau8825_reg_defaults[] = { 122 { NAU8825_REG_ENA_CTRL, 0x00ff }, 123 { NAU8825_REG_IIC_ADDR_SET, 0x0 }, 124 { NAU8825_REG_CLK_DIVIDER, 0x0050 }, 125 { NAU8825_REG_FLL1, 0x0 }, 126 { NAU8825_REG_FLL2, 0x3126 }, 127 { NAU8825_REG_FLL3, 0x0008 }, 128 { NAU8825_REG_FLL4, 0x0010 }, 129 { NAU8825_REG_FLL5, 0x0 }, 130 { NAU8825_REG_FLL6, 0x6000 }, 131 { NAU8825_REG_FLL_VCO_RSV, 0xf13c }, 132 { NAU8825_REG_HSD_CTRL, 0x000c }, 133 { NAU8825_REG_JACK_DET_CTRL, 0x0 }, 134 { NAU8825_REG_INTERRUPT_MASK, 0x0 }, 135 { NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff }, 136 { NAU8825_REG_SAR_CTRL, 0x0015 }, 137 { NAU8825_REG_KEYDET_CTRL, 0x0110 }, 138 { NAU8825_REG_VDET_THRESHOLD_1, 0x0 }, 139 { NAU8825_REG_VDET_THRESHOLD_2, 0x0 }, 140 { NAU8825_REG_VDET_THRESHOLD_3, 0x0 }, 141 { NAU8825_REG_VDET_THRESHOLD_4, 0x0 }, 142 { NAU8825_REG_GPIO34_CTRL, 0x0 }, 143 { NAU8825_REG_GPIO12_CTRL, 0x0 }, 144 { NAU8825_REG_TDM_CTRL, 0x0 }, 145 { NAU8825_REG_I2S_PCM_CTRL1, 0x000b }, 146 { NAU8825_REG_I2S_PCM_CTRL2, 0x8010 }, 147 { NAU8825_REG_LEFT_TIME_SLOT, 0x0 }, 148 { NAU8825_REG_RIGHT_TIME_SLOT, 0x0 }, 149 { NAU8825_REG_BIQ_CTRL, 0x0 }, 150 { NAU8825_REG_BIQ_COF1, 0x0 }, 151 { NAU8825_REG_BIQ_COF2, 0x0 }, 152 { NAU8825_REG_BIQ_COF3, 0x0 }, 153 { NAU8825_REG_BIQ_COF4, 0x0 }, 154 { NAU8825_REG_BIQ_COF5, 0x0 }, 155 { NAU8825_REG_BIQ_COF6, 0x0 }, 156 { NAU8825_REG_BIQ_COF7, 0x0 }, 157 { NAU8825_REG_BIQ_COF8, 0x0 }, 158 { NAU8825_REG_BIQ_COF9, 0x0 }, 159 { NAU8825_REG_BIQ_COF10, 0x0 }, 160 { NAU8825_REG_ADC_RATE, 0x0010 }, 161 { NAU8825_REG_DAC_CTRL1, 0x0001 }, 162 { NAU8825_REG_DAC_CTRL2, 0x0 }, 163 { NAU8825_REG_DAC_DGAIN_CTRL, 0x0 }, 164 { NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf }, 165 { NAU8825_REG_MUTE_CTRL, 0x0 }, 166 { NAU8825_REG_HSVOL_CTRL, 0x0 }, 167 { NAU8825_REG_DACL_CTRL, 0x02cf }, 168 { NAU8825_REG_DACR_CTRL, 0x00cf }, 169 { NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 }, 170 { NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 }, 171 { NAU8825_REG_ADC_DRC_SLOPES, 0x25ff }, 172 { NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 }, 173 { NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 }, 174 { NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 }, 175 { NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 }, 176 { NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 }, 177 { NAU8825_REG_IMM_MODE_CTRL, 0x0 }, 178 { NAU8825_REG_CLASSG_CTRL, 0x0 }, 179 { NAU8825_REG_OPT_EFUSE_CTRL, 0x0 }, 180 { NAU8825_REG_MISC_CTRL, 0x0 }, 181 { NAU8825_REG_BIAS_ADJ, 0x0 }, 182 { NAU8825_REG_TRIM_SETTINGS, 0x0 }, 183 { NAU8825_REG_ANALOG_CONTROL_1, 0x0 }, 184 { NAU8825_REG_ANALOG_CONTROL_2, 0x0 }, 185 { NAU8825_REG_ANALOG_ADC_1, 0x0011 }, 186 { NAU8825_REG_ANALOG_ADC_2, 0x0020 }, 187 { NAU8825_REG_RDAC, 0x0008 }, 188 { NAU8825_REG_MIC_BIAS, 0x0006 }, 189 { NAU8825_REG_BOOST, 0x0 }, 190 { NAU8825_REG_FEPGA, 0x0 }, 191 { NAU8825_REG_POWER_UP_CONTROL, 0x0 }, 192 { NAU8825_REG_CHARGE_PUMP, 0x0 }, 193 }; 194 195 /* register backup table when cross talk detection */ 196 static struct reg_default nau8825_xtalk_baktab[] = { 197 { NAU8825_REG_ADC_DGAIN_CTRL, 0 }, 198 { NAU8825_REG_HSVOL_CTRL, 0 }, 199 { NAU8825_REG_DACL_CTRL, 0 }, 200 { NAU8825_REG_DACR_CTRL, 0 }, 201 }; 202 203 static const unsigned short logtable[256] = { 204 0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7, 205 0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508, 206 0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6, 207 0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37, 208 0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f, 209 0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41, 210 0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1, 211 0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142, 212 0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68, 213 0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355, 214 0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c, 215 0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490, 216 0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3, 217 0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507, 218 0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe, 219 0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca, 220 0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c, 221 0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7, 222 0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c, 223 0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c, 224 0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a, 225 0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065, 226 0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730, 227 0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc, 228 0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469, 229 0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9, 230 0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c, 231 0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765, 232 0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83, 233 0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387, 234 0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973, 235 0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47 236 }; 237 238 /** 239 * nau8825_sema_acquire - acquire the semaphore of nau88l25 240 * @nau8825: component to register the codec private data with 241 * @timeout: how long in jiffies to wait before failure or zero to wait 242 * until release 243 * 244 * Attempts to acquire the semaphore with number of jiffies. If no more 245 * tasks are allowed to acquire the semaphore, calling this function will 246 * put the task to sleep. If the semaphore is not released within the 247 * specified number of jiffies, this function returns. 248 * Acquires the semaphore without jiffies. If no more tasks are allowed 249 * to acquire the semaphore, calling this function will put the task to 250 * sleep until the semaphore is released. 251 * If the semaphore is not released within the specified number of jiffies, 252 * this function returns -ETIME. 253 * If the sleep is interrupted by a signal, this function will return -EINTR. 254 * It returns 0 if the semaphore was acquired successfully. 255 */ 256 static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout) 257 { 258 int ret; 259 260 if (timeout) { 261 ret = down_timeout(&nau8825->xtalk_sem, timeout); 262 if (ret < 0) 263 dev_warn(nau8825->dev, "Acquire semaphone timeout\n"); 264 } else { 265 ret = down_interruptible(&nau8825->xtalk_sem); 266 if (ret < 0) 267 dev_warn(nau8825->dev, "Acquire semaphone fail\n"); 268 } 269 270 return ret; 271 } 272 273 /** 274 * nau8825_sema_release - release the semaphore of nau88l25 275 * @nau8825: component to register the codec private data with 276 * 277 * Release the semaphore which may be called from any context and 278 * even by tasks which have never called down(). 279 */ 280 static inline void nau8825_sema_release(struct nau8825 *nau8825) 281 { 282 up(&nau8825->xtalk_sem); 283 } 284 285 /** 286 * nau8825_sema_reset - reset the semaphore for nau88l25 287 * @nau8825: component to register the codec private data with 288 * 289 * Reset the counter of the semaphore. Call this function to restart 290 * a new round task management. 291 */ 292 static inline void nau8825_sema_reset(struct nau8825 *nau8825) 293 { 294 nau8825->xtalk_sem.count = 1; 295 } 296 297 /** 298 * Ramp up the headphone volume change gradually to target level. 299 * 300 * @nau8825: component to register the codec private data with 301 * @vol_from: the volume to start up 302 * @vol_to: the target volume 303 * @step: the volume span to move on 304 * 305 * The headphone volume is from 0dB to minimum -54dB and -1dB per step. 306 * If the volume changes sharp, there is a pop noise heard in headphone. We 307 * provide the function to ramp up the volume up or down by delaying 10ms 308 * per step. 309 */ 310 static void nau8825_hpvol_ramp(struct nau8825 *nau8825, 311 unsigned int vol_from, unsigned int vol_to, unsigned int step) 312 { 313 unsigned int value, volume, ramp_up, from, to; 314 315 if (vol_from == vol_to || step == 0) { 316 return; 317 } else if (vol_from < vol_to) { 318 ramp_up = true; 319 from = vol_from; 320 to = vol_to; 321 } else { 322 ramp_up = false; 323 from = vol_to; 324 to = vol_from; 325 } 326 /* only handle volume from 0dB to minimum -54dB */ 327 if (to > NAU8825_HP_VOL_MIN) 328 to = NAU8825_HP_VOL_MIN; 329 330 for (volume = from; volume < to; volume += step) { 331 if (ramp_up) 332 value = volume; 333 else 334 value = to - volume + from; 335 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL, 336 NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK, 337 (value << NAU8825_HPL_VOL_SFT) | value); 338 usleep_range(10000, 10500); 339 } 340 if (ramp_up) 341 value = to; 342 else 343 value = from; 344 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL, 345 NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK, 346 (value << NAU8825_HPL_VOL_SFT) | value); 347 } 348 349 /** 350 * Computes log10 of a value; the result is round off to 3 decimal. This func- 351 * tion takes reference to dvb-math. The source code locates as the following. 352 * Linux/drivers/media/dvb-core/dvb_math.c 353 * 354 * return log10(value) * 1000 355 */ 356 static u32 nau8825_intlog10_dec3(u32 value) 357 { 358 u32 msb, logentry, significand, interpolation, log10val; 359 u64 log2val; 360 361 /* first detect the msb (count begins at 0) */ 362 msb = fls(value) - 1; 363 /** 364 * now we use a logtable after the following method: 365 * 366 * log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24 367 * where x = msb and therefore 1 <= y < 2 368 * first y is determined by shifting the value left 369 * so that msb is bit 31 370 * 0x00231f56 -> 0x8C7D5800 371 * the result is y * 2^31 -> "significand" 372 * then the highest 9 bits are used for a table lookup 373 * the highest bit is discarded because it's always set 374 * the highest nine bits in our example are 100011000 375 * so we would use the entry 0x18 376 */ 377 significand = value << (31 - msb); 378 logentry = (significand >> 23) & 0xff; 379 /** 380 * last step we do is interpolation because of the 381 * limitations of the log table the error is that part of 382 * the significand which isn't used for lookup then we 383 * compute the ratio between the error and the next table entry 384 * and interpolate it between the log table entry used and the 385 * next one the biggest error possible is 0x7fffff 386 * (in our example it's 0x7D5800) 387 * needed value for next table entry is 0x800000 388 * so the interpolation is 389 * (error / 0x800000) * (logtable_next - logtable_current) 390 * in the implementation the division is moved to the end for 391 * better accuracy there is also an overflow correction if 392 * logtable_next is 256 393 */ 394 interpolation = ((significand & 0x7fffff) * 395 ((logtable[(logentry + 1) & 0xff] - 396 logtable[logentry]) & 0xffff)) >> 15; 397 398 log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation); 399 /** 400 * log10(x) = log2(x) * log10(2) 401 */ 402 log10val = (log2val * LOG10_MAGIC) >> 31; 403 /** 404 * the result is round off to 3 decimal 405 */ 406 return log10val / ((1 << 24) / 1000); 407 } 408 409 /** 410 * computes cross talk suppression sidetone gain. 411 * 412 * @sig_org: orignal signal level 413 * @sig_cros: cross talk signal level 414 * 415 * The orignal and cross talk signal vlues need to be characterized. 416 * Once these values have been characterized, this sidetone value 417 * can be converted to decibel with the equation below. 418 * sidetone = 20 * log (original signal level / crosstalk signal level) 419 * 420 * return cross talk sidetone gain 421 */ 422 static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros) 423 { 424 u32 gain, sidetone; 425 426 if (unlikely(sig_org == 0) || unlikely(sig_cros == 0)) { 427 WARN_ON(1); 428 return 0; 429 } 430 431 sig_org = nau8825_intlog10_dec3(sig_org); 432 sig_cros = nau8825_intlog10_dec3(sig_cros); 433 if (sig_org >= sig_cros) 434 gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT; 435 else 436 gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT; 437 sidetone = SIDETONE_BASE - gain * 2; 438 sidetone /= 1000; 439 440 return sidetone; 441 } 442 443 static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg) 444 { 445 int index; 446 447 for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++) 448 if (nau8825_xtalk_baktab[index].reg == reg) 449 return index; 450 return -EINVAL; 451 } 452 453 static void nau8825_xtalk_backup(struct nau8825 *nau8825) 454 { 455 int i; 456 457 /* Backup some register values to backup table */ 458 for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) 459 regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg, 460 &nau8825_xtalk_baktab[i].def); 461 } 462 463 static void nau8825_xtalk_restore(struct nau8825 *nau8825) 464 { 465 int i, volume; 466 467 /* Restore register values from backup table; When the driver restores 468 * the headphone volumem, it needs recover to original level gradually 469 * with 3dB per step for less pop noise. 470 */ 471 for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) { 472 if (nau8825_xtalk_baktab[i].reg == NAU8825_REG_HSVOL_CTRL) { 473 /* Ramping up the volume change to reduce pop noise */ 474 volume = nau8825_xtalk_baktab[i].def & 475 NAU8825_HPR_VOL_MASK; 476 nau8825_hpvol_ramp(nau8825, 0, volume, 3); 477 continue; 478 } 479 regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg, 480 nau8825_xtalk_baktab[i].def); 481 } 482 } 483 484 static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825) 485 { 486 /* Enable power of DAC path */ 487 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, 488 NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL | 489 NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK | 490 NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR | 491 NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC | 492 NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK); 493 /* Prevent startup click by letting charge pump to ramp up and 494 * change bump enable 495 */ 496 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 497 NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 498 NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN); 499 /* Enable clock sync of DAC and DAC clock */ 500 regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC, 501 NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN | 502 NAU8825_RDAC_FS_BCLK_ENB, 503 NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN); 504 /* Power up output driver with 2 stage */ 505 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, 506 NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L | 507 NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 508 NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L | 509 NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L); 510 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, 511 NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 512 NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L); 513 /* HP outputs not shouted to ground */ 514 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL, 515 NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0); 516 /* Enable HP boost driver */ 517 regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST, 518 NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS); 519 /* Enable class G compare path to supply 1.8V or 0.9V. */ 520 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL, 521 NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN, 522 NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN); 523 } 524 525 static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825) 526 { 527 /* Power up left ADC and raise 5dB than Vmid for Vref */ 528 regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2, 529 NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 530 NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB); 531 } 532 533 static void nau8825_xtalk_clock(struct nau8825 *nau8825) 534 { 535 /* Recover FLL default value */ 536 regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0); 537 regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126); 538 regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008); 539 regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010); 540 regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0); 541 regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000); 542 /* Enable internal VCO clock for detection signal generated */ 543 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 544 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO); 545 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN, 546 NAU8825_DCO_EN); 547 /* Given specific clock frequency of internal clock to 548 * generate signal. 549 */ 550 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 551 NAU8825_CLK_MCLK_SRC_MASK, 0xf); 552 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1, 553 NAU8825_FLL_RATIO_MASK, 0x10); 554 } 555 556 static void nau8825_xtalk_prepare(struct nau8825 *nau8825) 557 { 558 int volume, index; 559 560 /* Backup those registers changed by cross talk detection */ 561 nau8825_xtalk_backup(nau8825); 562 /* Config IIS as master to output signal by codec */ 563 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, 564 NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK | 565 NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER | 566 (0x2 << NAU8825_I2S_LRC_DIV_SFT) | 0x1); 567 /* Ramp up headphone volume to 0dB to get better performance and 568 * avoid pop noise in headphone. 569 */ 570 index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL); 571 if (index != -EINVAL) { 572 volume = nau8825_xtalk_baktab[index].def & 573 NAU8825_HPR_VOL_MASK; 574 nau8825_hpvol_ramp(nau8825, volume, 0, 3); 575 } 576 nau8825_xtalk_clock(nau8825); 577 nau8825_xtalk_prepare_dac(nau8825); 578 nau8825_xtalk_prepare_adc(nau8825); 579 /* Config channel path and digital gain */ 580 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL, 581 NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK, 582 NAU8825_DACL_CH_SEL_L | 0xab); 583 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL, 584 NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK, 585 NAU8825_DACR_CH_SEL_R | 0xab); 586 /* Config cross talk parameters and generate the 23Hz sine wave with 587 * 1/16 full scale of signal level for impedance measurement. 588 */ 589 regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 590 NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK | 591 NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK, 592 (0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th | 593 NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN); 594 /* RMS intrruption enable */ 595 regmap_update_bits(nau8825->regmap, 596 NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0); 597 /* Power up left and right DAC */ 598 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 599 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0); 600 } 601 602 static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825) 603 { 604 /* Disable HP boost driver */ 605 regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST, 606 NAU8825_HP_BOOST_DIS, 0); 607 /* HP outputs shouted to ground */ 608 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL, 609 NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 610 NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L); 611 /* Power down left and right DAC */ 612 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 613 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 614 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL); 615 /* Enable the TESTDAC and disable L/R HP impedance */ 616 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 617 NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP | 618 NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN); 619 /* Power down output driver with 2 stage */ 620 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, 621 NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0); 622 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, 623 NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L | 624 NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0); 625 /* Disable clock sync of DAC and DAC clock */ 626 regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC, 627 NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0); 628 /* Disable charge pump ramp up function and change bump */ 629 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 630 NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0); 631 /* Disable power of DAC path */ 632 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, 633 NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL | 634 NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0); 635 if (!nau8825->irq) 636 regmap_update_bits(nau8825->regmap, 637 NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0); 638 } 639 640 static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825) 641 { 642 /* Power down left ADC and restore voltage to Vmid */ 643 regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2, 644 NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0); 645 } 646 647 static void nau8825_xtalk_clean(struct nau8825 *nau8825) 648 { 649 /* Enable internal VCO needed for interruptions */ 650 nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0); 651 nau8825_xtalk_clean_dac(nau8825); 652 nau8825_xtalk_clean_adc(nau8825); 653 /* Clear cross talk parameters and disable */ 654 regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0); 655 /* RMS intrruption disable */ 656 regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK, 657 NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN); 658 /* Recover default value for IIS */ 659 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, 660 NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK | 661 NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE); 662 /* Restore value of specific register for cross talk */ 663 nau8825_xtalk_restore(nau8825); 664 } 665 666 static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol) 667 { 668 /* Apply ADC volume for better cross talk performance */ 669 regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL, 670 NAU8825_ADC_DIG_VOL_MASK, vol); 671 /* Disables JKTIP(HPL) DAC channel for right to left measurement. 672 * Do it before sending signal in order to erase pop noise. 673 */ 674 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 675 NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN, 676 NAU8825_BIAS_TESTDACL_EN); 677 switch (nau8825->xtalk_state) { 678 case NAU8825_XTALK_HPR_R2L: 679 /* Enable right headphone impedance */ 680 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 681 NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP, 682 NAU8825_BIAS_HPR_IMP); 683 break; 684 case NAU8825_XTALK_HPL_R2L: 685 /* Enable left headphone impedance */ 686 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 687 NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP, 688 NAU8825_BIAS_HPL_IMP); 689 break; 690 default: 691 break; 692 } 693 msleep(100); 694 /* Impedance measurement mode enable */ 695 regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 696 NAU8825_IMM_EN, NAU8825_IMM_EN); 697 } 698 699 static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825) 700 { 701 /* Impedance measurement mode disable */ 702 regmap_update_bits(nau8825->regmap, 703 NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0); 704 } 705 706 /* The cross talk measurement function can reduce cross talk across the 707 * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal 708 * level to determine what cross talk reduction gain is. This system works by 709 * sending a 23Hz -24dBV sine wave into the headset output DAC and through 710 * the PGA. The output of the PGA is then connected to an internal current 711 * sense which measures the attenuated 23Hz signal and passing the output to 712 * an ADC which converts the measurement to a binary code. With two separated 713 * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data 714 * can be separated read in IMM_RMS_L for HSR and HSL after each measurement. 715 * Thus, the measurement function has four states to complete whole sequence. 716 * 1. Prepare state : Prepare the resource for detection and transfer to HPR 717 * IMM stat to make JKR1(HPR) impedance measure. 718 * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer 719 * to HPL IMM state to make JKTIP(HPL) impedance measure. 720 * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and 721 * transfer to IMM state to determine suppression sidetone gain. 722 * 4. IMM state : Computes cross talk suppression sidetone gain with orignal 723 * and cross talk signal level. Apply this gain and then restore codec 724 * configuration. Then transfer to Done state for ending. 725 */ 726 static void nau8825_xtalk_measure(struct nau8825 *nau8825) 727 { 728 u32 sidetone; 729 730 switch (nau8825->xtalk_state) { 731 case NAU8825_XTALK_PREPARE: 732 /* In prepare state, set up clock, intrruption, DAC path, ADC 733 * path and cross talk detection parameters for preparation. 734 */ 735 nau8825_xtalk_prepare(nau8825); 736 msleep(280); 737 /* Trigger right headphone impedance detection */ 738 nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L; 739 nau8825_xtalk_imm_start(nau8825, 0x00d2); 740 break; 741 case NAU8825_XTALK_HPR_R2L: 742 /* In right headphone IMM state, read out right headphone 743 * impedance measure result, and then start up left side. 744 */ 745 regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L, 746 &nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]); 747 dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n", 748 nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]); 749 /* Disable then re-enable IMM mode to update */ 750 nau8825_xtalk_imm_stop(nau8825); 751 /* Trigger left headphone impedance detection */ 752 nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L; 753 nau8825_xtalk_imm_start(nau8825, 0x00ff); 754 break; 755 case NAU8825_XTALK_HPL_R2L: 756 /* In left headphone IMM state, read out left headphone 757 * impedance measure result, and delay some time to wait 758 * detection sine wave output finish. Then, we can calculate 759 * the cross talk suppresstion side tone according to the L/R 760 * headphone imedance. 761 */ 762 regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L, 763 &nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]); 764 dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n", 765 nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]); 766 nau8825_xtalk_imm_stop(nau8825); 767 msleep(150); 768 nau8825->xtalk_state = NAU8825_XTALK_IMM; 769 break; 770 case NAU8825_XTALK_IMM: 771 /* In impedance measure state, the orignal and cross talk 772 * signal level vlues are ready. The side tone gain is deter- 773 * mined with these signal level. After all, restore codec 774 * configuration. 775 */ 776 sidetone = nau8825_xtalk_sidetone( 777 nau8825->imp_rms[NAU8825_XTALK_HPR_R2L], 778 nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]); 779 dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone); 780 regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL, 781 (sidetone << 8) | sidetone); 782 nau8825_xtalk_clean(nau8825); 783 nau8825->xtalk_state = NAU8825_XTALK_DONE; 784 break; 785 default: 786 break; 787 } 788 } 789 790 static void nau8825_xtalk_work(struct work_struct *work) 791 { 792 struct nau8825 *nau8825 = container_of( 793 work, struct nau8825, xtalk_work); 794 795 nau8825_xtalk_measure(nau8825); 796 /* To determine the cross talk side tone gain when reach 797 * the impedance measure state. 798 */ 799 if (nau8825->xtalk_state == NAU8825_XTALK_IMM) 800 nau8825_xtalk_measure(nau8825); 801 802 /* Delay jack report until cross talk detection process 803 * completed. It can avoid application to do playback 804 * preparation before cross talk detection is still working. 805 * Meanwhile, the protection of the cross talk detection 806 * is released. 807 */ 808 if (nau8825->xtalk_state == NAU8825_XTALK_DONE) { 809 snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event, 810 nau8825->xtalk_event_mask); 811 nau8825_sema_release(nau8825); 812 nau8825->xtalk_protect = false; 813 } 814 } 815 816 static void nau8825_xtalk_cancel(struct nau8825 *nau8825) 817 { 818 /* If the xtalk_protect is true, that means the process is still 819 * on going. The driver forces to cancel the cross talk task and 820 * restores the configuration to original status. 821 */ 822 if (nau8825->xtalk_protect) { 823 cancel_work_sync(&nau8825->xtalk_work); 824 nau8825_xtalk_clean(nau8825); 825 } 826 /* Reset parameters for cross talk suppression function */ 827 nau8825_sema_reset(nau8825); 828 nau8825->xtalk_state = NAU8825_XTALK_DONE; 829 nau8825->xtalk_protect = false; 830 } 831 832 static bool nau8825_readable_reg(struct device *dev, unsigned int reg) 833 { 834 switch (reg) { 835 case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV: 836 case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL: 837 case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL: 838 case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL: 839 case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY: 840 case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY: 841 case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R: 842 case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL: 843 case NAU8825_REG_MISC_CTRL: 844 case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS: 845 case NAU8825_REG_BIAS_ADJ: 846 case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2: 847 case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS: 848 case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA: 849 case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS: 850 return true; 851 default: 852 return false; 853 } 854 855 } 856 857 static bool nau8825_writeable_reg(struct device *dev, unsigned int reg) 858 { 859 switch (reg) { 860 case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV: 861 case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL: 862 case NAU8825_REG_INTERRUPT_MASK: 863 case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL: 864 case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL: 865 case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY: 866 case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY: 867 case NAU8825_REG_IMM_MODE_CTRL: 868 case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL: 869 case NAU8825_REG_MISC_CTRL: 870 case NAU8825_REG_BIAS_ADJ: 871 case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2: 872 case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS: 873 case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA: 874 case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP: 875 return true; 876 default: 877 return false; 878 } 879 } 880 881 static bool nau8825_volatile_reg(struct device *dev, unsigned int reg) 882 { 883 switch (reg) { 884 case NAU8825_REG_RESET: 885 case NAU8825_REG_IRQ_STATUS: 886 case NAU8825_REG_INT_CLR_KEY_STATUS: 887 case NAU8825_REG_IMM_RMS_L: 888 case NAU8825_REG_IMM_RMS_R: 889 case NAU8825_REG_I2C_DEVICE_ID: 890 case NAU8825_REG_SARDOUT_RAM_STATUS: 891 case NAU8825_REG_CHARGE_PUMP_INPUT_READ: 892 case NAU8825_REG_GENERAL_STATUS: 893 case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10: 894 return true; 895 default: 896 return false; 897 } 898 } 899 900 static int nau8825_adc_event(struct snd_soc_dapm_widget *w, 901 struct snd_kcontrol *kcontrol, int event) 902 { 903 struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm); 904 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); 905 906 switch (event) { 907 case SND_SOC_DAPM_POST_PMU: 908 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, 909 NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC); 910 break; 911 case SND_SOC_DAPM_POST_PMD: 912 if (!nau8825->irq) 913 regmap_update_bits(nau8825->regmap, 914 NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0); 915 break; 916 default: 917 return -EINVAL; 918 } 919 920 return 0; 921 } 922 923 static int nau8825_pump_event(struct snd_soc_dapm_widget *w, 924 struct snd_kcontrol *kcontrol, int event) 925 { 926 struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm); 927 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); 928 929 switch (event) { 930 case SND_SOC_DAPM_POST_PMU: 931 /* Prevent startup click by letting charge pump to ramp up */ 932 msleep(10); 933 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 934 NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW); 935 break; 936 case SND_SOC_DAPM_PRE_PMD: 937 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 938 NAU8825_JAMNODCLOW, 0); 939 break; 940 default: 941 return -EINVAL; 942 } 943 944 return 0; 945 } 946 947 static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w, 948 struct snd_kcontrol *kcontrol, int event) 949 { 950 struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm); 951 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); 952 953 switch (event) { 954 case SND_SOC_DAPM_PRE_PMU: 955 /* Disables the TESTDAC to let DAC signal pass through. */ 956 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 957 NAU8825_BIAS_TESTDAC_EN, 0); 958 break; 959 case SND_SOC_DAPM_POST_PMD: 960 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 961 NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN); 962 break; 963 default: 964 return -EINVAL; 965 } 966 967 return 0; 968 } 969 970 static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol, 971 struct snd_ctl_elem_value *ucontrol) 972 { 973 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 974 struct soc_bytes_ext *params = (void *)kcontrol->private_value; 975 976 if (!component->regmap) 977 return -EINVAL; 978 979 regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1, 980 ucontrol->value.bytes.data, params->max); 981 return 0; 982 } 983 984 static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol, 985 struct snd_ctl_elem_value *ucontrol) 986 { 987 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 988 struct soc_bytes_ext *params = (void *)kcontrol->private_value; 989 void *data; 990 991 if (!component->regmap) 992 return -EINVAL; 993 994 data = kmemdup(ucontrol->value.bytes.data, 995 params->max, GFP_KERNEL | GFP_DMA); 996 if (!data) 997 return -ENOMEM; 998 999 regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL, 1000 NAU8825_BIQ_WRT_EN, 0); 1001 regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1, 1002 data, params->max); 1003 regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL, 1004 NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN); 1005 1006 kfree(data); 1007 return 0; 1008 } 1009 1010 static const char * const nau8825_biq_path[] = { 1011 "ADC", "DAC" 1012 }; 1013 1014 static const struct soc_enum nau8825_biq_path_enum = 1015 SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT, 1016 ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path); 1017 1018 static const char * const nau8825_adc_decimation[] = { 1019 "32", "64", "128", "256" 1020 }; 1021 1022 static const struct soc_enum nau8825_adc_decimation_enum = 1023 SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT, 1024 ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation); 1025 1026 static const char * const nau8825_dac_oversampl[] = { 1027 "64", "256", "128", "", "32" 1028 }; 1029 1030 static const struct soc_enum nau8825_dac_oversampl_enum = 1031 SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT, 1032 ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl); 1033 1034 static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400); 1035 static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0); 1036 static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0); 1037 static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600); 1038 static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400); 1039 1040 static const struct snd_kcontrol_new nau8825_controls[] = { 1041 SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL, 1042 0, 0xff, 0, adc_vol_tlv), 1043 SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL, 1044 12, 8, 0x0f, 0, sidetone_vol_tlv), 1045 SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL, 1046 6, 0, 0x3f, 1, dac_vol_tlv), 1047 SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL, 1048 8, 37, 0, fepga_gain_tlv), 1049 SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL, 1050 0, 8, 0xff, 0, crosstalk_vol_tlv), 1051 1052 SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum), 1053 SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum), 1054 /* programmable biquad filter */ 1055 SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum), 1056 SND_SOC_BYTES_EXT("BIQ Coefficients", 20, 1057 nau8825_biq_coeff_get, nau8825_biq_coeff_put), 1058 }; 1059 1060 /* DAC Mux 0x33[9] and 0x34[9] */ 1061 static const char * const nau8825_dac_src[] = { 1062 "DACL", "DACR", 1063 }; 1064 1065 static SOC_ENUM_SINGLE_DECL( 1066 nau8825_dacl_enum, NAU8825_REG_DACL_CTRL, 1067 NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src); 1068 1069 static SOC_ENUM_SINGLE_DECL( 1070 nau8825_dacr_enum, NAU8825_REG_DACR_CTRL, 1071 NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src); 1072 1073 static const struct snd_kcontrol_new nau8825_dacl_mux = 1074 SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum); 1075 1076 static const struct snd_kcontrol_new nau8825_dacr_mux = 1077 SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum); 1078 1079 1080 static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = { 1081 SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2, 1082 15, 1), 1083 1084 SND_SOC_DAPM_INPUT("MIC"), 1085 SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0), 1086 1087 SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0, 1088 NULL, 0), 1089 1090 SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0, 1091 nau8825_adc_event, SND_SOC_DAPM_POST_PMU | 1092 SND_SOC_DAPM_POST_PMD), 1093 SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0), 1094 SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL, 1095 0), 1096 1097 /* ADC for button press detection. A dapm supply widget is used to 1098 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON 1099 * during suspend. 1100 */ 1101 SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL, 1102 NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0), 1103 1104 SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0), 1105 SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0), 1106 SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0), 1107 SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0), 1108 1109 SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL, 1110 NAU8825_ENABLE_DACR_SFT, 0), 1111 SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL, 1112 NAU8825_ENABLE_DACL_SFT, 0), 1113 SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0), 1114 1115 SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux), 1116 SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux), 1117 1118 SND_SOC_DAPM_PGA_S("HP amp L", 0, 1119 NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0), 1120 SND_SOC_DAPM_PGA_S("HP amp R", 0, 1121 NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0), 1122 1123 SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0, 1124 nau8825_pump_event, SND_SOC_DAPM_POST_PMU | 1125 SND_SOC_DAPM_PRE_PMD), 1126 1127 SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4, 1128 NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0), 1129 SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4, 1130 NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0), 1131 SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5, 1132 NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0), 1133 SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5, 1134 NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0), 1135 SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6, 1136 NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0), 1137 SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6, 1138 NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0), 1139 1140 SND_SOC_DAPM_PGA_S("Output DACL", 7, 1141 NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event, 1142 SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), 1143 SND_SOC_DAPM_PGA_S("Output DACR", 7, 1144 NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event, 1145 SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), 1146 1147 /* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */ 1148 SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8, 1149 NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0), 1150 SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8, 1151 NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0), 1152 1153 /* High current HPOL/R boost driver */ 1154 SND_SOC_DAPM_PGA_S("HP Boost Driver", 9, 1155 NAU8825_REG_BOOST, 9, 1, NULL, 0), 1156 1157 /* Class G operation control*/ 1158 SND_SOC_DAPM_PGA_S("Class G", 10, 1159 NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0), 1160 1161 SND_SOC_DAPM_OUTPUT("HPOL"), 1162 SND_SOC_DAPM_OUTPUT("HPOR"), 1163 }; 1164 1165 static const struct snd_soc_dapm_route nau8825_dapm_routes[] = { 1166 {"Frontend PGA", NULL, "MIC"}, 1167 {"ADC", NULL, "Frontend PGA"}, 1168 {"ADC", NULL, "ADC Clock"}, 1169 {"ADC", NULL, "ADC Power"}, 1170 {"AIFTX", NULL, "ADC"}, 1171 1172 {"DDACL", NULL, "Playback"}, 1173 {"DDACR", NULL, "Playback"}, 1174 {"DDACL", NULL, "DDAC Clock"}, 1175 {"DDACR", NULL, "DDAC Clock"}, 1176 {"DACL Mux", "DACL", "DDACL"}, 1177 {"DACL Mux", "DACR", "DDACR"}, 1178 {"DACR Mux", "DACL", "DDACL"}, 1179 {"DACR Mux", "DACR", "DDACR"}, 1180 {"HP amp L", NULL, "DACL Mux"}, 1181 {"HP amp R", NULL, "DACR Mux"}, 1182 {"Charge Pump", NULL, "HP amp L"}, 1183 {"Charge Pump", NULL, "HP amp R"}, 1184 {"ADACL", NULL, "Charge Pump"}, 1185 {"ADACR", NULL, "Charge Pump"}, 1186 {"ADACL Clock", NULL, "ADACL"}, 1187 {"ADACR Clock", NULL, "ADACR"}, 1188 {"Output Driver L Stage 1", NULL, "ADACL Clock"}, 1189 {"Output Driver R Stage 1", NULL, "ADACR Clock"}, 1190 {"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"}, 1191 {"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"}, 1192 {"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"}, 1193 {"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"}, 1194 {"Output DACL", NULL, "Output Driver L Stage 3"}, 1195 {"Output DACR", NULL, "Output Driver R Stage 3"}, 1196 {"HPOL Pulldown", NULL, "Output DACL"}, 1197 {"HPOR Pulldown", NULL, "Output DACR"}, 1198 {"HP Boost Driver", NULL, "HPOL Pulldown"}, 1199 {"HP Boost Driver", NULL, "HPOR Pulldown"}, 1200 {"Class G", NULL, "HP Boost Driver"}, 1201 {"HPOL", NULL, "Class G"}, 1202 {"HPOR", NULL, "Class G"}, 1203 }; 1204 1205 static int nau8825_clock_check(struct nau8825 *nau8825, 1206 int stream, int rate, int osr) 1207 { 1208 int osrate; 1209 1210 if (stream == SNDRV_PCM_STREAM_PLAYBACK) { 1211 if (osr >= ARRAY_SIZE(osr_dac_sel)) 1212 return -EINVAL; 1213 osrate = osr_dac_sel[osr].osr; 1214 } else { 1215 if (osr >= ARRAY_SIZE(osr_adc_sel)) 1216 return -EINVAL; 1217 osrate = osr_adc_sel[osr].osr; 1218 } 1219 1220 if (!osrate || rate * osr > CLK_DA_AD_MAX) { 1221 dev_err(nau8825->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC\n"); 1222 return -EINVAL; 1223 } 1224 1225 return 0; 1226 } 1227 1228 static int nau8825_hw_params(struct snd_pcm_substream *substream, 1229 struct snd_pcm_hw_params *params, 1230 struct snd_soc_dai *dai) 1231 { 1232 struct snd_soc_codec *codec = dai->codec; 1233 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); 1234 unsigned int val_len = 0, osr, ctrl_val, bclk_fs, bclk_div; 1235 1236 nau8825_sema_acquire(nau8825, 3 * HZ); 1237 1238 /* CLK_DAC or CLK_ADC = OSR * FS 1239 * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR) 1240 * multiplied by the audio sample rate (Fs). Note that the OSR and Fs 1241 * values must be selected such that the maximum frequency is less 1242 * than 6.144 MHz. 1243 */ 1244 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 1245 regmap_read(nau8825->regmap, NAU8825_REG_DAC_CTRL1, &osr); 1246 osr &= NAU8825_DAC_OVERSAMPLE_MASK; 1247 if (nau8825_clock_check(nau8825, substream->stream, 1248 params_rate(params), osr)) 1249 return -EINVAL; 1250 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 1251 NAU8825_CLK_DAC_SRC_MASK, 1252 osr_dac_sel[osr].clk_src << NAU8825_CLK_DAC_SRC_SFT); 1253 } else { 1254 regmap_read(nau8825->regmap, NAU8825_REG_ADC_RATE, &osr); 1255 osr &= NAU8825_ADC_SYNC_DOWN_MASK; 1256 if (nau8825_clock_check(nau8825, substream->stream, 1257 params_rate(params), osr)) 1258 return -EINVAL; 1259 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 1260 NAU8825_CLK_ADC_SRC_MASK, 1261 osr_adc_sel[osr].clk_src << NAU8825_CLK_ADC_SRC_SFT); 1262 } 1263 1264 /* make BCLK and LRC divde configuration if the codec as master. */ 1265 regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, &ctrl_val); 1266 if (ctrl_val & NAU8825_I2S_MS_MASTER) { 1267 /* get the bclk and fs ratio */ 1268 bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params); 1269 if (bclk_fs <= 32) 1270 bclk_div = 2; 1271 else if (bclk_fs <= 64) 1272 bclk_div = 1; 1273 else if (bclk_fs <= 128) 1274 bclk_div = 0; 1275 else 1276 return -EINVAL; 1277 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, 1278 NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK, 1279 ((bclk_div + 1) << NAU8825_I2S_LRC_DIV_SFT) | bclk_div); 1280 } 1281 1282 switch (params_width(params)) { 1283 case 16: 1284 val_len |= NAU8825_I2S_DL_16; 1285 break; 1286 case 20: 1287 val_len |= NAU8825_I2S_DL_20; 1288 break; 1289 case 24: 1290 val_len |= NAU8825_I2S_DL_24; 1291 break; 1292 case 32: 1293 val_len |= NAU8825_I2S_DL_32; 1294 break; 1295 default: 1296 return -EINVAL; 1297 } 1298 1299 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1, 1300 NAU8825_I2S_DL_MASK, val_len); 1301 1302 /* Release the semaphone. */ 1303 nau8825_sema_release(nau8825); 1304 1305 return 0; 1306 } 1307 1308 static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) 1309 { 1310 struct snd_soc_codec *codec = codec_dai->codec; 1311 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); 1312 unsigned int ctrl1_val = 0, ctrl2_val = 0; 1313 1314 nau8825_sema_acquire(nau8825, 3 * HZ); 1315 1316 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 1317 case SND_SOC_DAIFMT_CBM_CFM: 1318 ctrl2_val |= NAU8825_I2S_MS_MASTER; 1319 break; 1320 case SND_SOC_DAIFMT_CBS_CFS: 1321 break; 1322 default: 1323 return -EINVAL; 1324 } 1325 1326 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 1327 case SND_SOC_DAIFMT_NB_NF: 1328 break; 1329 case SND_SOC_DAIFMT_IB_NF: 1330 ctrl1_val |= NAU8825_I2S_BP_INV; 1331 break; 1332 default: 1333 return -EINVAL; 1334 } 1335 1336 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 1337 case SND_SOC_DAIFMT_I2S: 1338 ctrl1_val |= NAU8825_I2S_DF_I2S; 1339 break; 1340 case SND_SOC_DAIFMT_LEFT_J: 1341 ctrl1_val |= NAU8825_I2S_DF_LEFT; 1342 break; 1343 case SND_SOC_DAIFMT_RIGHT_J: 1344 ctrl1_val |= NAU8825_I2S_DF_RIGTH; 1345 break; 1346 case SND_SOC_DAIFMT_DSP_A: 1347 ctrl1_val |= NAU8825_I2S_DF_PCM_AB; 1348 break; 1349 case SND_SOC_DAIFMT_DSP_B: 1350 ctrl1_val |= NAU8825_I2S_DF_PCM_AB; 1351 ctrl1_val |= NAU8825_I2S_PCMB_EN; 1352 break; 1353 default: 1354 return -EINVAL; 1355 } 1356 1357 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1, 1358 NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK | 1359 NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK, 1360 ctrl1_val); 1361 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, 1362 NAU8825_I2S_MS_MASK, ctrl2_val); 1363 1364 /* Release the semaphone. */ 1365 nau8825_sema_release(nau8825); 1366 1367 return 0; 1368 } 1369 1370 static const struct snd_soc_dai_ops nau8825_dai_ops = { 1371 .hw_params = nau8825_hw_params, 1372 .set_fmt = nau8825_set_dai_fmt, 1373 }; 1374 1375 #define NAU8825_RATES SNDRV_PCM_RATE_8000_192000 1376 #define NAU8825_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \ 1377 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE) 1378 1379 static struct snd_soc_dai_driver nau8825_dai = { 1380 .name = "nau8825-hifi", 1381 .playback = { 1382 .stream_name = "Playback", 1383 .channels_min = 1, 1384 .channels_max = 2, 1385 .rates = NAU8825_RATES, 1386 .formats = NAU8825_FORMATS, 1387 }, 1388 .capture = { 1389 .stream_name = "Capture", 1390 .channels_min = 1, 1391 .channels_max = 1, 1392 .rates = NAU8825_RATES, 1393 .formats = NAU8825_FORMATS, 1394 }, 1395 .ops = &nau8825_dai_ops, 1396 }; 1397 1398 /** 1399 * nau8825_enable_jack_detect - Specify a jack for event reporting 1400 * 1401 * @component: component to register the jack with 1402 * @jack: jack to use to report headset and button events on 1403 * 1404 * After this function has been called the headset insert/remove and button 1405 * events will be routed to the given jack. Jack can be null to stop 1406 * reporting. 1407 */ 1408 int nau8825_enable_jack_detect(struct snd_soc_codec *codec, 1409 struct snd_soc_jack *jack) 1410 { 1411 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); 1412 struct regmap *regmap = nau8825->regmap; 1413 1414 nau8825->jack = jack; 1415 1416 /* Ground HP Outputs[1:0], needed for headset auto detection 1417 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6] 1418 */ 1419 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 1420 NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 1421 NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L); 1422 1423 return 0; 1424 } 1425 EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect); 1426 1427 1428 static bool nau8825_is_jack_inserted(struct regmap *regmap) 1429 { 1430 bool active_high, is_high; 1431 int status, jkdet; 1432 1433 regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet); 1434 active_high = jkdet & NAU8825_JACK_POLARITY; 1435 regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status); 1436 is_high = status & NAU8825_GPIO2JD1; 1437 /* return jack connection status according to jack insertion logic 1438 * active high or active low. 1439 */ 1440 return active_high == is_high; 1441 } 1442 1443 static void nau8825_restart_jack_detection(struct regmap *regmap) 1444 { 1445 /* this will restart the entire jack detection process including MIC/GND 1446 * switching and create interrupts. We have to go from 0 to 1 and back 1447 * to 0 to restart. 1448 */ 1449 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1450 NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART); 1451 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1452 NAU8825_JACK_DET_RESTART, 0); 1453 } 1454 1455 static void nau8825_int_status_clear_all(struct regmap *regmap) 1456 { 1457 int active_irq, clear_irq, i; 1458 1459 /* Reset the intrruption status from rightmost bit if the corres- 1460 * ponding irq event occurs. 1461 */ 1462 regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq); 1463 for (i = 0; i < NAU8825_REG_DATA_LEN; i++) { 1464 clear_irq = (0x1 << i); 1465 if (active_irq & clear_irq) 1466 regmap_write(regmap, 1467 NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq); 1468 } 1469 } 1470 1471 static void nau8825_eject_jack(struct nau8825 *nau8825) 1472 { 1473 struct snd_soc_dapm_context *dapm = nau8825->dapm; 1474 struct regmap *regmap = nau8825->regmap; 1475 1476 /* Force to cancel the cross talk detection process */ 1477 nau8825_xtalk_cancel(nau8825); 1478 1479 snd_soc_dapm_disable_pin(dapm, "SAR"); 1480 snd_soc_dapm_disable_pin(dapm, "MICBIAS"); 1481 /* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */ 1482 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, 1483 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0); 1484 /* ground HPL/HPR, MICGRND1/2 */ 1485 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf); 1486 1487 snd_soc_dapm_sync(dapm); 1488 1489 /* Clear all interruption status */ 1490 nau8825_int_status_clear_all(regmap); 1491 1492 /* Enable the insertion interruption, disable the ejection inter- 1493 * ruption, and then bypass de-bounce circuit. 1494 */ 1495 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 1496 NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS, 1497 NAU8825_IRQ_EJECT_DIS); 1498 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 1499 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN | 1500 NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN, 1501 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN | 1502 NAU8825_IRQ_HEADSET_COMPLETE_EN); 1503 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1504 NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS); 1505 1506 /* Disable ADC needed for interruptions at audo mode */ 1507 regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL, 1508 NAU8825_ENABLE_ADC, 0); 1509 1510 /* Close clock for jack type detection at manual mode */ 1511 nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0); 1512 } 1513 1514 /* Enable audo mode interruptions with internal clock. */ 1515 static void nau8825_setup_auto_irq(struct nau8825 *nau8825) 1516 { 1517 struct regmap *regmap = nau8825->regmap; 1518 1519 /* Enable headset jack type detection complete interruption and 1520 * jack ejection interruption. 1521 */ 1522 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 1523 NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0); 1524 1525 /* Enable internal VCO needed for interruptions */ 1526 nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0); 1527 1528 /* Enable ADC needed for interruptions */ 1529 regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL, 1530 NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC); 1531 1532 /* Chip needs one FSCLK cycle in order to generate interruptions, 1533 * as we cannot guarantee one will be provided by the system. Turning 1534 * master mode on then off enables us to generate that FSCLK cycle 1535 * with a minimum of contention on the clock bus. 1536 */ 1537 regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2, 1538 NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER); 1539 regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2, 1540 NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE); 1541 1542 /* Not bypass de-bounce circuit */ 1543 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1544 NAU8825_JACK_DET_DB_BYPASS, 0); 1545 1546 /* Unmask all interruptions */ 1547 regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0); 1548 1549 /* Restart the jack detection process at auto mode */ 1550 nau8825_restart_jack_detection(regmap); 1551 } 1552 1553 static int nau8825_button_decode(int value) 1554 { 1555 int buttons = 0; 1556 1557 /* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */ 1558 if (value & BIT(0)) 1559 buttons |= SND_JACK_BTN_0; 1560 if (value & BIT(1)) 1561 buttons |= SND_JACK_BTN_1; 1562 if (value & BIT(2)) 1563 buttons |= SND_JACK_BTN_2; 1564 if (value & BIT(3)) 1565 buttons |= SND_JACK_BTN_3; 1566 if (value & BIT(4)) 1567 buttons |= SND_JACK_BTN_4; 1568 if (value & BIT(5)) 1569 buttons |= SND_JACK_BTN_5; 1570 1571 return buttons; 1572 } 1573 1574 static int nau8825_jack_insert(struct nau8825 *nau8825) 1575 { 1576 struct regmap *regmap = nau8825->regmap; 1577 struct snd_soc_dapm_context *dapm = nau8825->dapm; 1578 int jack_status_reg, mic_detected; 1579 int type = 0; 1580 1581 regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg); 1582 mic_detected = (jack_status_reg >> 10) & 3; 1583 /* The JKSLV and JKR2 all detected in high impedance headset */ 1584 if (mic_detected == 0x3) 1585 nau8825->high_imped = true; 1586 else 1587 nau8825->high_imped = false; 1588 1589 switch (mic_detected) { 1590 case 0: 1591 /* no mic */ 1592 type = SND_JACK_HEADPHONE; 1593 break; 1594 case 1: 1595 dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n"); 1596 type = SND_JACK_HEADSET; 1597 1598 /* Unground MICGND1 */ 1599 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2, 1600 1 << 2); 1601 /* Attach 2kOhm Resistor from MICBIAS to MICGND1 */ 1602 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, 1603 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 1604 NAU8825_MICBIAS_JKR2); 1605 /* Attach SARADC to MICGND1 */ 1606 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1607 NAU8825_SAR_INPUT_MASK, 1608 NAU8825_SAR_INPUT_JKR2); 1609 1610 snd_soc_dapm_force_enable_pin(dapm, "MICBIAS"); 1611 snd_soc_dapm_force_enable_pin(dapm, "SAR"); 1612 snd_soc_dapm_sync(dapm); 1613 break; 1614 case 2: 1615 dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n"); 1616 type = SND_JACK_HEADSET; 1617 1618 /* Unground MICGND2 */ 1619 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2, 1620 2 << 2); 1621 /* Attach 2kOhm Resistor from MICBIAS to MICGND2 */ 1622 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, 1623 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 1624 NAU8825_MICBIAS_JKSLV); 1625 /* Attach SARADC to MICGND2 */ 1626 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1627 NAU8825_SAR_INPUT_MASK, 1628 NAU8825_SAR_INPUT_JKSLV); 1629 1630 snd_soc_dapm_force_enable_pin(dapm, "MICBIAS"); 1631 snd_soc_dapm_force_enable_pin(dapm, "SAR"); 1632 snd_soc_dapm_sync(dapm); 1633 break; 1634 case 3: 1635 /* detect error case */ 1636 dev_err(nau8825->dev, "detection error; disable mic function\n"); 1637 type = SND_JACK_HEADPHONE; 1638 break; 1639 } 1640 1641 /* Leaving HPOL/R grounded after jack insert by default. They will be 1642 * ungrounded as part of the widget power up sequence at the beginning 1643 * of playback to reduce pop. 1644 */ 1645 return type; 1646 } 1647 1648 #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \ 1649 SND_JACK_BTN_2 | SND_JACK_BTN_3) 1650 1651 static irqreturn_t nau8825_interrupt(int irq, void *data) 1652 { 1653 struct nau8825 *nau8825 = (struct nau8825 *)data; 1654 struct regmap *regmap = nau8825->regmap; 1655 int active_irq, clear_irq = 0, event = 0, event_mask = 0; 1656 1657 if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) { 1658 dev_err(nau8825->dev, "failed to read irq status\n"); 1659 return IRQ_NONE; 1660 } 1661 1662 if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) == 1663 NAU8825_JACK_EJECTION_DETECTED) { 1664 1665 nau8825_eject_jack(nau8825); 1666 event_mask |= SND_JACK_HEADSET; 1667 clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK; 1668 } else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) { 1669 int key_status; 1670 1671 regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, 1672 &key_status); 1673 1674 /* upper 8 bits of the register are for short pressed keys, 1675 * lower 8 bits - for long pressed buttons 1676 */ 1677 nau8825->button_pressed = nau8825_button_decode( 1678 key_status >> 8); 1679 1680 event |= nau8825->button_pressed; 1681 event_mask |= NAU8825_BUTTONS; 1682 clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ; 1683 } else if (active_irq & NAU8825_KEY_RELEASE_IRQ) { 1684 event_mask = NAU8825_BUTTONS; 1685 clear_irq = NAU8825_KEY_RELEASE_IRQ; 1686 } else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) { 1687 if (nau8825_is_jack_inserted(regmap)) { 1688 event |= nau8825_jack_insert(nau8825); 1689 if (!nau8825->xtalk_bypass && !nau8825->high_imped) { 1690 /* Apply the cross talk suppression in the 1691 * headset without high impedance. 1692 */ 1693 if (!nau8825->xtalk_protect) { 1694 /* Raise protection for cross talk de- 1695 * tection if no protection before. 1696 * The driver has to cancel the pro- 1697 * cess and restore changes if process 1698 * is ongoing when ejection. 1699 */ 1700 int ret; 1701 nau8825->xtalk_protect = true; 1702 ret = nau8825_sema_acquire(nau8825, 0); 1703 if (ret < 0) 1704 nau8825->xtalk_protect = false; 1705 } 1706 /* Startup cross talk detection process */ 1707 nau8825->xtalk_state = NAU8825_XTALK_PREPARE; 1708 schedule_work(&nau8825->xtalk_work); 1709 } else { 1710 /* The cross talk suppression shouldn't apply 1711 * in the headset with high impedance. Thus, 1712 * relieve the protection raised before. 1713 */ 1714 if (nau8825->xtalk_protect) { 1715 nau8825_sema_release(nau8825); 1716 nau8825->xtalk_protect = false; 1717 } 1718 } 1719 } else { 1720 dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n"); 1721 nau8825_eject_jack(nau8825); 1722 } 1723 1724 event_mask |= SND_JACK_HEADSET; 1725 clear_irq = NAU8825_HEADSET_COMPLETION_IRQ; 1726 /* Record the interruption report event for driver to report 1727 * the event later. The jack report will delay until cross 1728 * talk detection process is done. 1729 */ 1730 if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) { 1731 nau8825->xtalk_event = event; 1732 nau8825->xtalk_event_mask = event_mask; 1733 } 1734 } else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) { 1735 schedule_work(&nau8825->xtalk_work); 1736 clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ; 1737 } else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) == 1738 NAU8825_JACK_INSERTION_DETECTED) { 1739 /* One more step to check GPIO status directly. Thus, the 1740 * driver can confirm the real insertion interruption because 1741 * the intrruption at manual mode has bypassed debounce 1742 * circuit which can get rid of unstable status. 1743 */ 1744 if (nau8825_is_jack_inserted(regmap)) { 1745 /* Turn off insertion interruption at manual mode */ 1746 regmap_update_bits(regmap, 1747 NAU8825_REG_INTERRUPT_DIS_CTRL, 1748 NAU8825_IRQ_INSERT_DIS, 1749 NAU8825_IRQ_INSERT_DIS); 1750 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 1751 NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN); 1752 /* Enable interruption for jack type detection at audo 1753 * mode which can detect microphone and jack type. 1754 */ 1755 nau8825_setup_auto_irq(nau8825); 1756 } 1757 } 1758 1759 if (!clear_irq) 1760 clear_irq = active_irq; 1761 /* clears the rightmost interruption */ 1762 regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq); 1763 1764 /* Delay jack report until cross talk detection is done. It can avoid 1765 * application to do playback preparation when cross talk detection 1766 * process is still working. Otherwise, the resource like clock and 1767 * power will be issued by them at the same time and conflict happens. 1768 */ 1769 if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE) 1770 snd_soc_jack_report(nau8825->jack, event, event_mask); 1771 1772 return IRQ_HANDLED; 1773 } 1774 1775 static void nau8825_setup_buttons(struct nau8825 *nau8825) 1776 { 1777 struct regmap *regmap = nau8825->regmap; 1778 1779 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1780 NAU8825_SAR_TRACKING_GAIN_MASK, 1781 nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT); 1782 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1783 NAU8825_SAR_COMPARE_TIME_MASK, 1784 nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT); 1785 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1786 NAU8825_SAR_SAMPLING_TIME_MASK, 1787 nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT); 1788 1789 regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, 1790 NAU8825_KEYDET_LEVELS_NR_MASK, 1791 (nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT); 1792 regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, 1793 NAU8825_KEYDET_HYSTERESIS_MASK, 1794 nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT); 1795 regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, 1796 NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK, 1797 nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT); 1798 1799 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1, 1800 (nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]); 1801 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2, 1802 (nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]); 1803 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3, 1804 (nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]); 1805 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4, 1806 (nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]); 1807 1808 /* Enable short press and release interruptions */ 1809 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 1810 NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN, 1811 0); 1812 } 1813 1814 static void nau8825_init_regs(struct nau8825 *nau8825) 1815 { 1816 struct regmap *regmap = nau8825->regmap; 1817 1818 /* Latch IIC LSB value */ 1819 regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001); 1820 /* Enable Bias/Vmid */ 1821 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 1822 NAU8825_BIAS_VMID, NAU8825_BIAS_VMID); 1823 regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST, 1824 NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN); 1825 1826 /* VMID Tieoff */ 1827 regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ, 1828 NAU8825_BIAS_VMID_SEL_MASK, 1829 nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT); 1830 /* Disable Boost Driver, Automatic Short circuit protection enable */ 1831 regmap_update_bits(regmap, NAU8825_REG_BOOST, 1832 NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS | 1833 NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN, 1834 NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS | 1835 NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN); 1836 1837 regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, 1838 NAU8825_JKDET_OUTPUT_EN, 1839 nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN); 1840 regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, 1841 NAU8825_JKDET_PULL_EN, 1842 nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN); 1843 regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, 1844 NAU8825_JKDET_PULL_UP, 1845 nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0); 1846 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1847 NAU8825_JACK_POLARITY, 1848 /* jkdet_polarity - 1 is for active-low */ 1849 nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY); 1850 1851 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1852 NAU8825_JACK_INSERT_DEBOUNCE_MASK, 1853 nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT); 1854 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1855 NAU8825_JACK_EJECT_DEBOUNCE_MASK, 1856 nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT); 1857 1858 /* Mask unneeded IRQs: 1 - disable, 0 - enable */ 1859 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff); 1860 1861 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, 1862 NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage); 1863 1864 if (nau8825->sar_threshold_num) 1865 nau8825_setup_buttons(nau8825); 1866 1867 /* Default oversampling/decimations settings are unusable 1868 * (audible hiss). Set it to something better. 1869 */ 1870 regmap_update_bits(regmap, NAU8825_REG_ADC_RATE, 1871 NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN, 1872 NAU8825_ADC_SYNC_DOWN_64); 1873 regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1, 1874 NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64); 1875 /* Disable DACR/L power */ 1876 regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP, 1877 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 1878 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL); 1879 /* Enable TESTDAC. This sets the analog DAC inputs to a '0' input 1880 * signal to avoid any glitches due to power up transients in both 1881 * the analog and digital DAC circuit. 1882 */ 1883 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 1884 NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN); 1885 /* CICCLP off */ 1886 regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1, 1887 NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF); 1888 1889 /* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */ 1890 regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2, 1891 NAU8825_HP_NON_CLASSG_CURRENT_2xADJ | 1892 NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB, 1893 NAU8825_HP_NON_CLASSG_CURRENT_2xADJ | 1894 NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB); 1895 /* Class G timer 64ms */ 1896 regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL, 1897 NAU8825_CLASSG_TIMER_MASK, 1898 0x20 << NAU8825_CLASSG_TIMER_SFT); 1899 /* DAC clock delay 2ns, VREF */ 1900 regmap_update_bits(regmap, NAU8825_REG_RDAC, 1901 NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK, 1902 (0x2 << NAU8825_RDAC_CLK_DELAY_SFT) | 1903 (0x3 << NAU8825_RDAC_VREF_SFT)); 1904 /* Config L/R channel */ 1905 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL, 1906 NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L); 1907 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL, 1908 NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R); 1909 /* Disable short Frame Sync detection logic */ 1910 regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT, 1911 NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET); 1912 } 1913 1914 static const struct regmap_config nau8825_regmap_config = { 1915 .val_bits = NAU8825_REG_DATA_LEN, 1916 .reg_bits = NAU8825_REG_ADDR_LEN, 1917 1918 .max_register = NAU8825_REG_MAX, 1919 .readable_reg = nau8825_readable_reg, 1920 .writeable_reg = nau8825_writeable_reg, 1921 .volatile_reg = nau8825_volatile_reg, 1922 1923 .cache_type = REGCACHE_RBTREE, 1924 .reg_defaults = nau8825_reg_defaults, 1925 .num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults), 1926 }; 1927 1928 static int nau8825_codec_probe(struct snd_soc_codec *codec) 1929 { 1930 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); 1931 struct snd_soc_dapm_context *dapm = snd_soc_codec_get_dapm(codec); 1932 1933 nau8825->dapm = dapm; 1934 1935 return 0; 1936 } 1937 1938 static int nau8825_codec_remove(struct snd_soc_codec *codec) 1939 { 1940 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); 1941 1942 /* Cancel and reset cross tak suppresstion detection funciton */ 1943 nau8825_xtalk_cancel(nau8825); 1944 1945 return 0; 1946 } 1947 1948 /** 1949 * nau8825_calc_fll_param - Calculate FLL parameters. 1950 * @fll_in: external clock provided to codec. 1951 * @fs: sampling rate. 1952 * @fll_param: Pointer to structure of FLL parameters. 1953 * 1954 * Calculate FLL parameters to configure codec. 1955 * 1956 * Returns 0 for success or negative error code. 1957 */ 1958 static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs, 1959 struct nau8825_fll *fll_param) 1960 { 1961 u64 fvco, fvco_max; 1962 unsigned int fref, i, fvco_sel; 1963 1964 /* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing 1965 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar. 1966 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK 1967 */ 1968 for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) { 1969 fref = fll_in / fll_pre_scalar[i].param; 1970 if (fref <= NAU_FREF_MAX) 1971 break; 1972 } 1973 if (i == ARRAY_SIZE(fll_pre_scalar)) 1974 return -EINVAL; 1975 fll_param->clk_ref_div = fll_pre_scalar[i].val; 1976 1977 /* Choose the FLL ratio based on FREF */ 1978 for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) { 1979 if (fref >= fll_ratio[i].param) 1980 break; 1981 } 1982 if (i == ARRAY_SIZE(fll_ratio)) 1983 return -EINVAL; 1984 fll_param->ratio = fll_ratio[i].val; 1985 1986 /* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs. 1987 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be 1988 * guaranteed across the full range of operation. 1989 * FDCO = freq_out * 2 * mclk_src_scaling 1990 */ 1991 fvco_max = 0; 1992 fvco_sel = ARRAY_SIZE(mclk_src_scaling); 1993 for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) { 1994 fvco = 256 * fs * 2 * mclk_src_scaling[i].param; 1995 if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX && 1996 fvco_max < fvco) { 1997 fvco_max = fvco; 1998 fvco_sel = i; 1999 } 2000 } 2001 if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel) 2002 return -EINVAL; 2003 fll_param->mclk_src = mclk_src_scaling[fvco_sel].val; 2004 2005 /* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional 2006 * input based on FDCO, FREF and FLL ratio. 2007 */ 2008 fvco = div_u64(fvco_max << 16, fref * fll_param->ratio); 2009 fll_param->fll_int = (fvco >> 16) & 0x3FF; 2010 fll_param->fll_frac = fvco & 0xFFFF; 2011 return 0; 2012 } 2013 2014 static void nau8825_fll_apply(struct nau8825 *nau8825, 2015 struct nau8825_fll *fll_param) 2016 { 2017 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 2018 NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK, 2019 NAU8825_CLK_SRC_MCLK | fll_param->mclk_src); 2020 /* Make DSP operate at high speed for better performance. */ 2021 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1, 2022 NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK, 2023 fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT)); 2024 /* FLL 16-bit fractional input */ 2025 regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac); 2026 /* FLL 10-bit integer input */ 2027 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3, 2028 NAU8825_FLL_INTEGER_MASK, fll_param->fll_int); 2029 /* FLL pre-scaler */ 2030 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4, 2031 NAU8825_FLL_REF_DIV_MASK, 2032 fll_param->clk_ref_div << NAU8825_FLL_REF_DIV_SFT); 2033 /* select divided VCO input */ 2034 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, 2035 NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF); 2036 /* Disable free-running mode */ 2037 regmap_update_bits(nau8825->regmap, 2038 NAU8825_REG_FLL6, NAU8825_DCO_EN, 0); 2039 if (fll_param->fll_frac) { 2040 /* set FLL loop filter enable and cutoff frequency at 500Khz */ 2041 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, 2042 NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | 2043 NAU8825_FLL_FTR_SW_MASK, 2044 NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | 2045 NAU8825_FLL_FTR_SW_FILTER); 2046 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, 2047 NAU8825_SDM_EN | NAU8825_CUTOFF500, 2048 NAU8825_SDM_EN | NAU8825_CUTOFF500); 2049 } else { 2050 /* disable FLL loop filter and cutoff frequency */ 2051 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, 2052 NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | 2053 NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU); 2054 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, 2055 NAU8825_SDM_EN | NAU8825_CUTOFF500, 0); 2056 } 2057 } 2058 2059 /* freq_out must be 256*Fs in order to achieve the best performance */ 2060 static int nau8825_set_pll(struct snd_soc_codec *codec, int pll_id, int source, 2061 unsigned int freq_in, unsigned int freq_out) 2062 { 2063 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); 2064 struct nau8825_fll fll_param; 2065 int ret, fs; 2066 2067 fs = freq_out / 256; 2068 ret = nau8825_calc_fll_param(freq_in, fs, &fll_param); 2069 if (ret < 0) { 2070 dev_err(codec->dev, "Unsupported input clock %d\n", freq_in); 2071 return ret; 2072 } 2073 dev_dbg(codec->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n", 2074 fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac, 2075 fll_param.fll_int, fll_param.clk_ref_div); 2076 2077 nau8825_fll_apply(nau8825, &fll_param); 2078 mdelay(2); 2079 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 2080 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO); 2081 return 0; 2082 } 2083 2084 static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq) 2085 { 2086 int ret = 0; 2087 2088 nau8825->mclk = devm_clk_get(nau8825->dev, "mclk"); 2089 if (IS_ERR(nau8825->mclk)) { 2090 dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally"); 2091 return 0; 2092 } 2093 2094 if (!nau8825->mclk_freq) { 2095 ret = clk_prepare_enable(nau8825->mclk); 2096 if (ret) { 2097 dev_err(nau8825->dev, "Unable to prepare codec mclk\n"); 2098 return ret; 2099 } 2100 } 2101 2102 if (nau8825->mclk_freq != freq) { 2103 freq = clk_round_rate(nau8825->mclk, freq); 2104 ret = clk_set_rate(nau8825->mclk, freq); 2105 if (ret) { 2106 dev_err(nau8825->dev, "Unable to set mclk rate\n"); 2107 return ret; 2108 } 2109 nau8825->mclk_freq = freq; 2110 } 2111 2112 return 0; 2113 } 2114 2115 static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap) 2116 { 2117 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, 2118 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK); 2119 regmap_update_bits(regmap, NAU8825_REG_FLL6, 2120 NAU8825_DCO_EN, 0); 2121 /* Make DSP operate as default setting for power saving. */ 2122 regmap_update_bits(regmap, NAU8825_REG_FLL1, 2123 NAU8825_ICTRL_LATCH_MASK, 0); 2124 } 2125 2126 static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id, 2127 unsigned int freq) 2128 { 2129 struct regmap *regmap = nau8825->regmap; 2130 int ret; 2131 2132 switch (clk_id) { 2133 case NAU8825_CLK_DIS: 2134 /* Clock provided externally and disable internal VCO clock */ 2135 nau8825_configure_mclk_as_sysclk(regmap); 2136 if (nau8825->mclk_freq) { 2137 clk_disable_unprepare(nau8825->mclk); 2138 nau8825->mclk_freq = 0; 2139 } 2140 2141 break; 2142 case NAU8825_CLK_MCLK: 2143 /* Acquire the semaphone to synchronize the playback and 2144 * interrupt handler. In order to avoid the playback inter- 2145 * fered by cross talk process, the driver make the playback 2146 * preparation halted until cross talk process finish. 2147 */ 2148 nau8825_sema_acquire(nau8825, 3 * HZ); 2149 nau8825_configure_mclk_as_sysclk(regmap); 2150 /* MCLK not changed by clock tree */ 2151 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, 2152 NAU8825_CLK_MCLK_SRC_MASK, 0); 2153 /* Release the semaphone. */ 2154 nau8825_sema_release(nau8825); 2155 2156 ret = nau8825_mclk_prepare(nau8825, freq); 2157 if (ret) 2158 return ret; 2159 2160 break; 2161 case NAU8825_CLK_INTERNAL: 2162 if (nau8825_is_jack_inserted(nau8825->regmap)) { 2163 regmap_update_bits(regmap, NAU8825_REG_FLL6, 2164 NAU8825_DCO_EN, NAU8825_DCO_EN); 2165 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, 2166 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO); 2167 /* Decrease the VCO frequency and make DSP operate 2168 * as default setting for power saving. 2169 */ 2170 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, 2171 NAU8825_CLK_MCLK_SRC_MASK, 0xf); 2172 regmap_update_bits(regmap, NAU8825_REG_FLL1, 2173 NAU8825_ICTRL_LATCH_MASK | 2174 NAU8825_FLL_RATIO_MASK, 0x10); 2175 regmap_update_bits(regmap, NAU8825_REG_FLL6, 2176 NAU8825_SDM_EN, NAU8825_SDM_EN); 2177 } else { 2178 /* The clock turns off intentionally for power saving 2179 * when no headset connected. 2180 */ 2181 nau8825_configure_mclk_as_sysclk(regmap); 2182 dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n"); 2183 } 2184 if (nau8825->mclk_freq) { 2185 clk_disable_unprepare(nau8825->mclk); 2186 nau8825->mclk_freq = 0; 2187 } 2188 2189 break; 2190 case NAU8825_CLK_FLL_MCLK: 2191 /* Acquire the semaphone to synchronize the playback and 2192 * interrupt handler. In order to avoid the playback inter- 2193 * fered by cross talk process, the driver make the playback 2194 * preparation halted until cross talk process finish. 2195 */ 2196 nau8825_sema_acquire(nau8825, 3 * HZ); 2197 /* Higher FLL reference input frequency can only set lower 2198 * gain error, such as 0000 for input reference from MCLK 2199 * 12.288Mhz. 2200 */ 2201 regmap_update_bits(regmap, NAU8825_REG_FLL3, 2202 NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK, 2203 NAU8825_FLL_CLK_SRC_MCLK | 0); 2204 /* Release the semaphone. */ 2205 nau8825_sema_release(nau8825); 2206 2207 ret = nau8825_mclk_prepare(nau8825, freq); 2208 if (ret) 2209 return ret; 2210 2211 break; 2212 case NAU8825_CLK_FLL_BLK: 2213 /* Acquire the semaphone to synchronize the playback and 2214 * interrupt handler. In order to avoid the playback inter- 2215 * fered by cross talk process, the driver make the playback 2216 * preparation halted until cross talk process finish. 2217 */ 2218 nau8825_sema_acquire(nau8825, 3 * HZ); 2219 /* If FLL reference input is from low frequency source, 2220 * higher error gain can apply such as 0xf which has 2221 * the most sensitive gain error correction threshold, 2222 * Therefore, FLL has the most accurate DCO to 2223 * target frequency. 2224 */ 2225 regmap_update_bits(regmap, NAU8825_REG_FLL3, 2226 NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK, 2227 NAU8825_FLL_CLK_SRC_BLK | 2228 (0xf << NAU8825_GAIN_ERR_SFT)); 2229 /* Release the semaphone. */ 2230 nau8825_sema_release(nau8825); 2231 2232 if (nau8825->mclk_freq) { 2233 clk_disable_unprepare(nau8825->mclk); 2234 nau8825->mclk_freq = 0; 2235 } 2236 2237 break; 2238 case NAU8825_CLK_FLL_FS: 2239 /* Acquire the semaphone to synchronize the playback and 2240 * interrupt handler. In order to avoid the playback inter- 2241 * fered by cross talk process, the driver make the playback 2242 * preparation halted until cross talk process finish. 2243 */ 2244 nau8825_sema_acquire(nau8825, 3 * HZ); 2245 /* If FLL reference input is from low frequency source, 2246 * higher error gain can apply such as 0xf which has 2247 * the most sensitive gain error correction threshold, 2248 * Therefore, FLL has the most accurate DCO to 2249 * target frequency. 2250 */ 2251 regmap_update_bits(regmap, NAU8825_REG_FLL3, 2252 NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK, 2253 NAU8825_FLL_CLK_SRC_FS | 2254 (0xf << NAU8825_GAIN_ERR_SFT)); 2255 /* Release the semaphone. */ 2256 nau8825_sema_release(nau8825); 2257 2258 if (nau8825->mclk_freq) { 2259 clk_disable_unprepare(nau8825->mclk); 2260 nau8825->mclk_freq = 0; 2261 } 2262 2263 break; 2264 default: 2265 dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id); 2266 return -EINVAL; 2267 } 2268 2269 dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq, 2270 clk_id); 2271 return 0; 2272 } 2273 2274 static int nau8825_set_sysclk(struct snd_soc_codec *codec, int clk_id, 2275 int source, unsigned int freq, int dir) 2276 { 2277 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); 2278 2279 return nau8825_configure_sysclk(nau8825, clk_id, freq); 2280 } 2281 2282 static int nau8825_resume_setup(struct nau8825 *nau8825) 2283 { 2284 struct regmap *regmap = nau8825->regmap; 2285 2286 /* Close clock when jack type detection at manual mode */ 2287 nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0); 2288 2289 /* Clear all interruption status */ 2290 nau8825_int_status_clear_all(regmap); 2291 2292 /* Enable both insertion and ejection interruptions, and then 2293 * bypass de-bounce circuit. 2294 */ 2295 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 2296 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN | 2297 NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN, 2298 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN); 2299 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 2300 NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS); 2301 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 2302 NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0); 2303 2304 return 0; 2305 } 2306 2307 static int nau8825_set_bias_level(struct snd_soc_codec *codec, 2308 enum snd_soc_bias_level level) 2309 { 2310 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); 2311 int ret; 2312 2313 switch (level) { 2314 case SND_SOC_BIAS_ON: 2315 break; 2316 2317 case SND_SOC_BIAS_PREPARE: 2318 break; 2319 2320 case SND_SOC_BIAS_STANDBY: 2321 if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) { 2322 if (nau8825->mclk_freq) { 2323 ret = clk_prepare_enable(nau8825->mclk); 2324 if (ret) { 2325 dev_err(nau8825->dev, "Unable to prepare codec mclk\n"); 2326 return ret; 2327 } 2328 } 2329 /* Setup codec configuration after resume */ 2330 nau8825_resume_setup(nau8825); 2331 } 2332 break; 2333 2334 case SND_SOC_BIAS_OFF: 2335 /* Reset the configuration of jack type for detection */ 2336 /* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */ 2337 regmap_update_bits(nau8825->regmap, NAU8825_REG_MIC_BIAS, 2338 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0); 2339 /* ground HPL/HPR, MICGRND1/2 */ 2340 regmap_update_bits(nau8825->regmap, 2341 NAU8825_REG_HSD_CTRL, 0xf, 0xf); 2342 /* Cancel and reset cross talk detection funciton */ 2343 nau8825_xtalk_cancel(nau8825); 2344 /* Turn off all interruptions before system shutdown. Keep the 2345 * interruption quiet before resume setup completes. 2346 */ 2347 regmap_write(nau8825->regmap, 2348 NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff); 2349 /* Disable ADC needed for interruptions at audo mode */ 2350 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, 2351 NAU8825_ENABLE_ADC, 0); 2352 if (nau8825->mclk_freq) 2353 clk_disable_unprepare(nau8825->mclk); 2354 break; 2355 } 2356 return 0; 2357 } 2358 2359 static int __maybe_unused nau8825_suspend(struct snd_soc_codec *codec) 2360 { 2361 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); 2362 2363 disable_irq(nau8825->irq); 2364 snd_soc_codec_force_bias_level(codec, SND_SOC_BIAS_OFF); 2365 /* Power down codec power; don't suppoet button wakeup */ 2366 snd_soc_dapm_disable_pin(nau8825->dapm, "SAR"); 2367 snd_soc_dapm_disable_pin(nau8825->dapm, "MICBIAS"); 2368 snd_soc_dapm_sync(nau8825->dapm); 2369 regcache_cache_only(nau8825->regmap, true); 2370 regcache_mark_dirty(nau8825->regmap); 2371 2372 return 0; 2373 } 2374 2375 static int __maybe_unused nau8825_resume(struct snd_soc_codec *codec) 2376 { 2377 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); 2378 int ret; 2379 2380 regcache_cache_only(nau8825->regmap, false); 2381 regcache_sync(nau8825->regmap); 2382 nau8825->xtalk_protect = true; 2383 ret = nau8825_sema_acquire(nau8825, 0); 2384 if (ret < 0) 2385 nau8825->xtalk_protect = false; 2386 enable_irq(nau8825->irq); 2387 2388 return 0; 2389 } 2390 2391 static struct snd_soc_codec_driver nau8825_codec_driver = { 2392 .probe = nau8825_codec_probe, 2393 .remove = nau8825_codec_remove, 2394 .set_sysclk = nau8825_set_sysclk, 2395 .set_pll = nau8825_set_pll, 2396 .set_bias_level = nau8825_set_bias_level, 2397 .suspend_bias_off = true, 2398 .suspend = nau8825_suspend, 2399 .resume = nau8825_resume, 2400 2401 .component_driver = { 2402 .controls = nau8825_controls, 2403 .num_controls = ARRAY_SIZE(nau8825_controls), 2404 .dapm_widgets = nau8825_dapm_widgets, 2405 .num_dapm_widgets = ARRAY_SIZE(nau8825_dapm_widgets), 2406 .dapm_routes = nau8825_dapm_routes, 2407 .num_dapm_routes = ARRAY_SIZE(nau8825_dapm_routes), 2408 }, 2409 }; 2410 2411 static void nau8825_reset_chip(struct regmap *regmap) 2412 { 2413 regmap_write(regmap, NAU8825_REG_RESET, 0x00); 2414 regmap_write(regmap, NAU8825_REG_RESET, 0x00); 2415 } 2416 2417 static void nau8825_print_device_properties(struct nau8825 *nau8825) 2418 { 2419 int i; 2420 struct device *dev = nau8825->dev; 2421 2422 dev_dbg(dev, "jkdet-enable: %d\n", nau8825->jkdet_enable); 2423 dev_dbg(dev, "jkdet-pull-enable: %d\n", nau8825->jkdet_pull_enable); 2424 dev_dbg(dev, "jkdet-pull-up: %d\n", nau8825->jkdet_pull_up); 2425 dev_dbg(dev, "jkdet-polarity: %d\n", nau8825->jkdet_polarity); 2426 dev_dbg(dev, "micbias-voltage: %d\n", nau8825->micbias_voltage); 2427 dev_dbg(dev, "vref-impedance: %d\n", nau8825->vref_impedance); 2428 2429 dev_dbg(dev, "sar-threshold-num: %d\n", nau8825->sar_threshold_num); 2430 for (i = 0; i < nau8825->sar_threshold_num; i++) 2431 dev_dbg(dev, "sar-threshold[%d]=%d\n", i, 2432 nau8825->sar_threshold[i]); 2433 2434 dev_dbg(dev, "sar-hysteresis: %d\n", nau8825->sar_hysteresis); 2435 dev_dbg(dev, "sar-voltage: %d\n", nau8825->sar_voltage); 2436 dev_dbg(dev, "sar-compare-time: %d\n", nau8825->sar_compare_time); 2437 dev_dbg(dev, "sar-sampling-time: %d\n", nau8825->sar_sampling_time); 2438 dev_dbg(dev, "short-key-debounce: %d\n", nau8825->key_debounce); 2439 dev_dbg(dev, "jack-insert-debounce: %d\n", 2440 nau8825->jack_insert_debounce); 2441 dev_dbg(dev, "jack-eject-debounce: %d\n", 2442 nau8825->jack_eject_debounce); 2443 dev_dbg(dev, "crosstalk-bypass: %d\n", 2444 nau8825->xtalk_bypass); 2445 } 2446 2447 static int nau8825_read_device_properties(struct device *dev, 2448 struct nau8825 *nau8825) { 2449 int ret; 2450 2451 nau8825->jkdet_enable = device_property_read_bool(dev, 2452 "nuvoton,jkdet-enable"); 2453 nau8825->jkdet_pull_enable = device_property_read_bool(dev, 2454 "nuvoton,jkdet-pull-enable"); 2455 nau8825->jkdet_pull_up = device_property_read_bool(dev, 2456 "nuvoton,jkdet-pull-up"); 2457 ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity", 2458 &nau8825->jkdet_polarity); 2459 if (ret) 2460 nau8825->jkdet_polarity = 1; 2461 ret = device_property_read_u32(dev, "nuvoton,micbias-voltage", 2462 &nau8825->micbias_voltage); 2463 if (ret) 2464 nau8825->micbias_voltage = 6; 2465 ret = device_property_read_u32(dev, "nuvoton,vref-impedance", 2466 &nau8825->vref_impedance); 2467 if (ret) 2468 nau8825->vref_impedance = 2; 2469 ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num", 2470 &nau8825->sar_threshold_num); 2471 if (ret) 2472 nau8825->sar_threshold_num = 4; 2473 ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold", 2474 nau8825->sar_threshold, nau8825->sar_threshold_num); 2475 if (ret) { 2476 nau8825->sar_threshold[0] = 0x08; 2477 nau8825->sar_threshold[1] = 0x12; 2478 nau8825->sar_threshold[2] = 0x26; 2479 nau8825->sar_threshold[3] = 0x73; 2480 } 2481 ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis", 2482 &nau8825->sar_hysteresis); 2483 if (ret) 2484 nau8825->sar_hysteresis = 0; 2485 ret = device_property_read_u32(dev, "nuvoton,sar-voltage", 2486 &nau8825->sar_voltage); 2487 if (ret) 2488 nau8825->sar_voltage = 6; 2489 ret = device_property_read_u32(dev, "nuvoton,sar-compare-time", 2490 &nau8825->sar_compare_time); 2491 if (ret) 2492 nau8825->sar_compare_time = 1; 2493 ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time", 2494 &nau8825->sar_sampling_time); 2495 if (ret) 2496 nau8825->sar_sampling_time = 1; 2497 ret = device_property_read_u32(dev, "nuvoton,short-key-debounce", 2498 &nau8825->key_debounce); 2499 if (ret) 2500 nau8825->key_debounce = 3; 2501 ret = device_property_read_u32(dev, "nuvoton,jack-insert-debounce", 2502 &nau8825->jack_insert_debounce); 2503 if (ret) 2504 nau8825->jack_insert_debounce = 7; 2505 ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce", 2506 &nau8825->jack_eject_debounce); 2507 if (ret) 2508 nau8825->jack_eject_debounce = 0; 2509 nau8825->xtalk_bypass = device_property_read_bool(dev, 2510 "nuvoton,crosstalk-bypass"); 2511 2512 nau8825->mclk = devm_clk_get(dev, "mclk"); 2513 if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) { 2514 return -EPROBE_DEFER; 2515 } else if (PTR_ERR(nau8825->mclk) == -ENOENT) { 2516 /* The MCLK is managed externally or not used at all */ 2517 nau8825->mclk = NULL; 2518 dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally"); 2519 } else if (IS_ERR(nau8825->mclk)) { 2520 return -EINVAL; 2521 } 2522 2523 return 0; 2524 } 2525 2526 static int nau8825_setup_irq(struct nau8825 *nau8825) 2527 { 2528 int ret; 2529 2530 ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL, 2531 nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT, 2532 "nau8825", nau8825); 2533 2534 if (ret) { 2535 dev_err(nau8825->dev, "Cannot request irq %d (%d)\n", 2536 nau8825->irq, ret); 2537 return ret; 2538 } 2539 2540 return 0; 2541 } 2542 2543 static int nau8825_i2c_probe(struct i2c_client *i2c, 2544 const struct i2c_device_id *id) 2545 { 2546 struct device *dev = &i2c->dev; 2547 struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev); 2548 int ret, value; 2549 2550 if (!nau8825) { 2551 nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL); 2552 if (!nau8825) 2553 return -ENOMEM; 2554 ret = nau8825_read_device_properties(dev, nau8825); 2555 if (ret) 2556 return ret; 2557 } 2558 2559 i2c_set_clientdata(i2c, nau8825); 2560 2561 nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config); 2562 if (IS_ERR(nau8825->regmap)) 2563 return PTR_ERR(nau8825->regmap); 2564 nau8825->dev = dev; 2565 nau8825->irq = i2c->irq; 2566 /* Initiate parameters, semaphone and work queue which are needed in 2567 * cross talk suppression measurment function. 2568 */ 2569 nau8825->xtalk_state = NAU8825_XTALK_DONE; 2570 nau8825->xtalk_protect = false; 2571 sema_init(&nau8825->xtalk_sem, 1); 2572 INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work); 2573 2574 nau8825_print_device_properties(nau8825); 2575 2576 nau8825_reset_chip(nau8825->regmap); 2577 ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value); 2578 if (ret < 0) { 2579 dev_err(dev, "Failed to read device id from the NAU8825: %d\n", 2580 ret); 2581 return ret; 2582 } 2583 if ((value & NAU8825_SOFTWARE_ID_MASK) != 2584 NAU8825_SOFTWARE_ID_NAU8825) { 2585 dev_err(dev, "Not a NAU8825 chip\n"); 2586 return -ENODEV; 2587 } 2588 2589 nau8825_init_regs(nau8825); 2590 2591 if (i2c->irq) 2592 nau8825_setup_irq(nau8825); 2593 2594 return snd_soc_register_codec(&i2c->dev, &nau8825_codec_driver, 2595 &nau8825_dai, 1); 2596 } 2597 2598 static int nau8825_i2c_remove(struct i2c_client *client) 2599 { 2600 snd_soc_unregister_codec(&client->dev); 2601 return 0; 2602 } 2603 2604 static const struct i2c_device_id nau8825_i2c_ids[] = { 2605 { "nau8825", 0 }, 2606 { } 2607 }; 2608 MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids); 2609 2610 #ifdef CONFIG_OF 2611 static const struct of_device_id nau8825_of_ids[] = { 2612 { .compatible = "nuvoton,nau8825", }, 2613 {} 2614 }; 2615 MODULE_DEVICE_TABLE(of, nau8825_of_ids); 2616 #endif 2617 2618 #ifdef CONFIG_ACPI 2619 static const struct acpi_device_id nau8825_acpi_match[] = { 2620 { "10508825", 0 }, 2621 {}, 2622 }; 2623 MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match); 2624 #endif 2625 2626 static struct i2c_driver nau8825_driver = { 2627 .driver = { 2628 .name = "nau8825", 2629 .of_match_table = of_match_ptr(nau8825_of_ids), 2630 .acpi_match_table = ACPI_PTR(nau8825_acpi_match), 2631 }, 2632 .probe = nau8825_i2c_probe, 2633 .remove = nau8825_i2c_remove, 2634 .id_table = nau8825_i2c_ids, 2635 }; 2636 module_i2c_driver(nau8825_driver); 2637 2638 MODULE_DESCRIPTION("ASoC nau8825 driver"); 2639 MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>"); 2640 MODULE_LICENSE("GPL"); 2641