xref: /linux/sound/soc/codecs/nau8825.c (revision a9cb09b7be84a7adc9e6f4aaf8d770933d65f953)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Nuvoton NAU8825 audio codec driver
4  *
5  * Copyright 2015 Google Chromium project.
6  *  Author: Anatol Pomozov <anatol@chromium.org>
7  * Copyright 2015 Nuvoton Technology Corp.
8  *  Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com>
9  */
10 
11 #include <linux/module.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/i2c.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <linux/clk.h>
18 #include <linux/acpi.h>
19 #include <linux/math64.h>
20 #include <linux/semaphore.h>
21 
22 #include <sound/initval.h>
23 #include <sound/tlv.h>
24 #include <sound/core.h>
25 #include <sound/pcm.h>
26 #include <sound/pcm_params.h>
27 #include <sound/soc.h>
28 #include <sound/jack.h>
29 
30 
31 #include "nau8825.h"
32 
33 
34 #define NUVOTON_CODEC_DAI "nau8825-hifi"
35 
36 #define NAU_FREF_MAX 13500000
37 #define NAU_FVCO_MAX 124000000
38 #define NAU_FVCO_MIN 90000000
39 
40 /* cross talk suppression detection */
41 #define LOG10_MAGIC 646456993
42 #define GAIN_AUGMENT 22500
43 #define SIDETONE_BASE 207000
44 
45 /* the maximum frequency of CLK_ADC and CLK_DAC */
46 #define CLK_DA_AD_MAX 6144000
47 
48 static int nau8825_configure_sysclk(struct nau8825 *nau8825,
49 		int clk_id, unsigned int freq);
50 
51 struct nau8825_fll {
52 	int mclk_src;
53 	int ratio;
54 	int fll_frac;
55 	int fll_int;
56 	int clk_ref_div;
57 };
58 
59 struct nau8825_fll_attr {
60 	unsigned int param;
61 	unsigned int val;
62 };
63 
64 /* scaling for mclk from sysclk_src output */
65 static const struct nau8825_fll_attr mclk_src_scaling[] = {
66 	{ 1, 0x0 },
67 	{ 2, 0x2 },
68 	{ 4, 0x3 },
69 	{ 8, 0x4 },
70 	{ 16, 0x5 },
71 	{ 32, 0x6 },
72 	{ 3, 0x7 },
73 	{ 6, 0xa },
74 	{ 12, 0xb },
75 	{ 24, 0xc },
76 	{ 48, 0xd },
77 	{ 96, 0xe },
78 	{ 5, 0xf },
79 };
80 
81 /* ratio for input clk freq */
82 static const struct nau8825_fll_attr fll_ratio[] = {
83 	{ 512000, 0x01 },
84 	{ 256000, 0x02 },
85 	{ 128000, 0x04 },
86 	{ 64000, 0x08 },
87 	{ 32000, 0x10 },
88 	{ 8000, 0x20 },
89 	{ 4000, 0x40 },
90 };
91 
92 static const struct nau8825_fll_attr fll_pre_scalar[] = {
93 	{ 1, 0x0 },
94 	{ 2, 0x1 },
95 	{ 4, 0x2 },
96 	{ 8, 0x3 },
97 };
98 
99 /* over sampling rate */
100 struct nau8825_osr_attr {
101 	unsigned int osr;
102 	unsigned int clk_src;
103 };
104 
105 static const struct nau8825_osr_attr osr_dac_sel[] = {
106 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
107 	{ 256, 0 },	/* OSR 256, SRC 1 */
108 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
109 	{ 0, 0 },
110 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
111 };
112 
113 static const struct nau8825_osr_attr osr_adc_sel[] = {
114 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
115 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
116 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
117 	{ 256, 0 },	/* OSR 256, SRC 1 */
118 };
119 
120 static const struct reg_default nau8825_reg_defaults[] = {
121 	{ NAU8825_REG_ENA_CTRL, 0x00ff },
122 	{ NAU8825_REG_IIC_ADDR_SET, 0x0 },
123 	{ NAU8825_REG_CLK_DIVIDER, 0x0050 },
124 	{ NAU8825_REG_FLL1, 0x0 },
125 	{ NAU8825_REG_FLL2, 0x3126 },
126 	{ NAU8825_REG_FLL3, 0x0008 },
127 	{ NAU8825_REG_FLL4, 0x0010 },
128 	{ NAU8825_REG_FLL5, 0x0 },
129 	{ NAU8825_REG_FLL6, 0x6000 },
130 	{ NAU8825_REG_FLL_VCO_RSV, 0xf13c },
131 	{ NAU8825_REG_HSD_CTRL, 0x000c },
132 	{ NAU8825_REG_JACK_DET_CTRL, 0x0 },
133 	{ NAU8825_REG_INTERRUPT_MASK, 0x0 },
134 	{ NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff },
135 	{ NAU8825_REG_SAR_CTRL, 0x0015 },
136 	{ NAU8825_REG_KEYDET_CTRL, 0x0110 },
137 	{ NAU8825_REG_VDET_THRESHOLD_1, 0x0 },
138 	{ NAU8825_REG_VDET_THRESHOLD_2, 0x0 },
139 	{ NAU8825_REG_VDET_THRESHOLD_3, 0x0 },
140 	{ NAU8825_REG_VDET_THRESHOLD_4, 0x0 },
141 	{ NAU8825_REG_GPIO34_CTRL, 0x0 },
142 	{ NAU8825_REG_GPIO12_CTRL, 0x0 },
143 	{ NAU8825_REG_TDM_CTRL, 0x0 },
144 	{ NAU8825_REG_I2S_PCM_CTRL1, 0x000b },
145 	{ NAU8825_REG_I2S_PCM_CTRL2, 0x8010 },
146 	{ NAU8825_REG_LEFT_TIME_SLOT, 0x0 },
147 	{ NAU8825_REG_RIGHT_TIME_SLOT, 0x0 },
148 	{ NAU8825_REG_BIQ_CTRL, 0x0 },
149 	{ NAU8825_REG_BIQ_COF1, 0x0 },
150 	{ NAU8825_REG_BIQ_COF2, 0x0 },
151 	{ NAU8825_REG_BIQ_COF3, 0x0 },
152 	{ NAU8825_REG_BIQ_COF4, 0x0 },
153 	{ NAU8825_REG_BIQ_COF5, 0x0 },
154 	{ NAU8825_REG_BIQ_COF6, 0x0 },
155 	{ NAU8825_REG_BIQ_COF7, 0x0 },
156 	{ NAU8825_REG_BIQ_COF8, 0x0 },
157 	{ NAU8825_REG_BIQ_COF9, 0x0 },
158 	{ NAU8825_REG_BIQ_COF10, 0x0 },
159 	{ NAU8825_REG_ADC_RATE, 0x0010 },
160 	{ NAU8825_REG_DAC_CTRL1, 0x0001 },
161 	{ NAU8825_REG_DAC_CTRL2, 0x0 },
162 	{ NAU8825_REG_DAC_DGAIN_CTRL, 0x0 },
163 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
164 	{ NAU8825_REG_MUTE_CTRL, 0x0 },
165 	{ NAU8825_REG_HSVOL_CTRL, 0x0 },
166 	{ NAU8825_REG_DACL_CTRL, 0x02cf },
167 	{ NAU8825_REG_DACR_CTRL, 0x00cf },
168 	{ NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 },
169 	{ NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 },
170 	{ NAU8825_REG_ADC_DRC_SLOPES, 0x25ff },
171 	{ NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 },
172 	{ NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 },
173 	{ NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 },
174 	{ NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 },
175 	{ NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 },
176 	{ NAU8825_REG_IMM_MODE_CTRL, 0x0 },
177 	{ NAU8825_REG_CLASSG_CTRL, 0x0 },
178 	{ NAU8825_REG_OPT_EFUSE_CTRL, 0x0 },
179 	{ NAU8825_REG_MISC_CTRL, 0x0 },
180 	{ NAU8825_REG_BIAS_ADJ, 0x0 },
181 	{ NAU8825_REG_TRIM_SETTINGS, 0x0 },
182 	{ NAU8825_REG_ANALOG_CONTROL_1, 0x0 },
183 	{ NAU8825_REG_ANALOG_CONTROL_2, 0x0 },
184 	{ NAU8825_REG_ANALOG_ADC_1, 0x0011 },
185 	{ NAU8825_REG_ANALOG_ADC_2, 0x0020 },
186 	{ NAU8825_REG_RDAC, 0x0008 },
187 	{ NAU8825_REG_MIC_BIAS, 0x0006 },
188 	{ NAU8825_REG_BOOST, 0x0 },
189 	{ NAU8825_REG_FEPGA, 0x0 },
190 	{ NAU8825_REG_POWER_UP_CONTROL, 0x0 },
191 	{ NAU8825_REG_CHARGE_PUMP, 0x0 },
192 };
193 
194 /* register backup table when cross talk detection */
195 static struct reg_default nau8825_xtalk_baktab[] = {
196 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
197 	{ NAU8825_REG_HSVOL_CTRL, 0 },
198 	{ NAU8825_REG_DACL_CTRL, 0x00cf },
199 	{ NAU8825_REG_DACR_CTRL, 0x02cf },
200 };
201 
202 static const unsigned short logtable[256] = {
203 	0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7,
204 	0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508,
205 	0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6,
206 	0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37,
207 	0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f,
208 	0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41,
209 	0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1,
210 	0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142,
211 	0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68,
212 	0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355,
213 	0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c,
214 	0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490,
215 	0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3,
216 	0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507,
217 	0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe,
218 	0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca,
219 	0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c,
220 	0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7,
221 	0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c,
222 	0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c,
223 	0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a,
224 	0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065,
225 	0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730,
226 	0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc,
227 	0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469,
228 	0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9,
229 	0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c,
230 	0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765,
231 	0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83,
232 	0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387,
233 	0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973,
234 	0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47
235 };
236 
237 /**
238  * nau8825_sema_acquire - acquire the semaphore of nau88l25
239  * @nau8825:  component to register the codec private data with
240  * @timeout: how long in jiffies to wait before failure or zero to wait
241  * until release
242  *
243  * Attempts to acquire the semaphore with number of jiffies. If no more
244  * tasks are allowed to acquire the semaphore, calling this function will
245  * put the task to sleep. If the semaphore is not released within the
246  * specified number of jiffies, this function returns.
247  * If the semaphore is not released within the specified number of jiffies,
248  * this function returns -ETIME. If the sleep is interrupted by a signal,
249  * this function will return -EINTR. It returns 0 if the semaphore was
250  * acquired successfully.
251  *
252  * Acquires the semaphore without jiffies. Try to acquire the semaphore
253  * atomically. Returns 0 if the semaphore has been acquired successfully
254  * or 1 if it cannot be acquired.
255  */
256 static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout)
257 {
258 	int ret;
259 
260 	if (timeout) {
261 		ret = down_timeout(&nau8825->xtalk_sem, timeout);
262 		if (ret < 0)
263 			dev_warn(nau8825->dev, "Acquire semaphore timeout\n");
264 	} else {
265 		ret = down_trylock(&nau8825->xtalk_sem);
266 		if (ret)
267 			dev_warn(nau8825->dev, "Acquire semaphore fail\n");
268 	}
269 
270 	return ret;
271 }
272 
273 /**
274  * nau8825_sema_release - release the semaphore of nau88l25
275  * @nau8825:  component to register the codec private data with
276  *
277  * Release the semaphore which may be called from any context and
278  * even by tasks which have never called down().
279  */
280 static inline void nau8825_sema_release(struct nau8825 *nau8825)
281 {
282 	up(&nau8825->xtalk_sem);
283 }
284 
285 /**
286  * nau8825_sema_reset - reset the semaphore for nau88l25
287  * @nau8825:  component to register the codec private data with
288  *
289  * Reset the counter of the semaphore. Call this function to restart
290  * a new round task management.
291  */
292 static inline void nau8825_sema_reset(struct nau8825 *nau8825)
293 {
294 	nau8825->xtalk_sem.count = 1;
295 }
296 
297 /**
298  * nau8825_hpvol_ramp - Ramp up the headphone volume change gradually to target level.
299  *
300  * @nau8825:  component to register the codec private data with
301  * @vol_from: the volume to start up
302  * @vol_to: the target volume
303  * @step: the volume span to move on
304  *
305  * The headphone volume is from 0dB to minimum -54dB and -1dB per step.
306  * If the volume changes sharp, there is a pop noise heard in headphone. We
307  * provide the function to ramp up the volume up or down by delaying 10ms
308  * per step.
309  */
310 static void nau8825_hpvol_ramp(struct nau8825 *nau8825,
311 	unsigned int vol_from, unsigned int vol_to, unsigned int step)
312 {
313 	unsigned int value, volume, ramp_up, from, to;
314 
315 	if (vol_from == vol_to || step == 0) {
316 		return;
317 	} else if (vol_from < vol_to) {
318 		ramp_up = true;
319 		from = vol_from;
320 		to = vol_to;
321 	} else {
322 		ramp_up = false;
323 		from = vol_to;
324 		to = vol_from;
325 	}
326 	/* only handle volume from 0dB to minimum -54dB */
327 	if (to > NAU8825_HP_VOL_MIN)
328 		to = NAU8825_HP_VOL_MIN;
329 
330 	for (volume = from; volume < to; volume += step) {
331 		if (ramp_up)
332 			value = volume;
333 		else
334 			value = to - volume + from;
335 		regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
336 			NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
337 			(value << NAU8825_HPL_VOL_SFT) | value);
338 		usleep_range(10000, 10500);
339 	}
340 	if (ramp_up)
341 		value = to;
342 	else
343 		value = from;
344 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
345 		NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
346 		(value << NAU8825_HPL_VOL_SFT) | value);
347 }
348 
349 /**
350  * nau8825_intlog10_dec3 - Computes log10 of a value
351  * the result is round off to 3 decimal. This function takes reference to
352  * dvb-math. The source code locates as the following.
353  * Linux/drivers/media/dvb-core/dvb_math.c
354  * @value:  input for log10
355  *
356  * return log10(value) * 1000
357  */
358 static u32 nau8825_intlog10_dec3(u32 value)
359 {
360 	u32 msb, logentry, significand, interpolation, log10val;
361 	u64 log2val;
362 
363 	/* first detect the msb (count begins at 0) */
364 	msb = fls(value) - 1;
365 	/**
366 	 *      now we use a logtable after the following method:
367 	 *
368 	 *      log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24
369 	 *      where x = msb and therefore 1 <= y < 2
370 	 *      first y is determined by shifting the value left
371 	 *      so that msb is bit 31
372 	 *              0x00231f56 -> 0x8C7D5800
373 	 *      the result is y * 2^31 -> "significand"
374 	 *      then the highest 9 bits are used for a table lookup
375 	 *      the highest bit is discarded because it's always set
376 	 *      the highest nine bits in our example are 100011000
377 	 *      so we would use the entry 0x18
378 	 */
379 	significand = value << (31 - msb);
380 	logentry = (significand >> 23) & 0xff;
381 	/**
382 	 *      last step we do is interpolation because of the
383 	 *      limitations of the log table the error is that part of
384 	 *      the significand which isn't used for lookup then we
385 	 *      compute the ratio between the error and the next table entry
386 	 *      and interpolate it between the log table entry used and the
387 	 *      next one the biggest error possible is 0x7fffff
388 	 *      (in our example it's 0x7D5800)
389 	 *      needed value for next table entry is 0x800000
390 	 *      so the interpolation is
391 	 *      (error / 0x800000) * (logtable_next - logtable_current)
392 	 *      in the implementation the division is moved to the end for
393 	 *      better accuracy there is also an overflow correction if
394 	 *      logtable_next is 256
395 	 */
396 	interpolation = ((significand & 0x7fffff) *
397 		((logtable[(logentry + 1) & 0xff] -
398 		logtable[logentry]) & 0xffff)) >> 15;
399 
400 	log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation);
401 	/**
402 	 *      log10(x) = log2(x) * log10(2)
403 	 */
404 	log10val = (log2val * LOG10_MAGIC) >> 31;
405 	/**
406 	 *      the result is round off to 3 decimal
407 	 */
408 	return log10val / ((1 << 24) / 1000);
409 }
410 
411 /**
412  * nau8825_xtalk_sidetone - computes cross talk suppression sidetone gain.
413  *
414  * @sig_org: orignal signal level
415  * @sig_cros: cross talk signal level
416  *
417  * The orignal and cross talk signal vlues need to be characterized.
418  * Once these values have been characterized, this sidetone value
419  * can be converted to decibel with the equation below.
420  * sidetone = 20 * log (original signal level / crosstalk signal level)
421  *
422  * return cross talk sidetone gain
423  */
424 static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros)
425 {
426 	u32 gain, sidetone;
427 
428 	if (WARN_ON(sig_org == 0 || sig_cros == 0))
429 		return 0;
430 
431 	sig_org = nau8825_intlog10_dec3(sig_org);
432 	sig_cros = nau8825_intlog10_dec3(sig_cros);
433 	if (sig_org >= sig_cros)
434 		gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT;
435 	else
436 		gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT;
437 	sidetone = SIDETONE_BASE - gain * 2;
438 	sidetone /= 1000;
439 
440 	return sidetone;
441 }
442 
443 static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg)
444 {
445 	int index;
446 
447 	for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++)
448 		if (nau8825_xtalk_baktab[index].reg == reg)
449 			return index;
450 	return -EINVAL;
451 }
452 
453 static void nau8825_xtalk_backup(struct nau8825 *nau8825)
454 {
455 	int i;
456 
457 	if (nau8825->xtalk_baktab_initialized)
458 		return;
459 
460 	/* Backup some register values to backup table */
461 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++)
462 		regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
463 				&nau8825_xtalk_baktab[i].def);
464 
465 	nau8825->xtalk_baktab_initialized = true;
466 }
467 
468 static void nau8825_xtalk_restore(struct nau8825 *nau8825, bool cause_cancel)
469 {
470 	int i, volume;
471 
472 	if (!nau8825->xtalk_baktab_initialized)
473 		return;
474 
475 	/* Restore register values from backup table; When the driver restores
476 	 * the headphone volume in XTALK_DONE state, it needs recover to
477 	 * original level gradually with 3dB per step for less pop noise.
478 	 * Otherwise, the restore should do ASAP.
479 	 */
480 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) {
481 		if (!cause_cancel && nau8825_xtalk_baktab[i].reg ==
482 			NAU8825_REG_HSVOL_CTRL) {
483 			/* Ramping up the volume change to reduce pop noise */
484 			volume = nau8825_xtalk_baktab[i].def &
485 				NAU8825_HPR_VOL_MASK;
486 			nau8825_hpvol_ramp(nau8825, 0, volume, 3);
487 			continue;
488 		}
489 		regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
490 				nau8825_xtalk_baktab[i].def);
491 	}
492 
493 	nau8825->xtalk_baktab_initialized = false;
494 }
495 
496 static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825)
497 {
498 	/* Enable power of DAC path */
499 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
500 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
501 		NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK |
502 		NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR |
503 		NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC |
504 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK);
505 	/* Prevent startup click by letting charge pump to ramp up and
506 	 * change bump enable
507 	 */
508 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
509 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN,
510 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN);
511 	/* Enable clock sync of DAC and DAC clock */
512 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
513 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN |
514 		NAU8825_RDAC_FS_BCLK_ENB,
515 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN);
516 	/* Power up output driver with 2 stage */
517 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
518 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
519 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L,
520 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
521 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L);
522 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
523 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L,
524 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L);
525 	/* HP outputs not shouted to ground  */
526 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
527 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0);
528 	/* Enable HP boost driver */
529 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
530 		NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS);
531 	/* Enable class G compare path to supply 1.8V or 0.9V. */
532 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL,
533 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN,
534 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN);
535 }
536 
537 static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825)
538 {
539 	/* Power up left ADC and raise 5dB than Vmid for Vref  */
540 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
541 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK,
542 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB);
543 }
544 
545 static void nau8825_xtalk_clock(struct nau8825 *nau8825)
546 {
547 	/* Recover FLL default value */
548 	regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0);
549 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126);
550 	regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008);
551 	regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010);
552 	regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0);
553 	regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000);
554 	/* Enable internal VCO clock for detection signal generated */
555 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
556 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
557 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN,
558 		NAU8825_DCO_EN);
559 	/* Given specific clock frequency of internal clock to
560 	 * generate signal.
561 	 */
562 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
563 		NAU8825_CLK_MCLK_SRC_MASK, 0xf);
564 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
565 		NAU8825_FLL_RATIO_MASK, 0x10);
566 }
567 
568 static void nau8825_xtalk_prepare(struct nau8825 *nau8825)
569 {
570 	int volume, index;
571 
572 	/* Backup those registers changed by cross talk detection */
573 	nau8825_xtalk_backup(nau8825);
574 	/* Config IIS as master to output signal by codec */
575 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
576 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
577 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER |
578 		(0x2 << NAU8825_I2S_LRC_DIV_SFT) | 0x1);
579 	/* Ramp up headphone volume to 0dB to get better performance and
580 	 * avoid pop noise in headphone.
581 	 */
582 	index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL);
583 	if (index != -EINVAL) {
584 		volume = nau8825_xtalk_baktab[index].def &
585 				NAU8825_HPR_VOL_MASK;
586 		nau8825_hpvol_ramp(nau8825, volume, 0, 3);
587 	}
588 	nau8825_xtalk_clock(nau8825);
589 	nau8825_xtalk_prepare_dac(nau8825);
590 	nau8825_xtalk_prepare_adc(nau8825);
591 	/* Config channel path and digital gain */
592 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
593 		NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK,
594 		NAU8825_DACL_CH_SEL_L | 0xab);
595 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
596 		NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK,
597 		NAU8825_DACR_CH_SEL_R | 0xab);
598 	/* Config cross talk parameters and generate the 23Hz sine wave with
599 	 * 1/16 full scale of signal level for impedance measurement.
600 	 */
601 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
602 		NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK |
603 		NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK,
604 		(0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th |
605 		NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN);
606 	/* RMS intrruption enable */
607 	regmap_update_bits(nau8825->regmap,
608 		NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0);
609 	/* Power up left and right DAC */
610 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
611 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0);
612 }
613 
614 static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825)
615 {
616 	/* Disable HP boost driver */
617 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
618 		NAU8825_HP_BOOST_DIS, 0);
619 	/* HP outputs shouted to ground  */
620 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
621 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
622 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
623 	/* Power down left and right DAC */
624 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
625 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
626 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
627 	/* Enable the TESTDAC and  disable L/R HP impedance */
628 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
629 		NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP |
630 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
631 	/* Power down output driver with 2 stage */
632 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
633 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0);
634 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
635 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
636 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0);
637 	/* Disable clock sync of DAC and DAC clock */
638 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
639 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0);
640 	/* Disable charge pump ramp up function and change bump */
641 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
642 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0);
643 	/* Disable power of DAC path */
644 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
645 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
646 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0);
647 	if (!nau8825->irq)
648 		regmap_update_bits(nau8825->regmap,
649 			NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
650 }
651 
652 static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825)
653 {
654 	/* Power down left ADC and restore voltage to Vmid */
655 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
656 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0);
657 }
658 
659 static void nau8825_xtalk_clean(struct nau8825 *nau8825, bool cause_cancel)
660 {
661 	/* Enable internal VCO needed for interruptions */
662 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
663 	nau8825_xtalk_clean_dac(nau8825);
664 	nau8825_xtalk_clean_adc(nau8825);
665 	/* Clear cross talk parameters and disable */
666 	regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0);
667 	/* RMS intrruption disable */
668 	regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK,
669 		NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN);
670 	/* Recover default value for IIS */
671 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
672 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
673 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE);
674 	/* Restore value of specific register for cross talk */
675 	nau8825_xtalk_restore(nau8825, cause_cancel);
676 }
677 
678 static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol)
679 {
680 	/* Apply ADC volume for better cross talk performance */
681 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL,
682 				NAU8825_ADC_DIG_VOL_MASK, vol);
683 	/* Disables JKTIP(HPL) DAC channel for right to left measurement.
684 	 * Do it before sending signal in order to erase pop noise.
685 	 */
686 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
687 		NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN,
688 		NAU8825_BIAS_TESTDACL_EN);
689 	switch (nau8825->xtalk_state) {
690 	case NAU8825_XTALK_HPR_R2L:
691 		/* Enable right headphone impedance */
692 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
693 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
694 			NAU8825_BIAS_HPR_IMP);
695 		break;
696 	case NAU8825_XTALK_HPL_R2L:
697 		/* Enable left headphone impedance */
698 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
699 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
700 			NAU8825_BIAS_HPL_IMP);
701 		break;
702 	default:
703 		break;
704 	}
705 	msleep(100);
706 	/* Impedance measurement mode enable */
707 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
708 				NAU8825_IMM_EN, NAU8825_IMM_EN);
709 }
710 
711 static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825)
712 {
713 	/* Impedance measurement mode disable */
714 	regmap_update_bits(nau8825->regmap,
715 		NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0);
716 }
717 
718 /* The cross talk measurement function can reduce cross talk across the
719  * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal
720  * level to determine what cross talk reduction gain is. This system works by
721  * sending a 23Hz -24dBV sine wave into the headset output DAC and through
722  * the PGA. The output of the PGA is then connected to an internal current
723  * sense which measures the attenuated 23Hz signal and passing the output to
724  * an ADC which converts the measurement to a binary code. With two separated
725  * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data
726  * can be separated read in IMM_RMS_L for HSR and HSL after each measurement.
727  * Thus, the measurement function has four states to complete whole sequence.
728  * 1. Prepare state : Prepare the resource for detection and transfer to HPR
729  *     IMM stat to make JKR1(HPR) impedance measure.
730  * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer
731  *     to HPL IMM state to make JKTIP(HPL) impedance measure.
732  * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and
733  *     transfer to IMM state to determine suppression sidetone gain.
734  * 4. IMM state : Computes cross talk suppression sidetone gain with orignal
735  *     and cross talk signal level. Apply this gain and then restore codec
736  *     configuration. Then transfer to Done state for ending.
737  */
738 static void nau8825_xtalk_measure(struct nau8825 *nau8825)
739 {
740 	u32 sidetone;
741 
742 	switch (nau8825->xtalk_state) {
743 	case NAU8825_XTALK_PREPARE:
744 		/* In prepare state, set up clock, intrruption, DAC path, ADC
745 		 * path and cross talk detection parameters for preparation.
746 		 */
747 		nau8825_xtalk_prepare(nau8825);
748 		msleep(280);
749 		/* Trigger right headphone impedance detection */
750 		nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L;
751 		nau8825_xtalk_imm_start(nau8825, 0x00d2);
752 		break;
753 	case NAU8825_XTALK_HPR_R2L:
754 		/* In right headphone IMM state, read out right headphone
755 		 * impedance measure result, and then start up left side.
756 		 */
757 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
758 			&nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
759 		dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n",
760 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
761 		/* Disable then re-enable IMM mode to update */
762 		nau8825_xtalk_imm_stop(nau8825);
763 		/* Trigger left headphone impedance detection */
764 		nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L;
765 		nau8825_xtalk_imm_start(nau8825, 0x00ff);
766 		break;
767 	case NAU8825_XTALK_HPL_R2L:
768 		/* In left headphone IMM state, read out left headphone
769 		 * impedance measure result, and delay some time to wait
770 		 * detection sine wave output finish. Then, we can calculate
771 		 * the cross talk suppresstion side tone according to the L/R
772 		 * headphone imedance.
773 		 */
774 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
775 			&nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
776 		dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n",
777 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
778 		nau8825_xtalk_imm_stop(nau8825);
779 		msleep(150);
780 		nau8825->xtalk_state = NAU8825_XTALK_IMM;
781 		break;
782 	case NAU8825_XTALK_IMM:
783 		/* In impedance measure state, the orignal and cross talk
784 		 * signal level vlues are ready. The side tone gain is deter-
785 		 * mined with these signal level. After all, restore codec
786 		 * configuration.
787 		 */
788 		sidetone = nau8825_xtalk_sidetone(
789 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L],
790 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
791 		dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone);
792 		regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL,
793 					(sidetone << 8) | sidetone);
794 		nau8825_xtalk_clean(nau8825, false);
795 		nau8825->xtalk_state = NAU8825_XTALK_DONE;
796 		break;
797 	default:
798 		break;
799 	}
800 }
801 
802 static void nau8825_xtalk_work(struct work_struct *work)
803 {
804 	struct nau8825 *nau8825 = container_of(
805 		work, struct nau8825, xtalk_work);
806 
807 	nau8825_xtalk_measure(nau8825);
808 	/* To determine the cross talk side tone gain when reach
809 	 * the impedance measure state.
810 	 */
811 	if (nau8825->xtalk_state == NAU8825_XTALK_IMM)
812 		nau8825_xtalk_measure(nau8825);
813 
814 	/* Delay jack report until cross talk detection process
815 	 * completed. It can avoid application to do playback
816 	 * preparation before cross talk detection is still working.
817 	 * Meanwhile, the protection of the cross talk detection
818 	 * is released.
819 	 */
820 	if (nau8825->xtalk_state == NAU8825_XTALK_DONE) {
821 		snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event,
822 				nau8825->xtalk_event_mask);
823 		nau8825_sema_release(nau8825);
824 		nau8825->xtalk_protect = false;
825 	}
826 }
827 
828 static void nau8825_xtalk_cancel(struct nau8825 *nau8825)
829 {
830 	/* If the crosstalk is eanbled and the process is on going,
831 	 * the driver forces to cancel the crosstalk task and
832 	 * restores the configuration to original status.
833 	 */
834 	if (nau8825->xtalk_enable && nau8825->xtalk_state !=
835 		NAU8825_XTALK_DONE) {
836 		cancel_work_sync(&nau8825->xtalk_work);
837 		nau8825_xtalk_clean(nau8825, true);
838 	}
839 	/* Reset parameters for cross talk suppression function */
840 	nau8825_sema_reset(nau8825);
841 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
842 	nau8825->xtalk_protect = false;
843 }
844 
845 static bool nau8825_readable_reg(struct device *dev, unsigned int reg)
846 {
847 	switch (reg) {
848 	case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV:
849 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
850 	case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL:
851 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
852 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
853 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
854 	case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R:
855 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
856 	case NAU8825_REG_MISC_CTRL:
857 	case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS:
858 	case NAU8825_REG_BIAS_ADJ:
859 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
860 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
861 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
862 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS:
863 		return true;
864 	default:
865 		return false;
866 	}
867 
868 }
869 
870 static bool nau8825_writeable_reg(struct device *dev, unsigned int reg)
871 {
872 	switch (reg) {
873 	case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV:
874 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
875 	case NAU8825_REG_INTERRUPT_MASK:
876 	case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL:
877 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
878 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
879 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
880 	case NAU8825_REG_IMM_MODE_CTRL:
881 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
882 	case NAU8825_REG_MISC_CTRL:
883 	case NAU8825_REG_BIAS_ADJ:
884 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
885 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
886 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
887 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP:
888 		return true;
889 	default:
890 		return false;
891 	}
892 }
893 
894 static bool nau8825_volatile_reg(struct device *dev, unsigned int reg)
895 {
896 	switch (reg) {
897 	case NAU8825_REG_RESET:
898 	case NAU8825_REG_IRQ_STATUS:
899 	case NAU8825_REG_INT_CLR_KEY_STATUS:
900 	case NAU8825_REG_IMM_RMS_L:
901 	case NAU8825_REG_IMM_RMS_R:
902 	case NAU8825_REG_I2C_DEVICE_ID:
903 	case NAU8825_REG_SARDOUT_RAM_STATUS:
904 	case NAU8825_REG_CHARGE_PUMP_INPUT_READ:
905 	case NAU8825_REG_GENERAL_STATUS:
906 	case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10:
907 		return true;
908 	default:
909 		return false;
910 	}
911 }
912 
913 static int nau8825_adc_event(struct snd_soc_dapm_widget *w,
914 		struct snd_kcontrol *kcontrol, int event)
915 {
916 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
917 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
918 
919 	switch (event) {
920 	case SND_SOC_DAPM_POST_PMU:
921 		msleep(125);
922 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
923 			NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
924 		break;
925 	case SND_SOC_DAPM_POST_PMD:
926 		if (!nau8825->irq)
927 			regmap_update_bits(nau8825->regmap,
928 				NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
929 		break;
930 	default:
931 		return -EINVAL;
932 	}
933 
934 	return 0;
935 }
936 
937 static int nau8825_pump_event(struct snd_soc_dapm_widget *w,
938 	struct snd_kcontrol *kcontrol, int event)
939 {
940 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
941 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
942 
943 	switch (event) {
944 	case SND_SOC_DAPM_POST_PMU:
945 		/* Prevent startup click by letting charge pump to ramp up */
946 		msleep(10);
947 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
948 			NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW);
949 		break;
950 	case SND_SOC_DAPM_PRE_PMD:
951 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
952 			NAU8825_JAMNODCLOW, 0);
953 		break;
954 	default:
955 		return -EINVAL;
956 	}
957 
958 	return 0;
959 }
960 
961 static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w,
962 	struct snd_kcontrol *kcontrol, int event)
963 {
964 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
965 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
966 
967 	switch (event) {
968 	case SND_SOC_DAPM_PRE_PMU:
969 		/* Disables the TESTDAC to let DAC signal pass through. */
970 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
971 			NAU8825_BIAS_TESTDAC_EN, 0);
972 		break;
973 	case SND_SOC_DAPM_POST_PMD:
974 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
975 			NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
976 		break;
977 	default:
978 		return -EINVAL;
979 	}
980 
981 	return 0;
982 }
983 
984 static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol,
985 				     struct snd_ctl_elem_value *ucontrol)
986 {
987 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
988 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
989 
990 	if (!component->regmap)
991 		return -EINVAL;
992 
993 	regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1,
994 		ucontrol->value.bytes.data, params->max);
995 	return 0;
996 }
997 
998 static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol,
999 				     struct snd_ctl_elem_value *ucontrol)
1000 {
1001 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1002 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
1003 	void *data;
1004 
1005 	if (!component->regmap)
1006 		return -EINVAL;
1007 
1008 	data = kmemdup(ucontrol->value.bytes.data,
1009 		params->max, GFP_KERNEL | GFP_DMA);
1010 	if (!data)
1011 		return -ENOMEM;
1012 
1013 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1014 		NAU8825_BIQ_WRT_EN, 0);
1015 	regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1,
1016 		data, params->max);
1017 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1018 		NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN);
1019 
1020 	kfree(data);
1021 	return 0;
1022 }
1023 
1024 static const char * const nau8825_biq_path[] = {
1025 	"ADC", "DAC"
1026 };
1027 
1028 static const struct soc_enum nau8825_biq_path_enum =
1029 	SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT,
1030 		ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path);
1031 
1032 static const char * const nau8825_adc_decimation[] = {
1033 	"32", "64", "128", "256"
1034 };
1035 
1036 static const struct soc_enum nau8825_adc_decimation_enum =
1037 	SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT,
1038 		ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation);
1039 
1040 static const char * const nau8825_dac_oversampl[] = {
1041 	"64", "256", "128", "", "32"
1042 };
1043 
1044 static const struct soc_enum nau8825_dac_oversampl_enum =
1045 	SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT,
1046 		ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl);
1047 
1048 static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400);
1049 static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0);
1050 static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0);
1051 static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
1052 static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400);
1053 
1054 static const struct snd_kcontrol_new nau8825_controls[] = {
1055 	SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1056 		0, 0xff, 0, adc_vol_tlv),
1057 	SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1058 		12, 8, 0x0f, 0, sidetone_vol_tlv),
1059 	SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL,
1060 		6, 0, 0x3f, 1, dac_vol_tlv),
1061 	SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL,
1062 		8, 37, 0, fepga_gain_tlv),
1063 	SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL,
1064 		0, 8, 0xff, 0, crosstalk_vol_tlv),
1065 
1066 	SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum),
1067 	SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum),
1068 	/* programmable biquad filter */
1069 	SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum),
1070 	SND_SOC_BYTES_EXT("BIQ Coefficients", 20,
1071 		  nau8825_biq_coeff_get, nau8825_biq_coeff_put),
1072 };
1073 
1074 /* DAC Mux 0x33[9] and 0x34[9] */
1075 static const char * const nau8825_dac_src[] = {
1076 	"DACL", "DACR",
1077 };
1078 
1079 static SOC_ENUM_SINGLE_DECL(
1080 	nau8825_dacl_enum, NAU8825_REG_DACL_CTRL,
1081 	NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src);
1082 
1083 static SOC_ENUM_SINGLE_DECL(
1084 	nau8825_dacr_enum, NAU8825_REG_DACR_CTRL,
1085 	NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src);
1086 
1087 static const struct snd_kcontrol_new nau8825_dacl_mux =
1088 	SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum);
1089 
1090 static const struct snd_kcontrol_new nau8825_dacr_mux =
1091 	SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum);
1092 
1093 
1094 static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = {
1095 	SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2,
1096 		15, 1),
1097 
1098 	SND_SOC_DAPM_INPUT("MIC"),
1099 	SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0),
1100 
1101 	SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0,
1102 		NULL, 0),
1103 
1104 	SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0,
1105 		nau8825_adc_event, SND_SOC_DAPM_POST_PMU |
1106 		SND_SOC_DAPM_POST_PMD),
1107 	SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0),
1108 	SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL,
1109 		0),
1110 
1111 	/* ADC for button press detection. A dapm supply widget is used to
1112 	 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON
1113 	 * during suspend.
1114 	 */
1115 	SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL,
1116 		NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0),
1117 
1118 	SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0),
1119 	SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0),
1120 	SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0),
1121 	SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0),
1122 
1123 	SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL,
1124 		NAU8825_ENABLE_DACR_SFT, 0),
1125 	SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL,
1126 		NAU8825_ENABLE_DACL_SFT, 0),
1127 	SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0),
1128 
1129 	SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux),
1130 	SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux),
1131 
1132 	SND_SOC_DAPM_PGA_S("HP amp L", 0,
1133 		NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0),
1134 	SND_SOC_DAPM_PGA_S("HP amp R", 0,
1135 		NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0),
1136 
1137 	SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0,
1138 		nau8825_pump_event, SND_SOC_DAPM_POST_PMU |
1139 		SND_SOC_DAPM_PRE_PMD),
1140 
1141 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4,
1142 		NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0),
1143 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4,
1144 		NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0),
1145 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5,
1146 		NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
1147 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5,
1148 		NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
1149 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6,
1150 		NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
1151 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6,
1152 		NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
1153 
1154 	SND_SOC_DAPM_PGA_S("Output DACL", 7,
1155 		NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event,
1156 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1157 	SND_SOC_DAPM_PGA_S("Output DACR", 7,
1158 		NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event,
1159 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1160 
1161 	/* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */
1162 	SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8,
1163 		NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0),
1164 	SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8,
1165 		NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0),
1166 
1167 	/* High current HPOL/R boost driver */
1168 	SND_SOC_DAPM_PGA_S("HP Boost Driver", 9,
1169 		NAU8825_REG_BOOST, 9, 1, NULL, 0),
1170 
1171 	/* Class G operation control*/
1172 	SND_SOC_DAPM_PGA_S("Class G", 10,
1173 		NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0),
1174 
1175 	SND_SOC_DAPM_OUTPUT("HPOL"),
1176 	SND_SOC_DAPM_OUTPUT("HPOR"),
1177 };
1178 
1179 static const struct snd_soc_dapm_route nau8825_dapm_routes[] = {
1180 	{"Frontend PGA", NULL, "MIC"},
1181 	{"ADC", NULL, "Frontend PGA"},
1182 	{"ADC", NULL, "ADC Clock"},
1183 	{"ADC", NULL, "ADC Power"},
1184 	{"AIFTX", NULL, "ADC"},
1185 
1186 	{"DDACL", NULL, "Playback"},
1187 	{"DDACR", NULL, "Playback"},
1188 	{"DDACL", NULL, "DDAC Clock"},
1189 	{"DDACR", NULL, "DDAC Clock"},
1190 	{"DACL Mux", "DACL", "DDACL"},
1191 	{"DACL Mux", "DACR", "DDACR"},
1192 	{"DACR Mux", "DACL", "DDACL"},
1193 	{"DACR Mux", "DACR", "DDACR"},
1194 	{"HP amp L", NULL, "DACL Mux"},
1195 	{"HP amp R", NULL, "DACR Mux"},
1196 	{"Charge Pump", NULL, "HP amp L"},
1197 	{"Charge Pump", NULL, "HP amp R"},
1198 	{"ADACL", NULL, "Charge Pump"},
1199 	{"ADACR", NULL, "Charge Pump"},
1200 	{"ADACL Clock", NULL, "ADACL"},
1201 	{"ADACR Clock", NULL, "ADACR"},
1202 	{"Output Driver L Stage 1", NULL, "ADACL Clock"},
1203 	{"Output Driver R Stage 1", NULL, "ADACR Clock"},
1204 	{"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"},
1205 	{"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"},
1206 	{"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"},
1207 	{"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"},
1208 	{"Output DACL", NULL, "Output Driver L Stage 3"},
1209 	{"Output DACR", NULL, "Output Driver R Stage 3"},
1210 	{"HPOL Pulldown", NULL, "Output DACL"},
1211 	{"HPOR Pulldown", NULL, "Output DACR"},
1212 	{"HP Boost Driver", NULL, "HPOL Pulldown"},
1213 	{"HP Boost Driver", NULL, "HPOR Pulldown"},
1214 	{"Class G", NULL, "HP Boost Driver"},
1215 	{"HPOL", NULL, "Class G"},
1216 	{"HPOR", NULL, "Class G"},
1217 };
1218 
1219 static int nau8825_clock_check(struct nau8825 *nau8825,
1220 	int stream, int rate, int osr)
1221 {
1222 	int osrate;
1223 
1224 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
1225 		if (osr >= ARRAY_SIZE(osr_dac_sel))
1226 			return -EINVAL;
1227 		osrate = osr_dac_sel[osr].osr;
1228 	} else {
1229 		if (osr >= ARRAY_SIZE(osr_adc_sel))
1230 			return -EINVAL;
1231 		osrate = osr_adc_sel[osr].osr;
1232 	}
1233 
1234 	if (!osrate || rate * osr > CLK_DA_AD_MAX) {
1235 		dev_err(nau8825->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC\n");
1236 		return -EINVAL;
1237 	}
1238 
1239 	return 0;
1240 }
1241 
1242 static int nau8825_hw_params(struct snd_pcm_substream *substream,
1243 				struct snd_pcm_hw_params *params,
1244 				struct snd_soc_dai *dai)
1245 {
1246 	struct snd_soc_component *component = dai->component;
1247 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1248 	unsigned int val_len = 0, osr, ctrl_val, bclk_fs, bclk_div;
1249 
1250 	nau8825_sema_acquire(nau8825, 3 * HZ);
1251 
1252 	/* CLK_DAC or CLK_ADC = OSR * FS
1253 	 * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR)
1254 	 * multiplied by the audio sample rate (Fs). Note that the OSR and Fs
1255 	 * values must be selected such that the maximum frequency is less
1256 	 * than 6.144 MHz.
1257 	 */
1258 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1259 		regmap_read(nau8825->regmap, NAU8825_REG_DAC_CTRL1, &osr);
1260 		osr &= NAU8825_DAC_OVERSAMPLE_MASK;
1261 		if (nau8825_clock_check(nau8825, substream->stream,
1262 			params_rate(params), osr)) {
1263 			nau8825_sema_release(nau8825);
1264 			return -EINVAL;
1265 		}
1266 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1267 			NAU8825_CLK_DAC_SRC_MASK,
1268 			osr_dac_sel[osr].clk_src << NAU8825_CLK_DAC_SRC_SFT);
1269 	} else {
1270 		regmap_read(nau8825->regmap, NAU8825_REG_ADC_RATE, &osr);
1271 		osr &= NAU8825_ADC_SYNC_DOWN_MASK;
1272 		if (nau8825_clock_check(nau8825, substream->stream,
1273 			params_rate(params), osr)) {
1274 			nau8825_sema_release(nau8825);
1275 			return -EINVAL;
1276 		}
1277 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1278 			NAU8825_CLK_ADC_SRC_MASK,
1279 			osr_adc_sel[osr].clk_src << NAU8825_CLK_ADC_SRC_SFT);
1280 	}
1281 
1282 	/* make BCLK and LRC divde configuration if the codec as master. */
1283 	regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, &ctrl_val);
1284 	if (ctrl_val & NAU8825_I2S_MS_MASTER) {
1285 		/* get the bclk and fs ratio */
1286 		bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params);
1287 		if (bclk_fs <= 32)
1288 			bclk_div = 2;
1289 		else if (bclk_fs <= 64)
1290 			bclk_div = 1;
1291 		else if (bclk_fs <= 128)
1292 			bclk_div = 0;
1293 		else {
1294 			nau8825_sema_release(nau8825);
1295 			return -EINVAL;
1296 		}
1297 		regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1298 			NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK,
1299 			((bclk_div + 1) << NAU8825_I2S_LRC_DIV_SFT) | bclk_div);
1300 	}
1301 
1302 	switch (params_width(params)) {
1303 	case 16:
1304 		val_len |= NAU8825_I2S_DL_16;
1305 		break;
1306 	case 20:
1307 		val_len |= NAU8825_I2S_DL_20;
1308 		break;
1309 	case 24:
1310 		val_len |= NAU8825_I2S_DL_24;
1311 		break;
1312 	case 32:
1313 		val_len |= NAU8825_I2S_DL_32;
1314 		break;
1315 	default:
1316 		nau8825_sema_release(nau8825);
1317 		return -EINVAL;
1318 	}
1319 
1320 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1321 		NAU8825_I2S_DL_MASK, val_len);
1322 
1323 	/* Release the semaphore. */
1324 	nau8825_sema_release(nau8825);
1325 
1326 	return 0;
1327 }
1328 
1329 static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
1330 {
1331 	struct snd_soc_component *component = codec_dai->component;
1332 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1333 	unsigned int ctrl1_val = 0, ctrl2_val = 0;
1334 
1335 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1336 	case SND_SOC_DAIFMT_CBM_CFM:
1337 		ctrl2_val |= NAU8825_I2S_MS_MASTER;
1338 		break;
1339 	case SND_SOC_DAIFMT_CBS_CFS:
1340 		break;
1341 	default:
1342 		return -EINVAL;
1343 	}
1344 
1345 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1346 	case SND_SOC_DAIFMT_NB_NF:
1347 		break;
1348 	case SND_SOC_DAIFMT_IB_NF:
1349 		ctrl1_val |= NAU8825_I2S_BP_INV;
1350 		break;
1351 	default:
1352 		return -EINVAL;
1353 	}
1354 
1355 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1356 	case SND_SOC_DAIFMT_I2S:
1357 		ctrl1_val |= NAU8825_I2S_DF_I2S;
1358 		break;
1359 	case SND_SOC_DAIFMT_LEFT_J:
1360 		ctrl1_val |= NAU8825_I2S_DF_LEFT;
1361 		break;
1362 	case SND_SOC_DAIFMT_RIGHT_J:
1363 		ctrl1_val |= NAU8825_I2S_DF_RIGTH;
1364 		break;
1365 	case SND_SOC_DAIFMT_DSP_A:
1366 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1367 		break;
1368 	case SND_SOC_DAIFMT_DSP_B:
1369 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1370 		ctrl1_val |= NAU8825_I2S_PCMB_EN;
1371 		break;
1372 	default:
1373 		return -EINVAL;
1374 	}
1375 
1376 	nau8825_sema_acquire(nau8825, 3 * HZ);
1377 
1378 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1379 		NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK |
1380 		NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK,
1381 		ctrl1_val);
1382 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1383 		NAU8825_I2S_MS_MASK, ctrl2_val);
1384 
1385 	/* Release the semaphore. */
1386 	nau8825_sema_release(nau8825);
1387 
1388 	return 0;
1389 }
1390 
1391 static const struct snd_soc_dai_ops nau8825_dai_ops = {
1392 	.hw_params	= nau8825_hw_params,
1393 	.set_fmt	= nau8825_set_dai_fmt,
1394 };
1395 
1396 #define NAU8825_RATES	SNDRV_PCM_RATE_8000_192000
1397 #define NAU8825_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
1398 			 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1399 
1400 static struct snd_soc_dai_driver nau8825_dai = {
1401 	.name = "nau8825-hifi",
1402 	.playback = {
1403 		.stream_name	 = "Playback",
1404 		.channels_min	 = 1,
1405 		.channels_max	 = 2,
1406 		.rates		 = NAU8825_RATES,
1407 		.formats	 = NAU8825_FORMATS,
1408 	},
1409 	.capture = {
1410 		.stream_name	 = "Capture",
1411 		.channels_min	 = 1,
1412 		.channels_max	 = 1,
1413 		.rates		 = NAU8825_RATES,
1414 		.formats	 = NAU8825_FORMATS,
1415 	},
1416 	.ops = &nau8825_dai_ops,
1417 };
1418 
1419 /**
1420  * nau8825_enable_jack_detect - Specify a jack for event reporting
1421  *
1422  * @component:  component to register the jack with
1423  * @jack: jack to use to report headset and button events on
1424  *
1425  * After this function has been called the headset insert/remove and button
1426  * events will be routed to the given jack.  Jack can be null to stop
1427  * reporting.
1428  */
1429 int nau8825_enable_jack_detect(struct snd_soc_component *component,
1430 				struct snd_soc_jack *jack)
1431 {
1432 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1433 	struct regmap *regmap = nau8825->regmap;
1434 
1435 	nau8825->jack = jack;
1436 
1437 	/* Ground HP Outputs[1:0], needed for headset auto detection
1438 	 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6]
1439 	 */
1440 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1441 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
1442 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
1443 
1444 	return 0;
1445 }
1446 EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect);
1447 
1448 
1449 static bool nau8825_is_jack_inserted(struct regmap *regmap)
1450 {
1451 	bool active_high, is_high;
1452 	int status, jkdet;
1453 
1454 	regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet);
1455 	active_high = jkdet & NAU8825_JACK_POLARITY;
1456 	regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status);
1457 	is_high = status & NAU8825_GPIO2JD1;
1458 	/* return jack connection status according to jack insertion logic
1459 	 * active high or active low.
1460 	 */
1461 	return active_high == is_high;
1462 }
1463 
1464 static void nau8825_restart_jack_detection(struct regmap *regmap)
1465 {
1466 	/* this will restart the entire jack detection process including MIC/GND
1467 	 * switching and create interrupts. We have to go from 0 to 1 and back
1468 	 * to 0 to restart.
1469 	 */
1470 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1471 		NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART);
1472 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1473 		NAU8825_JACK_DET_RESTART, 0);
1474 }
1475 
1476 static void nau8825_int_status_clear_all(struct regmap *regmap)
1477 {
1478 	int active_irq, clear_irq, i;
1479 
1480 	/* Reset the intrruption status from rightmost bit if the corres-
1481 	 * ponding irq event occurs.
1482 	 */
1483 	regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq);
1484 	for (i = 0; i < NAU8825_REG_DATA_LEN; i++) {
1485 		clear_irq = (0x1 << i);
1486 		if (active_irq & clear_irq)
1487 			regmap_write(regmap,
1488 				NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1489 	}
1490 }
1491 
1492 static void nau8825_eject_jack(struct nau8825 *nau8825)
1493 {
1494 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1495 	struct regmap *regmap = nau8825->regmap;
1496 
1497 	/* Force to cancel the cross talk detection process */
1498 	nau8825_xtalk_cancel(nau8825);
1499 
1500 	snd_soc_dapm_disable_pin(dapm, "SAR");
1501 	snd_soc_dapm_disable_pin(dapm, "MICBIAS");
1502 	/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
1503 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1504 		NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
1505 	/* ground HPL/HPR, MICGRND1/2 */
1506 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf);
1507 
1508 	snd_soc_dapm_sync(dapm);
1509 
1510 	/* Clear all interruption status */
1511 	nau8825_int_status_clear_all(regmap);
1512 
1513 	/* Enable the insertion interruption, disable the ejection inter-
1514 	 * ruption, and then bypass de-bounce circuit.
1515 	 */
1516 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
1517 		NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS,
1518 		NAU8825_IRQ_EJECT_DIS);
1519 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1520 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1521 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN,
1522 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1523 		NAU8825_IRQ_HEADSET_COMPLETE_EN);
1524 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1525 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
1526 
1527 	/* Disable ADC needed for interruptions at audo mode */
1528 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1529 		NAU8825_ENABLE_ADC, 0);
1530 
1531 	/* Close clock for jack type detection at manual mode */
1532 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1533 }
1534 
1535 /* Enable audo mode interruptions with internal clock. */
1536 static void nau8825_setup_auto_irq(struct nau8825 *nau8825)
1537 {
1538 	struct regmap *regmap = nau8825->regmap;
1539 
1540 	/* Enable headset jack type detection complete interruption and
1541 	 * jack ejection interruption.
1542 	 */
1543 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1544 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0);
1545 
1546 	/* Enable internal VCO needed for interruptions */
1547 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
1548 
1549 	/* Enable ADC needed for interruptions */
1550 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1551 		NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
1552 
1553 	/* Chip needs one FSCLK cycle in order to generate interruptions,
1554 	 * as we cannot guarantee one will be provided by the system. Turning
1555 	 * master mode on then off enables us to generate that FSCLK cycle
1556 	 * with a minimum of contention on the clock bus.
1557 	 */
1558 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1559 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER);
1560 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1561 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE);
1562 
1563 	/* Not bypass de-bounce circuit */
1564 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1565 		NAU8825_JACK_DET_DB_BYPASS, 0);
1566 
1567 	/* Unmask all interruptions */
1568 	regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0);
1569 
1570 	/* Restart the jack detection process at auto mode */
1571 	nau8825_restart_jack_detection(regmap);
1572 }
1573 
1574 static int nau8825_button_decode(int value)
1575 {
1576 	int buttons = 0;
1577 
1578 	/* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */
1579 	if (value & BIT(0))
1580 		buttons |= SND_JACK_BTN_0;
1581 	if (value & BIT(1))
1582 		buttons |= SND_JACK_BTN_1;
1583 	if (value & BIT(2))
1584 		buttons |= SND_JACK_BTN_2;
1585 	if (value & BIT(3))
1586 		buttons |= SND_JACK_BTN_3;
1587 	if (value & BIT(4))
1588 		buttons |= SND_JACK_BTN_4;
1589 	if (value & BIT(5))
1590 		buttons |= SND_JACK_BTN_5;
1591 
1592 	return buttons;
1593 }
1594 
1595 static int nau8825_jack_insert(struct nau8825 *nau8825)
1596 {
1597 	struct regmap *regmap = nau8825->regmap;
1598 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1599 	int jack_status_reg, mic_detected;
1600 	int type = 0;
1601 
1602 	regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg);
1603 	mic_detected = (jack_status_reg >> 10) & 3;
1604 	/* The JKSLV and JKR2 all detected in high impedance headset */
1605 	if (mic_detected == 0x3)
1606 		nau8825->high_imped = true;
1607 	else
1608 		nau8825->high_imped = false;
1609 
1610 	switch (mic_detected) {
1611 	case 0:
1612 		/* no mic */
1613 		type = SND_JACK_HEADPHONE;
1614 		break;
1615 	case 1:
1616 		dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n");
1617 		type = SND_JACK_HEADSET;
1618 
1619 		/* Unground MICGND1 */
1620 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1621 			1 << 2);
1622 		/* Attach 2kOhm Resistor from MICBIAS to MICGND1 */
1623 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1624 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1625 			NAU8825_MICBIAS_JKR2);
1626 		/* Attach SARADC to MICGND1 */
1627 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1628 			NAU8825_SAR_INPUT_MASK,
1629 			NAU8825_SAR_INPUT_JKR2);
1630 
1631 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1632 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1633 		snd_soc_dapm_sync(dapm);
1634 		break;
1635 	case 2:
1636 		dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n");
1637 		type = SND_JACK_HEADSET;
1638 
1639 		/* Unground MICGND2 */
1640 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1641 			2 << 2);
1642 		/* Attach 2kOhm Resistor from MICBIAS to MICGND2 */
1643 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1644 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1645 			NAU8825_MICBIAS_JKSLV);
1646 		/* Attach SARADC to MICGND2 */
1647 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1648 			NAU8825_SAR_INPUT_MASK,
1649 			NAU8825_SAR_INPUT_JKSLV);
1650 
1651 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1652 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1653 		snd_soc_dapm_sync(dapm);
1654 		break;
1655 	case 3:
1656 		/* detect error case */
1657 		dev_err(nau8825->dev, "detection error; disable mic function\n");
1658 		type = SND_JACK_HEADPHONE;
1659 		break;
1660 	}
1661 
1662 	/* Leaving HPOL/R grounded after jack insert by default. They will be
1663 	 * ungrounded as part of the widget power up sequence at the beginning
1664 	 * of playback to reduce pop.
1665 	 */
1666 	return type;
1667 }
1668 
1669 #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
1670 		SND_JACK_BTN_2 | SND_JACK_BTN_3)
1671 
1672 static irqreturn_t nau8825_interrupt(int irq, void *data)
1673 {
1674 	struct nau8825 *nau8825 = (struct nau8825 *)data;
1675 	struct regmap *regmap = nau8825->regmap;
1676 	int active_irq, clear_irq = 0, event = 0, event_mask = 0;
1677 
1678 	if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) {
1679 		dev_err(nau8825->dev, "failed to read irq status\n");
1680 		return IRQ_NONE;
1681 	}
1682 
1683 	if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) ==
1684 		NAU8825_JACK_EJECTION_DETECTED) {
1685 
1686 		nau8825_eject_jack(nau8825);
1687 		event_mask |= SND_JACK_HEADSET;
1688 		clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK;
1689 	} else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) {
1690 		int key_status;
1691 
1692 		regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS,
1693 			&key_status);
1694 
1695 		/* upper 8 bits of the register are for short pressed keys,
1696 		 * lower 8 bits - for long pressed buttons
1697 		 */
1698 		nau8825->button_pressed = nau8825_button_decode(
1699 			key_status >> 8);
1700 
1701 		event |= nau8825->button_pressed;
1702 		event_mask |= NAU8825_BUTTONS;
1703 		clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ;
1704 	} else if (active_irq & NAU8825_KEY_RELEASE_IRQ) {
1705 		event_mask = NAU8825_BUTTONS;
1706 		clear_irq = NAU8825_KEY_RELEASE_IRQ;
1707 	} else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) {
1708 		if (nau8825_is_jack_inserted(regmap)) {
1709 			event |= nau8825_jack_insert(nau8825);
1710 			if (nau8825->xtalk_enable && !nau8825->high_imped) {
1711 				/* Apply the cross talk suppression in the
1712 				 * headset without high impedance.
1713 				 */
1714 				if (!nau8825->xtalk_protect) {
1715 					/* Raise protection for cross talk de-
1716 					 * tection if no protection before.
1717 					 * The driver has to cancel the pro-
1718 					 * cess and restore changes if process
1719 					 * is ongoing when ejection.
1720 					 */
1721 					int ret;
1722 					nau8825->xtalk_protect = true;
1723 					ret = nau8825_sema_acquire(nau8825, 0);
1724 					if (ret)
1725 						nau8825->xtalk_protect = false;
1726 				}
1727 				/* Startup cross talk detection process */
1728 				if (nau8825->xtalk_protect) {
1729 					nau8825->xtalk_state =
1730 						NAU8825_XTALK_PREPARE;
1731 					schedule_work(&nau8825->xtalk_work);
1732 				}
1733 			} else {
1734 				/* The cross talk suppression shouldn't apply
1735 				 * in the headset with high impedance. Thus,
1736 				 * relieve the protection raised before.
1737 				 */
1738 				if (nau8825->xtalk_protect) {
1739 					nau8825_sema_release(nau8825);
1740 					nau8825->xtalk_protect = false;
1741 				}
1742 			}
1743 		} else {
1744 			dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n");
1745 			nau8825_eject_jack(nau8825);
1746 		}
1747 
1748 		event_mask |= SND_JACK_HEADSET;
1749 		clear_irq = NAU8825_HEADSET_COMPLETION_IRQ;
1750 		/* Record the interruption report event for driver to report
1751 		 * the event later. The jack report will delay until cross
1752 		 * talk detection process is done.
1753 		 */
1754 		if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) {
1755 			nau8825->xtalk_event = event;
1756 			nau8825->xtalk_event_mask = event_mask;
1757 		}
1758 	} else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) {
1759 		/* crosstalk detection enable and process on going */
1760 		if (nau8825->xtalk_enable && nau8825->xtalk_protect)
1761 			schedule_work(&nau8825->xtalk_work);
1762 		clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ;
1763 	} else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) ==
1764 		NAU8825_JACK_INSERTION_DETECTED) {
1765 		/* One more step to check GPIO status directly. Thus, the
1766 		 * driver can confirm the real insertion interruption because
1767 		 * the intrruption at manual mode has bypassed debounce
1768 		 * circuit which can get rid of unstable status.
1769 		 */
1770 		if (nau8825_is_jack_inserted(regmap)) {
1771 			/* Turn off insertion interruption at manual mode */
1772 			regmap_update_bits(regmap,
1773 				NAU8825_REG_INTERRUPT_DIS_CTRL,
1774 				NAU8825_IRQ_INSERT_DIS,
1775 				NAU8825_IRQ_INSERT_DIS);
1776 			regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1777 				NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN);
1778 			/* Enable interruption for jack type detection at audo
1779 			 * mode which can detect microphone and jack type.
1780 			 */
1781 			nau8825_setup_auto_irq(nau8825);
1782 		}
1783 	}
1784 
1785 	if (!clear_irq)
1786 		clear_irq = active_irq;
1787 	/* clears the rightmost interruption */
1788 	regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1789 
1790 	/* Delay jack report until cross talk detection is done. It can avoid
1791 	 * application to do playback preparation when cross talk detection
1792 	 * process is still working. Otherwise, the resource like clock and
1793 	 * power will be issued by them at the same time and conflict happens.
1794 	 */
1795 	if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE)
1796 		snd_soc_jack_report(nau8825->jack, event, event_mask);
1797 
1798 	return IRQ_HANDLED;
1799 }
1800 
1801 static void nau8825_setup_buttons(struct nau8825 *nau8825)
1802 {
1803 	struct regmap *regmap = nau8825->regmap;
1804 
1805 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1806 		NAU8825_SAR_TRACKING_GAIN_MASK,
1807 		nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT);
1808 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1809 		NAU8825_SAR_COMPARE_TIME_MASK,
1810 		nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT);
1811 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1812 		NAU8825_SAR_SAMPLING_TIME_MASK,
1813 		nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT);
1814 
1815 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1816 		NAU8825_KEYDET_LEVELS_NR_MASK,
1817 		(nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT);
1818 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1819 		NAU8825_KEYDET_HYSTERESIS_MASK,
1820 		nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT);
1821 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1822 		NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK,
1823 		nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT);
1824 
1825 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1,
1826 		(nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]);
1827 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2,
1828 		(nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]);
1829 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3,
1830 		(nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]);
1831 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4,
1832 		(nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]);
1833 
1834 	/* Enable short press and release interruptions */
1835 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1836 		NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN,
1837 		0);
1838 }
1839 
1840 static void nau8825_init_regs(struct nau8825 *nau8825)
1841 {
1842 	struct regmap *regmap = nau8825->regmap;
1843 
1844 	/* Latch IIC LSB value */
1845 	regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001);
1846 	/* Enable Bias/Vmid */
1847 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1848 		NAU8825_BIAS_VMID, NAU8825_BIAS_VMID);
1849 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
1850 		NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN);
1851 
1852 	/* VMID Tieoff */
1853 	regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ,
1854 		NAU8825_BIAS_VMID_SEL_MASK,
1855 		nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT);
1856 	/* Disable Boost Driver, Automatic Short circuit protection enable */
1857 	regmap_update_bits(regmap, NAU8825_REG_BOOST,
1858 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1859 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN,
1860 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1861 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN);
1862 
1863 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1864 		NAU8825_JKDET_OUTPUT_EN,
1865 		nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN);
1866 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1867 		NAU8825_JKDET_PULL_EN,
1868 		nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN);
1869 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1870 		NAU8825_JKDET_PULL_UP,
1871 		nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0);
1872 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1873 		NAU8825_JACK_POLARITY,
1874 		/* jkdet_polarity - 1  is for active-low */
1875 		nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY);
1876 
1877 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1878 		NAU8825_JACK_INSERT_DEBOUNCE_MASK,
1879 		nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT);
1880 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1881 		NAU8825_JACK_EJECT_DEBOUNCE_MASK,
1882 		nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT);
1883 
1884 	/* Pull up IRQ pin */
1885 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1886 		NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN,
1887 		NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN);
1888 	/* Mask unneeded IRQs: 1 - disable, 0 - enable */
1889 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff);
1890 
1891 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1892 		NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage);
1893 
1894 	if (nau8825->sar_threshold_num)
1895 		nau8825_setup_buttons(nau8825);
1896 
1897 	/* Default oversampling/decimations settings are unusable
1898 	 * (audible hiss). Set it to something better.
1899 	 */
1900 	regmap_update_bits(regmap, NAU8825_REG_ADC_RATE,
1901 		NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN,
1902 		NAU8825_ADC_SYNC_DOWN_64);
1903 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1904 		NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64);
1905 	/* Disable DACR/L power */
1906 	regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
1907 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
1908 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
1909 	/* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
1910 	 * signal to avoid any glitches due to power up transients in both
1911 	 * the analog and digital DAC circuit.
1912 	 */
1913 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1914 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
1915 	/* CICCLP off */
1916 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1917 		NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF);
1918 
1919 	/* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */
1920 	regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2,
1921 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1922 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB,
1923 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1924 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB);
1925 	/* Class G timer 64ms */
1926 	regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL,
1927 		NAU8825_CLASSG_TIMER_MASK,
1928 		0x20 << NAU8825_CLASSG_TIMER_SFT);
1929 	/* DAC clock delay 2ns, VREF */
1930 	regmap_update_bits(regmap, NAU8825_REG_RDAC,
1931 		NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK,
1932 		(0x2 << NAU8825_RDAC_CLK_DELAY_SFT) |
1933 		(0x3 << NAU8825_RDAC_VREF_SFT));
1934 	/* Config L/R channel */
1935 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
1936 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L);
1937 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
1938 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R);
1939 	/* Disable short Frame Sync detection logic */
1940 	regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT,
1941 		NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET);
1942 }
1943 
1944 static const struct regmap_config nau8825_regmap_config = {
1945 	.val_bits = NAU8825_REG_DATA_LEN,
1946 	.reg_bits = NAU8825_REG_ADDR_LEN,
1947 
1948 	.max_register = NAU8825_REG_MAX,
1949 	.readable_reg = nau8825_readable_reg,
1950 	.writeable_reg = nau8825_writeable_reg,
1951 	.volatile_reg = nau8825_volatile_reg,
1952 
1953 	.cache_type = REGCACHE_RBTREE,
1954 	.reg_defaults = nau8825_reg_defaults,
1955 	.num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults),
1956 };
1957 
1958 static int nau8825_component_probe(struct snd_soc_component *component)
1959 {
1960 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1961 	struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
1962 
1963 	nau8825->dapm = dapm;
1964 
1965 	return 0;
1966 }
1967 
1968 static void nau8825_component_remove(struct snd_soc_component *component)
1969 {
1970 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1971 
1972 	/* Cancel and reset cross tak suppresstion detection funciton */
1973 	nau8825_xtalk_cancel(nau8825);
1974 }
1975 
1976 /**
1977  * nau8825_calc_fll_param - Calculate FLL parameters.
1978  * @fll_in: external clock provided to codec.
1979  * @fs: sampling rate.
1980  * @fll_param: Pointer to structure of FLL parameters.
1981  *
1982  * Calculate FLL parameters to configure codec.
1983  *
1984  * Returns 0 for success or negative error code.
1985  */
1986 static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs,
1987 		struct nau8825_fll *fll_param)
1988 {
1989 	u64 fvco, fvco_max;
1990 	unsigned int fref, i, fvco_sel;
1991 
1992 	/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
1993 	 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
1994 	 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK
1995 	 */
1996 	for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
1997 		fref = fll_in / fll_pre_scalar[i].param;
1998 		if (fref <= NAU_FREF_MAX)
1999 			break;
2000 	}
2001 	if (i == ARRAY_SIZE(fll_pre_scalar))
2002 		return -EINVAL;
2003 	fll_param->clk_ref_div = fll_pre_scalar[i].val;
2004 
2005 	/* Choose the FLL ratio based on FREF */
2006 	for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
2007 		if (fref >= fll_ratio[i].param)
2008 			break;
2009 	}
2010 	if (i == ARRAY_SIZE(fll_ratio))
2011 		return -EINVAL;
2012 	fll_param->ratio = fll_ratio[i].val;
2013 
2014 	/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
2015 	 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be
2016 	 * guaranteed across the full range of operation.
2017 	 * FDCO = freq_out * 2 * mclk_src_scaling
2018 	 */
2019 	fvco_max = 0;
2020 	fvco_sel = ARRAY_SIZE(mclk_src_scaling);
2021 	for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
2022 		fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param;
2023 		if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
2024 			fvco_max < fvco) {
2025 			fvco_max = fvco;
2026 			fvco_sel = i;
2027 		}
2028 	}
2029 	if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
2030 		return -EINVAL;
2031 	fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
2032 
2033 	/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
2034 	 * input based on FDCO, FREF and FLL ratio.
2035 	 */
2036 	fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
2037 	fll_param->fll_int = (fvco >> 16) & 0x3FF;
2038 	fll_param->fll_frac = fvco & 0xFFFF;
2039 	return 0;
2040 }
2041 
2042 static void nau8825_fll_apply(struct nau8825 *nau8825,
2043 		struct nau8825_fll *fll_param)
2044 {
2045 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2046 		NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK,
2047 		NAU8825_CLK_SRC_MCLK | fll_param->mclk_src);
2048 	/* Make DSP operate at high speed for better performance. */
2049 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
2050 		NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK,
2051 		fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT));
2052 	/* FLL 16-bit fractional input */
2053 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac);
2054 	/* FLL 10-bit integer input */
2055 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3,
2056 			NAU8825_FLL_INTEGER_MASK, fll_param->fll_int);
2057 	/* FLL pre-scaler */
2058 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4,
2059 			NAU8825_FLL_REF_DIV_MASK,
2060 			fll_param->clk_ref_div << NAU8825_FLL_REF_DIV_SFT);
2061 	/* select divided VCO input */
2062 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2063 		NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF);
2064 	/* Disable free-running mode */
2065 	regmap_update_bits(nau8825->regmap,
2066 		NAU8825_REG_FLL6, NAU8825_DCO_EN, 0);
2067 	if (fll_param->fll_frac) {
2068 		/* set FLL loop filter enable and cutoff frequency at 500Khz */
2069 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2070 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2071 			NAU8825_FLL_FTR_SW_MASK,
2072 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2073 			NAU8825_FLL_FTR_SW_FILTER);
2074 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2075 			NAU8825_SDM_EN | NAU8825_CUTOFF500,
2076 			NAU8825_SDM_EN | NAU8825_CUTOFF500);
2077 	} else {
2078 		/* disable FLL loop filter and cutoff frequency */
2079 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2080 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2081 			NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU);
2082 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2083 			NAU8825_SDM_EN | NAU8825_CUTOFF500, 0);
2084 	}
2085 }
2086 
2087 /* freq_out must be 256*Fs in order to achieve the best performance */
2088 static int nau8825_set_pll(struct snd_soc_component *component, int pll_id, int source,
2089 		unsigned int freq_in, unsigned int freq_out)
2090 {
2091 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2092 	struct nau8825_fll fll_param;
2093 	int ret, fs;
2094 
2095 	fs = freq_out / 256;
2096 	ret = nau8825_calc_fll_param(freq_in, fs, &fll_param);
2097 	if (ret < 0) {
2098 		dev_err(component->dev, "Unsupported input clock %d\n", freq_in);
2099 		return ret;
2100 	}
2101 	dev_dbg(component->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
2102 		fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
2103 		fll_param.fll_int, fll_param.clk_ref_div);
2104 
2105 	nau8825_fll_apply(nau8825, &fll_param);
2106 	mdelay(2);
2107 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2108 			NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2109 	return 0;
2110 }
2111 
2112 static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq)
2113 {
2114 	int ret;
2115 
2116 	nau8825->mclk = devm_clk_get(nau8825->dev, "mclk");
2117 	if (IS_ERR(nau8825->mclk)) {
2118 		dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally");
2119 		return 0;
2120 	}
2121 
2122 	if (!nau8825->mclk_freq) {
2123 		ret = clk_prepare_enable(nau8825->mclk);
2124 		if (ret) {
2125 			dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2126 			return ret;
2127 		}
2128 	}
2129 
2130 	if (nau8825->mclk_freq != freq) {
2131 		freq = clk_round_rate(nau8825->mclk, freq);
2132 		ret = clk_set_rate(nau8825->mclk, freq);
2133 		if (ret) {
2134 			dev_err(nau8825->dev, "Unable to set mclk rate\n");
2135 			return ret;
2136 		}
2137 		nau8825->mclk_freq = freq;
2138 	}
2139 
2140 	return 0;
2141 }
2142 
2143 static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap)
2144 {
2145 	regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2146 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK);
2147 	regmap_update_bits(regmap, NAU8825_REG_FLL6,
2148 		NAU8825_DCO_EN, 0);
2149 	/* Make DSP operate as default setting for power saving. */
2150 	regmap_update_bits(regmap, NAU8825_REG_FLL1,
2151 		NAU8825_ICTRL_LATCH_MASK, 0);
2152 }
2153 
2154 static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id,
2155 	unsigned int freq)
2156 {
2157 	struct regmap *regmap = nau8825->regmap;
2158 	int ret;
2159 
2160 	switch (clk_id) {
2161 	case NAU8825_CLK_DIS:
2162 		/* Clock provided externally and disable internal VCO clock */
2163 		nau8825_configure_mclk_as_sysclk(regmap);
2164 		if (nau8825->mclk_freq) {
2165 			clk_disable_unprepare(nau8825->mclk);
2166 			nau8825->mclk_freq = 0;
2167 		}
2168 
2169 		break;
2170 	case NAU8825_CLK_MCLK:
2171 		/* Acquire the semaphore to synchronize the playback and
2172 		 * interrupt handler. In order to avoid the playback inter-
2173 		 * fered by cross talk process, the driver make the playback
2174 		 * preparation halted until cross talk process finish.
2175 		 */
2176 		nau8825_sema_acquire(nau8825, 3 * HZ);
2177 		nau8825_configure_mclk_as_sysclk(regmap);
2178 		/* MCLK not changed by clock tree */
2179 		regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2180 			NAU8825_CLK_MCLK_SRC_MASK, 0);
2181 		/* Release the semaphore. */
2182 		nau8825_sema_release(nau8825);
2183 
2184 		ret = nau8825_mclk_prepare(nau8825, freq);
2185 		if (ret)
2186 			return ret;
2187 
2188 		break;
2189 	case NAU8825_CLK_INTERNAL:
2190 		if (nau8825_is_jack_inserted(nau8825->regmap)) {
2191 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2192 				NAU8825_DCO_EN, NAU8825_DCO_EN);
2193 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2194 				NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2195 			/* Decrease the VCO frequency and make DSP operate
2196 			 * as default setting for power saving.
2197 			 */
2198 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2199 				NAU8825_CLK_MCLK_SRC_MASK, 0xf);
2200 			regmap_update_bits(regmap, NAU8825_REG_FLL1,
2201 				NAU8825_ICTRL_LATCH_MASK |
2202 				NAU8825_FLL_RATIO_MASK, 0x10);
2203 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2204 				NAU8825_SDM_EN, NAU8825_SDM_EN);
2205 		} else {
2206 			/* The clock turns off intentionally for power saving
2207 			 * when no headset connected.
2208 			 */
2209 			nau8825_configure_mclk_as_sysclk(regmap);
2210 			dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n");
2211 		}
2212 		if (nau8825->mclk_freq) {
2213 			clk_disable_unprepare(nau8825->mclk);
2214 			nau8825->mclk_freq = 0;
2215 		}
2216 
2217 		break;
2218 	case NAU8825_CLK_FLL_MCLK:
2219 		/* Acquire the semaphore to synchronize the playback and
2220 		 * interrupt handler. In order to avoid the playback inter-
2221 		 * fered by cross talk process, the driver make the playback
2222 		 * preparation halted until cross talk process finish.
2223 		 */
2224 		nau8825_sema_acquire(nau8825, 3 * HZ);
2225 		/* Higher FLL reference input frequency can only set lower
2226 		 * gain error, such as 0000 for input reference from MCLK
2227 		 * 12.288Mhz.
2228 		 */
2229 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2230 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2231 			NAU8825_FLL_CLK_SRC_MCLK | 0);
2232 		/* Release the semaphore. */
2233 		nau8825_sema_release(nau8825);
2234 
2235 		ret = nau8825_mclk_prepare(nau8825, freq);
2236 		if (ret)
2237 			return ret;
2238 
2239 		break;
2240 	case NAU8825_CLK_FLL_BLK:
2241 		/* Acquire the semaphore to synchronize the playback and
2242 		 * interrupt handler. In order to avoid the playback inter-
2243 		 * fered by cross talk process, the driver make the playback
2244 		 * preparation halted until cross talk process finish.
2245 		 */
2246 		nau8825_sema_acquire(nau8825, 3 * HZ);
2247 		/* If FLL reference input is from low frequency source,
2248 		 * higher error gain can apply such as 0xf which has
2249 		 * the most sensitive gain error correction threshold,
2250 		 * Therefore, FLL has the most accurate DCO to
2251 		 * target frequency.
2252 		 */
2253 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2254 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2255 			NAU8825_FLL_CLK_SRC_BLK |
2256 			(0xf << NAU8825_GAIN_ERR_SFT));
2257 		/* Release the semaphore. */
2258 		nau8825_sema_release(nau8825);
2259 
2260 		if (nau8825->mclk_freq) {
2261 			clk_disable_unprepare(nau8825->mclk);
2262 			nau8825->mclk_freq = 0;
2263 		}
2264 
2265 		break;
2266 	case NAU8825_CLK_FLL_FS:
2267 		/* Acquire the semaphore to synchronize the playback and
2268 		 * interrupt handler. In order to avoid the playback inter-
2269 		 * fered by cross talk process, the driver make the playback
2270 		 * preparation halted until cross talk process finish.
2271 		 */
2272 		nau8825_sema_acquire(nau8825, 3 * HZ);
2273 		/* If FLL reference input is from low frequency source,
2274 		 * higher error gain can apply such as 0xf which has
2275 		 * the most sensitive gain error correction threshold,
2276 		 * Therefore, FLL has the most accurate DCO to
2277 		 * target frequency.
2278 		 */
2279 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2280 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2281 			NAU8825_FLL_CLK_SRC_FS |
2282 			(0xf << NAU8825_GAIN_ERR_SFT));
2283 		/* Release the semaphore. */
2284 		nau8825_sema_release(nau8825);
2285 
2286 		if (nau8825->mclk_freq) {
2287 			clk_disable_unprepare(nau8825->mclk);
2288 			nau8825->mclk_freq = 0;
2289 		}
2290 
2291 		break;
2292 	default:
2293 		dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id);
2294 		return -EINVAL;
2295 	}
2296 
2297 	dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq,
2298 		clk_id);
2299 	return 0;
2300 }
2301 
2302 static int nau8825_set_sysclk(struct snd_soc_component *component, int clk_id,
2303 	int source, unsigned int freq, int dir)
2304 {
2305 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2306 
2307 	return nau8825_configure_sysclk(nau8825, clk_id, freq);
2308 }
2309 
2310 static int nau8825_resume_setup(struct nau8825 *nau8825)
2311 {
2312 	struct regmap *regmap = nau8825->regmap;
2313 
2314 	/* Close clock when jack type detection at manual mode */
2315 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
2316 
2317 	/* Clear all interruption status */
2318 	nau8825_int_status_clear_all(regmap);
2319 
2320 	/* Enable both insertion and ejection interruptions, and then
2321 	 * bypass de-bounce circuit.
2322 	 */
2323 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2324 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN |
2325 		NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN,
2326 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN);
2327 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2328 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
2329 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
2330 		NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0);
2331 
2332 	return 0;
2333 }
2334 
2335 static int nau8825_set_bias_level(struct snd_soc_component *component,
2336 				   enum snd_soc_bias_level level)
2337 {
2338 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2339 	int ret;
2340 
2341 	switch (level) {
2342 	case SND_SOC_BIAS_ON:
2343 		break;
2344 
2345 	case SND_SOC_BIAS_PREPARE:
2346 		break;
2347 
2348 	case SND_SOC_BIAS_STANDBY:
2349 		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
2350 			if (nau8825->mclk_freq) {
2351 				ret = clk_prepare_enable(nau8825->mclk);
2352 				if (ret) {
2353 					dev_err(nau8825->dev, "Unable to prepare component mclk\n");
2354 					return ret;
2355 				}
2356 			}
2357 			/* Setup codec configuration after resume */
2358 			nau8825_resume_setup(nau8825);
2359 		}
2360 		break;
2361 
2362 	case SND_SOC_BIAS_OFF:
2363 		/* Reset the configuration of jack type for detection */
2364 		/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
2365 		regmap_update_bits(nau8825->regmap, NAU8825_REG_MIC_BIAS,
2366 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
2367 		/* ground HPL/HPR, MICGRND1/2 */
2368 		regmap_update_bits(nau8825->regmap,
2369 			NAU8825_REG_HSD_CTRL, 0xf, 0xf);
2370 		/* Cancel and reset cross talk detection funciton */
2371 		nau8825_xtalk_cancel(nau8825);
2372 		/* Turn off all interruptions before system shutdown. Keep the
2373 		 * interruption quiet before resume setup completes.
2374 		 */
2375 		regmap_write(nau8825->regmap,
2376 			NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff);
2377 		/* Disable ADC needed for interruptions at audo mode */
2378 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
2379 			NAU8825_ENABLE_ADC, 0);
2380 		if (nau8825->mclk_freq)
2381 			clk_disable_unprepare(nau8825->mclk);
2382 		break;
2383 	}
2384 	return 0;
2385 }
2386 
2387 static int __maybe_unused nau8825_suspend(struct snd_soc_component *component)
2388 {
2389 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2390 
2391 	disable_irq(nau8825->irq);
2392 	snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF);
2393 	/* Power down codec power; don't suppoet button wakeup */
2394 	snd_soc_dapm_disable_pin(nau8825->dapm, "SAR");
2395 	snd_soc_dapm_disable_pin(nau8825->dapm, "MICBIAS");
2396 	snd_soc_dapm_sync(nau8825->dapm);
2397 	regcache_cache_only(nau8825->regmap, true);
2398 	regcache_mark_dirty(nau8825->regmap);
2399 
2400 	return 0;
2401 }
2402 
2403 static int __maybe_unused nau8825_resume(struct snd_soc_component *component)
2404 {
2405 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2406 	int ret;
2407 
2408 	regcache_cache_only(nau8825->regmap, false);
2409 	regcache_sync(nau8825->regmap);
2410 	nau8825->xtalk_protect = true;
2411 	ret = nau8825_sema_acquire(nau8825, 0);
2412 	if (ret)
2413 		nau8825->xtalk_protect = false;
2414 	enable_irq(nau8825->irq);
2415 
2416 	return 0;
2417 }
2418 
2419 static const struct snd_soc_component_driver nau8825_component_driver = {
2420 	.probe			= nau8825_component_probe,
2421 	.remove			= nau8825_component_remove,
2422 	.set_sysclk		= nau8825_set_sysclk,
2423 	.set_pll		= nau8825_set_pll,
2424 	.set_bias_level		= nau8825_set_bias_level,
2425 	.suspend		= nau8825_suspend,
2426 	.resume			= nau8825_resume,
2427 	.controls		= nau8825_controls,
2428 	.num_controls		= ARRAY_SIZE(nau8825_controls),
2429 	.dapm_widgets		= nau8825_dapm_widgets,
2430 	.num_dapm_widgets	= ARRAY_SIZE(nau8825_dapm_widgets),
2431 	.dapm_routes		= nau8825_dapm_routes,
2432 	.num_dapm_routes	= ARRAY_SIZE(nau8825_dapm_routes),
2433 	.suspend_bias_off	= 1,
2434 	.idle_bias_on		= 1,
2435 	.use_pmdown_time	= 1,
2436 	.endianness		= 1,
2437 	.non_legacy_dai_naming	= 1,
2438 };
2439 
2440 static void nau8825_reset_chip(struct regmap *regmap)
2441 {
2442 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2443 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2444 }
2445 
2446 static void nau8825_print_device_properties(struct nau8825 *nau8825)
2447 {
2448 	int i;
2449 	struct device *dev = nau8825->dev;
2450 
2451 	dev_dbg(dev, "jkdet-enable:         %d\n", nau8825->jkdet_enable);
2452 	dev_dbg(dev, "jkdet-pull-enable:    %d\n", nau8825->jkdet_pull_enable);
2453 	dev_dbg(dev, "jkdet-pull-up:        %d\n", nau8825->jkdet_pull_up);
2454 	dev_dbg(dev, "jkdet-polarity:       %d\n", nau8825->jkdet_polarity);
2455 	dev_dbg(dev, "micbias-voltage:      %d\n", nau8825->micbias_voltage);
2456 	dev_dbg(dev, "vref-impedance:       %d\n", nau8825->vref_impedance);
2457 
2458 	dev_dbg(dev, "sar-threshold-num:    %d\n", nau8825->sar_threshold_num);
2459 	for (i = 0; i < nau8825->sar_threshold_num; i++)
2460 		dev_dbg(dev, "sar-threshold[%d]=%d\n", i,
2461 				nau8825->sar_threshold[i]);
2462 
2463 	dev_dbg(dev, "sar-hysteresis:       %d\n", nau8825->sar_hysteresis);
2464 	dev_dbg(dev, "sar-voltage:          %d\n", nau8825->sar_voltage);
2465 	dev_dbg(dev, "sar-compare-time:     %d\n", nau8825->sar_compare_time);
2466 	dev_dbg(dev, "sar-sampling-time:    %d\n", nau8825->sar_sampling_time);
2467 	dev_dbg(dev, "short-key-debounce:   %d\n", nau8825->key_debounce);
2468 	dev_dbg(dev, "jack-insert-debounce: %d\n",
2469 			nau8825->jack_insert_debounce);
2470 	dev_dbg(dev, "jack-eject-debounce:  %d\n",
2471 			nau8825->jack_eject_debounce);
2472 	dev_dbg(dev, "crosstalk-enable:     %d\n",
2473 			nau8825->xtalk_enable);
2474 }
2475 
2476 static int nau8825_read_device_properties(struct device *dev,
2477 	struct nau8825 *nau8825) {
2478 	int ret;
2479 
2480 	nau8825->jkdet_enable = device_property_read_bool(dev,
2481 		"nuvoton,jkdet-enable");
2482 	nau8825->jkdet_pull_enable = device_property_read_bool(dev,
2483 		"nuvoton,jkdet-pull-enable");
2484 	nau8825->jkdet_pull_up = device_property_read_bool(dev,
2485 		"nuvoton,jkdet-pull-up");
2486 	ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity",
2487 		&nau8825->jkdet_polarity);
2488 	if (ret)
2489 		nau8825->jkdet_polarity = 1;
2490 	ret = device_property_read_u32(dev, "nuvoton,micbias-voltage",
2491 		&nau8825->micbias_voltage);
2492 	if (ret)
2493 		nau8825->micbias_voltage = 6;
2494 	ret = device_property_read_u32(dev, "nuvoton,vref-impedance",
2495 		&nau8825->vref_impedance);
2496 	if (ret)
2497 		nau8825->vref_impedance = 2;
2498 	ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num",
2499 		&nau8825->sar_threshold_num);
2500 	if (ret)
2501 		nau8825->sar_threshold_num = 4;
2502 	ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold",
2503 		nau8825->sar_threshold, nau8825->sar_threshold_num);
2504 	if (ret) {
2505 		nau8825->sar_threshold[0] = 0x08;
2506 		nau8825->sar_threshold[1] = 0x12;
2507 		nau8825->sar_threshold[2] = 0x26;
2508 		nau8825->sar_threshold[3] = 0x73;
2509 	}
2510 	ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis",
2511 		&nau8825->sar_hysteresis);
2512 	if (ret)
2513 		nau8825->sar_hysteresis = 0;
2514 	ret = device_property_read_u32(dev, "nuvoton,sar-voltage",
2515 		&nau8825->sar_voltage);
2516 	if (ret)
2517 		nau8825->sar_voltage = 6;
2518 	ret = device_property_read_u32(dev, "nuvoton,sar-compare-time",
2519 		&nau8825->sar_compare_time);
2520 	if (ret)
2521 		nau8825->sar_compare_time = 1;
2522 	ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time",
2523 		&nau8825->sar_sampling_time);
2524 	if (ret)
2525 		nau8825->sar_sampling_time = 1;
2526 	ret = device_property_read_u32(dev, "nuvoton,short-key-debounce",
2527 		&nau8825->key_debounce);
2528 	if (ret)
2529 		nau8825->key_debounce = 3;
2530 	ret = device_property_read_u32(dev, "nuvoton,jack-insert-debounce",
2531 		&nau8825->jack_insert_debounce);
2532 	if (ret)
2533 		nau8825->jack_insert_debounce = 7;
2534 	ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
2535 		&nau8825->jack_eject_debounce);
2536 	if (ret)
2537 		nau8825->jack_eject_debounce = 0;
2538 	nau8825->xtalk_enable = device_property_read_bool(dev,
2539 		"nuvoton,crosstalk-enable");
2540 
2541 	nau8825->mclk = devm_clk_get(dev, "mclk");
2542 	if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) {
2543 		return -EPROBE_DEFER;
2544 	} else if (PTR_ERR(nau8825->mclk) == -ENOENT) {
2545 		/* The MCLK is managed externally or not used at all */
2546 		nau8825->mclk = NULL;
2547 		dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally");
2548 	} else if (IS_ERR(nau8825->mclk)) {
2549 		return -EINVAL;
2550 	}
2551 
2552 	return 0;
2553 }
2554 
2555 static int nau8825_setup_irq(struct nau8825 *nau8825)
2556 {
2557 	int ret;
2558 
2559 	ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL,
2560 		nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2561 		"nau8825", nau8825);
2562 
2563 	if (ret) {
2564 		dev_err(nau8825->dev, "Cannot request irq %d (%d)\n",
2565 			nau8825->irq, ret);
2566 		return ret;
2567 	}
2568 
2569 	return 0;
2570 }
2571 
2572 static int nau8825_i2c_probe(struct i2c_client *i2c,
2573 	const struct i2c_device_id *id)
2574 {
2575 	struct device *dev = &i2c->dev;
2576 	struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev);
2577 	int ret, value;
2578 
2579 	if (!nau8825) {
2580 		nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL);
2581 		if (!nau8825)
2582 			return -ENOMEM;
2583 		ret = nau8825_read_device_properties(dev, nau8825);
2584 		if (ret)
2585 			return ret;
2586 	}
2587 
2588 	i2c_set_clientdata(i2c, nau8825);
2589 
2590 	nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config);
2591 	if (IS_ERR(nau8825->regmap))
2592 		return PTR_ERR(nau8825->regmap);
2593 	nau8825->dev = dev;
2594 	nau8825->irq = i2c->irq;
2595 	/* Initiate parameters, semaphore and work queue which are needed in
2596 	 * cross talk suppression measurment function.
2597 	 */
2598 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
2599 	nau8825->xtalk_protect = false;
2600 	nau8825->xtalk_baktab_initialized = false;
2601 	sema_init(&nau8825->xtalk_sem, 1);
2602 	INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work);
2603 
2604 	nau8825_print_device_properties(nau8825);
2605 
2606 	nau8825_reset_chip(nau8825->regmap);
2607 	ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value);
2608 	if (ret < 0) {
2609 		dev_err(dev, "Failed to read device id from the NAU8825: %d\n",
2610 			ret);
2611 		return ret;
2612 	}
2613 	if ((value & NAU8825_SOFTWARE_ID_MASK) !=
2614 			NAU8825_SOFTWARE_ID_NAU8825) {
2615 		dev_err(dev, "Not a NAU8825 chip\n");
2616 		return -ENODEV;
2617 	}
2618 
2619 	nau8825_init_regs(nau8825);
2620 
2621 	if (i2c->irq)
2622 		nau8825_setup_irq(nau8825);
2623 
2624 	return devm_snd_soc_register_component(&i2c->dev,
2625 		&nau8825_component_driver,
2626 		&nau8825_dai, 1);
2627 }
2628 
2629 static int nau8825_i2c_remove(struct i2c_client *client)
2630 {
2631 	return 0;
2632 }
2633 
2634 static const struct i2c_device_id nau8825_i2c_ids[] = {
2635 	{ "nau8825", 0 },
2636 	{ }
2637 };
2638 MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids);
2639 
2640 #ifdef CONFIG_OF
2641 static const struct of_device_id nau8825_of_ids[] = {
2642 	{ .compatible = "nuvoton,nau8825", },
2643 	{}
2644 };
2645 MODULE_DEVICE_TABLE(of, nau8825_of_ids);
2646 #endif
2647 
2648 #ifdef CONFIG_ACPI
2649 static const struct acpi_device_id nau8825_acpi_match[] = {
2650 	{ "10508825", 0 },
2651 	{},
2652 };
2653 MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match);
2654 #endif
2655 
2656 static struct i2c_driver nau8825_driver = {
2657 	.driver = {
2658 		.name = "nau8825",
2659 		.of_match_table = of_match_ptr(nau8825_of_ids),
2660 		.acpi_match_table = ACPI_PTR(nau8825_acpi_match),
2661 	},
2662 	.probe = nau8825_i2c_probe,
2663 	.remove = nau8825_i2c_remove,
2664 	.id_table = nau8825_i2c_ids,
2665 };
2666 module_i2c_driver(nau8825_driver);
2667 
2668 MODULE_DESCRIPTION("ASoC nau8825 driver");
2669 MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>");
2670 MODULE_LICENSE("GPL");
2671