xref: /linux/sound/soc/codecs/nau8825.c (revision 1dd0dd0b1fefd1e51cfaddf62316f759fde7de7d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Nuvoton NAU8825 audio codec driver
4  *
5  * Copyright 2015 Google Chromium project.
6  *  Author: Anatol Pomozov <anatol@chromium.org>
7  * Copyright 2015 Nuvoton Technology Corp.
8  *  Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com>
9  */
10 
11 #include <linux/module.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/i2c.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <linux/clk.h>
18 #include <linux/acpi.h>
19 #include <linux/math64.h>
20 #include <linux/semaphore.h>
21 
22 #include <sound/initval.h>
23 #include <sound/tlv.h>
24 #include <sound/core.h>
25 #include <sound/pcm.h>
26 #include <sound/pcm_params.h>
27 #include <sound/soc.h>
28 #include <sound/jack.h>
29 
30 
31 #include "nau8825.h"
32 
33 
34 #define NUVOTON_CODEC_DAI "nau8825-hifi"
35 
36 #define NAU_FREF_MAX 13500000
37 #define NAU_FVCO_MAX 124000000
38 #define NAU_FVCO_MIN 90000000
39 
40 /* cross talk suppression detection */
41 #define LOG10_MAGIC 646456993
42 #define GAIN_AUGMENT 22500
43 #define SIDETONE_BASE 207000
44 
45 /* the maximum frequency of CLK_ADC and CLK_DAC */
46 #define CLK_DA_AD_MAX 6144000
47 
48 static int nau8825_configure_sysclk(struct nau8825 *nau8825,
49 		int clk_id, unsigned int freq);
50 static bool nau8825_is_jack_inserted(struct regmap *regmap);
51 
52 struct nau8825_fll {
53 	int mclk_src;
54 	int ratio;
55 	int fll_frac;
56 	int fll_int;
57 	int clk_ref_div;
58 };
59 
60 struct nau8825_fll_attr {
61 	unsigned int param;
62 	unsigned int val;
63 };
64 
65 /* scaling for mclk from sysclk_src output */
66 static const struct nau8825_fll_attr mclk_src_scaling[] = {
67 	{ 1, 0x0 },
68 	{ 2, 0x2 },
69 	{ 4, 0x3 },
70 	{ 8, 0x4 },
71 	{ 16, 0x5 },
72 	{ 32, 0x6 },
73 	{ 3, 0x7 },
74 	{ 6, 0xa },
75 	{ 12, 0xb },
76 	{ 24, 0xc },
77 	{ 48, 0xd },
78 	{ 96, 0xe },
79 	{ 5, 0xf },
80 };
81 
82 /* ratio for input clk freq */
83 static const struct nau8825_fll_attr fll_ratio[] = {
84 	{ 512000, 0x01 },
85 	{ 256000, 0x02 },
86 	{ 128000, 0x04 },
87 	{ 64000, 0x08 },
88 	{ 32000, 0x10 },
89 	{ 8000, 0x20 },
90 	{ 4000, 0x40 },
91 };
92 
93 static const struct nau8825_fll_attr fll_pre_scalar[] = {
94 	{ 1, 0x0 },
95 	{ 2, 0x1 },
96 	{ 4, 0x2 },
97 	{ 8, 0x3 },
98 };
99 
100 /* over sampling rate */
101 struct nau8825_osr_attr {
102 	unsigned int osr;
103 	unsigned int clk_src;
104 };
105 
106 static const struct nau8825_osr_attr osr_dac_sel[] = {
107 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
108 	{ 256, 0 },	/* OSR 256, SRC 1 */
109 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
110 	{ 0, 0 },
111 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
112 };
113 
114 static const struct nau8825_osr_attr osr_adc_sel[] = {
115 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
116 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
117 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
118 	{ 256, 0 },	/* OSR 256, SRC 1 */
119 };
120 
121 static const struct reg_default nau8825_reg_defaults[] = {
122 	{ NAU8825_REG_ENA_CTRL, 0x00ff },
123 	{ NAU8825_REG_IIC_ADDR_SET, 0x0 },
124 	{ NAU8825_REG_CLK_DIVIDER, 0x0050 },
125 	{ NAU8825_REG_FLL1, 0x0 },
126 	{ NAU8825_REG_FLL2, 0x3126 },
127 	{ NAU8825_REG_FLL3, 0x0008 },
128 	{ NAU8825_REG_FLL4, 0x0010 },
129 	{ NAU8825_REG_FLL5, 0x0 },
130 	{ NAU8825_REG_FLL6, 0x6000 },
131 	{ NAU8825_REG_FLL_VCO_RSV, 0xf13c },
132 	{ NAU8825_REG_HSD_CTRL, 0x000c },
133 	{ NAU8825_REG_JACK_DET_CTRL, 0x0 },
134 	{ NAU8825_REG_INTERRUPT_MASK, 0x0 },
135 	{ NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff },
136 	{ NAU8825_REG_SAR_CTRL, 0x0015 },
137 	{ NAU8825_REG_KEYDET_CTRL, 0x0110 },
138 	{ NAU8825_REG_VDET_THRESHOLD_1, 0x0 },
139 	{ NAU8825_REG_VDET_THRESHOLD_2, 0x0 },
140 	{ NAU8825_REG_VDET_THRESHOLD_3, 0x0 },
141 	{ NAU8825_REG_VDET_THRESHOLD_4, 0x0 },
142 	{ NAU8825_REG_GPIO34_CTRL, 0x0 },
143 	{ NAU8825_REG_GPIO12_CTRL, 0x0 },
144 	{ NAU8825_REG_TDM_CTRL, 0x0 },
145 	{ NAU8825_REG_I2S_PCM_CTRL1, 0x000b },
146 	{ NAU8825_REG_I2S_PCM_CTRL2, 0x8010 },
147 	{ NAU8825_REG_LEFT_TIME_SLOT, 0x0 },
148 	{ NAU8825_REG_RIGHT_TIME_SLOT, 0x0 },
149 	{ NAU8825_REG_BIQ_CTRL, 0x0 },
150 	{ NAU8825_REG_BIQ_COF1, 0x0 },
151 	{ NAU8825_REG_BIQ_COF2, 0x0 },
152 	{ NAU8825_REG_BIQ_COF3, 0x0 },
153 	{ NAU8825_REG_BIQ_COF4, 0x0 },
154 	{ NAU8825_REG_BIQ_COF5, 0x0 },
155 	{ NAU8825_REG_BIQ_COF6, 0x0 },
156 	{ NAU8825_REG_BIQ_COF7, 0x0 },
157 	{ NAU8825_REG_BIQ_COF8, 0x0 },
158 	{ NAU8825_REG_BIQ_COF9, 0x0 },
159 	{ NAU8825_REG_BIQ_COF10, 0x0 },
160 	{ NAU8825_REG_ADC_RATE, 0x0010 },
161 	{ NAU8825_REG_DAC_CTRL1, 0x0001 },
162 	{ NAU8825_REG_DAC_CTRL2, 0x0 },
163 	{ NAU8825_REG_DAC_DGAIN_CTRL, 0x0 },
164 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
165 	{ NAU8825_REG_MUTE_CTRL, 0x0 },
166 	{ NAU8825_REG_HSVOL_CTRL, 0x0 },
167 	{ NAU8825_REG_DACL_CTRL, 0x02cf },
168 	{ NAU8825_REG_DACR_CTRL, 0x00cf },
169 	{ NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 },
170 	{ NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 },
171 	{ NAU8825_REG_ADC_DRC_SLOPES, 0x25ff },
172 	{ NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 },
173 	{ NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 },
174 	{ NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 },
175 	{ NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 },
176 	{ NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 },
177 	{ NAU8825_REG_IMM_MODE_CTRL, 0x0 },
178 	{ NAU8825_REG_CLASSG_CTRL, 0x0 },
179 	{ NAU8825_REG_OPT_EFUSE_CTRL, 0x0 },
180 	{ NAU8825_REG_MISC_CTRL, 0x0 },
181 	{ NAU8825_REG_BIAS_ADJ, 0x0 },
182 	{ NAU8825_REG_TRIM_SETTINGS, 0x0 },
183 	{ NAU8825_REG_ANALOG_CONTROL_1, 0x0 },
184 	{ NAU8825_REG_ANALOG_CONTROL_2, 0x0 },
185 	{ NAU8825_REG_ANALOG_ADC_1, 0x0011 },
186 	{ NAU8825_REG_ANALOG_ADC_2, 0x0020 },
187 	{ NAU8825_REG_RDAC, 0x0008 },
188 	{ NAU8825_REG_MIC_BIAS, 0x0006 },
189 	{ NAU8825_REG_BOOST, 0x0 },
190 	{ NAU8825_REG_FEPGA, 0x0 },
191 	{ NAU8825_REG_POWER_UP_CONTROL, 0x0 },
192 	{ NAU8825_REG_CHARGE_PUMP, 0x0 },
193 };
194 
195 /* register backup table when cross talk detection */
196 static struct reg_default nau8825_xtalk_baktab[] = {
197 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
198 	{ NAU8825_REG_HSVOL_CTRL, 0 },
199 	{ NAU8825_REG_DACL_CTRL, 0x00cf },
200 	{ NAU8825_REG_DACR_CTRL, 0x02cf },
201 };
202 
203 static const unsigned short logtable[256] = {
204 	0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7,
205 	0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508,
206 	0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6,
207 	0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37,
208 	0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f,
209 	0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41,
210 	0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1,
211 	0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142,
212 	0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68,
213 	0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355,
214 	0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c,
215 	0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490,
216 	0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3,
217 	0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507,
218 	0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe,
219 	0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca,
220 	0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c,
221 	0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7,
222 	0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c,
223 	0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c,
224 	0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a,
225 	0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065,
226 	0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730,
227 	0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc,
228 	0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469,
229 	0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9,
230 	0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c,
231 	0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765,
232 	0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83,
233 	0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387,
234 	0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973,
235 	0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47
236 };
237 
238 /**
239  * nau8825_sema_acquire - acquire the semaphore of nau88l25
240  * @nau8825:  component to register the codec private data with
241  * @timeout: how long in jiffies to wait before failure or zero to wait
242  * until release
243  *
244  * Attempts to acquire the semaphore with number of jiffies. If no more
245  * tasks are allowed to acquire the semaphore, calling this function will
246  * put the task to sleep. If the semaphore is not released within the
247  * specified number of jiffies, this function returns.
248  * If the semaphore is not released within the specified number of jiffies,
249  * this function returns -ETIME. If the sleep is interrupted by a signal,
250  * this function will return -EINTR. It returns 0 if the semaphore was
251  * acquired successfully.
252  *
253  * Acquires the semaphore without jiffies. Try to acquire the semaphore
254  * atomically. Returns 0 if the semaphore has been acquired successfully
255  * or 1 if it cannot be acquired.
256  */
257 static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout)
258 {
259 	int ret;
260 
261 	if (timeout) {
262 		ret = down_timeout(&nau8825->xtalk_sem, timeout);
263 		if (ret < 0)
264 			dev_warn(nau8825->dev, "Acquire semaphore timeout\n");
265 	} else {
266 		ret = down_trylock(&nau8825->xtalk_sem);
267 		if (ret)
268 			dev_warn(nau8825->dev, "Acquire semaphore fail\n");
269 	}
270 
271 	return ret;
272 }
273 
274 /**
275  * nau8825_sema_release - release the semaphore of nau88l25
276  * @nau8825:  component to register the codec private data with
277  *
278  * Release the semaphore which may be called from any context and
279  * even by tasks which have never called down().
280  */
281 static inline void nau8825_sema_release(struct nau8825 *nau8825)
282 {
283 	up(&nau8825->xtalk_sem);
284 }
285 
286 /**
287  * nau8825_sema_reset - reset the semaphore for nau88l25
288  * @nau8825:  component to register the codec private data with
289  *
290  * Reset the counter of the semaphore. Call this function to restart
291  * a new round task management.
292  */
293 static inline void nau8825_sema_reset(struct nau8825 *nau8825)
294 {
295 	nau8825->xtalk_sem.count = 1;
296 }
297 
298 /**
299  * nau8825_hpvol_ramp - Ramp up the headphone volume change gradually to target level.
300  *
301  * @nau8825:  component to register the codec private data with
302  * @vol_from: the volume to start up
303  * @vol_to: the target volume
304  * @step: the volume span to move on
305  *
306  * The headphone volume is from 0dB to minimum -54dB and -1dB per step.
307  * If the volume changes sharp, there is a pop noise heard in headphone. We
308  * provide the function to ramp up the volume up or down by delaying 10ms
309  * per step.
310  */
311 static void nau8825_hpvol_ramp(struct nau8825 *nau8825,
312 	unsigned int vol_from, unsigned int vol_to, unsigned int step)
313 {
314 	unsigned int value, volume, ramp_up, from, to;
315 
316 	if (vol_from == vol_to || step == 0) {
317 		return;
318 	} else if (vol_from < vol_to) {
319 		ramp_up = true;
320 		from = vol_from;
321 		to = vol_to;
322 	} else {
323 		ramp_up = false;
324 		from = vol_to;
325 		to = vol_from;
326 	}
327 	/* only handle volume from 0dB to minimum -54dB */
328 	if (to > NAU8825_HP_VOL_MIN)
329 		to = NAU8825_HP_VOL_MIN;
330 
331 	for (volume = from; volume < to; volume += step) {
332 		if (ramp_up)
333 			value = volume;
334 		else
335 			value = to - volume + from;
336 		regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
337 			NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
338 			(value << NAU8825_HPL_VOL_SFT) | value);
339 		usleep_range(10000, 10500);
340 	}
341 	if (ramp_up)
342 		value = to;
343 	else
344 		value = from;
345 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
346 		NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
347 		(value << NAU8825_HPL_VOL_SFT) | value);
348 }
349 
350 /**
351  * nau8825_intlog10_dec3 - Computes log10 of a value
352  * the result is round off to 3 decimal. This function takes reference to
353  * dvb-math. The source code locates as the following.
354  * Linux/drivers/media/dvb-core/dvb_math.c
355  * @value:  input for log10
356  *
357  * return log10(value) * 1000
358  */
359 static u32 nau8825_intlog10_dec3(u32 value)
360 {
361 	u32 msb, logentry, significand, interpolation, log10val;
362 	u64 log2val;
363 
364 	/* first detect the msb (count begins at 0) */
365 	msb = fls(value) - 1;
366 	/**
367 	 *      now we use a logtable after the following method:
368 	 *
369 	 *      log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24
370 	 *      where x = msb and therefore 1 <= y < 2
371 	 *      first y is determined by shifting the value left
372 	 *      so that msb is bit 31
373 	 *              0x00231f56 -> 0x8C7D5800
374 	 *      the result is y * 2^31 -> "significand"
375 	 *      then the highest 9 bits are used for a table lookup
376 	 *      the highest bit is discarded because it's always set
377 	 *      the highest nine bits in our example are 100011000
378 	 *      so we would use the entry 0x18
379 	 */
380 	significand = value << (31 - msb);
381 	logentry = (significand >> 23) & 0xff;
382 	/**
383 	 *      last step we do is interpolation because of the
384 	 *      limitations of the log table the error is that part of
385 	 *      the significand which isn't used for lookup then we
386 	 *      compute the ratio between the error and the next table entry
387 	 *      and interpolate it between the log table entry used and the
388 	 *      next one the biggest error possible is 0x7fffff
389 	 *      (in our example it's 0x7D5800)
390 	 *      needed value for next table entry is 0x800000
391 	 *      so the interpolation is
392 	 *      (error / 0x800000) * (logtable_next - logtable_current)
393 	 *      in the implementation the division is moved to the end for
394 	 *      better accuracy there is also an overflow correction if
395 	 *      logtable_next is 256
396 	 */
397 	interpolation = ((significand & 0x7fffff) *
398 		((logtable[(logentry + 1) & 0xff] -
399 		logtable[logentry]) & 0xffff)) >> 15;
400 
401 	log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation);
402 	/**
403 	 *      log10(x) = log2(x) * log10(2)
404 	 */
405 	log10val = (log2val * LOG10_MAGIC) >> 31;
406 	/**
407 	 *      the result is round off to 3 decimal
408 	 */
409 	return log10val / ((1 << 24) / 1000);
410 }
411 
412 /**
413  * nau8825_xtalk_sidetone - computes cross talk suppression sidetone gain.
414  *
415  * @sig_org: orignal signal level
416  * @sig_cros: cross talk signal level
417  *
418  * The orignal and cross talk signal vlues need to be characterized.
419  * Once these values have been characterized, this sidetone value
420  * can be converted to decibel with the equation below.
421  * sidetone = 20 * log (original signal level / crosstalk signal level)
422  *
423  * return cross talk sidetone gain
424  */
425 static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros)
426 {
427 	u32 gain, sidetone;
428 
429 	if (WARN_ON(sig_org == 0 || sig_cros == 0))
430 		return 0;
431 
432 	sig_org = nau8825_intlog10_dec3(sig_org);
433 	sig_cros = nau8825_intlog10_dec3(sig_cros);
434 	if (sig_org >= sig_cros)
435 		gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT;
436 	else
437 		gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT;
438 	sidetone = SIDETONE_BASE - gain * 2;
439 	sidetone /= 1000;
440 
441 	return sidetone;
442 }
443 
444 static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg)
445 {
446 	int index;
447 
448 	for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++)
449 		if (nau8825_xtalk_baktab[index].reg == reg)
450 			return index;
451 	return -EINVAL;
452 }
453 
454 static void nau8825_xtalk_backup(struct nau8825 *nau8825)
455 {
456 	int i;
457 
458 	if (nau8825->xtalk_baktab_initialized)
459 		return;
460 
461 	/* Backup some register values to backup table */
462 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++)
463 		regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
464 				&nau8825_xtalk_baktab[i].def);
465 
466 	nau8825->xtalk_baktab_initialized = true;
467 }
468 
469 static void nau8825_xtalk_restore(struct nau8825 *nau8825, bool cause_cancel)
470 {
471 	int i, volume;
472 
473 	if (!nau8825->xtalk_baktab_initialized)
474 		return;
475 
476 	/* Restore register values from backup table; When the driver restores
477 	 * the headphone volume in XTALK_DONE state, it needs recover to
478 	 * original level gradually with 3dB per step for less pop noise.
479 	 * Otherwise, the restore should do ASAP.
480 	 */
481 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) {
482 		if (!cause_cancel && nau8825_xtalk_baktab[i].reg ==
483 			NAU8825_REG_HSVOL_CTRL) {
484 			/* Ramping up the volume change to reduce pop noise */
485 			volume = nau8825_xtalk_baktab[i].def &
486 				NAU8825_HPR_VOL_MASK;
487 			nau8825_hpvol_ramp(nau8825, 0, volume, 3);
488 			continue;
489 		}
490 		regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
491 				nau8825_xtalk_baktab[i].def);
492 	}
493 
494 	nau8825->xtalk_baktab_initialized = false;
495 }
496 
497 static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825)
498 {
499 	/* Enable power of DAC path */
500 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
501 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
502 		NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK |
503 		NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR |
504 		NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC |
505 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK);
506 	/* Prevent startup click by letting charge pump to ramp up and
507 	 * change bump enable
508 	 */
509 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
510 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN,
511 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN);
512 	/* Enable clock sync of DAC and DAC clock */
513 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
514 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN |
515 		NAU8825_RDAC_FS_BCLK_ENB,
516 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN);
517 	/* Power up output driver with 2 stage */
518 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
519 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
520 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L,
521 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
522 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L);
523 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
524 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L,
525 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L);
526 	/* HP outputs not shouted to ground  */
527 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
528 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0);
529 	/* Enable HP boost driver */
530 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
531 		NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS);
532 	/* Enable class G compare path to supply 1.8V or 0.9V. */
533 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL,
534 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN,
535 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN);
536 }
537 
538 static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825)
539 {
540 	/* Power up left ADC and raise 5dB than Vmid for Vref  */
541 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
542 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK,
543 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB);
544 }
545 
546 static void nau8825_xtalk_clock(struct nau8825 *nau8825)
547 {
548 	/* Recover FLL default value */
549 	regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0);
550 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126);
551 	regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008);
552 	regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010);
553 	regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0);
554 	regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000);
555 	/* Enable internal VCO clock for detection signal generated */
556 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
557 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
558 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN,
559 		NAU8825_DCO_EN);
560 	/* Given specific clock frequency of internal clock to
561 	 * generate signal.
562 	 */
563 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
564 		NAU8825_CLK_MCLK_SRC_MASK, 0xf);
565 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
566 		NAU8825_FLL_RATIO_MASK, 0x10);
567 }
568 
569 static void nau8825_xtalk_prepare(struct nau8825 *nau8825)
570 {
571 	int volume, index;
572 
573 	/* Backup those registers changed by cross talk detection */
574 	nau8825_xtalk_backup(nau8825);
575 	/* Config IIS as master to output signal by codec */
576 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
577 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
578 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER |
579 		(0x2 << NAU8825_I2S_LRC_DIV_SFT) | 0x1);
580 	/* Ramp up headphone volume to 0dB to get better performance and
581 	 * avoid pop noise in headphone.
582 	 */
583 	index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL);
584 	if (index != -EINVAL) {
585 		volume = nau8825_xtalk_baktab[index].def &
586 				NAU8825_HPR_VOL_MASK;
587 		nau8825_hpvol_ramp(nau8825, volume, 0, 3);
588 	}
589 	nau8825_xtalk_clock(nau8825);
590 	nau8825_xtalk_prepare_dac(nau8825);
591 	nau8825_xtalk_prepare_adc(nau8825);
592 	/* Config channel path and digital gain */
593 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
594 		NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK,
595 		NAU8825_DACL_CH_SEL_L | 0xab);
596 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
597 		NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK,
598 		NAU8825_DACR_CH_SEL_R | 0xab);
599 	/* Config cross talk parameters and generate the 23Hz sine wave with
600 	 * 1/16 full scale of signal level for impedance measurement.
601 	 */
602 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
603 		NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK |
604 		NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK,
605 		(0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th |
606 		NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN);
607 	/* RMS intrruption enable */
608 	regmap_update_bits(nau8825->regmap,
609 		NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0);
610 	/* Power up left and right DAC */
611 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
612 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0);
613 }
614 
615 static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825)
616 {
617 	/* Disable HP boost driver */
618 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
619 		NAU8825_HP_BOOST_DIS, 0);
620 	/* HP outputs shouted to ground  */
621 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
622 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
623 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
624 	/* Power down left and right DAC */
625 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
626 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
627 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
628 	/* Enable the TESTDAC and  disable L/R HP impedance */
629 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
630 		NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP |
631 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
632 	/* Power down output driver with 2 stage */
633 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
634 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0);
635 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
636 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
637 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0);
638 	/* Disable clock sync of DAC and DAC clock */
639 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
640 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0);
641 	/* Disable charge pump ramp up function and change bump */
642 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
643 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0);
644 	/* Disable power of DAC path */
645 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
646 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
647 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0);
648 	if (!nau8825->irq)
649 		regmap_update_bits(nau8825->regmap,
650 			NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
651 }
652 
653 static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825)
654 {
655 	/* Power down left ADC and restore voltage to Vmid */
656 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
657 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0);
658 }
659 
660 static void nau8825_xtalk_clean(struct nau8825 *nau8825, bool cause_cancel)
661 {
662 	/* Enable internal VCO needed for interruptions */
663 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
664 	nau8825_xtalk_clean_dac(nau8825);
665 	nau8825_xtalk_clean_adc(nau8825);
666 	/* Clear cross talk parameters and disable */
667 	regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0);
668 	/* RMS intrruption disable */
669 	regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK,
670 		NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN);
671 	/* Recover default value for IIS */
672 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
673 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
674 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE);
675 	/* Restore value of specific register for cross talk */
676 	nau8825_xtalk_restore(nau8825, cause_cancel);
677 }
678 
679 static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol)
680 {
681 	/* Apply ADC volume for better cross talk performance */
682 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL,
683 				NAU8825_ADC_DIG_VOL_MASK, vol);
684 	/* Disables JKTIP(HPL) DAC channel for right to left measurement.
685 	 * Do it before sending signal in order to erase pop noise.
686 	 */
687 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
688 		NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN,
689 		NAU8825_BIAS_TESTDACL_EN);
690 	switch (nau8825->xtalk_state) {
691 	case NAU8825_XTALK_HPR_R2L:
692 		/* Enable right headphone impedance */
693 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
694 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
695 			NAU8825_BIAS_HPR_IMP);
696 		break;
697 	case NAU8825_XTALK_HPL_R2L:
698 		/* Enable left headphone impedance */
699 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
700 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
701 			NAU8825_BIAS_HPL_IMP);
702 		break;
703 	default:
704 		break;
705 	}
706 	msleep(100);
707 	/* Impedance measurement mode enable */
708 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
709 				NAU8825_IMM_EN, NAU8825_IMM_EN);
710 }
711 
712 static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825)
713 {
714 	/* Impedance measurement mode disable */
715 	regmap_update_bits(nau8825->regmap,
716 		NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0);
717 }
718 
719 /* The cross talk measurement function can reduce cross talk across the
720  * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal
721  * level to determine what cross talk reduction gain is. This system works by
722  * sending a 23Hz -24dBV sine wave into the headset output DAC and through
723  * the PGA. The output of the PGA is then connected to an internal current
724  * sense which measures the attenuated 23Hz signal and passing the output to
725  * an ADC which converts the measurement to a binary code. With two separated
726  * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data
727  * can be separated read in IMM_RMS_L for HSR and HSL after each measurement.
728  * Thus, the measurement function has four states to complete whole sequence.
729  * 1. Prepare state : Prepare the resource for detection and transfer to HPR
730  *     IMM stat to make JKR1(HPR) impedance measure.
731  * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer
732  *     to HPL IMM state to make JKTIP(HPL) impedance measure.
733  * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and
734  *     transfer to IMM state to determine suppression sidetone gain.
735  * 4. IMM state : Computes cross talk suppression sidetone gain with orignal
736  *     and cross talk signal level. Apply this gain and then restore codec
737  *     configuration. Then transfer to Done state for ending.
738  */
739 static void nau8825_xtalk_measure(struct nau8825 *nau8825)
740 {
741 	u32 sidetone;
742 
743 	switch (nau8825->xtalk_state) {
744 	case NAU8825_XTALK_PREPARE:
745 		/* In prepare state, set up clock, intrruption, DAC path, ADC
746 		 * path and cross talk detection parameters for preparation.
747 		 */
748 		nau8825_xtalk_prepare(nau8825);
749 		msleep(280);
750 		/* Trigger right headphone impedance detection */
751 		nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L;
752 		nau8825_xtalk_imm_start(nau8825, 0x00d2);
753 		break;
754 	case NAU8825_XTALK_HPR_R2L:
755 		/* In right headphone IMM state, read out right headphone
756 		 * impedance measure result, and then start up left side.
757 		 */
758 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
759 			&nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
760 		dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n",
761 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
762 		/* Disable then re-enable IMM mode to update */
763 		nau8825_xtalk_imm_stop(nau8825);
764 		/* Trigger left headphone impedance detection */
765 		nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L;
766 		nau8825_xtalk_imm_start(nau8825, 0x00ff);
767 		break;
768 	case NAU8825_XTALK_HPL_R2L:
769 		/* In left headphone IMM state, read out left headphone
770 		 * impedance measure result, and delay some time to wait
771 		 * detection sine wave output finish. Then, we can calculate
772 		 * the cross talk suppresstion side tone according to the L/R
773 		 * headphone imedance.
774 		 */
775 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
776 			&nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
777 		dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n",
778 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
779 		nau8825_xtalk_imm_stop(nau8825);
780 		msleep(150);
781 		nau8825->xtalk_state = NAU8825_XTALK_IMM;
782 		break;
783 	case NAU8825_XTALK_IMM:
784 		/* In impedance measure state, the orignal and cross talk
785 		 * signal level vlues are ready. The side tone gain is deter-
786 		 * mined with these signal level. After all, restore codec
787 		 * configuration.
788 		 */
789 		sidetone = nau8825_xtalk_sidetone(
790 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L],
791 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
792 		dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone);
793 		regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL,
794 					(sidetone << 8) | sidetone);
795 		nau8825_xtalk_clean(nau8825, false);
796 		nau8825->xtalk_state = NAU8825_XTALK_DONE;
797 		break;
798 	default:
799 		break;
800 	}
801 }
802 
803 static void nau8825_xtalk_work(struct work_struct *work)
804 {
805 	struct nau8825 *nau8825 = container_of(
806 		work, struct nau8825, xtalk_work);
807 
808 	nau8825_xtalk_measure(nau8825);
809 	/* To determine the cross talk side tone gain when reach
810 	 * the impedance measure state.
811 	 */
812 	if (nau8825->xtalk_state == NAU8825_XTALK_IMM)
813 		nau8825_xtalk_measure(nau8825);
814 
815 	/* Delay jack report until cross talk detection process
816 	 * completed. It can avoid application to do playback
817 	 * preparation before cross talk detection is still working.
818 	 * Meanwhile, the protection of the cross talk detection
819 	 * is released.
820 	 */
821 	if (nau8825->xtalk_state == NAU8825_XTALK_DONE) {
822 		snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event,
823 				nau8825->xtalk_event_mask);
824 		nau8825_sema_release(nau8825);
825 		nau8825->xtalk_protect = false;
826 	}
827 }
828 
829 static void nau8825_xtalk_cancel(struct nau8825 *nau8825)
830 {
831 	/* If the crosstalk is eanbled and the process is on going,
832 	 * the driver forces to cancel the crosstalk task and
833 	 * restores the configuration to original status.
834 	 */
835 	if (nau8825->xtalk_enable && nau8825->xtalk_state !=
836 		NAU8825_XTALK_DONE) {
837 		cancel_work_sync(&nau8825->xtalk_work);
838 		nau8825_xtalk_clean(nau8825, true);
839 	}
840 	/* Reset parameters for cross talk suppression function */
841 	nau8825_sema_reset(nau8825);
842 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
843 	nau8825->xtalk_protect = false;
844 }
845 
846 static bool nau8825_readable_reg(struct device *dev, unsigned int reg)
847 {
848 	switch (reg) {
849 	case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV:
850 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
851 	case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL:
852 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
853 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
854 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
855 	case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R:
856 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
857 	case NAU8825_REG_MISC_CTRL:
858 	case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS:
859 	case NAU8825_REG_BIAS_ADJ:
860 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
861 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
862 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
863 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS:
864 		return true;
865 	default:
866 		return false;
867 	}
868 
869 }
870 
871 static bool nau8825_writeable_reg(struct device *dev, unsigned int reg)
872 {
873 	switch (reg) {
874 	case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV:
875 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
876 	case NAU8825_REG_INTERRUPT_MASK:
877 	case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL:
878 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
879 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
880 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
881 	case NAU8825_REG_IMM_MODE_CTRL:
882 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
883 	case NAU8825_REG_MISC_CTRL:
884 	case NAU8825_REG_BIAS_ADJ:
885 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
886 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
887 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
888 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP:
889 		return true;
890 	default:
891 		return false;
892 	}
893 }
894 
895 static bool nau8825_volatile_reg(struct device *dev, unsigned int reg)
896 {
897 	switch (reg) {
898 	case NAU8825_REG_RESET:
899 	case NAU8825_REG_IRQ_STATUS:
900 	case NAU8825_REG_INT_CLR_KEY_STATUS:
901 	case NAU8825_REG_IMM_RMS_L:
902 	case NAU8825_REG_IMM_RMS_R:
903 	case NAU8825_REG_I2C_DEVICE_ID:
904 	case NAU8825_REG_SARDOUT_RAM_STATUS:
905 	case NAU8825_REG_CHARGE_PUMP_INPUT_READ:
906 	case NAU8825_REG_GENERAL_STATUS:
907 	case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10:
908 		return true;
909 	default:
910 		return false;
911 	}
912 }
913 
914 static int nau8825_adc_event(struct snd_soc_dapm_widget *w,
915 		struct snd_kcontrol *kcontrol, int event)
916 {
917 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
918 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
919 
920 	switch (event) {
921 	case SND_SOC_DAPM_POST_PMU:
922 		msleep(125);
923 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
924 			NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
925 		break;
926 	case SND_SOC_DAPM_POST_PMD:
927 		if (!nau8825->irq)
928 			regmap_update_bits(nau8825->regmap,
929 				NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
930 		break;
931 	default:
932 		return -EINVAL;
933 	}
934 
935 	return 0;
936 }
937 
938 static int nau8825_pump_event(struct snd_soc_dapm_widget *w,
939 	struct snd_kcontrol *kcontrol, int event)
940 {
941 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
942 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
943 
944 	switch (event) {
945 	case SND_SOC_DAPM_POST_PMU:
946 		/* Prevent startup click by letting charge pump to ramp up */
947 		msleep(10);
948 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
949 			NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW);
950 		break;
951 	case SND_SOC_DAPM_PRE_PMD:
952 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
953 			NAU8825_JAMNODCLOW, 0);
954 		break;
955 	default:
956 		return -EINVAL;
957 	}
958 
959 	return 0;
960 }
961 
962 static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w,
963 	struct snd_kcontrol *kcontrol, int event)
964 {
965 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
966 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
967 
968 	switch (event) {
969 	case SND_SOC_DAPM_PRE_PMU:
970 		/* Disables the TESTDAC to let DAC signal pass through. */
971 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
972 			NAU8825_BIAS_TESTDAC_EN, 0);
973 		break;
974 	case SND_SOC_DAPM_POST_PMD:
975 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
976 			NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
977 		break;
978 	default:
979 		return -EINVAL;
980 	}
981 
982 	return 0;
983 }
984 
985 static int system_clock_control(struct snd_soc_dapm_widget *w,
986 				struct snd_kcontrol *k, int  event)
987 {
988 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
989 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
990 	struct regmap *regmap = nau8825->regmap;
991 
992 	if (SND_SOC_DAPM_EVENT_OFF(event)) {
993 		dev_dbg(nau8825->dev, "system clock control : POWER OFF\n");
994 		/* Set clock source to disable or internal clock before the
995 		 * playback or capture end. Codec needs clock for Jack
996 		 * detection and button press if jack inserted; otherwise,
997 		 * the clock should be closed.
998 		 */
999 		if (nau8825_is_jack_inserted(regmap)) {
1000 			nau8825_configure_sysclk(nau8825,
1001 						 NAU8825_CLK_INTERNAL, 0);
1002 		} else {
1003 			nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1004 		}
1005 	}
1006 
1007 	return 0;
1008 }
1009 
1010 static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol,
1011 				     struct snd_ctl_elem_value *ucontrol)
1012 {
1013 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1014 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
1015 
1016 	if (!component->regmap)
1017 		return -EINVAL;
1018 
1019 	regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1,
1020 		ucontrol->value.bytes.data, params->max);
1021 	return 0;
1022 }
1023 
1024 static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol,
1025 				     struct snd_ctl_elem_value *ucontrol)
1026 {
1027 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1028 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
1029 	void *data;
1030 
1031 	if (!component->regmap)
1032 		return -EINVAL;
1033 
1034 	data = kmemdup(ucontrol->value.bytes.data,
1035 		params->max, GFP_KERNEL | GFP_DMA);
1036 	if (!data)
1037 		return -ENOMEM;
1038 
1039 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1040 		NAU8825_BIQ_WRT_EN, 0);
1041 	regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1,
1042 		data, params->max);
1043 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1044 		NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN);
1045 
1046 	kfree(data);
1047 	return 0;
1048 }
1049 
1050 static const char * const nau8825_biq_path[] = {
1051 	"ADC", "DAC"
1052 };
1053 
1054 static const struct soc_enum nau8825_biq_path_enum =
1055 	SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT,
1056 		ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path);
1057 
1058 static const char * const nau8825_adc_decimation[] = {
1059 	"32", "64", "128", "256"
1060 };
1061 
1062 static const struct soc_enum nau8825_adc_decimation_enum =
1063 	SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT,
1064 		ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation);
1065 
1066 static const char * const nau8825_dac_oversampl[] = {
1067 	"64", "256", "128", "", "32"
1068 };
1069 
1070 static const struct soc_enum nau8825_dac_oversampl_enum =
1071 	SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT,
1072 		ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl);
1073 
1074 static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400);
1075 static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0);
1076 static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0);
1077 static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
1078 static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400);
1079 
1080 static const struct snd_kcontrol_new nau8825_controls[] = {
1081 	SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1082 		0, 0xff, 0, adc_vol_tlv),
1083 	SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1084 		12, 8, 0x0f, 0, sidetone_vol_tlv),
1085 	SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL,
1086 		6, 0, 0x3f, 1, dac_vol_tlv),
1087 	SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL,
1088 		8, 37, 0, fepga_gain_tlv),
1089 	SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL,
1090 		0, 8, 0xff, 0, crosstalk_vol_tlv),
1091 
1092 	SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum),
1093 	SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum),
1094 	/* programmable biquad filter */
1095 	SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum),
1096 	SND_SOC_BYTES_EXT("BIQ Coefficients", 20,
1097 		  nau8825_biq_coeff_get, nau8825_biq_coeff_put),
1098 };
1099 
1100 /* DAC Mux 0x33[9] and 0x34[9] */
1101 static const char * const nau8825_dac_src[] = {
1102 	"DACL", "DACR",
1103 };
1104 
1105 static SOC_ENUM_SINGLE_DECL(
1106 	nau8825_dacl_enum, NAU8825_REG_DACL_CTRL,
1107 	NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src);
1108 
1109 static SOC_ENUM_SINGLE_DECL(
1110 	nau8825_dacr_enum, NAU8825_REG_DACR_CTRL,
1111 	NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src);
1112 
1113 static const struct snd_kcontrol_new nau8825_dacl_mux =
1114 	SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum);
1115 
1116 static const struct snd_kcontrol_new nau8825_dacr_mux =
1117 	SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum);
1118 
1119 
1120 static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = {
1121 	SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2,
1122 		15, 1),
1123 	SND_SOC_DAPM_AIF_IN("AIFRX", "Playback", 0, SND_SOC_NOPM, 0, 0),
1124 	SND_SOC_DAPM_SUPPLY("System Clock", SND_SOC_NOPM, 0, 0,
1125 			    system_clock_control, SND_SOC_DAPM_POST_PMD),
1126 
1127 	SND_SOC_DAPM_INPUT("MIC"),
1128 	SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0),
1129 
1130 	SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0,
1131 		NULL, 0),
1132 
1133 	SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0,
1134 		nau8825_adc_event, SND_SOC_DAPM_POST_PMU |
1135 		SND_SOC_DAPM_POST_PMD),
1136 	SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0),
1137 	SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL,
1138 		0),
1139 
1140 	/* ADC for button press detection. A dapm supply widget is used to
1141 	 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON
1142 	 * during suspend.
1143 	 */
1144 	SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL,
1145 		NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0),
1146 
1147 	SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0),
1148 	SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0),
1149 	SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0),
1150 	SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0),
1151 
1152 	SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL,
1153 		NAU8825_ENABLE_DACR_SFT, 0),
1154 	SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL,
1155 		NAU8825_ENABLE_DACL_SFT, 0),
1156 	SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0),
1157 
1158 	SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux),
1159 	SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux),
1160 
1161 	SND_SOC_DAPM_PGA_S("HP amp L", 0,
1162 		NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0),
1163 	SND_SOC_DAPM_PGA_S("HP amp R", 0,
1164 		NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0),
1165 
1166 	SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0,
1167 		nau8825_pump_event, SND_SOC_DAPM_POST_PMU |
1168 		SND_SOC_DAPM_PRE_PMD),
1169 
1170 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4,
1171 		NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0),
1172 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4,
1173 		NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0),
1174 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5,
1175 		NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
1176 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5,
1177 		NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
1178 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6,
1179 		NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
1180 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6,
1181 		NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
1182 
1183 	SND_SOC_DAPM_PGA_S("Output DACL", 7,
1184 		NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event,
1185 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1186 	SND_SOC_DAPM_PGA_S("Output DACR", 7,
1187 		NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event,
1188 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1189 
1190 	/* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */
1191 	SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8,
1192 		NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0),
1193 	SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8,
1194 		NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0),
1195 
1196 	/* High current HPOL/R boost driver */
1197 	SND_SOC_DAPM_PGA_S("HP Boost Driver", 9,
1198 		NAU8825_REG_BOOST, 9, 1, NULL, 0),
1199 
1200 	/* Class G operation control*/
1201 	SND_SOC_DAPM_PGA_S("Class G", 10,
1202 		NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0),
1203 
1204 	SND_SOC_DAPM_OUTPUT("HPOL"),
1205 	SND_SOC_DAPM_OUTPUT("HPOR"),
1206 };
1207 
1208 static const struct snd_soc_dapm_route nau8825_dapm_routes[] = {
1209 	{"Frontend PGA", NULL, "MIC"},
1210 	{"ADC", NULL, "Frontend PGA"},
1211 	{"ADC", NULL, "ADC Clock"},
1212 	{"ADC", NULL, "ADC Power"},
1213 	{"AIFTX", NULL, "ADC"},
1214 	{"AIFTX", NULL, "System Clock"},
1215 
1216 	{"AIFRX", NULL, "System Clock"},
1217 	{"DDACL", NULL, "AIFRX"},
1218 	{"DDACR", NULL, "AIFRX"},
1219 	{"DDACL", NULL, "DDAC Clock"},
1220 	{"DDACR", NULL, "DDAC Clock"},
1221 	{"DACL Mux", "DACL", "DDACL"},
1222 	{"DACL Mux", "DACR", "DDACR"},
1223 	{"DACR Mux", "DACL", "DDACL"},
1224 	{"DACR Mux", "DACR", "DDACR"},
1225 	{"HP amp L", NULL, "DACL Mux"},
1226 	{"HP amp R", NULL, "DACR Mux"},
1227 	{"Charge Pump", NULL, "HP amp L"},
1228 	{"Charge Pump", NULL, "HP amp R"},
1229 	{"ADACL", NULL, "Charge Pump"},
1230 	{"ADACR", NULL, "Charge Pump"},
1231 	{"ADACL Clock", NULL, "ADACL"},
1232 	{"ADACR Clock", NULL, "ADACR"},
1233 	{"Output Driver L Stage 1", NULL, "ADACL Clock"},
1234 	{"Output Driver R Stage 1", NULL, "ADACR Clock"},
1235 	{"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"},
1236 	{"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"},
1237 	{"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"},
1238 	{"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"},
1239 	{"Output DACL", NULL, "Output Driver L Stage 3"},
1240 	{"Output DACR", NULL, "Output Driver R Stage 3"},
1241 	{"HPOL Pulldown", NULL, "Output DACL"},
1242 	{"HPOR Pulldown", NULL, "Output DACR"},
1243 	{"HP Boost Driver", NULL, "HPOL Pulldown"},
1244 	{"HP Boost Driver", NULL, "HPOR Pulldown"},
1245 	{"Class G", NULL, "HP Boost Driver"},
1246 	{"HPOL", NULL, "Class G"},
1247 	{"HPOR", NULL, "Class G"},
1248 };
1249 
1250 static const struct nau8825_osr_attr *
1251 nau8825_get_osr(struct nau8825 *nau8825, int stream)
1252 {
1253 	unsigned int osr;
1254 
1255 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
1256 		regmap_read(nau8825->regmap,
1257 			    NAU8825_REG_DAC_CTRL1, &osr);
1258 		osr &= NAU8825_DAC_OVERSAMPLE_MASK;
1259 		if (osr >= ARRAY_SIZE(osr_dac_sel))
1260 			return NULL;
1261 		return &osr_dac_sel[osr];
1262 	} else {
1263 		regmap_read(nau8825->regmap,
1264 			    NAU8825_REG_ADC_RATE, &osr);
1265 		osr &= NAU8825_ADC_SYNC_DOWN_MASK;
1266 		if (osr >= ARRAY_SIZE(osr_adc_sel))
1267 			return NULL;
1268 		return &osr_adc_sel[osr];
1269 	}
1270 }
1271 
1272 static int nau8825_dai_startup(struct snd_pcm_substream *substream,
1273 			       struct snd_soc_dai *dai)
1274 {
1275 	struct snd_soc_component *component = dai->component;
1276 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1277 	const struct nau8825_osr_attr *osr;
1278 
1279 	osr = nau8825_get_osr(nau8825, substream->stream);
1280 	if (!osr || !osr->osr)
1281 		return -EINVAL;
1282 
1283 	return snd_pcm_hw_constraint_minmax(substream->runtime,
1284 					    SNDRV_PCM_HW_PARAM_RATE,
1285 					    0, CLK_DA_AD_MAX / osr->osr);
1286 }
1287 
1288 static int nau8825_hw_params(struct snd_pcm_substream *substream,
1289 				struct snd_pcm_hw_params *params,
1290 				struct snd_soc_dai *dai)
1291 {
1292 	struct snd_soc_component *component = dai->component;
1293 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1294 	unsigned int val_len = 0, ctrl_val, bclk_fs, bclk_div;
1295 	const struct nau8825_osr_attr *osr;
1296 	int err = -EINVAL;
1297 
1298 	nau8825_sema_acquire(nau8825, 3 * HZ);
1299 
1300 	/* CLK_DAC or CLK_ADC = OSR * FS
1301 	 * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR)
1302 	 * multiplied by the audio sample rate (Fs). Note that the OSR and Fs
1303 	 * values must be selected such that the maximum frequency is less
1304 	 * than 6.144 MHz.
1305 	 */
1306 	osr = nau8825_get_osr(nau8825, substream->stream);
1307 	if (!osr || !osr->osr)
1308 		goto error;
1309 	if (params_rate(params) * osr->osr > CLK_DA_AD_MAX)
1310 		goto error;
1311 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1312 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1313 			NAU8825_CLK_DAC_SRC_MASK,
1314 			osr->clk_src << NAU8825_CLK_DAC_SRC_SFT);
1315 	else
1316 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1317 			NAU8825_CLK_ADC_SRC_MASK,
1318 			osr->clk_src << NAU8825_CLK_ADC_SRC_SFT);
1319 
1320 	/* make BCLK and LRC divde configuration if the codec as master. */
1321 	regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, &ctrl_val);
1322 	if (ctrl_val & NAU8825_I2S_MS_MASTER) {
1323 		/* get the bclk and fs ratio */
1324 		bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params);
1325 		if (bclk_fs <= 32)
1326 			bclk_div = 2;
1327 		else if (bclk_fs <= 64)
1328 			bclk_div = 1;
1329 		else if (bclk_fs <= 128)
1330 			bclk_div = 0;
1331 		else
1332 			goto error;
1333 		regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1334 			NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK,
1335 			((bclk_div + 1) << NAU8825_I2S_LRC_DIV_SFT) | bclk_div);
1336 	}
1337 
1338 	switch (params_width(params)) {
1339 	case 16:
1340 		val_len |= NAU8825_I2S_DL_16;
1341 		break;
1342 	case 20:
1343 		val_len |= NAU8825_I2S_DL_20;
1344 		break;
1345 	case 24:
1346 		val_len |= NAU8825_I2S_DL_24;
1347 		break;
1348 	case 32:
1349 		val_len |= NAU8825_I2S_DL_32;
1350 		break;
1351 	default:
1352 		goto error;
1353 	}
1354 
1355 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1356 		NAU8825_I2S_DL_MASK, val_len);
1357 	err = 0;
1358 
1359  error:
1360 	/* Release the semaphore. */
1361 	nau8825_sema_release(nau8825);
1362 
1363 	return err;
1364 }
1365 
1366 static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
1367 {
1368 	struct snd_soc_component *component = codec_dai->component;
1369 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1370 	unsigned int ctrl1_val = 0, ctrl2_val = 0;
1371 
1372 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1373 	case SND_SOC_DAIFMT_CBM_CFM:
1374 		ctrl2_val |= NAU8825_I2S_MS_MASTER;
1375 		break;
1376 	case SND_SOC_DAIFMT_CBS_CFS:
1377 		break;
1378 	default:
1379 		return -EINVAL;
1380 	}
1381 
1382 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1383 	case SND_SOC_DAIFMT_NB_NF:
1384 		break;
1385 	case SND_SOC_DAIFMT_IB_NF:
1386 		ctrl1_val |= NAU8825_I2S_BP_INV;
1387 		break;
1388 	default:
1389 		return -EINVAL;
1390 	}
1391 
1392 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1393 	case SND_SOC_DAIFMT_I2S:
1394 		ctrl1_val |= NAU8825_I2S_DF_I2S;
1395 		break;
1396 	case SND_SOC_DAIFMT_LEFT_J:
1397 		ctrl1_val |= NAU8825_I2S_DF_LEFT;
1398 		break;
1399 	case SND_SOC_DAIFMT_RIGHT_J:
1400 		ctrl1_val |= NAU8825_I2S_DF_RIGTH;
1401 		break;
1402 	case SND_SOC_DAIFMT_DSP_A:
1403 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1404 		break;
1405 	case SND_SOC_DAIFMT_DSP_B:
1406 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1407 		ctrl1_val |= NAU8825_I2S_PCMB_EN;
1408 		break;
1409 	default:
1410 		return -EINVAL;
1411 	}
1412 
1413 	nau8825_sema_acquire(nau8825, 3 * HZ);
1414 
1415 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1416 		NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK |
1417 		NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK,
1418 		ctrl1_val);
1419 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1420 		NAU8825_I2S_MS_MASK, ctrl2_val);
1421 
1422 	/* Release the semaphore. */
1423 	nau8825_sema_release(nau8825);
1424 
1425 	return 0;
1426 }
1427 
1428 static const struct snd_soc_dai_ops nau8825_dai_ops = {
1429 	.startup	= nau8825_dai_startup,
1430 	.hw_params	= nau8825_hw_params,
1431 	.set_fmt	= nau8825_set_dai_fmt,
1432 };
1433 
1434 #define NAU8825_RATES	SNDRV_PCM_RATE_8000_192000
1435 #define NAU8825_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
1436 			 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1437 
1438 static struct snd_soc_dai_driver nau8825_dai = {
1439 	.name = "nau8825-hifi",
1440 	.playback = {
1441 		.stream_name	 = "Playback",
1442 		.channels_min	 = 1,
1443 		.channels_max	 = 2,
1444 		.rates		 = NAU8825_RATES,
1445 		.formats	 = NAU8825_FORMATS,
1446 	},
1447 	.capture = {
1448 		.stream_name	 = "Capture",
1449 		.channels_min	 = 1,
1450 		.channels_max	 = 2,   /* Only 1 channel of data */
1451 		.rates		 = NAU8825_RATES,
1452 		.formats	 = NAU8825_FORMATS,
1453 	},
1454 	.ops = &nau8825_dai_ops,
1455 };
1456 
1457 /**
1458  * nau8825_enable_jack_detect - Specify a jack for event reporting
1459  *
1460  * @component:  component to register the jack with
1461  * @jack: jack to use to report headset and button events on
1462  *
1463  * After this function has been called the headset insert/remove and button
1464  * events will be routed to the given jack.  Jack can be null to stop
1465  * reporting.
1466  */
1467 int nau8825_enable_jack_detect(struct snd_soc_component *component,
1468 				struct snd_soc_jack *jack)
1469 {
1470 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1471 	struct regmap *regmap = nau8825->regmap;
1472 
1473 	nau8825->jack = jack;
1474 
1475 	if (!nau8825->jack) {
1476 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1477 				   NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R |
1478 				   NAU8825_SPKR_DWN1L, 0);
1479 		return 0;
1480 	}
1481 	/* Ground HP Outputs[1:0], needed for headset auto detection
1482 	 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6]
1483 	 */
1484 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1485 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
1486 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
1487 
1488 	return 0;
1489 }
1490 EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect);
1491 
1492 
1493 static bool nau8825_is_jack_inserted(struct regmap *regmap)
1494 {
1495 	bool active_high, is_high;
1496 	int status, jkdet;
1497 
1498 	regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet);
1499 	active_high = jkdet & NAU8825_JACK_POLARITY;
1500 	regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status);
1501 	is_high = status & NAU8825_GPIO2JD1;
1502 	/* return jack connection status according to jack insertion logic
1503 	 * active high or active low.
1504 	 */
1505 	return active_high == is_high;
1506 }
1507 
1508 static void nau8825_restart_jack_detection(struct regmap *regmap)
1509 {
1510 	/* this will restart the entire jack detection process including MIC/GND
1511 	 * switching and create interrupts. We have to go from 0 to 1 and back
1512 	 * to 0 to restart.
1513 	 */
1514 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1515 		NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART);
1516 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1517 		NAU8825_JACK_DET_RESTART, 0);
1518 }
1519 
1520 static void nau8825_int_status_clear_all(struct regmap *regmap)
1521 {
1522 	int active_irq, clear_irq, i;
1523 
1524 	/* Reset the intrruption status from rightmost bit if the corres-
1525 	 * ponding irq event occurs.
1526 	 */
1527 	regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq);
1528 	for (i = 0; i < NAU8825_REG_DATA_LEN; i++) {
1529 		clear_irq = (0x1 << i);
1530 		if (active_irq & clear_irq)
1531 			regmap_write(regmap,
1532 				NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1533 	}
1534 }
1535 
1536 static void nau8825_eject_jack(struct nau8825 *nau8825)
1537 {
1538 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1539 	struct regmap *regmap = nau8825->regmap;
1540 
1541 	/* Force to cancel the cross talk detection process */
1542 	nau8825_xtalk_cancel(nau8825);
1543 
1544 	snd_soc_dapm_disable_pin(dapm, "SAR");
1545 	snd_soc_dapm_disable_pin(dapm, "MICBIAS");
1546 	/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
1547 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1548 		NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
1549 	/* ground HPL/HPR, MICGRND1/2 */
1550 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf);
1551 
1552 	snd_soc_dapm_sync(dapm);
1553 
1554 	/* Clear all interruption status */
1555 	nau8825_int_status_clear_all(regmap);
1556 
1557 	/* Enable the insertion interruption, disable the ejection inter-
1558 	 * ruption, and then bypass de-bounce circuit.
1559 	 */
1560 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
1561 		NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS,
1562 		NAU8825_IRQ_EJECT_DIS);
1563 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1564 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1565 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN,
1566 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1567 		NAU8825_IRQ_HEADSET_COMPLETE_EN);
1568 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1569 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
1570 
1571 	/* Disable ADC needed for interruptions at audo mode */
1572 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1573 		NAU8825_ENABLE_ADC, 0);
1574 
1575 	/* Close clock for jack type detection at manual mode */
1576 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1577 }
1578 
1579 /* Enable audo mode interruptions with internal clock. */
1580 static void nau8825_setup_auto_irq(struct nau8825 *nau8825)
1581 {
1582 	struct regmap *regmap = nau8825->regmap;
1583 
1584 	/* Enable headset jack type detection complete interruption and
1585 	 * jack ejection interruption.
1586 	 */
1587 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1588 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0);
1589 
1590 	/* Enable internal VCO needed for interruptions */
1591 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
1592 
1593 	/* Enable ADC needed for interruptions */
1594 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1595 		NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
1596 
1597 	/* Chip needs one FSCLK cycle in order to generate interruptions,
1598 	 * as we cannot guarantee one will be provided by the system. Turning
1599 	 * master mode on then off enables us to generate that FSCLK cycle
1600 	 * with a minimum of contention on the clock bus.
1601 	 */
1602 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1603 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER);
1604 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1605 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE);
1606 
1607 	/* Not bypass de-bounce circuit */
1608 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1609 		NAU8825_JACK_DET_DB_BYPASS, 0);
1610 
1611 	/* Unmask all interruptions */
1612 	regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0);
1613 
1614 	/* Restart the jack detection process at auto mode */
1615 	nau8825_restart_jack_detection(regmap);
1616 }
1617 
1618 static int nau8825_button_decode(int value)
1619 {
1620 	int buttons = 0;
1621 
1622 	/* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */
1623 	if (value & BIT(0))
1624 		buttons |= SND_JACK_BTN_0;
1625 	if (value & BIT(1))
1626 		buttons |= SND_JACK_BTN_1;
1627 	if (value & BIT(2))
1628 		buttons |= SND_JACK_BTN_2;
1629 	if (value & BIT(3))
1630 		buttons |= SND_JACK_BTN_3;
1631 	if (value & BIT(4))
1632 		buttons |= SND_JACK_BTN_4;
1633 	if (value & BIT(5))
1634 		buttons |= SND_JACK_BTN_5;
1635 
1636 	return buttons;
1637 }
1638 
1639 static int nau8825_jack_insert(struct nau8825 *nau8825)
1640 {
1641 	struct regmap *regmap = nau8825->regmap;
1642 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1643 	int jack_status_reg, mic_detected;
1644 	int type = 0;
1645 
1646 	regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg);
1647 	mic_detected = (jack_status_reg >> 10) & 3;
1648 	/* The JKSLV and JKR2 all detected in high impedance headset */
1649 	if (mic_detected == 0x3)
1650 		nau8825->high_imped = true;
1651 	else
1652 		nau8825->high_imped = false;
1653 
1654 	switch (mic_detected) {
1655 	case 0:
1656 		/* no mic */
1657 		type = SND_JACK_HEADPHONE;
1658 		break;
1659 	case 1:
1660 		dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n");
1661 		type = SND_JACK_HEADSET;
1662 
1663 		/* Unground MICGND1 */
1664 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1665 			1 << 2);
1666 		/* Attach 2kOhm Resistor from MICBIAS to MICGND1 */
1667 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1668 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1669 			NAU8825_MICBIAS_JKR2);
1670 		/* Attach SARADC to MICGND1 */
1671 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1672 			NAU8825_SAR_INPUT_MASK,
1673 			NAU8825_SAR_INPUT_JKR2);
1674 
1675 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1676 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1677 		snd_soc_dapm_sync(dapm);
1678 		break;
1679 	case 2:
1680 		dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n");
1681 		type = SND_JACK_HEADSET;
1682 
1683 		/* Unground MICGND2 */
1684 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1685 			2 << 2);
1686 		/* Attach 2kOhm Resistor from MICBIAS to MICGND2 */
1687 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1688 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1689 			NAU8825_MICBIAS_JKSLV);
1690 		/* Attach SARADC to MICGND2 */
1691 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1692 			NAU8825_SAR_INPUT_MASK,
1693 			NAU8825_SAR_INPUT_JKSLV);
1694 
1695 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1696 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1697 		snd_soc_dapm_sync(dapm);
1698 		break;
1699 	case 3:
1700 		/* detect error case */
1701 		dev_err(nau8825->dev, "detection error; disable mic function\n");
1702 		type = SND_JACK_HEADPHONE;
1703 		break;
1704 	}
1705 
1706 	/* Leaving HPOL/R grounded after jack insert by default. They will be
1707 	 * ungrounded as part of the widget power up sequence at the beginning
1708 	 * of playback to reduce pop.
1709 	 */
1710 	return type;
1711 }
1712 
1713 #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
1714 		SND_JACK_BTN_2 | SND_JACK_BTN_3)
1715 
1716 static irqreturn_t nau8825_interrupt(int irq, void *data)
1717 {
1718 	struct nau8825 *nau8825 = (struct nau8825 *)data;
1719 	struct regmap *regmap = nau8825->regmap;
1720 	int active_irq, clear_irq = 0, event = 0, event_mask = 0;
1721 
1722 	if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) {
1723 		dev_err(nau8825->dev, "failed to read irq status\n");
1724 		return IRQ_NONE;
1725 	}
1726 
1727 	if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) ==
1728 		NAU8825_JACK_EJECTION_DETECTED) {
1729 
1730 		nau8825_eject_jack(nau8825);
1731 		event_mask |= SND_JACK_HEADSET;
1732 		clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK;
1733 	} else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) {
1734 		int key_status;
1735 
1736 		regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS,
1737 			&key_status);
1738 
1739 		/* upper 8 bits of the register are for short pressed keys,
1740 		 * lower 8 bits - for long pressed buttons
1741 		 */
1742 		nau8825->button_pressed = nau8825_button_decode(
1743 			key_status >> 8);
1744 
1745 		event |= nau8825->button_pressed;
1746 		event_mask |= NAU8825_BUTTONS;
1747 		clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ;
1748 	} else if (active_irq & NAU8825_KEY_RELEASE_IRQ) {
1749 		event_mask = NAU8825_BUTTONS;
1750 		clear_irq = NAU8825_KEY_RELEASE_IRQ;
1751 	} else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) {
1752 		if (nau8825_is_jack_inserted(regmap)) {
1753 			event |= nau8825_jack_insert(nau8825);
1754 			if (nau8825->xtalk_enable && !nau8825->high_imped) {
1755 				/* Apply the cross talk suppression in the
1756 				 * headset without high impedance.
1757 				 */
1758 				if (!nau8825->xtalk_protect) {
1759 					/* Raise protection for cross talk de-
1760 					 * tection if no protection before.
1761 					 * The driver has to cancel the pro-
1762 					 * cess and restore changes if process
1763 					 * is ongoing when ejection.
1764 					 */
1765 					int ret;
1766 					nau8825->xtalk_protect = true;
1767 					ret = nau8825_sema_acquire(nau8825, 0);
1768 					if (ret)
1769 						nau8825->xtalk_protect = false;
1770 				}
1771 				/* Startup cross talk detection process */
1772 				if (nau8825->xtalk_protect) {
1773 					nau8825->xtalk_state =
1774 						NAU8825_XTALK_PREPARE;
1775 					schedule_work(&nau8825->xtalk_work);
1776 				}
1777 			} else {
1778 				/* The cross talk suppression shouldn't apply
1779 				 * in the headset with high impedance. Thus,
1780 				 * relieve the protection raised before.
1781 				 */
1782 				if (nau8825->xtalk_protect) {
1783 					nau8825_sema_release(nau8825);
1784 					nau8825->xtalk_protect = false;
1785 				}
1786 			}
1787 		} else {
1788 			dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n");
1789 			nau8825_eject_jack(nau8825);
1790 		}
1791 
1792 		event_mask |= SND_JACK_HEADSET;
1793 		clear_irq = NAU8825_HEADSET_COMPLETION_IRQ;
1794 		/* Record the interruption report event for driver to report
1795 		 * the event later. The jack report will delay until cross
1796 		 * talk detection process is done.
1797 		 */
1798 		if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) {
1799 			nau8825->xtalk_event = event;
1800 			nau8825->xtalk_event_mask = event_mask;
1801 		}
1802 	} else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) {
1803 		/* crosstalk detection enable and process on going */
1804 		if (nau8825->xtalk_enable && nau8825->xtalk_protect)
1805 			schedule_work(&nau8825->xtalk_work);
1806 		clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ;
1807 	} else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) ==
1808 		NAU8825_JACK_INSERTION_DETECTED) {
1809 		/* One more step to check GPIO status directly. Thus, the
1810 		 * driver can confirm the real insertion interruption because
1811 		 * the intrruption at manual mode has bypassed debounce
1812 		 * circuit which can get rid of unstable status.
1813 		 */
1814 		if (nau8825_is_jack_inserted(regmap)) {
1815 			/* Turn off insertion interruption at manual mode */
1816 			regmap_update_bits(regmap,
1817 				NAU8825_REG_INTERRUPT_DIS_CTRL,
1818 				NAU8825_IRQ_INSERT_DIS,
1819 				NAU8825_IRQ_INSERT_DIS);
1820 			regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1821 				NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN);
1822 			/* Enable interruption for jack type detection at audo
1823 			 * mode which can detect microphone and jack type.
1824 			 */
1825 			nau8825_setup_auto_irq(nau8825);
1826 		}
1827 	}
1828 
1829 	if (!clear_irq)
1830 		clear_irq = active_irq;
1831 	/* clears the rightmost interruption */
1832 	regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1833 
1834 	/* Delay jack report until cross talk detection is done. It can avoid
1835 	 * application to do playback preparation when cross talk detection
1836 	 * process is still working. Otherwise, the resource like clock and
1837 	 * power will be issued by them at the same time and conflict happens.
1838 	 */
1839 	if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE)
1840 		snd_soc_jack_report(nau8825->jack, event, event_mask);
1841 
1842 	return IRQ_HANDLED;
1843 }
1844 
1845 static void nau8825_setup_buttons(struct nau8825 *nau8825)
1846 {
1847 	struct regmap *regmap = nau8825->regmap;
1848 
1849 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1850 		NAU8825_SAR_TRACKING_GAIN_MASK,
1851 		nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT);
1852 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1853 		NAU8825_SAR_COMPARE_TIME_MASK,
1854 		nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT);
1855 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1856 		NAU8825_SAR_SAMPLING_TIME_MASK,
1857 		nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT);
1858 
1859 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1860 		NAU8825_KEYDET_LEVELS_NR_MASK,
1861 		(nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT);
1862 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1863 		NAU8825_KEYDET_HYSTERESIS_MASK,
1864 		nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT);
1865 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1866 		NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK,
1867 		nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT);
1868 
1869 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1,
1870 		(nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]);
1871 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2,
1872 		(nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]);
1873 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3,
1874 		(nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]);
1875 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4,
1876 		(nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]);
1877 
1878 	/* Enable short press and release interruptions */
1879 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1880 		NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN,
1881 		0);
1882 }
1883 
1884 static void nau8825_init_regs(struct nau8825 *nau8825)
1885 {
1886 	struct regmap *regmap = nau8825->regmap;
1887 
1888 	/* Latch IIC LSB value */
1889 	regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001);
1890 	/* Enable Bias/Vmid */
1891 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1892 		NAU8825_BIAS_VMID, NAU8825_BIAS_VMID);
1893 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
1894 		NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN);
1895 
1896 	/* VMID Tieoff */
1897 	regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ,
1898 		NAU8825_BIAS_VMID_SEL_MASK,
1899 		nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT);
1900 	/* Disable Boost Driver, Automatic Short circuit protection enable */
1901 	regmap_update_bits(regmap, NAU8825_REG_BOOST,
1902 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1903 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN,
1904 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1905 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN);
1906 
1907 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1908 		NAU8825_JKDET_OUTPUT_EN,
1909 		nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN);
1910 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1911 		NAU8825_JKDET_PULL_EN,
1912 		nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN);
1913 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1914 		NAU8825_JKDET_PULL_UP,
1915 		nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0);
1916 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1917 		NAU8825_JACK_POLARITY,
1918 		/* jkdet_polarity - 1  is for active-low */
1919 		nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY);
1920 
1921 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1922 		NAU8825_JACK_INSERT_DEBOUNCE_MASK,
1923 		nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT);
1924 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1925 		NAU8825_JACK_EJECT_DEBOUNCE_MASK,
1926 		nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT);
1927 
1928 	/* Pull up IRQ pin */
1929 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1930 		NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN,
1931 		NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN);
1932 	/* Mask unneeded IRQs: 1 - disable, 0 - enable */
1933 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff);
1934 
1935 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1936 		NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage);
1937 
1938 	if (nau8825->sar_threshold_num)
1939 		nau8825_setup_buttons(nau8825);
1940 
1941 	/* Default oversampling/decimations settings are unusable
1942 	 * (audible hiss). Set it to something better.
1943 	 */
1944 	regmap_update_bits(regmap, NAU8825_REG_ADC_RATE,
1945 		NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN,
1946 		NAU8825_ADC_SYNC_DOWN_64);
1947 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1948 		NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64);
1949 	/* Disable DACR/L power */
1950 	regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
1951 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
1952 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
1953 	/* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
1954 	 * signal to avoid any glitches due to power up transients in both
1955 	 * the analog and digital DAC circuit.
1956 	 */
1957 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1958 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
1959 	/* CICCLP off */
1960 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1961 		NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF);
1962 
1963 	/* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */
1964 	regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2,
1965 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1966 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB,
1967 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1968 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB);
1969 	/* Class G timer 64ms */
1970 	regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL,
1971 		NAU8825_CLASSG_TIMER_MASK,
1972 		0x20 << NAU8825_CLASSG_TIMER_SFT);
1973 	/* DAC clock delay 2ns, VREF */
1974 	regmap_update_bits(regmap, NAU8825_REG_RDAC,
1975 		NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK,
1976 		(0x2 << NAU8825_RDAC_CLK_DELAY_SFT) |
1977 		(0x3 << NAU8825_RDAC_VREF_SFT));
1978 	/* Config L/R channel */
1979 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
1980 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L);
1981 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
1982 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R);
1983 	/* Disable short Frame Sync detection logic */
1984 	regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT,
1985 		NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET);
1986 }
1987 
1988 static const struct regmap_config nau8825_regmap_config = {
1989 	.val_bits = NAU8825_REG_DATA_LEN,
1990 	.reg_bits = NAU8825_REG_ADDR_LEN,
1991 
1992 	.max_register = NAU8825_REG_MAX,
1993 	.readable_reg = nau8825_readable_reg,
1994 	.writeable_reg = nau8825_writeable_reg,
1995 	.volatile_reg = nau8825_volatile_reg,
1996 
1997 	.cache_type = REGCACHE_RBTREE,
1998 	.reg_defaults = nau8825_reg_defaults,
1999 	.num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults),
2000 };
2001 
2002 static int nau8825_component_probe(struct snd_soc_component *component)
2003 {
2004 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2005 	struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
2006 
2007 	nau8825->dapm = dapm;
2008 
2009 	return 0;
2010 }
2011 
2012 static void nau8825_component_remove(struct snd_soc_component *component)
2013 {
2014 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2015 
2016 	/* Cancel and reset cross tak suppresstion detection funciton */
2017 	nau8825_xtalk_cancel(nau8825);
2018 }
2019 
2020 /**
2021  * nau8825_calc_fll_param - Calculate FLL parameters.
2022  * @fll_in: external clock provided to codec.
2023  * @fs: sampling rate.
2024  * @fll_param: Pointer to structure of FLL parameters.
2025  *
2026  * Calculate FLL parameters to configure codec.
2027  *
2028  * Returns 0 for success or negative error code.
2029  */
2030 static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs,
2031 		struct nau8825_fll *fll_param)
2032 {
2033 	u64 fvco, fvco_max;
2034 	unsigned int fref, i, fvco_sel;
2035 
2036 	/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
2037 	 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
2038 	 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK
2039 	 */
2040 	for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
2041 		fref = fll_in / fll_pre_scalar[i].param;
2042 		if (fref <= NAU_FREF_MAX)
2043 			break;
2044 	}
2045 	if (i == ARRAY_SIZE(fll_pre_scalar))
2046 		return -EINVAL;
2047 	fll_param->clk_ref_div = fll_pre_scalar[i].val;
2048 
2049 	/* Choose the FLL ratio based on FREF */
2050 	for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
2051 		if (fref >= fll_ratio[i].param)
2052 			break;
2053 	}
2054 	if (i == ARRAY_SIZE(fll_ratio))
2055 		return -EINVAL;
2056 	fll_param->ratio = fll_ratio[i].val;
2057 
2058 	/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
2059 	 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be
2060 	 * guaranteed across the full range of operation.
2061 	 * FDCO = freq_out * 2 * mclk_src_scaling
2062 	 */
2063 	fvco_max = 0;
2064 	fvco_sel = ARRAY_SIZE(mclk_src_scaling);
2065 	for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
2066 		fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param;
2067 		if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
2068 			fvco_max < fvco) {
2069 			fvco_max = fvco;
2070 			fvco_sel = i;
2071 		}
2072 	}
2073 	if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
2074 		return -EINVAL;
2075 	fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
2076 
2077 	/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
2078 	 * input based on FDCO, FREF and FLL ratio.
2079 	 */
2080 	fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
2081 	fll_param->fll_int = (fvco >> 16) & 0x3FF;
2082 	fll_param->fll_frac = fvco & 0xFFFF;
2083 	return 0;
2084 }
2085 
2086 static void nau8825_fll_apply(struct nau8825 *nau8825,
2087 		struct nau8825_fll *fll_param)
2088 {
2089 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2090 		NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK,
2091 		NAU8825_CLK_SRC_MCLK | fll_param->mclk_src);
2092 	/* Make DSP operate at high speed for better performance. */
2093 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
2094 		NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK,
2095 		fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT));
2096 	/* FLL 16-bit fractional input */
2097 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac);
2098 	/* FLL 10-bit integer input */
2099 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3,
2100 			NAU8825_FLL_INTEGER_MASK, fll_param->fll_int);
2101 	/* FLL pre-scaler */
2102 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4,
2103 			NAU8825_FLL_REF_DIV_MASK,
2104 			fll_param->clk_ref_div << NAU8825_FLL_REF_DIV_SFT);
2105 	/* select divided VCO input */
2106 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2107 		NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF);
2108 	/* Disable free-running mode */
2109 	regmap_update_bits(nau8825->regmap,
2110 		NAU8825_REG_FLL6, NAU8825_DCO_EN, 0);
2111 	if (fll_param->fll_frac) {
2112 		/* set FLL loop filter enable and cutoff frequency at 500Khz */
2113 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2114 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2115 			NAU8825_FLL_FTR_SW_MASK,
2116 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2117 			NAU8825_FLL_FTR_SW_FILTER);
2118 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2119 			NAU8825_SDM_EN | NAU8825_CUTOFF500,
2120 			NAU8825_SDM_EN | NAU8825_CUTOFF500);
2121 	} else {
2122 		/* disable FLL loop filter and cutoff frequency */
2123 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2124 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2125 			NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU);
2126 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2127 			NAU8825_SDM_EN | NAU8825_CUTOFF500, 0);
2128 	}
2129 }
2130 
2131 /* freq_out must be 256*Fs in order to achieve the best performance */
2132 static int nau8825_set_pll(struct snd_soc_component *component, int pll_id, int source,
2133 		unsigned int freq_in, unsigned int freq_out)
2134 {
2135 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2136 	struct nau8825_fll fll_param;
2137 	int ret, fs;
2138 
2139 	fs = freq_out / 256;
2140 	ret = nau8825_calc_fll_param(freq_in, fs, &fll_param);
2141 	if (ret < 0) {
2142 		dev_err(component->dev, "Unsupported input clock %d\n", freq_in);
2143 		return ret;
2144 	}
2145 	dev_dbg(component->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
2146 		fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
2147 		fll_param.fll_int, fll_param.clk_ref_div);
2148 
2149 	nau8825_fll_apply(nau8825, &fll_param);
2150 	mdelay(2);
2151 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2152 			NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2153 	return 0;
2154 }
2155 
2156 static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq)
2157 {
2158 	int ret;
2159 
2160 	nau8825->mclk = devm_clk_get(nau8825->dev, "mclk");
2161 	if (IS_ERR(nau8825->mclk)) {
2162 		dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally");
2163 		return 0;
2164 	}
2165 
2166 	if (!nau8825->mclk_freq) {
2167 		ret = clk_prepare_enable(nau8825->mclk);
2168 		if (ret) {
2169 			dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2170 			return ret;
2171 		}
2172 	}
2173 
2174 	if (nau8825->mclk_freq != freq) {
2175 		freq = clk_round_rate(nau8825->mclk, freq);
2176 		ret = clk_set_rate(nau8825->mclk, freq);
2177 		if (ret) {
2178 			dev_err(nau8825->dev, "Unable to set mclk rate\n");
2179 			return ret;
2180 		}
2181 		nau8825->mclk_freq = freq;
2182 	}
2183 
2184 	return 0;
2185 }
2186 
2187 static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap)
2188 {
2189 	regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2190 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK);
2191 	regmap_update_bits(regmap, NAU8825_REG_FLL6,
2192 		NAU8825_DCO_EN, 0);
2193 	/* Make DSP operate as default setting for power saving. */
2194 	regmap_update_bits(regmap, NAU8825_REG_FLL1,
2195 		NAU8825_ICTRL_LATCH_MASK, 0);
2196 }
2197 
2198 static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id,
2199 	unsigned int freq)
2200 {
2201 	struct regmap *regmap = nau8825->regmap;
2202 	int ret;
2203 
2204 	switch (clk_id) {
2205 	case NAU8825_CLK_DIS:
2206 		/* Clock provided externally and disable internal VCO clock */
2207 		nau8825_configure_mclk_as_sysclk(regmap);
2208 		if (nau8825->mclk_freq) {
2209 			clk_disable_unprepare(nau8825->mclk);
2210 			nau8825->mclk_freq = 0;
2211 		}
2212 
2213 		break;
2214 	case NAU8825_CLK_MCLK:
2215 		/* Acquire the semaphore to synchronize the playback and
2216 		 * interrupt handler. In order to avoid the playback inter-
2217 		 * fered by cross talk process, the driver make the playback
2218 		 * preparation halted until cross talk process finish.
2219 		 */
2220 		nau8825_sema_acquire(nau8825, 3 * HZ);
2221 		nau8825_configure_mclk_as_sysclk(regmap);
2222 		/* MCLK not changed by clock tree */
2223 		regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2224 			NAU8825_CLK_MCLK_SRC_MASK, 0);
2225 		/* Release the semaphore. */
2226 		nau8825_sema_release(nau8825);
2227 
2228 		ret = nau8825_mclk_prepare(nau8825, freq);
2229 		if (ret)
2230 			return ret;
2231 
2232 		break;
2233 	case NAU8825_CLK_INTERNAL:
2234 		if (nau8825_is_jack_inserted(nau8825->regmap)) {
2235 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2236 				NAU8825_DCO_EN, NAU8825_DCO_EN);
2237 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2238 				NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2239 			/* Decrease the VCO frequency and make DSP operate
2240 			 * as default setting for power saving.
2241 			 */
2242 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2243 				NAU8825_CLK_MCLK_SRC_MASK, 0xf);
2244 			regmap_update_bits(regmap, NAU8825_REG_FLL1,
2245 				NAU8825_ICTRL_LATCH_MASK |
2246 				NAU8825_FLL_RATIO_MASK, 0x10);
2247 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2248 				NAU8825_SDM_EN, NAU8825_SDM_EN);
2249 		} else {
2250 			/* The clock turns off intentionally for power saving
2251 			 * when no headset connected.
2252 			 */
2253 			nau8825_configure_mclk_as_sysclk(regmap);
2254 			dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n");
2255 		}
2256 		if (nau8825->mclk_freq) {
2257 			clk_disable_unprepare(nau8825->mclk);
2258 			nau8825->mclk_freq = 0;
2259 		}
2260 
2261 		break;
2262 	case NAU8825_CLK_FLL_MCLK:
2263 		/* Acquire the semaphore to synchronize the playback and
2264 		 * interrupt handler. In order to avoid the playback inter-
2265 		 * fered by cross talk process, the driver make the playback
2266 		 * preparation halted until cross talk process finish.
2267 		 */
2268 		nau8825_sema_acquire(nau8825, 3 * HZ);
2269 		/* Higher FLL reference input frequency can only set lower
2270 		 * gain error, such as 0000 for input reference from MCLK
2271 		 * 12.288Mhz.
2272 		 */
2273 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2274 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2275 			NAU8825_FLL_CLK_SRC_MCLK | 0);
2276 		/* Release the semaphore. */
2277 		nau8825_sema_release(nau8825);
2278 
2279 		ret = nau8825_mclk_prepare(nau8825, freq);
2280 		if (ret)
2281 			return ret;
2282 
2283 		break;
2284 	case NAU8825_CLK_FLL_BLK:
2285 		/* Acquire the semaphore to synchronize the playback and
2286 		 * interrupt handler. In order to avoid the playback inter-
2287 		 * fered by cross talk process, the driver make the playback
2288 		 * preparation halted until cross talk process finish.
2289 		 */
2290 		nau8825_sema_acquire(nau8825, 3 * HZ);
2291 		/* If FLL reference input is from low frequency source,
2292 		 * higher error gain can apply such as 0xf which has
2293 		 * the most sensitive gain error correction threshold,
2294 		 * Therefore, FLL has the most accurate DCO to
2295 		 * target frequency.
2296 		 */
2297 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2298 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2299 			NAU8825_FLL_CLK_SRC_BLK |
2300 			(0xf << NAU8825_GAIN_ERR_SFT));
2301 		/* Release the semaphore. */
2302 		nau8825_sema_release(nau8825);
2303 
2304 		if (nau8825->mclk_freq) {
2305 			clk_disable_unprepare(nau8825->mclk);
2306 			nau8825->mclk_freq = 0;
2307 		}
2308 
2309 		break;
2310 	case NAU8825_CLK_FLL_FS:
2311 		/* Acquire the semaphore to synchronize the playback and
2312 		 * interrupt handler. In order to avoid the playback inter-
2313 		 * fered by cross talk process, the driver make the playback
2314 		 * preparation halted until cross talk process finish.
2315 		 */
2316 		nau8825_sema_acquire(nau8825, 3 * HZ);
2317 		/* If FLL reference input is from low frequency source,
2318 		 * higher error gain can apply such as 0xf which has
2319 		 * the most sensitive gain error correction threshold,
2320 		 * Therefore, FLL has the most accurate DCO to
2321 		 * target frequency.
2322 		 */
2323 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2324 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2325 			NAU8825_FLL_CLK_SRC_FS |
2326 			(0xf << NAU8825_GAIN_ERR_SFT));
2327 		/* Release the semaphore. */
2328 		nau8825_sema_release(nau8825);
2329 
2330 		if (nau8825->mclk_freq) {
2331 			clk_disable_unprepare(nau8825->mclk);
2332 			nau8825->mclk_freq = 0;
2333 		}
2334 
2335 		break;
2336 	default:
2337 		dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id);
2338 		return -EINVAL;
2339 	}
2340 
2341 	dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq,
2342 		clk_id);
2343 	return 0;
2344 }
2345 
2346 static int nau8825_set_sysclk(struct snd_soc_component *component, int clk_id,
2347 	int source, unsigned int freq, int dir)
2348 {
2349 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2350 
2351 	return nau8825_configure_sysclk(nau8825, clk_id, freq);
2352 }
2353 
2354 static int nau8825_resume_setup(struct nau8825 *nau8825)
2355 {
2356 	struct regmap *regmap = nau8825->regmap;
2357 
2358 	/* Close clock when jack type detection at manual mode */
2359 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
2360 
2361 	/* Clear all interruption status */
2362 	nau8825_int_status_clear_all(regmap);
2363 
2364 	/* Enable both insertion and ejection interruptions, and then
2365 	 * bypass de-bounce circuit.
2366 	 */
2367 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2368 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN |
2369 		NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN,
2370 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN);
2371 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2372 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
2373 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
2374 		NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0);
2375 
2376 	return 0;
2377 }
2378 
2379 static int nau8825_set_bias_level(struct snd_soc_component *component,
2380 				   enum snd_soc_bias_level level)
2381 {
2382 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2383 	int ret;
2384 
2385 	switch (level) {
2386 	case SND_SOC_BIAS_ON:
2387 		break;
2388 
2389 	case SND_SOC_BIAS_PREPARE:
2390 		break;
2391 
2392 	case SND_SOC_BIAS_STANDBY:
2393 		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
2394 			if (nau8825->mclk_freq) {
2395 				ret = clk_prepare_enable(nau8825->mclk);
2396 				if (ret) {
2397 					dev_err(nau8825->dev, "Unable to prepare component mclk\n");
2398 					return ret;
2399 				}
2400 			}
2401 			/* Setup codec configuration after resume */
2402 			nau8825_resume_setup(nau8825);
2403 		}
2404 		break;
2405 
2406 	case SND_SOC_BIAS_OFF:
2407 		/* Reset the configuration of jack type for detection */
2408 		/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
2409 		regmap_update_bits(nau8825->regmap, NAU8825_REG_MIC_BIAS,
2410 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
2411 		/* ground HPL/HPR, MICGRND1/2 */
2412 		regmap_update_bits(nau8825->regmap,
2413 			NAU8825_REG_HSD_CTRL, 0xf, 0xf);
2414 		/* Cancel and reset cross talk detection funciton */
2415 		nau8825_xtalk_cancel(nau8825);
2416 		/* Turn off all interruptions before system shutdown. Keep the
2417 		 * interruption quiet before resume setup completes.
2418 		 */
2419 		regmap_write(nau8825->regmap,
2420 			NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff);
2421 		/* Disable ADC needed for interruptions at audo mode */
2422 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
2423 			NAU8825_ENABLE_ADC, 0);
2424 		if (nau8825->mclk_freq)
2425 			clk_disable_unprepare(nau8825->mclk);
2426 		break;
2427 	}
2428 	return 0;
2429 }
2430 
2431 static int __maybe_unused nau8825_suspend(struct snd_soc_component *component)
2432 {
2433 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2434 
2435 	disable_irq(nau8825->irq);
2436 	snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF);
2437 	/* Power down codec power; don't suppoet button wakeup */
2438 	snd_soc_dapm_disable_pin(nau8825->dapm, "SAR");
2439 	snd_soc_dapm_disable_pin(nau8825->dapm, "MICBIAS");
2440 	snd_soc_dapm_sync(nau8825->dapm);
2441 	regcache_cache_only(nau8825->regmap, true);
2442 	regcache_mark_dirty(nau8825->regmap);
2443 
2444 	return 0;
2445 }
2446 
2447 static int __maybe_unused nau8825_resume(struct snd_soc_component *component)
2448 {
2449 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2450 	int ret;
2451 
2452 	regcache_cache_only(nau8825->regmap, false);
2453 	regcache_sync(nau8825->regmap);
2454 	nau8825->xtalk_protect = true;
2455 	ret = nau8825_sema_acquire(nau8825, 0);
2456 	if (ret)
2457 		nau8825->xtalk_protect = false;
2458 	enable_irq(nau8825->irq);
2459 
2460 	return 0;
2461 }
2462 
2463 static int nau8825_set_jack(struct snd_soc_component *component,
2464 			    struct snd_soc_jack *jack, void *data)
2465 {
2466 	return nau8825_enable_jack_detect(component, jack);
2467 }
2468 
2469 static const struct snd_soc_component_driver nau8825_component_driver = {
2470 	.probe			= nau8825_component_probe,
2471 	.remove			= nau8825_component_remove,
2472 	.set_sysclk		= nau8825_set_sysclk,
2473 	.set_pll		= nau8825_set_pll,
2474 	.set_bias_level		= nau8825_set_bias_level,
2475 	.suspend		= nau8825_suspend,
2476 	.resume			= nau8825_resume,
2477 	.controls		= nau8825_controls,
2478 	.num_controls		= ARRAY_SIZE(nau8825_controls),
2479 	.dapm_widgets		= nau8825_dapm_widgets,
2480 	.num_dapm_widgets	= ARRAY_SIZE(nau8825_dapm_widgets),
2481 	.dapm_routes		= nau8825_dapm_routes,
2482 	.num_dapm_routes	= ARRAY_SIZE(nau8825_dapm_routes),
2483 	.set_jack		= nau8825_set_jack,
2484 	.suspend_bias_off	= 1,
2485 	.idle_bias_on		= 1,
2486 	.use_pmdown_time	= 1,
2487 	.endianness		= 1,
2488 };
2489 
2490 static void nau8825_reset_chip(struct regmap *regmap)
2491 {
2492 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2493 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2494 }
2495 
2496 static void nau8825_print_device_properties(struct nau8825 *nau8825)
2497 {
2498 	int i;
2499 	struct device *dev = nau8825->dev;
2500 
2501 	dev_dbg(dev, "jkdet-enable:         %d\n", nau8825->jkdet_enable);
2502 	dev_dbg(dev, "jkdet-pull-enable:    %d\n", nau8825->jkdet_pull_enable);
2503 	dev_dbg(dev, "jkdet-pull-up:        %d\n", nau8825->jkdet_pull_up);
2504 	dev_dbg(dev, "jkdet-polarity:       %d\n", nau8825->jkdet_polarity);
2505 	dev_dbg(dev, "micbias-voltage:      %d\n", nau8825->micbias_voltage);
2506 	dev_dbg(dev, "vref-impedance:       %d\n", nau8825->vref_impedance);
2507 
2508 	dev_dbg(dev, "sar-threshold-num:    %d\n", nau8825->sar_threshold_num);
2509 	for (i = 0; i < nau8825->sar_threshold_num; i++)
2510 		dev_dbg(dev, "sar-threshold[%d]=%d\n", i,
2511 				nau8825->sar_threshold[i]);
2512 
2513 	dev_dbg(dev, "sar-hysteresis:       %d\n", nau8825->sar_hysteresis);
2514 	dev_dbg(dev, "sar-voltage:          %d\n", nau8825->sar_voltage);
2515 	dev_dbg(dev, "sar-compare-time:     %d\n", nau8825->sar_compare_time);
2516 	dev_dbg(dev, "sar-sampling-time:    %d\n", nau8825->sar_sampling_time);
2517 	dev_dbg(dev, "short-key-debounce:   %d\n", nau8825->key_debounce);
2518 	dev_dbg(dev, "jack-insert-debounce: %d\n",
2519 			nau8825->jack_insert_debounce);
2520 	dev_dbg(dev, "jack-eject-debounce:  %d\n",
2521 			nau8825->jack_eject_debounce);
2522 	dev_dbg(dev, "crosstalk-enable:     %d\n",
2523 			nau8825->xtalk_enable);
2524 }
2525 
2526 static int nau8825_read_device_properties(struct device *dev,
2527 	struct nau8825 *nau8825) {
2528 	int ret;
2529 
2530 	nau8825->jkdet_enable = device_property_read_bool(dev,
2531 		"nuvoton,jkdet-enable");
2532 	nau8825->jkdet_pull_enable = device_property_read_bool(dev,
2533 		"nuvoton,jkdet-pull-enable");
2534 	nau8825->jkdet_pull_up = device_property_read_bool(dev,
2535 		"nuvoton,jkdet-pull-up");
2536 	ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity",
2537 		&nau8825->jkdet_polarity);
2538 	if (ret)
2539 		nau8825->jkdet_polarity = 1;
2540 	ret = device_property_read_u32(dev, "nuvoton,micbias-voltage",
2541 		&nau8825->micbias_voltage);
2542 	if (ret)
2543 		nau8825->micbias_voltage = 6;
2544 	ret = device_property_read_u32(dev, "nuvoton,vref-impedance",
2545 		&nau8825->vref_impedance);
2546 	if (ret)
2547 		nau8825->vref_impedance = 2;
2548 	ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num",
2549 		&nau8825->sar_threshold_num);
2550 	if (ret)
2551 		nau8825->sar_threshold_num = 4;
2552 	ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold",
2553 		nau8825->sar_threshold, nau8825->sar_threshold_num);
2554 	if (ret) {
2555 		nau8825->sar_threshold[0] = 0x08;
2556 		nau8825->sar_threshold[1] = 0x12;
2557 		nau8825->sar_threshold[2] = 0x26;
2558 		nau8825->sar_threshold[3] = 0x73;
2559 	}
2560 	ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis",
2561 		&nau8825->sar_hysteresis);
2562 	if (ret)
2563 		nau8825->sar_hysteresis = 0;
2564 	ret = device_property_read_u32(dev, "nuvoton,sar-voltage",
2565 		&nau8825->sar_voltage);
2566 	if (ret)
2567 		nau8825->sar_voltage = 6;
2568 	ret = device_property_read_u32(dev, "nuvoton,sar-compare-time",
2569 		&nau8825->sar_compare_time);
2570 	if (ret)
2571 		nau8825->sar_compare_time = 1;
2572 	ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time",
2573 		&nau8825->sar_sampling_time);
2574 	if (ret)
2575 		nau8825->sar_sampling_time = 1;
2576 	ret = device_property_read_u32(dev, "nuvoton,short-key-debounce",
2577 		&nau8825->key_debounce);
2578 	if (ret)
2579 		nau8825->key_debounce = 3;
2580 	ret = device_property_read_u32(dev, "nuvoton,jack-insert-debounce",
2581 		&nau8825->jack_insert_debounce);
2582 	if (ret)
2583 		nau8825->jack_insert_debounce = 7;
2584 	ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
2585 		&nau8825->jack_eject_debounce);
2586 	if (ret)
2587 		nau8825->jack_eject_debounce = 0;
2588 	nau8825->xtalk_enable = device_property_read_bool(dev,
2589 		"nuvoton,crosstalk-enable");
2590 
2591 	nau8825->mclk = devm_clk_get(dev, "mclk");
2592 	if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) {
2593 		return -EPROBE_DEFER;
2594 	} else if (PTR_ERR(nau8825->mclk) == -ENOENT) {
2595 		/* The MCLK is managed externally or not used at all */
2596 		nau8825->mclk = NULL;
2597 		dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally");
2598 	} else if (IS_ERR(nau8825->mclk)) {
2599 		return -EINVAL;
2600 	}
2601 
2602 	return 0;
2603 }
2604 
2605 static int nau8825_setup_irq(struct nau8825 *nau8825)
2606 {
2607 	int ret;
2608 
2609 	ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL,
2610 		nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2611 		"nau8825", nau8825);
2612 
2613 	if (ret) {
2614 		dev_err(nau8825->dev, "Cannot request irq %d (%d)\n",
2615 			nau8825->irq, ret);
2616 		return ret;
2617 	}
2618 
2619 	return 0;
2620 }
2621 
2622 static int nau8825_i2c_probe(struct i2c_client *i2c)
2623 {
2624 	struct device *dev = &i2c->dev;
2625 	struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev);
2626 	int ret, value;
2627 
2628 	if (!nau8825) {
2629 		nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL);
2630 		if (!nau8825)
2631 			return -ENOMEM;
2632 		ret = nau8825_read_device_properties(dev, nau8825);
2633 		if (ret)
2634 			return ret;
2635 	}
2636 
2637 	i2c_set_clientdata(i2c, nau8825);
2638 
2639 	nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config);
2640 	if (IS_ERR(nau8825->regmap))
2641 		return PTR_ERR(nau8825->regmap);
2642 	nau8825->dev = dev;
2643 	nau8825->irq = i2c->irq;
2644 	/* Initiate parameters, semaphore and work queue which are needed in
2645 	 * cross talk suppression measurment function.
2646 	 */
2647 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
2648 	nau8825->xtalk_protect = false;
2649 	nau8825->xtalk_baktab_initialized = false;
2650 	sema_init(&nau8825->xtalk_sem, 1);
2651 	INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work);
2652 
2653 	nau8825_print_device_properties(nau8825);
2654 
2655 	nau8825_reset_chip(nau8825->regmap);
2656 	ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value);
2657 	if (ret < 0) {
2658 		dev_err(dev, "Failed to read device id from the NAU8825: %d\n",
2659 			ret);
2660 		return ret;
2661 	}
2662 	if ((value & NAU8825_SOFTWARE_ID_MASK) !=
2663 			NAU8825_SOFTWARE_ID_NAU8825) {
2664 		dev_err(dev, "Not a NAU8825 chip\n");
2665 		return -ENODEV;
2666 	}
2667 
2668 	nau8825_init_regs(nau8825);
2669 
2670 	if (i2c->irq)
2671 		nau8825_setup_irq(nau8825);
2672 
2673 	return devm_snd_soc_register_component(&i2c->dev,
2674 		&nau8825_component_driver,
2675 		&nau8825_dai, 1);
2676 }
2677 
2678 static int nau8825_i2c_remove(struct i2c_client *client)
2679 {
2680 	return 0;
2681 }
2682 
2683 static const struct i2c_device_id nau8825_i2c_ids[] = {
2684 	{ "nau8825", 0 },
2685 	{ }
2686 };
2687 MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids);
2688 
2689 #ifdef CONFIG_OF
2690 static const struct of_device_id nau8825_of_ids[] = {
2691 	{ .compatible = "nuvoton,nau8825", },
2692 	{}
2693 };
2694 MODULE_DEVICE_TABLE(of, nau8825_of_ids);
2695 #endif
2696 
2697 #ifdef CONFIG_ACPI
2698 static const struct acpi_device_id nau8825_acpi_match[] = {
2699 	{ "10508825", 0 },
2700 	{},
2701 };
2702 MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match);
2703 #endif
2704 
2705 static struct i2c_driver nau8825_driver = {
2706 	.driver = {
2707 		.name = "nau8825",
2708 		.of_match_table = of_match_ptr(nau8825_of_ids),
2709 		.acpi_match_table = ACPI_PTR(nau8825_acpi_match),
2710 	},
2711 	.probe_new = nau8825_i2c_probe,
2712 	.remove = nau8825_i2c_remove,
2713 	.id_table = nau8825_i2c_ids,
2714 };
2715 module_i2c_driver(nau8825_driver);
2716 
2717 MODULE_DESCRIPTION("ASoC nau8825 driver");
2718 MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>");
2719 MODULE_LICENSE("GPL");
2720