1 // SPDX-License-Identifier: GPL-2.0-only 2 // 3 // Cirrus Logic CS48L32 audio DSP. 4 // 5 // Copyright (C) 2016-2018, 2020, 2022, 2025 Cirrus Logic, Inc. and 6 // Cirrus Logic International Semiconductor Ltd. 7 8 #include <dt-bindings/sound/cs48l32.h> 9 #include <linux/array_size.h> 10 #include <linux/build_bug.h> 11 #include <linux/clk.h> 12 #include <linux/container_of.h> 13 #include <linux/delay.h> 14 #include <linux/err.h> 15 #include <linux/gcd.h> 16 #include <linux/gpio/consumer.h> 17 #include <linux/minmax.h> 18 #include <linux/module.h> 19 #include <linux/of.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/property.h> 22 #include <linux/regmap.h> 23 #include <linux/regulator/consumer.h> 24 #include <linux/slab.h> 25 #include <linux/spi/spi.h> 26 #include <linux/string_choices.h> 27 #include <sound/cs48l32.h> 28 #include <sound/cs48l32_registers.h> 29 #include <sound/pcm.h> 30 #include <sound/pcm_params.h> 31 #include <sound/soc.h> 32 #include <sound/soc-component.h> 33 #include <sound/soc-dai.h> 34 #include <sound/soc-dapm.h> 35 #include <sound/tlv.h> 36 37 #include "cs48l32.h" 38 39 static const char * const cs48l32_core_supplies[] = { "vdd-a", "vdd-io" }; 40 41 static const struct cs_dsp_region cs48l32_dsp1_regions[] = { 42 { .type = WMFW_HALO_PM_PACKED, .base = 0x3800000 }, 43 { .type = WMFW_HALO_XM_PACKED, .base = 0x2000000 }, 44 { .type = WMFW_ADSP2_XM, .base = 0x2800000 }, 45 { .type = WMFW_HALO_YM_PACKED, .base = 0x2C00000 }, 46 { .type = WMFW_ADSP2_YM, .base = 0x3400000 }, 47 }; 48 49 static const struct cs48l32_dsp_power_reg_block cs48l32_dsp1_sram_ext_regs[] = { 50 { CS48L32_DSP1_XM_SRAM_IBUS_SETUP_1, CS48L32_DSP1_XM_SRAM_IBUS_SETUP_24 }, 51 { CS48L32_DSP1_YM_SRAM_IBUS_SETUP_1, CS48L32_DSP1_YM_SRAM_IBUS_SETUP_8 }, 52 { CS48L32_DSP1_PM_SRAM_IBUS_SETUP_1, CS48L32_DSP1_PM_SRAM_IBUS_SETUP_7 }, 53 }; 54 55 static const unsigned int cs48l32_dsp1_sram_pwd_regs[] = { 56 CS48L32_DSP1_XM_SRAM_IBUS_SETUP_0, 57 CS48L32_DSP1_YM_SRAM_IBUS_SETUP_0, 58 CS48L32_DSP1_PM_SRAM_IBUS_SETUP_0, 59 }; 60 61 static const struct cs48l32_dsp_power_regs cs48l32_dsp_sram_regs = { 62 .ext = cs48l32_dsp1_sram_ext_regs, 63 .n_ext = ARRAY_SIZE(cs48l32_dsp1_sram_ext_regs), 64 .pwd = cs48l32_dsp1_sram_pwd_regs, 65 .n_pwd = ARRAY_SIZE(cs48l32_dsp1_sram_pwd_regs), 66 }; 67 68 static const char * const cs48l32_mixer_texts[] = { 69 "None", 70 "Tone Generator 1", 71 "Tone Generator 2", 72 "Noise Generator", 73 "IN1L", 74 "IN1R", 75 "IN2L", 76 "IN2R", 77 "ASP1RX1", 78 "ASP1RX2", 79 "ASP1RX3", 80 "ASP1RX4", 81 "ASP1RX5", 82 "ASP1RX6", 83 "ASP1RX7", 84 "ASP1RX8", 85 "ASP2RX1", 86 "ASP2RX2", 87 "ASP2RX3", 88 "ASP2RX4", 89 "ISRC1INT1", 90 "ISRC1INT2", 91 "ISRC1INT3", 92 "ISRC1INT4", 93 "ISRC1DEC1", 94 "ISRC1DEC2", 95 "ISRC1DEC3", 96 "ISRC1DEC4", 97 "ISRC2INT1", 98 "ISRC2INT2", 99 "ISRC2DEC1", 100 "ISRC2DEC2", 101 "ISRC3INT1", 102 "ISRC3INT2", 103 "ISRC3DEC1", 104 "ISRC3DEC2", 105 "EQ1", 106 "EQ2", 107 "EQ3", 108 "EQ4", 109 "DRC1L", 110 "DRC1R", 111 "DRC2L", 112 "DRC2R", 113 "LHPF1", 114 "LHPF2", 115 "LHPF3", 116 "LHPF4", 117 "Ultrasonic 1", 118 "Ultrasonic 2", 119 "DSP1.1", 120 "DSP1.2", 121 "DSP1.3", 122 "DSP1.4", 123 "DSP1.5", 124 "DSP1.6", 125 "DSP1.7", 126 "DSP1.8", 127 }; 128 129 static unsigned int cs48l32_mixer_values[] = { 130 0x000, /* Silence (mute) */ 131 0x004, /* Tone generator 1 */ 132 0x005, /* Tone generator 2 */ 133 0x00C, /* Noise Generator */ 134 0x010, /* IN1L signal path */ 135 0x011, /* IN1R signal path */ 136 0x012, /* IN2L signal path */ 137 0x013, /* IN2R signal path */ 138 0x020, /* ASP1 RX1 */ 139 0x021, /* ASP1 RX2 */ 140 0x022, /* ASP1 RX3 */ 141 0x023, /* ASP1 RX4 */ 142 0x024, /* ASP1 RX5 */ 143 0x025, /* ASP1 RX6 */ 144 0x026, /* ASP1 RX7 */ 145 0x027, /* ASP1 RX8 */ 146 0x030, /* ASP2 RX1 */ 147 0x031, /* ASP2 RX2 */ 148 0x032, /* ASP2 RX3 */ 149 0x033, /* ASP2 RX4 */ 150 0x098, /* ISRC1 INT1 */ 151 0x099, /* ISRC1 INT2 */ 152 0x09a, /* ISRC1 INT3 */ 153 0x09b, /* ISRC1 INT4 */ 154 0x09C, /* ISRC1 DEC1 */ 155 0x09D, /* ISRC1 DEC2 */ 156 0x09e, /* ISRC1 DEC3 */ 157 0x09f, /* ISRC1 DEC4 */ 158 0x0A0, /* ISRC2 INT1 */ 159 0x0A1, /* ISRC2 INT2 */ 160 0x0A4, /* ISRC2 DEC1 */ 161 0x0A5, /* ISRC2 DEC2 */ 162 0x0A8, /* ISRC3 INT1 */ 163 0x0A9, /* ISRC3 INT2 */ 164 0x0AC, /* ISRC3 DEC1 */ 165 0x0AD, /* ISRC3 DEC2 */ 166 0x0B8, /* EQ1 */ 167 0x0B9, /* EQ2 */ 168 0x0BA, /* EQ3 */ 169 0x0BB, /* EQ4 */ 170 0x0C0, /* DRC1 Left */ 171 0x0C1, /* DRC1 Right */ 172 0x0C2, /* DRC2 Left */ 173 0x0C3, /* DRC2 Right */ 174 0x0C8, /* LHPF1 */ 175 0x0C9, /* LHPF2 */ 176 0x0CA, /* LHPF3 */ 177 0x0CB, /* LHPF4 */ 178 0x0D8, /* Ultrasonic 1 */ 179 0x0D9, /* Ultrasonic 2 */ 180 0x100, /* DSP1 channel 1 */ 181 0x101, /* DSP1 channel 2 */ 182 0x102, /* DSP1 channel 3 */ 183 0x103, /* DSP1 channel 4 */ 184 0x104, /* DSP1 channel 5 */ 185 0x105, /* DSP1 channel 6 */ 186 0x106, /* DSP1 channel 7 */ 187 0x107, /* DSP1 channel 8 */ 188 }; 189 static_assert(ARRAY_SIZE(cs48l32_mixer_texts) == ARRAY_SIZE(cs48l32_mixer_values)); 190 #define CS48L32_NUM_MIXER_INPUTS ARRAY_SIZE(cs48l32_mixer_values) 191 192 static const DECLARE_TLV_DB_SCALE(cs48l32_ana_tlv, 0, 100, 0); 193 static const DECLARE_TLV_DB_SCALE(cs48l32_eq_tlv, -1200, 100, 0); 194 static const DECLARE_TLV_DB_SCALE(cs48l32_digital_tlv, -6400, 50, 0); 195 static const DECLARE_TLV_DB_SCALE(cs48l32_noise_tlv, -10800, 600, 0); 196 static const DECLARE_TLV_DB_SCALE(cs48l32_mixer_tlv, -3200, 100, 0); 197 static const DECLARE_TLV_DB_SCALE(cs48l32_us_tlv, 0, 600, 0); 198 199 static void cs48l32_spin_sysclk(struct cs48l32_codec *cs48l32_codec) 200 { 201 struct cs48l32 *cs48l32 = &cs48l32_codec->core; 202 unsigned int val; 203 int ret, i; 204 205 /* Skip this if the chip is down */ 206 if (pm_runtime_suspended(cs48l32->dev)) 207 return; 208 209 /* 210 * Just read a register a few times to ensure the internal 211 * oscillator sends out some clocks. 212 */ 213 for (i = 0; i < 4; i++) { 214 ret = regmap_read(cs48l32->regmap, CS48L32_DEVID, &val); 215 if (ret) 216 dev_err(cs48l32_codec->core.dev, "%s Failed to read register: %d (%d)\n", 217 __func__, ret, i); 218 } 219 220 udelay(300); 221 } 222 223 static const char * const cs48l32_rate_text[] = { 224 "Sample Rate 1", "Sample Rate 2", "Sample Rate 3", "Sample Rate 4", 225 }; 226 227 static const unsigned int cs48l32_rate_val[] = { 228 0x0, 0x1, 0x2, 0x3, 229 }; 230 static_assert(ARRAY_SIZE(cs48l32_rate_val) == ARRAY_SIZE(cs48l32_rate_text)); 231 232 static int cs48l32_rate_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 233 { 234 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 235 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 236 int ret; 237 238 /* Prevent any mixer mux changes while we do this */ 239 mutex_lock(&cs48l32_codec->rate_lock); 240 241 /* The write must be guarded by a number of SYSCLK cycles */ 242 cs48l32_spin_sysclk(cs48l32_codec); 243 ret = snd_soc_put_enum_double(kcontrol, ucontrol); 244 cs48l32_spin_sysclk(cs48l32_codec); 245 246 mutex_unlock(&cs48l32_codec->rate_lock); 247 248 return ret; 249 } 250 251 static const char * const cs48l32_sample_rate_text[] = { 252 "12kHz", 253 "24kHz", 254 "48kHz", 255 "96kHz", 256 "192kHz", 257 "384kHz", 258 "768kHz", 259 "11.025kHz", 260 "22.05kHz", 261 "44.1kHz", 262 "88.2kHz", 263 "176.4kHz", 264 "352.8kHz", 265 "705.6kHz", 266 "8kHz", 267 "16kHz", 268 "32kHz", 269 }; 270 271 static const unsigned int cs48l32_sample_rate_val[] = { 272 0x01, /* 12kHz */ 273 0x02, /* 24kHz */ 274 0x03, /* 48kHz */ 275 0x04, /* 96kHz */ 276 0x05, /* 192kHz */ 277 0x06, /* 384kHz */ 278 0x07, /* 768kHz */ 279 0x09, /* 11.025kHz */ 280 0x0a, /* 22.05kHz */ 281 0x0b, /* 44.1kHz */ 282 0x0c, /* 88.2kHz */ 283 0x0d, /* 176.4kHz */ 284 0x0e, /* 352.8kHz */ 285 0x0f, /* 705.6kHz */ 286 0x11, /* 8kHz */ 287 0x12, /* 16kHz */ 288 0x13, /* 32kHz */ 289 }; 290 static_assert(ARRAY_SIZE(cs48l32_sample_rate_val) == ARRAY_SIZE(cs48l32_sample_rate_text)); 291 #define CS48L32_SAMPLE_RATE_ENUM_SIZE ARRAY_SIZE(cs48l32_sample_rate_val) 292 293 static const struct soc_enum cs48l32_sample_rate[] = { 294 SOC_VALUE_ENUM_SINGLE(CS48L32_SAMPLE_RATE1, 295 CS48L32_SAMPLE_RATE_1_SHIFT, 296 CS48L32_SAMPLE_RATE_1_MASK >> CS48L32_SAMPLE_RATE_1_SHIFT, 297 CS48L32_SAMPLE_RATE_ENUM_SIZE, 298 cs48l32_sample_rate_text, 299 cs48l32_sample_rate_val), 300 SOC_VALUE_ENUM_SINGLE(CS48L32_SAMPLE_RATE2, 301 CS48L32_SAMPLE_RATE_1_SHIFT, 302 CS48L32_SAMPLE_RATE_1_MASK >> CS48L32_SAMPLE_RATE_1_SHIFT, 303 CS48L32_SAMPLE_RATE_ENUM_SIZE, 304 cs48l32_sample_rate_text, 305 cs48l32_sample_rate_val), 306 SOC_VALUE_ENUM_SINGLE(CS48L32_SAMPLE_RATE3, 307 CS48L32_SAMPLE_RATE_1_SHIFT, 308 CS48L32_SAMPLE_RATE_1_MASK >> CS48L32_SAMPLE_RATE_1_SHIFT, 309 CS48L32_SAMPLE_RATE_ENUM_SIZE, 310 cs48l32_sample_rate_text, 311 cs48l32_sample_rate_val), 312 SOC_VALUE_ENUM_SINGLE(CS48L32_SAMPLE_RATE4, 313 CS48L32_SAMPLE_RATE_1_SHIFT, 314 CS48L32_SAMPLE_RATE_1_MASK >> CS48L32_SAMPLE_RATE_1_SHIFT, 315 CS48L32_SAMPLE_RATE_ENUM_SIZE, 316 cs48l32_sample_rate_text, 317 cs48l32_sample_rate_val), 318 }; 319 320 static int cs48l32_inmux_put(struct snd_kcontrol *kcontrol, 321 struct snd_ctl_elem_value *ucontrol) 322 { 323 struct snd_soc_component *component = snd_soc_dapm_kcontrol_component(kcontrol); 324 struct snd_soc_dapm_context *dapm = snd_soc_dapm_kcontrol_dapm(kcontrol); 325 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 326 struct soc_enum *e = (struct soc_enum *) kcontrol->private_value; 327 unsigned int mux, src_val, in_type; 328 int ret; 329 330 mux = ucontrol->value.enumerated.item[0]; 331 if (mux > 1) 332 return -EINVAL; 333 334 switch (e->reg) { 335 case CS48L32_IN1L_CONTROL1: 336 in_type = cs48l32_codec->in_type[0][mux]; 337 break; 338 case CS48L32_IN1R_CONTROL1: 339 in_type = cs48l32_codec->in_type[1][mux]; 340 break; 341 default: 342 return -EINVAL; 343 } 344 345 src_val = mux << e->shift_l; 346 347 if (in_type == CS48L32_IN_TYPE_SE) 348 src_val |= 1 << CS48L32_INx_SRC_SHIFT; 349 350 ret = snd_soc_component_update_bits(dapm->component, 351 e->reg, 352 CS48L32_INx_SRC_MASK, 353 src_val); 354 if (ret > 0) 355 snd_soc_dapm_mux_update_power(dapm, kcontrol, mux, e, NULL); 356 357 return ret; 358 } 359 360 static const char * const cs48l32_inmux_texts[] = { 361 "Analog 1", "Analog 2", 362 }; 363 364 static SOC_ENUM_SINGLE_DECL(cs48l32_in1muxl_enum, 365 CS48L32_IN1L_CONTROL1, 366 CS48L32_INx_SRC_SHIFT + 1, 367 cs48l32_inmux_texts); 368 369 static SOC_ENUM_SINGLE_DECL(cs48l32_in1muxr_enum, 370 CS48L32_IN1R_CONTROL1, 371 CS48L32_INx_SRC_SHIFT + 1, 372 cs48l32_inmux_texts); 373 374 static const struct snd_kcontrol_new cs48l32_inmux[] = { 375 SOC_DAPM_ENUM_EXT("IN1L Mux", cs48l32_in1muxl_enum, 376 snd_soc_dapm_get_enum_double, cs48l32_inmux_put), 377 SOC_DAPM_ENUM_EXT("IN1R Mux", cs48l32_in1muxr_enum, 378 snd_soc_dapm_get_enum_double, cs48l32_inmux_put), 379 }; 380 381 static const char * const cs48l32_dmode_texts[] = { 382 "Analog", "Digital", 383 }; 384 385 static int cs48l32_dmode_put(struct snd_kcontrol *kcontrol, 386 struct snd_ctl_elem_value *ucontrol) 387 { 388 struct snd_soc_dapm_context *dapm = snd_soc_dapm_kcontrol_dapm(kcontrol); 389 struct snd_soc_component *component = snd_soc_dapm_to_component(dapm); 390 struct soc_enum *e = (struct soc_enum *) kcontrol->private_value; 391 unsigned int mode; 392 int ret, result; 393 394 mode = ucontrol->value.enumerated.item[0]; 395 switch (mode) { 396 case 0: 397 ret = snd_soc_component_update_bits(component, 398 CS48L32_ADC1L_ANA_CONTROL1, 399 CS48L32_ADC1x_INT_ENA_FRC_MASK, 400 CS48L32_ADC1x_INT_ENA_FRC_MASK); 401 if (ret < 0) { 402 dev_err(component->dev, 403 "Failed to set ADC1L_INT_ENA_FRC: %d\n", ret); 404 return ret; 405 } 406 407 ret = snd_soc_component_update_bits(component, 408 CS48L32_ADC1R_ANA_CONTROL1, 409 CS48L32_ADC1x_INT_ENA_FRC_MASK, 410 CS48L32_ADC1x_INT_ENA_FRC_MASK); 411 if (ret < 0) { 412 dev_err(component->dev, 413 "Failed to set ADC1R_INT_ENA_FRC: %d\n", ret); 414 return ret; 415 } 416 417 result = snd_soc_component_update_bits(component, 418 e->reg, 419 BIT(CS48L32_IN1_MODE_SHIFT), 420 0); 421 if (result < 0) { 422 dev_err(component->dev, "Failed to set input mode: %d\n", result); 423 return result; 424 } 425 426 usleep_range(200, 300); 427 428 ret = snd_soc_component_update_bits(component, 429 CS48L32_ADC1L_ANA_CONTROL1, 430 CS48L32_ADC1x_INT_ENA_FRC_MASK, 431 0); 432 if (ret < 0) { 433 dev_err(component->dev, 434 "Failed to clear ADC1L_INT_ENA_FRC: %d\n", ret); 435 return ret; 436 } 437 438 ret = snd_soc_component_update_bits(component, 439 CS48L32_ADC1R_ANA_CONTROL1, 440 CS48L32_ADC1x_INT_ENA_FRC_MASK, 441 0); 442 if (ret < 0) { 443 dev_err(component->dev, 444 "Failed to clear ADC1R_INT_ENA_FRC: %d\n", ret); 445 return ret; 446 } 447 448 if (result > 0) 449 snd_soc_dapm_mux_update_power(dapm, kcontrol, mode, e, NULL); 450 451 return result; 452 case 1: 453 return snd_soc_dapm_put_enum_double(kcontrol, ucontrol); 454 default: 455 return -EINVAL; 456 } 457 } 458 459 static SOC_ENUM_SINGLE_DECL(cs48l32_in1dmode_enum, 460 CS48L32_INPUT1_CONTROL1, 461 CS48L32_IN1_MODE_SHIFT, 462 cs48l32_dmode_texts); 463 464 static const struct snd_kcontrol_new cs48l32_dmode_mux[] = { 465 SOC_DAPM_ENUM_EXT("IN1 Mode", cs48l32_in1dmode_enum, 466 snd_soc_dapm_get_enum_double, cs48l32_dmode_put), 467 }; 468 469 static const char * const cs48l32_in_texts[] = { 470 "IN1L", "IN1R", "IN2L", "IN2R", 471 }; 472 static_assert(ARRAY_SIZE(cs48l32_in_texts) == CS48L32_MAX_INPUT); 473 474 static const char * const cs48l32_us_freq_texts[] = { 475 "16-24kHz", "20-28kHz", 476 }; 477 478 static const unsigned int cs48l32_us_freq_val[] = { 479 0x2, 0x3, 480 }; 481 482 static const struct soc_enum cs48l32_us_freq[] = { 483 SOC_VALUE_ENUM_SINGLE(CS48L32_US1_CONTROL, 484 CS48L32_US1_FREQ_SHIFT, 485 CS48L32_US1_FREQ_MASK >> CS48L32_US1_FREQ_SHIFT, 486 ARRAY_SIZE(cs48l32_us_freq_val), 487 cs48l32_us_freq_texts, 488 cs48l32_us_freq_val), 489 SOC_VALUE_ENUM_SINGLE(CS48L32_US2_CONTROL, 490 CS48L32_US1_FREQ_SHIFT, 491 CS48L32_US1_FREQ_MASK >> CS48L32_US1_FREQ_SHIFT, 492 ARRAY_SIZE(cs48l32_us_freq_val), 493 cs48l32_us_freq_texts, 494 cs48l32_us_freq_val), 495 }; 496 497 static const unsigned int cs48l32_us_in_val[] = { 498 0x0, 0x1, 0x2, 0x3, 499 }; 500 501 static const struct soc_enum cs48l32_us_inmux_enum[] = { 502 SOC_VALUE_ENUM_SINGLE(CS48L32_US1_CONTROL, 503 CS48L32_US1_SRC_SHIFT, 504 CS48L32_US1_SRC_MASK >> CS48L32_US1_SRC_SHIFT, 505 ARRAY_SIZE(cs48l32_us_in_val), 506 cs48l32_in_texts, 507 cs48l32_us_in_val), 508 SOC_VALUE_ENUM_SINGLE(CS48L32_US2_CONTROL, 509 CS48L32_US1_SRC_SHIFT, 510 CS48L32_US1_SRC_MASK >> CS48L32_US1_SRC_SHIFT, 511 ARRAY_SIZE(cs48l32_us_in_val), 512 cs48l32_in_texts, 513 cs48l32_us_in_val), 514 }; 515 516 static const struct snd_kcontrol_new cs48l32_us_inmux[] = { 517 SOC_DAPM_ENUM("Ultrasonic 1 Input", cs48l32_us_inmux_enum[0]), 518 SOC_DAPM_ENUM("Ultrasonic 2 Input", cs48l32_us_inmux_enum[1]), 519 }; 520 521 static const char * const cs48l32_us_det_thr_texts[] = { 522 "-6dB", "-9dB", "-12dB", "-15dB", "-18dB", "-21dB", "-24dB", "-27dB", 523 }; 524 525 static const struct soc_enum cs48l32_us_det_thr[] = { 526 SOC_ENUM_SINGLE(CS48L32_US1_DET_CONTROL, 527 CS48L32_US1_DET_THR_SHIFT, 528 ARRAY_SIZE(cs48l32_us_det_thr_texts), 529 cs48l32_us_det_thr_texts), 530 SOC_ENUM_SINGLE(CS48L32_US2_DET_CONTROL, 531 CS48L32_US1_DET_THR_SHIFT, 532 ARRAY_SIZE(cs48l32_us_det_thr_texts), 533 cs48l32_us_det_thr_texts), 534 }; 535 536 static const char * const cs48l32_us_det_num_texts[] = { 537 "1 Sample", 538 "2 Samples", 539 "4 Samples", 540 "8 Samples", 541 "16 Samples", 542 "32 Samples", 543 "64 Samples", 544 "128 Samples", 545 "256 Samples", 546 "512 Samples", 547 "1024 Samples", 548 "2048 Samples", 549 "4096 Samples", 550 "8192 Samples", 551 "16384 Samples", 552 "32768 Samples", 553 }; 554 555 static const struct soc_enum cs48l32_us_det_num[] = { 556 SOC_ENUM_SINGLE(CS48L32_US1_DET_CONTROL, 557 CS48L32_US1_DET_NUM_SHIFT, 558 ARRAY_SIZE(cs48l32_us_det_num_texts), 559 cs48l32_us_det_num_texts), 560 SOC_ENUM_SINGLE(CS48L32_US2_DET_CONTROL, 561 CS48L32_US1_DET_NUM_SHIFT, 562 ARRAY_SIZE(cs48l32_us_det_num_texts), 563 cs48l32_us_det_num_texts), 564 }; 565 566 static const char * const cs48l32_us_det_hold_texts[] = { 567 "0 Samples", 568 "31 Samples", 569 "63 Samples", 570 "127 Samples", 571 "255 Samples", 572 "511 Samples", 573 "1023 Samples", 574 "2047 Samples", 575 "4095 Samples", 576 "8191 Samples", 577 "16383 Samples", 578 "32767 Samples", 579 "65535 Samples", 580 "131071 Samples", 581 "262143 Samples", 582 "524287 Samples", 583 }; 584 585 static const struct soc_enum cs48l32_us_det_hold[] = { 586 SOC_ENUM_SINGLE(CS48L32_US1_DET_CONTROL, 587 CS48L32_US1_DET_HOLD_SHIFT, 588 ARRAY_SIZE(cs48l32_us_det_hold_texts), 589 cs48l32_us_det_hold_texts), 590 SOC_ENUM_SINGLE(CS48L32_US2_DET_CONTROL, 591 CS48L32_US1_DET_HOLD_SHIFT, 592 ARRAY_SIZE(cs48l32_us_det_hold_texts), 593 cs48l32_us_det_hold_texts), 594 }; 595 596 static const struct soc_enum cs48l32_us_output_rate[] = { 597 SOC_VALUE_ENUM_SINGLE(CS48L32_US1_CONTROL, 598 CS48L32_US1_RATE_SHIFT, 599 CS48L32_US1_RATE_MASK >> CS48L32_US1_RATE_SHIFT, 600 ARRAY_SIZE(cs48l32_rate_text), 601 cs48l32_rate_text, 602 cs48l32_rate_val), 603 SOC_VALUE_ENUM_SINGLE(CS48L32_US2_CONTROL, 604 CS48L32_US1_RATE_SHIFT, 605 CS48L32_US1_RATE_MASK >> CS48L32_US1_RATE_SHIFT, 606 ARRAY_SIZE(cs48l32_rate_text), 607 cs48l32_rate_text, 608 cs48l32_rate_val), 609 }; 610 611 static const char * const cs48l32_us_det_lpf_cut_texts[] = { 612 "1722Hz", "833Hz", "408Hz", "203Hz", 613 }; 614 615 static const struct soc_enum cs48l32_us_det_lpf_cut[] = { 616 SOC_ENUM_SINGLE(CS48L32_US1_DET_CONTROL, 617 CS48L32_US1_DET_LPF_CUT_SHIFT, 618 ARRAY_SIZE(cs48l32_us_det_lpf_cut_texts), 619 cs48l32_us_det_lpf_cut_texts), 620 SOC_ENUM_SINGLE(CS48L32_US2_DET_CONTROL, 621 CS48L32_US1_DET_LPF_CUT_SHIFT, 622 ARRAY_SIZE(cs48l32_us_det_lpf_cut_texts), 623 cs48l32_us_det_lpf_cut_texts), 624 }; 625 626 static const char * const cs48l32_us_det_dcy_texts[] = { 627 "0 ms", "0.79 ms", "1.58 ms", "3.16 ms", "6.33 ms", "12.67 ms", "25.34 ms", "50.69 ms", 628 }; 629 630 static const struct soc_enum cs48l32_us_det_dcy[] = { 631 SOC_ENUM_SINGLE(CS48L32_US1_DET_CONTROL, 632 CS48L32_US1_DET_DCY_SHIFT, 633 ARRAY_SIZE(cs48l32_us_det_dcy_texts), 634 cs48l32_us_det_dcy_texts), 635 SOC_ENUM_SINGLE(CS48L32_US2_DET_CONTROL, 636 CS48L32_US1_DET_DCY_SHIFT, 637 ARRAY_SIZE(cs48l32_us_det_dcy_texts), 638 cs48l32_us_det_dcy_texts), 639 }; 640 641 static const struct snd_kcontrol_new cs48l32_us_switch[] = { 642 SOC_DAPM_SINGLE("Switch", SND_SOC_NOPM, 0, 1, 0), 643 SOC_DAPM_SINGLE("Switch", SND_SOC_NOPM, 0, 1, 0), 644 }; 645 646 static const char * const cs48l32_vol_ramp_text[] = { 647 "0ms/6dB", "0.5ms/6dB", "1ms/6dB", "2ms/6dB", "4ms/6dB", "8ms/6dB", "16ms/6dB", "32ms/6dB", 648 }; 649 650 static SOC_ENUM_SINGLE_DECL(cs48l32_in_vd_ramp, 651 CS48L32_INPUT_VOL_CONTROL, 652 CS48L32_IN_VD_RAMP_SHIFT, 653 cs48l32_vol_ramp_text); 654 655 static SOC_ENUM_SINGLE_DECL(cs48l32_in_vi_ramp, 656 CS48L32_INPUT_VOL_CONTROL, 657 CS48L32_IN_VI_RAMP_SHIFT, 658 cs48l32_vol_ramp_text); 659 660 static const char * const cs48l32_in_hpf_cut_text[] = { 661 "2.5Hz", "5Hz", "10Hz", "20Hz", "40Hz" 662 }; 663 664 static SOC_ENUM_SINGLE_DECL(cs48l32_in_hpf_cut_enum, 665 CS48L32_INPUT_HPF_CONTROL, 666 CS48L32_IN_HPF_CUT_SHIFT, 667 cs48l32_in_hpf_cut_text); 668 669 static const char * const cs48l32_in_dmic_osr_text[] = { 670 "384kHz", "768kHz", "1.536MHz", "2.048MHz", "2.4576MHz", "3.072MHz", "6.144MHz", 671 }; 672 673 static const struct soc_enum cs48l32_in_dmic_osr[] = { 674 SOC_ENUM_SINGLE(CS48L32_INPUT1_CONTROL1, 675 CS48L32_IN1_OSR_SHIFT, 676 ARRAY_SIZE(cs48l32_in_dmic_osr_text), 677 cs48l32_in_dmic_osr_text), 678 SOC_ENUM_SINGLE(CS48L32_INPUT2_CONTROL1, 679 CS48L32_IN1_OSR_SHIFT, 680 ARRAY_SIZE(cs48l32_in_dmic_osr_text), 681 cs48l32_in_dmic_osr_text), 682 }; 683 684 static bool cs48l32_is_input_enabled(struct snd_soc_component *component, 685 unsigned int reg) 686 { 687 unsigned int input_active; 688 689 input_active = snd_soc_component_read(component, CS48L32_INPUT_CONTROL); 690 switch (reg) { 691 case CS48L32_IN1L_CONTROL1: 692 return input_active & BIT(CS48L32_IN1L_EN_SHIFT); 693 case CS48L32_IN1R_CONTROL1: 694 return input_active & BIT(CS48L32_IN1R_EN_SHIFT); 695 case CS48L32_IN2L_CONTROL1: 696 return input_active & BIT(CS48L32_IN2L_EN_SHIFT); 697 case CS48L32_IN2R_CONTROL1: 698 return input_active & BIT(CS48L32_IN2R_EN_SHIFT); 699 default: 700 return false; 701 } 702 } 703 704 static int cs48l32_in_rate_put(struct snd_kcontrol *kcontrol, 705 struct snd_ctl_elem_value *ucontrol) 706 { 707 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 708 struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); 709 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 710 int ret; 711 712 snd_soc_dapm_mutex_lock(dapm); 713 714 /* Cannot change rate on an active input */ 715 if (cs48l32_is_input_enabled(component, e->reg)) { 716 ret = -EBUSY; 717 goto exit; 718 } 719 720 ret = snd_soc_put_enum_double(kcontrol, ucontrol); 721 exit: 722 snd_soc_dapm_mutex_unlock(dapm); 723 724 return ret; 725 } 726 727 static const struct soc_enum cs48l32_input_rate[] = { 728 SOC_VALUE_ENUM_SINGLE(CS48L32_IN1L_CONTROL1, 729 CS48L32_INx_RATE_SHIFT, 730 CS48L32_INx_RATE_MASK >> CS48L32_INx_RATE_SHIFT, 731 ARRAY_SIZE(cs48l32_rate_text), 732 cs48l32_rate_text, 733 cs48l32_rate_val), 734 SOC_VALUE_ENUM_SINGLE(CS48L32_IN1R_CONTROL1, 735 CS48L32_INx_RATE_SHIFT, 736 CS48L32_INx_RATE_MASK >> CS48L32_INx_RATE_SHIFT, 737 ARRAY_SIZE(cs48l32_rate_text), 738 cs48l32_rate_text, 739 cs48l32_rate_val), 740 SOC_VALUE_ENUM_SINGLE(CS48L32_IN2L_CONTROL1, 741 CS48L32_INx_RATE_SHIFT, 742 CS48L32_INx_RATE_MASK >> CS48L32_INx_RATE_SHIFT, 743 ARRAY_SIZE(cs48l32_rate_text), 744 cs48l32_rate_text, 745 cs48l32_rate_val), 746 SOC_VALUE_ENUM_SINGLE(CS48L32_IN2R_CONTROL1, 747 CS48L32_INx_RATE_SHIFT, 748 CS48L32_INx_RATE_MASK >> CS48L32_INx_RATE_SHIFT, 749 ARRAY_SIZE(cs48l32_rate_text), 750 cs48l32_rate_text, 751 cs48l32_rate_val), 752 }; 753 754 static int cs48l32_low_power_mode_put(struct snd_kcontrol *kcontrol, 755 struct snd_ctl_elem_value *ucontrol) 756 { 757 struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; 758 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 759 struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); 760 int ret; 761 762 snd_soc_dapm_mutex_lock(dapm); 763 764 /* Cannot change rate on an active input */ 765 if (cs48l32_is_input_enabled(component, mc->reg)) { 766 ret = -EBUSY; 767 goto exit; 768 } 769 770 ret = snd_soc_put_volsw(kcontrol, ucontrol); 771 772 exit: 773 snd_soc_dapm_mutex_unlock(dapm); 774 return ret; 775 } 776 777 static const struct soc_enum noise_gen_rate = 778 SOC_VALUE_ENUM_SINGLE(CS48L32_COMFORT_NOISE_GENERATOR, 779 CS48L32_NOISE_GEN_RATE_SHIFT, 780 CS48L32_NOISE_GEN_RATE_MASK >> CS48L32_NOISE_GEN_RATE_SHIFT, 781 ARRAY_SIZE(cs48l32_rate_text), 782 cs48l32_rate_text, 783 cs48l32_rate_val); 784 785 static const char * const cs48l32_auxpdm_freq_texts[] = { 786 "3.072MHz", "2.048MHz", "1.536MHz", "768kHz", 787 }; 788 789 static SOC_ENUM_SINGLE_DECL(cs48l32_auxpdm1_freq, 790 CS48L32_AUXPDM1_CONTROL1, 791 CS48L32_AUXPDM1_FREQ_SHIFT, 792 cs48l32_auxpdm_freq_texts); 793 794 static SOC_ENUM_SINGLE_DECL(cs48l32_auxpdm2_freq, 795 CS48L32_AUXPDM2_CONTROL1, 796 CS48L32_AUXPDM1_FREQ_SHIFT, 797 cs48l32_auxpdm_freq_texts); 798 799 static const char * const cs48l32_auxpdm_src_texts[] = { 800 "Analog", "IN1 Digital", "IN2 Digital", 801 }; 802 803 static SOC_ENUM_SINGLE_DECL(cs48l32_auxpdm1_in, 804 CS48L32_AUXPDM_CTRL2, 805 CS48L32_AUXPDMDAT1_SRC_SHIFT, 806 cs48l32_auxpdm_src_texts); 807 808 static SOC_ENUM_SINGLE_DECL(cs48l32_auxpdm2_in, 809 CS48L32_AUXPDM_CTRL2, 810 CS48L32_AUXPDMDAT2_SRC_SHIFT, 811 cs48l32_auxpdm_src_texts); 812 813 static const struct snd_kcontrol_new cs48l32_auxpdm_inmux[] = { 814 SOC_DAPM_ENUM("AUXPDM1 Input", cs48l32_auxpdm1_in), 815 SOC_DAPM_ENUM("AUXPDM2 Input", cs48l32_auxpdm2_in), 816 }; 817 818 static const unsigned int cs48l32_auxpdm_analog_in_val[] = { 819 0x0, 0x1, 820 }; 821 822 static const struct soc_enum cs48l32_auxpdm_analog_inmux_enum[] = { 823 SOC_VALUE_ENUM_SINGLE(CS48L32_AUXPDM1_CONTROL1, 824 CS48L32_AUXPDM1_SRC_SHIFT, 825 CS48L32_AUXPDM1_SRC_MASK >> CS48L32_AUXPDM1_SRC_SHIFT, 826 ARRAY_SIZE(cs48l32_auxpdm_analog_in_val), 827 cs48l32_in_texts, 828 cs48l32_auxpdm_analog_in_val), 829 SOC_VALUE_ENUM_SINGLE(CS48L32_AUXPDM2_CONTROL1, 830 CS48L32_AUXPDM1_SRC_SHIFT, 831 CS48L32_AUXPDM1_SRC_MASK >> CS48L32_AUXPDM1_SRC_SHIFT, 832 ARRAY_SIZE(cs48l32_auxpdm_analog_in_val), 833 cs48l32_in_texts, 834 cs48l32_auxpdm_analog_in_val), 835 }; 836 837 static const struct snd_kcontrol_new cs48l32_auxpdm_analog_inmux[] = { 838 SOC_DAPM_ENUM("AUXPDM1 Analog Input", cs48l32_auxpdm_analog_inmux_enum[0]), 839 SOC_DAPM_ENUM("AUXPDM2 Analog Input", cs48l32_auxpdm_analog_inmux_enum[1]), 840 }; 841 842 static const struct snd_kcontrol_new cs48l32_auxpdm_switch[] = { 843 SOC_DAPM_SINGLE("Switch", SND_SOC_NOPM, 0, 1, 0), 844 SOC_DAPM_SINGLE("Switch", SND_SOC_NOPM, 0, 1, 0), 845 }; 846 847 static const struct soc_enum cs48l32_isrc_fsh[] = { 848 SOC_VALUE_ENUM_SINGLE(CS48L32_ISRC1_CONTROL1, 849 CS48L32_ISRC1_FSH_SHIFT, 850 CS48L32_ISRC1_FSH_MASK >> CS48L32_ISRC1_FSH_SHIFT, 851 ARRAY_SIZE(cs48l32_rate_text), 852 cs48l32_rate_text, 853 cs48l32_rate_val), 854 SOC_VALUE_ENUM_SINGLE(CS48L32_ISRC2_CONTROL1, 855 CS48L32_ISRC1_FSH_SHIFT, 856 CS48L32_ISRC1_FSH_MASK >> CS48L32_ISRC1_FSH_SHIFT, 857 ARRAY_SIZE(cs48l32_rate_text), 858 cs48l32_rate_text, 859 cs48l32_rate_val), 860 SOC_VALUE_ENUM_SINGLE(CS48L32_ISRC3_CONTROL1, 861 CS48L32_ISRC1_FSH_SHIFT, 862 CS48L32_ISRC1_FSH_MASK >> CS48L32_ISRC1_FSH_SHIFT, 863 ARRAY_SIZE(cs48l32_rate_text), 864 cs48l32_rate_text, 865 cs48l32_rate_val), 866 }; 867 868 static const struct soc_enum cs48l32_isrc_fsl[] = { 869 SOC_VALUE_ENUM_SINGLE(CS48L32_ISRC1_CONTROL1, 870 CS48L32_ISRC1_FSL_SHIFT, 871 CS48L32_ISRC1_FSL_MASK >> CS48L32_ISRC1_FSL_SHIFT, 872 ARRAY_SIZE(cs48l32_rate_text), 873 cs48l32_rate_text, 874 cs48l32_rate_val), 875 SOC_VALUE_ENUM_SINGLE(CS48L32_ISRC2_CONTROL1, 876 CS48L32_ISRC1_FSL_SHIFT, 877 CS48L32_ISRC1_FSL_MASK >> CS48L32_ISRC1_FSL_SHIFT, 878 ARRAY_SIZE(cs48l32_rate_text), 879 cs48l32_rate_text, 880 cs48l32_rate_val), 881 SOC_VALUE_ENUM_SINGLE(CS48L32_ISRC3_CONTROL1, 882 CS48L32_ISRC1_FSL_SHIFT, 883 CS48L32_ISRC1_FSL_MASK >> CS48L32_ISRC1_FSL_SHIFT, 884 ARRAY_SIZE(cs48l32_rate_text), 885 cs48l32_rate_text, 886 cs48l32_rate_val), 887 }; 888 889 static const struct soc_enum cs48l32_fx_rate = 890 SOC_VALUE_ENUM_SINGLE(CS48L32_FX_SAMPLE_RATE, 891 CS48L32_FX_RATE_SHIFT, 892 CS48L32_FX_RATE_MASK >> CS48L32_FX_RATE_SHIFT, 893 ARRAY_SIZE(cs48l32_rate_text), 894 cs48l32_rate_text, 895 cs48l32_rate_val); 896 897 static const char * const cs48l32_lhpf_mode_text[] = { 898 "Low-pass", "High-pass" 899 }; 900 901 static const struct soc_enum cs48l32_lhpf_mode[] = { 902 SOC_ENUM_SINGLE(CS48L32_LHPF_CONTROL2, 0, 903 ARRAY_SIZE(cs48l32_lhpf_mode_text), cs48l32_lhpf_mode_text), 904 SOC_ENUM_SINGLE(CS48L32_LHPF_CONTROL2, 1, 905 ARRAY_SIZE(cs48l32_lhpf_mode_text), cs48l32_lhpf_mode_text), 906 SOC_ENUM_SINGLE(CS48L32_LHPF_CONTROL2, 2, 907 ARRAY_SIZE(cs48l32_lhpf_mode_text), cs48l32_lhpf_mode_text), 908 SOC_ENUM_SINGLE(CS48L32_LHPF_CONTROL2, 3, 909 ARRAY_SIZE(cs48l32_lhpf_mode_text), cs48l32_lhpf_mode_text), 910 }; 911 912 static int cs48l32_lhpf_coeff_put(struct snd_kcontrol *kcontrol, 913 struct snd_ctl_elem_value *ucontrol) 914 { 915 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 916 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 917 __be32 *data = (__be32 *)ucontrol->value.bytes.data; 918 s16 val = (s16)be32_to_cpu(*data); 919 920 if (abs(val) > CS48L32_LHPF_MAX_COEFF) { 921 dev_err(cs48l32_codec->core.dev, "Rejecting unstable LHPF coefficients\n"); 922 return -EINVAL; 923 } 924 925 return snd_soc_bytes_put(kcontrol, ucontrol); 926 } 927 928 static const char * const cs48l32_eq_mode_text[] = { 929 "Low-pass", "High-pass", 930 }; 931 932 static const struct soc_enum cs48l32_eq_mode[] = { 933 SOC_ENUM_SINGLE(CS48L32_EQ_CONTROL2, 0, 934 ARRAY_SIZE(cs48l32_eq_mode_text), 935 cs48l32_eq_mode_text), 936 SOC_ENUM_SINGLE(CS48L32_EQ_CONTROL2, 1, 937 ARRAY_SIZE(cs48l32_eq_mode_text), 938 cs48l32_eq_mode_text), 939 SOC_ENUM_SINGLE(CS48L32_EQ_CONTROL2, 2, 940 ARRAY_SIZE(cs48l32_eq_mode_text), 941 cs48l32_eq_mode_text), 942 SOC_ENUM_SINGLE(CS48L32_EQ_CONTROL2, 3, 943 ARRAY_SIZE(cs48l32_eq_mode_text), 944 cs48l32_eq_mode_text), 945 }; 946 947 static int cs48l32_eq_mode_get(struct snd_kcontrol *kcontrol, 948 struct snd_ctl_elem_value *ucontrol) 949 { 950 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 951 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 952 struct soc_enum *e = (struct soc_enum *) kcontrol->private_value; 953 unsigned int item; 954 955 item = snd_soc_enum_val_to_item(e, cs48l32_codec->eq_mode[e->shift_l]); 956 ucontrol->value.enumerated.item[0] = item; 957 958 return 0; 959 } 960 961 static int cs48l32_eq_mode_put(struct snd_kcontrol *kcontrol, 962 struct snd_ctl_elem_value *ucontrol) 963 { 964 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 965 struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); 966 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 967 struct soc_enum *e = (struct soc_enum *) kcontrol->private_value; 968 unsigned int *item = ucontrol->value.enumerated.item; 969 unsigned int val; 970 bool changed = false; 971 972 if (item[0] >= e->items) 973 return -EINVAL; 974 975 val = snd_soc_enum_item_to_val(e, item[0]); 976 977 snd_soc_dapm_mutex_lock(dapm); 978 if (cs48l32_codec->eq_mode[e->shift_l] != val) { 979 cs48l32_codec->eq_mode[e->shift_l] = val; 980 changed = true; 981 } 982 snd_soc_dapm_mutex_unlock(dapm); 983 984 return changed; 985 } 986 987 static int cs48l32_eq_coeff_info(struct snd_kcontrol *kcontrol, 988 struct snd_ctl_elem_info *uinfo) 989 { 990 struct cs48l32_eq_control *ctl = (void *) kcontrol->private_value; 991 992 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 993 uinfo->count = 1; 994 uinfo->value.integer.min = 0; 995 uinfo->value.integer.max = ctl->max; 996 997 return 0; 998 } 999 1000 static int cs48l32_eq_coeff_get(struct snd_kcontrol *kcontrol, 1001 struct snd_ctl_elem_value *ucontrol) 1002 { 1003 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 1004 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 1005 struct cs48l32_eq_control *params = (void *)kcontrol->private_value; 1006 __be16 *coeffs; 1007 unsigned int coeff_idx; 1008 int block_idx; 1009 1010 block_idx = ((int) params->block_base - (int) CS48L32_EQ1_BAND1_COEFF1); 1011 block_idx /= (CS48L32_EQ2_BAND1_COEFF1 - CS48L32_EQ1_BAND1_COEFF1); 1012 1013 coeffs = &cs48l32_codec->eq_coefficients[block_idx][0]; 1014 coeff_idx = (params->reg - params->block_base) / 2; 1015 1016 /* High __be16 is in [coeff_idx] and low __be16 in [coeff_idx + 1] */ 1017 if (params->shift == 0) 1018 coeff_idx++; 1019 1020 ucontrol->value.integer.value[0] = be16_to_cpu(coeffs[coeff_idx]); 1021 1022 return 0; 1023 } 1024 1025 static int cs48l32_eq_coeff_put(struct snd_kcontrol *kcontrol, 1026 struct snd_ctl_elem_value *ucontrol) 1027 { 1028 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 1029 struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); 1030 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 1031 struct cs48l32_eq_control *params = (void *)kcontrol->private_value; 1032 __be16 *coeffs; 1033 unsigned int coeff_idx; 1034 int block_idx; 1035 1036 block_idx = ((int) params->block_base - (int) CS48L32_EQ1_BAND1_COEFF1); 1037 block_idx /= (CS48L32_EQ2_BAND1_COEFF1 - CS48L32_EQ1_BAND1_COEFF1); 1038 1039 coeffs = &cs48l32_codec->eq_coefficients[block_idx][0]; 1040 coeff_idx = (params->reg - params->block_base) / 2; 1041 1042 /* Put high __be16 in [coeff_idx] and low __be16 in [coeff_idx + 1] */ 1043 if (params->shift == 0) 1044 coeff_idx++; 1045 1046 snd_soc_dapm_mutex_lock(dapm); 1047 coeffs[coeff_idx] = cpu_to_be16(ucontrol->value.integer.value[0]); 1048 snd_soc_dapm_mutex_unlock(dapm); 1049 1050 return 0; 1051 } 1052 1053 static const struct snd_kcontrol_new cs48l32_drc_activity_output_mux[] = { 1054 SOC_DAPM_SINGLE("Switch", SND_SOC_NOPM, 0, 1, 0), 1055 SOC_DAPM_SINGLE("Switch", SND_SOC_NOPM, 0, 1, 0), 1056 }; 1057 1058 static const struct snd_kcontrol_new cs48l32_dsp_trigger_output_mux[] = { 1059 SOC_DAPM_SINGLE("Switch", SND_SOC_NOPM, 0, 1, 0), 1060 }; 1061 1062 static int cs48l32_dsp_rate_get(struct snd_kcontrol *kcontrol, 1063 struct snd_ctl_elem_value *ucontrol) 1064 { 1065 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 1066 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 1067 struct soc_enum *e = (struct soc_enum *) kcontrol->private_value; 1068 unsigned int cached_rate; 1069 const unsigned int rate_num = e->mask; 1070 int item; 1071 1072 if (rate_num >= ARRAY_SIZE(cs48l32_codec->dsp_dma_rates)) 1073 return -EINVAL; 1074 1075 cached_rate = cs48l32_codec->dsp_dma_rates[rate_num]; 1076 item = snd_soc_enum_val_to_item(e, cached_rate); 1077 ucontrol->value.enumerated.item[0] = item; 1078 1079 return 0; 1080 } 1081 1082 static int cs48l32_dsp_rate_put(struct snd_kcontrol *kcontrol, 1083 struct snd_ctl_elem_value *ucontrol) 1084 { 1085 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 1086 struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); 1087 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 1088 struct soc_enum *e = (struct soc_enum *) kcontrol->private_value; 1089 const unsigned int rate_num = e->mask; 1090 const unsigned int item = ucontrol->value.enumerated.item[0]; 1091 unsigned int val; 1092 bool changed = false; 1093 1094 if (item >= e->items) 1095 return -EINVAL; 1096 1097 if (rate_num >= ARRAY_SIZE(cs48l32_codec->dsp_dma_rates)) 1098 return -EINVAL; 1099 1100 val = snd_soc_enum_item_to_val(e, item); 1101 1102 snd_soc_dapm_mutex_lock(dapm); 1103 if (cs48l32_codec->dsp_dma_rates[rate_num] != val) { 1104 cs48l32_codec->dsp_dma_rates[rate_num] = val; 1105 changed = true; 1106 } 1107 snd_soc_dapm_mutex_unlock(dapm); 1108 1109 return changed; 1110 } 1111 1112 static const struct soc_enum cs48l32_dsp_rate_enum[] = { 1113 /* RX rates */ 1114 SOC_VALUE_ENUM_SINGLE(SND_SOC_NOPM, 0, 1115 0, 1116 ARRAY_SIZE(cs48l32_rate_text), 1117 cs48l32_rate_text, cs48l32_rate_val), 1118 SOC_VALUE_ENUM_SINGLE(SND_SOC_NOPM, 0, 1119 1, 1120 ARRAY_SIZE(cs48l32_rate_text), 1121 cs48l32_rate_text, cs48l32_rate_val), 1122 SOC_VALUE_ENUM_SINGLE(SND_SOC_NOPM, 0, 1123 2, 1124 ARRAY_SIZE(cs48l32_rate_text), 1125 cs48l32_rate_text, cs48l32_rate_val), 1126 SOC_VALUE_ENUM_SINGLE(SND_SOC_NOPM, 0, 1127 3, 1128 ARRAY_SIZE(cs48l32_rate_text), 1129 cs48l32_rate_text, cs48l32_rate_val), 1130 SOC_VALUE_ENUM_SINGLE(SND_SOC_NOPM, 0, 1131 4, 1132 ARRAY_SIZE(cs48l32_rate_text), 1133 cs48l32_rate_text, cs48l32_rate_val), 1134 SOC_VALUE_ENUM_SINGLE(SND_SOC_NOPM, 0, 1135 5, 1136 ARRAY_SIZE(cs48l32_rate_text), 1137 cs48l32_rate_text, cs48l32_rate_val), 1138 SOC_VALUE_ENUM_SINGLE(SND_SOC_NOPM, 0, 1139 6, 1140 ARRAY_SIZE(cs48l32_rate_text), 1141 cs48l32_rate_text, cs48l32_rate_val), 1142 SOC_VALUE_ENUM_SINGLE(SND_SOC_NOPM, 0, 1143 7, 1144 ARRAY_SIZE(cs48l32_rate_text), 1145 cs48l32_rate_text, cs48l32_rate_val), 1146 /* TX rates */ 1147 SOC_VALUE_ENUM_SINGLE(SND_SOC_NOPM, 0, 1148 8, 1149 ARRAY_SIZE(cs48l32_rate_text), 1150 cs48l32_rate_text, cs48l32_rate_val), 1151 SOC_VALUE_ENUM_SINGLE(SND_SOC_NOPM, 0, 1152 9, 1153 ARRAY_SIZE(cs48l32_rate_text), 1154 cs48l32_rate_text, cs48l32_rate_val), 1155 SOC_VALUE_ENUM_SINGLE(SND_SOC_NOPM, 0, 1156 10, 1157 ARRAY_SIZE(cs48l32_rate_text), 1158 cs48l32_rate_text, cs48l32_rate_val), 1159 SOC_VALUE_ENUM_SINGLE(SND_SOC_NOPM, 0, 1160 11, 1161 ARRAY_SIZE(cs48l32_rate_text), 1162 cs48l32_rate_text, cs48l32_rate_val), 1163 SOC_VALUE_ENUM_SINGLE(SND_SOC_NOPM, 0, 1164 12, 1165 ARRAY_SIZE(cs48l32_rate_text), 1166 cs48l32_rate_text, cs48l32_rate_val), 1167 SOC_VALUE_ENUM_SINGLE(SND_SOC_NOPM, 0, 1168 13, 1169 ARRAY_SIZE(cs48l32_rate_text), 1170 cs48l32_rate_text, cs48l32_rate_val), 1171 SOC_VALUE_ENUM_SINGLE(SND_SOC_NOPM, 0, 1172 14, 1173 ARRAY_SIZE(cs48l32_rate_text), 1174 cs48l32_rate_text, cs48l32_rate_val), 1175 SOC_VALUE_ENUM_SINGLE(SND_SOC_NOPM, 0, 1176 15, 1177 ARRAY_SIZE(cs48l32_rate_text), 1178 cs48l32_rate_text, cs48l32_rate_val), 1179 }; 1180 1181 static int cs48l32_dsp_pre_run(struct wm_adsp *dsp) 1182 { 1183 struct cs48l32_codec *cs48l32_codec = container_of(dsp, struct cs48l32_codec, dsp); 1184 unsigned int reg; 1185 const u8 *rate = cs48l32_codec->dsp_dma_rates; 1186 int i; 1187 1188 reg = dsp->cs_dsp.base + CS48L32_HALO_SAMPLE_RATE_RX1; 1189 for (i = 0; i < CS48L32_DSP_N_RX_CHANNELS; ++i) { 1190 regmap_update_bits(dsp->cs_dsp.regmap, reg, CS48L32_HALO_DSP_RATE_MASK, *rate); 1191 reg += 8; 1192 rate++; 1193 } 1194 1195 reg = dsp->cs_dsp.base + CS48L32_HALO_SAMPLE_RATE_TX1; 1196 for (i = 0; i < CS48L32_DSP_N_TX_CHANNELS; ++i) { 1197 regmap_update_bits(dsp->cs_dsp.regmap, reg, CS48L32_HALO_DSP_RATE_MASK, *rate); 1198 reg += 8; 1199 rate++; 1200 } 1201 1202 usleep_range(300, 600); 1203 1204 return 0; 1205 } 1206 1207 static void cs48l32_dsp_memory_disable(struct cs48l32_codec *cs48l32_codec, 1208 const struct cs48l32_dsp_power_regs *regs) 1209 { 1210 struct regmap *regmap = cs48l32_codec->core.regmap; 1211 int i, j, ret; 1212 1213 for (i = 0; i < regs->n_pwd; ++i) { 1214 ret = regmap_write(regmap, regs->pwd[i], 0); 1215 if (ret) 1216 goto err; 1217 } 1218 1219 for (i = 0; i < regs->n_ext; ++i) { 1220 for (j = regs->ext[i].start; j <= regs->ext[i].end; j += 4) { 1221 ret = regmap_write(regmap, j, 0); 1222 if (ret) 1223 goto err; 1224 } 1225 } 1226 1227 return; 1228 1229 err: 1230 dev_warn(cs48l32_codec->core.dev, "Failed to write SRAM enables (%d)\n", ret); 1231 } 1232 1233 static int cs48l32_dsp_memory_enable(struct cs48l32_codec *cs48l32_codec, 1234 const struct cs48l32_dsp_power_regs *regs) 1235 { 1236 struct regmap *regmap = cs48l32_codec->core.regmap; 1237 int i, j, ret; 1238 1239 /* disable power-off */ 1240 for (i = 0; i < regs->n_ext; ++i) { 1241 for (j = regs->ext[i].start; j <= regs->ext[i].end; j += 4) { 1242 ret = regmap_write(regmap, j, 0x3); 1243 if (ret) 1244 goto err; 1245 } 1246 } 1247 1248 /* power-up the banks in sequence */ 1249 for (i = 0; i < regs->n_pwd; ++i) { 1250 ret = regmap_write(regmap, regs->pwd[i], 0x1); 1251 if (ret) 1252 goto err; 1253 1254 udelay(1); /* allow bank to power-up */ 1255 1256 ret = regmap_write(regmap, regs->pwd[i], 0x3); 1257 if (ret) 1258 goto err; 1259 1260 udelay(1); /* allow bank to power-up */ 1261 } 1262 1263 return 0; 1264 1265 err: 1266 dev_err(cs48l32_codec->core.dev, "Failed to write SRAM enables (%d)\n", ret); 1267 cs48l32_dsp_memory_disable(cs48l32_codec, regs); 1268 1269 return ret; 1270 } 1271 1272 static int cs48l32_dsp_freq_update(struct snd_soc_dapm_widget *w, unsigned int freq_reg, 1273 unsigned int freqsel_reg) 1274 { 1275 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); 1276 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 1277 struct regmap *regmap = cs48l32_codec->core.regmap; 1278 struct wm_adsp *dsp = &cs48l32_codec->dsp; 1279 int ret; 1280 unsigned int freq, freq_sel, freq_sts; 1281 1282 if (!freq_reg) 1283 return -EINVAL; 1284 1285 ret = regmap_read(regmap, freq_reg, &freq); 1286 if (ret) { 1287 dev_err(component->dev, "Failed to read #%x: %d\n", freq_reg, ret); 1288 return ret; 1289 } 1290 1291 if (freqsel_reg) { 1292 freq_sts = (freq & CS48L32_SYSCLK_FREQ_STS_MASK) >> CS48L32_SYSCLK_FREQ_STS_SHIFT; 1293 1294 ret = regmap_read(regmap, freqsel_reg, &freq_sel); 1295 if (ret) { 1296 dev_err(component->dev, "Failed to read #%x: %d\n", freqsel_reg, ret); 1297 return ret; 1298 } 1299 freq_sel = (freq_sel & CS48L32_SYSCLK_FREQ_MASK) >> CS48L32_SYSCLK_FREQ_SHIFT; 1300 1301 if (freq_sts != freq_sel) { 1302 dev_err(component->dev, "SYSCLK FREQ (#%x) != FREQ STS (#%x)\n", 1303 freq_sel, freq_sts); 1304 return -ETIMEDOUT; 1305 } 1306 } 1307 1308 freq &= CS48L32_DSP_CLK_FREQ_MASK; 1309 freq >>= CS48L32_DSP_CLK_FREQ_SHIFT; 1310 1311 ret = regmap_write(dsp->cs_dsp.regmap, 1312 dsp->cs_dsp.base + CS48L32_DSP_CLOCK_FREQ_OFFS, freq); 1313 if (ret) { 1314 dev_err(component->dev, "Failed to set HALO clock freq: %d\n", ret); 1315 return ret; 1316 } 1317 1318 return 0; 1319 } 1320 1321 static int cs48l32_dsp_freq_ev(struct snd_soc_dapm_widget *w, 1322 struct snd_kcontrol *kcontrol, int event) 1323 { 1324 switch (event) { 1325 case SND_SOC_DAPM_POST_PMU: 1326 return cs48l32_dsp_freq_update(w, CS48L32_SYSTEM_CLOCK2, CS48L32_SYSTEM_CLOCK1); 1327 default: 1328 return 0; 1329 } 1330 } 1331 1332 static irqreturn_t cs48l32_irq(int irq, void *data) 1333 { 1334 static const unsigned int eint1_regs[] = { 1335 CS48L32_IRQ1_EINT_9, CS48L32_IRQ1_MASK_9, 1336 CS48L32_IRQ1_EINT_7, CS48L32_IRQ1_MASK_7 1337 }; 1338 u32 reg_vals[4]; 1339 struct cs48l32_codec *cs48l32_codec = data; 1340 struct regmap *regmap = cs48l32_codec->core.regmap; 1341 irqreturn_t result = IRQ_NONE; 1342 unsigned int eint_pending; 1343 int i, ret; 1344 1345 static_assert(ARRAY_SIZE(eint1_regs) == ARRAY_SIZE(reg_vals)); 1346 1347 ret = pm_runtime_resume_and_get(cs48l32_codec->core.dev); 1348 if (ret) { 1349 dev_warn(cs48l32_codec->core.dev, "irq could not get pm runtime: %d\n", ret); 1350 return IRQ_NONE; 1351 } 1352 1353 ret = regmap_read(regmap, CS48L32_IRQ1_STATUS, &eint_pending); 1354 if (ret) { 1355 dev_warn(cs48l32_codec->core.dev, "Read IRQ1_STATUS failed: %d\n", ret); 1356 return IRQ_NONE; 1357 } 1358 if ((eint_pending & CS48L32_IRQ1_STS_MASK) == 0) 1359 goto out; 1360 1361 ret = regmap_multi_reg_read(regmap, eint1_regs, reg_vals, ARRAY_SIZE(reg_vals)); 1362 if (ret) { 1363 dev_warn(cs48l32_codec->core.dev, "Read IRQ regs failed: %d\n", ret); 1364 return IRQ_NONE; 1365 } 1366 1367 for (i = 0; i < ARRAY_SIZE(reg_vals); i += 2) { 1368 reg_vals[i] &= ~reg_vals[i + 1]; 1369 regmap_write(regmap, eint1_regs[i], reg_vals[i]); 1370 } 1371 1372 if (reg_vals[0] & CS48L32_DSP1_IRQ0_EINT1_MASK) 1373 wm_adsp_compr_handle_irq(&cs48l32_codec->dsp); 1374 1375 if (reg_vals[2] & CS48L32_DSP1_MPU_ERR_EINT1_MASK) { 1376 dev_warn(cs48l32_codec->core.dev, "MPU err IRQ\n"); 1377 wm_halo_bus_error(irq, &cs48l32_codec->dsp); 1378 } 1379 1380 if (reg_vals[2] & CS48L32_DSP1_WDT_EXPIRE_EINT1_MASK) { 1381 dev_warn(cs48l32_codec->core.dev, "WDT expire IRQ\n"); 1382 wm_halo_wdt_expire(irq, &cs48l32_codec->dsp); 1383 } 1384 1385 result = IRQ_HANDLED; 1386 1387 out: 1388 pm_runtime_put_autosuspend(cs48l32_codec->core.dev); 1389 1390 return result; 1391 } 1392 1393 static int cs48l32_get_dspclk_setting(struct cs48l32_codec *cs48l32_codec, unsigned int freq, 1394 int src, unsigned int *val) 1395 { 1396 freq /= 15625; /* convert to 1/64ths of 1MHz */ 1397 *val |= freq << CS48L32_DSP_CLK_FREQ_SHIFT; 1398 1399 return 0; 1400 } 1401 1402 static int cs48l32_get_sysclk_setting(unsigned int freq) 1403 { 1404 switch (freq) { 1405 case 0: 1406 case 5644800: 1407 case 6144000: 1408 return CS48L32_SYSCLK_RATE_6MHZ; 1409 case 11289600: 1410 case 12288000: 1411 return CS48L32_SYSCLK_RATE_12MHZ << CS48L32_SYSCLK_FREQ_SHIFT; 1412 case 22579200: 1413 case 24576000: 1414 return CS48L32_SYSCLK_RATE_24MHZ << CS48L32_SYSCLK_FREQ_SHIFT; 1415 case 45158400: 1416 case 49152000: 1417 return CS48L32_SYSCLK_RATE_49MHZ << CS48L32_SYSCLK_FREQ_SHIFT; 1418 case 90316800: 1419 case 98304000: 1420 return CS48L32_SYSCLK_RATE_98MHZ << CS48L32_SYSCLK_FREQ_SHIFT; 1421 default: 1422 return -EINVAL; 1423 } 1424 } 1425 1426 static int cs48l32_set_pdm_fllclk(struct snd_soc_component *component, int source) 1427 { 1428 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 1429 struct regmap *regmap = cs48l32_codec->core.regmap; 1430 unsigned int val; 1431 1432 switch (source) { 1433 case CS48L32_PDMCLK_SRC_IN1_PDMCLK: 1434 case CS48L32_PDMCLK_SRC_IN2_PDMCLK: 1435 case CS48L32_PDMCLK_SRC_IN3_PDMCLK: 1436 case CS48L32_PDMCLK_SRC_IN4_PDMCLK: 1437 case CS48L32_PDMCLK_SRC_AUXPDM1_CLK: 1438 case CS48L32_PDMCLK_SRC_AUXPDM2_CLK: 1439 val = source << CS48L32_PDM_FLLCLK_SRC_SHIFT; 1440 break; 1441 default: 1442 dev_err(cs48l32_codec->core.dev, "Invalid PDM FLLCLK src %d\n", source); 1443 return -EINVAL; 1444 } 1445 1446 return regmap_update_bits(regmap, CS48L32_INPUT_CONTROL2, 1447 CS48L32_PDM_FLLCLK_SRC_MASK, val); 1448 } 1449 1450 static int cs48l32_set_sysclk(struct snd_soc_component *component, int clk_id, int source, 1451 unsigned int freq, int dir) 1452 { 1453 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 1454 struct regmap *regmap = cs48l32_codec->core.regmap; 1455 char *name; 1456 unsigned int reg; 1457 unsigned int mask = CS48L32_SYSCLK_SRC_MASK; 1458 unsigned int val = source << CS48L32_SYSCLK_SRC_SHIFT; 1459 int clk_freq_sel, *clk; 1460 1461 switch (clk_id) { 1462 case CS48L32_CLK_SYSCLK_1: 1463 name = "SYSCLK"; 1464 reg = CS48L32_SYSTEM_CLOCK1; 1465 clk = &cs48l32_codec->sysclk; 1466 clk_freq_sel = cs48l32_get_sysclk_setting(freq); 1467 mask |= CS48L32_SYSCLK_FREQ_MASK | CS48L32_SYSCLK_FRAC_MASK; 1468 break; 1469 case CS48L32_CLK_DSPCLK: 1470 name = "DSPCLK"; 1471 reg = CS48L32_DSP_CLOCK1; 1472 clk = &cs48l32_codec->dspclk; 1473 clk_freq_sel = cs48l32_get_dspclk_setting(cs48l32_codec, freq, source, &val); 1474 mask |= CS48L32_DSP_CLK_FREQ_MASK; 1475 break; 1476 case CS48L32_CLK_PDM_FLLCLK: 1477 return cs48l32_set_pdm_fllclk(component, source); 1478 default: 1479 return -EINVAL; 1480 } 1481 1482 if (clk_freq_sel < 0) { 1483 dev_err(cs48l32_codec->core.dev, "Failed to get %s setting for %dHZ\n", name, freq); 1484 return clk_freq_sel; 1485 } 1486 1487 *clk = freq; 1488 1489 if (freq == 0) { 1490 dev_dbg(cs48l32_codec->core.dev, "%s cleared\n", name); 1491 return 0; 1492 } 1493 1494 val |= clk_freq_sel; 1495 1496 if (freq % 6144000) 1497 val |= CS48L32_SYSCLK_FRAC_MASK; 1498 1499 dev_dbg(cs48l32_codec->core.dev, "%s set to %uHz", name, freq); 1500 1501 return regmap_update_bits(regmap, reg, mask, val); 1502 } 1503 1504 static int cs48l32_is_enabled_fll(struct cs48l32_fll *fll, int base) 1505 { 1506 struct regmap *regmap = fll->codec->core.regmap; 1507 unsigned int reg; 1508 int ret; 1509 1510 ret = regmap_read(regmap, base + CS48L32_FLL_CONTROL1_OFFS, ®); 1511 if (ret != 0) { 1512 cs48l32_fll_err(fll, "Failed to read current state: %d\n", ret); 1513 return ret; 1514 } 1515 1516 return reg & CS48L32_FLL_EN_MASK; 1517 } 1518 1519 static int cs48l32_wait_for_fll(struct cs48l32_fll *fll, bool requested) 1520 { 1521 struct regmap *regmap = fll->codec->core.regmap; 1522 unsigned int val = 0; 1523 int i; 1524 1525 cs48l32_fll_dbg(fll, "Waiting for FLL...\n"); 1526 1527 for (i = 0; i < 30; i++) { 1528 regmap_read(regmap, fll->sts_addr, &val); 1529 if (!!(val & fll->sts_mask) == requested) 1530 return 0; 1531 1532 switch (i) { 1533 case 0 ... 5: 1534 usleep_range(75, 125); 1535 break; 1536 case 6 ... 20: 1537 usleep_range(750, 1250); 1538 break; 1539 default: 1540 fsleep(20000); 1541 break; 1542 } 1543 } 1544 1545 cs48l32_fll_warn(fll, "Timed out waiting for %s\n", requested ? "lock" : "unlock"); 1546 1547 return -ETIMEDOUT; 1548 } 1549 1550 static int cs48l32_fllhj_disable(struct cs48l32_fll *fll) 1551 { 1552 struct cs48l32 *cs48l32 = &fll->codec->core; 1553 bool change; 1554 1555 cs48l32_fll_dbg(fll, "Disabling FLL\n"); 1556 1557 /* 1558 * Disable lockdet, but don't set ctrl_upd update bit. This allows the 1559 * lock status bit to clear as normal, but should the FLL be enabled 1560 * again due to a control clock being required, the lock won't re-assert 1561 * as the FLL config registers are automatically applied when the FLL 1562 * enables. 1563 */ 1564 regmap_set_bits(cs48l32->regmap, 1565 fll->base + CS48L32_FLL_CONTROL1_OFFS, 1566 CS48L32_FLL_HOLD_MASK); 1567 regmap_clear_bits(cs48l32->regmap, 1568 fll->base + CS48L32_FLL_CONTROL2_OFFS, 1569 CS48L32_FLL_LOCKDET_MASK); 1570 regmap_set_bits(cs48l32->regmap, 1571 fll->base + CS48L32_FLL_CONTROL5_OFFS, 1572 CS48L32_FLL_FRC_INTEG_UPD_MASK); 1573 regmap_update_bits_check(cs48l32->regmap, 1574 fll->base + CS48L32_FLL_CONTROL1_OFFS, 1575 CS48L32_FLL_EN_MASK, 1576 0, 1577 &change); 1578 1579 cs48l32_wait_for_fll(fll, false); 1580 1581 /* 1582 * ctrl_up gates the writes to all the fll's registers, setting it to 0 1583 * here ensures that after a runtime suspend/resume cycle when one 1584 * enables the fll then ctrl_up is the last bit that is configured 1585 * by the fll enable code rather than the cache sync operation which 1586 * would have updated it much earlier before writing out all fll 1587 * registers 1588 */ 1589 regmap_clear_bits(cs48l32->regmap, 1590 fll->base + CS48L32_FLL_CONTROL1_OFFS, 1591 CS48L32_FLL_CTRL_UPD_MASK); 1592 1593 if (change) 1594 pm_runtime_put_autosuspend(cs48l32->dev); 1595 1596 return 0; 1597 } 1598 1599 static int cs48l32_fllhj_apply(struct cs48l32_fll *fll, int fin) 1600 { 1601 struct regmap *regmap = fll->codec->core.regmap; 1602 int refdiv, fref, fout, lockdet_thr, fbdiv, fllgcd; 1603 bool frac = false; 1604 unsigned int fll_n, min_n, max_n, ratio, theta, lambda, hp; 1605 unsigned int gains, num; 1606 1607 cs48l32_fll_dbg(fll, "fin=%d, fout=%d\n", fin, fll->fout); 1608 1609 for (refdiv = 0; refdiv < 4; refdiv++) { 1610 if ((fin / (1 << refdiv)) <= CS48L32_FLLHJ_MAX_THRESH) 1611 break; 1612 } 1613 1614 fref = fin / (1 << refdiv); 1615 fout = fll->fout; 1616 frac = fout % fref; 1617 1618 /* 1619 * Use simple heuristic approach to find a configuration that 1620 * should work for most input clocks. 1621 */ 1622 if (fref < CS48L32_FLLHJ_LOW_THRESH) { 1623 lockdet_thr = 2; 1624 gains = CS48L32_FLLHJ_LOW_GAINS; 1625 1626 if (frac) 1627 fbdiv = 256; 1628 else 1629 fbdiv = 4; 1630 } else if (fref < CS48L32_FLLHJ_MID_THRESH) { 1631 lockdet_thr = 8; 1632 gains = CS48L32_FLLHJ_MID_GAINS; 1633 fbdiv = (frac) ? 16 : 2; 1634 } else { 1635 lockdet_thr = 8; 1636 gains = CS48L32_FLLHJ_HIGH_GAINS; 1637 fbdiv = 1; 1638 } 1639 /* Use high performance mode for fractional configurations. */ 1640 if (frac) { 1641 hp = 3; 1642 min_n = CS48L32_FLLHJ_FRAC_MIN_N; 1643 max_n = CS48L32_FLLHJ_FRAC_MAX_N; 1644 } else { 1645 if (fref < CS48L32_FLLHJ_LP_INT_MODE_THRESH) 1646 hp = 0; 1647 else 1648 hp = 1; 1649 1650 min_n = CS48L32_FLLHJ_INT_MIN_N; 1651 max_n = CS48L32_FLLHJ_INT_MAX_N; 1652 } 1653 1654 ratio = fout / fref; 1655 1656 cs48l32_fll_dbg(fll, "refdiv=%d, fref=%d, frac:%d\n", refdiv, fref, frac); 1657 1658 while (ratio / fbdiv < min_n) { 1659 fbdiv /= 2; 1660 if (fbdiv < min_n) { 1661 cs48l32_fll_err(fll, "FBDIV (%u) < minimum N (%u)\n", fbdiv, min_n); 1662 return -EINVAL; 1663 } 1664 } 1665 while (frac && (ratio / fbdiv > max_n)) { 1666 fbdiv *= 2; 1667 if (fbdiv >= 1024) { 1668 cs48l32_fll_err(fll, "FBDIV (%u) >= 1024\n", fbdiv); 1669 return -EINVAL; 1670 } 1671 } 1672 1673 cs48l32_fll_dbg(fll, "lockdet=%d, hp=#%x, fbdiv:%d\n", lockdet_thr, hp, fbdiv); 1674 1675 /* Calculate N.K values */ 1676 fllgcd = gcd(fout, fbdiv * fref); 1677 num = fout / fllgcd; 1678 lambda = (fref * fbdiv) / fllgcd; 1679 fll_n = num / lambda; 1680 theta = num % lambda; 1681 1682 cs48l32_fll_dbg(fll, "fll_n=%d, gcd=%d, theta=%d, lambda=%d\n", 1683 fll_n, fllgcd, theta, lambda); 1684 1685 /* Some sanity checks before any registers are written. */ 1686 if (fll_n < min_n || fll_n > max_n) { 1687 cs48l32_fll_err(fll, "N not in valid %s mode range %d-%d: %d\n", 1688 frac ? "fractional" : "integer", min_n, max_n, fll_n); 1689 return -EINVAL; 1690 } 1691 if (fbdiv < 1 || (frac && fbdiv >= 1024) || (!frac && fbdiv >= 256)) { 1692 cs48l32_fll_err(fll, "Invalid fbdiv for %s mode (%u)\n", 1693 frac ? "fractional" : "integer", fbdiv); 1694 return -EINVAL; 1695 } 1696 1697 /* clear the ctrl_upd bit to guarantee we write to it later. */ 1698 regmap_update_bits(regmap, 1699 fll->base + CS48L32_FLL_CONTROL2_OFFS, 1700 CS48L32_FLL_LOCKDET_THR_MASK | 1701 CS48L32_FLL_PHASEDET_MASK | 1702 CS48L32_FLL_REFCLK_DIV_MASK | 1703 CS48L32_FLL_N_MASK | 1704 CS48L32_FLL_CTRL_UPD_MASK, 1705 (lockdet_thr << CS48L32_FLL_LOCKDET_THR_SHIFT) | 1706 (1 << CS48L32_FLL_PHASEDET_SHIFT) | 1707 (refdiv << CS48L32_FLL_REFCLK_DIV_SHIFT) | 1708 (fll_n << CS48L32_FLL_N_SHIFT)); 1709 1710 regmap_update_bits(regmap, 1711 fll->base + CS48L32_FLL_CONTROL3_OFFS, 1712 CS48L32_FLL_LAMBDA_MASK | 1713 CS48L32_FLL_THETA_MASK, 1714 (lambda << CS48L32_FLL_LAMBDA_SHIFT) | 1715 (theta << CS48L32_FLL_THETA_SHIFT)); 1716 1717 regmap_update_bits(regmap, 1718 fll->base + CS48L32_FLL_CONTROL4_OFFS, 1719 (0xffff << CS48L32_FLL_FD_GAIN_COARSE_SHIFT) | 1720 CS48L32_FLL_HP_MASK | 1721 CS48L32_FLL_FB_DIV_MASK, 1722 (gains << CS48L32_FLL_FD_GAIN_COARSE_SHIFT) | 1723 (hp << CS48L32_FLL_HP_SHIFT) | 1724 (fbdiv << CS48L32_FLL_FB_DIV_SHIFT)); 1725 1726 return 0; 1727 } 1728 1729 static int cs48l32_fllhj_enable(struct cs48l32_fll *fll) 1730 { 1731 struct cs48l32 *cs48l32 = &fll->codec->core; 1732 int already_enabled = cs48l32_is_enabled_fll(fll, fll->base); 1733 int ret; 1734 1735 if (already_enabled < 0) 1736 return already_enabled; 1737 1738 if (!already_enabled) 1739 pm_runtime_get_sync(cs48l32->dev); 1740 1741 cs48l32_fll_dbg(fll, "Enabling FLL, initially %s\n", 1742 str_enabled_disabled(already_enabled)); 1743 1744 /* FLLn_HOLD must be set before configuring any registers */ 1745 regmap_set_bits(cs48l32->regmap, 1746 fll->base + CS48L32_FLL_CONTROL1_OFFS, 1747 CS48L32_FLL_HOLD_MASK); 1748 1749 /* Apply refclk */ 1750 ret = cs48l32_fllhj_apply(fll, fll->ref_freq); 1751 if (ret) { 1752 cs48l32_fll_err(fll, "Failed to set FLL: %d\n", ret); 1753 goto out; 1754 } 1755 regmap_update_bits(cs48l32->regmap, 1756 fll->base + CS48L32_FLL_CONTROL2_OFFS, 1757 CS48L32_FLL_REFCLK_SRC_MASK, 1758 fll->ref_src << CS48L32_FLL_REFCLK_SRC_SHIFT); 1759 1760 regmap_set_bits(cs48l32->regmap, 1761 fll->base + CS48L32_FLL_CONTROL1_OFFS, 1762 CS48L32_FLL_EN_MASK); 1763 1764 out: 1765 regmap_set_bits(cs48l32->regmap, 1766 fll->base + CS48L32_FLL_CONTROL2_OFFS, 1767 CS48L32_FLL_LOCKDET_MASK); 1768 1769 regmap_set_bits(cs48l32->regmap, 1770 fll->base + CS48L32_FLL_CONTROL1_OFFS, 1771 CS48L32_FLL_CTRL_UPD_MASK); 1772 1773 /* Release the hold so that flln locks to external frequency */ 1774 regmap_clear_bits(cs48l32->regmap, 1775 fll->base + CS48L32_FLL_CONTROL1_OFFS, 1776 CS48L32_FLL_HOLD_MASK); 1777 1778 if (!already_enabled) 1779 cs48l32_wait_for_fll(fll, true); 1780 1781 return 0; 1782 } 1783 1784 static int cs48l32_fllhj_validate(struct cs48l32_fll *fll, 1785 unsigned int ref_in, 1786 unsigned int fout) 1787 { 1788 if (fout && !ref_in) { 1789 cs48l32_fll_err(fll, "fllout set without valid input clk\n"); 1790 return -EINVAL; 1791 } 1792 1793 if (fll->fout && fout != fll->fout) { 1794 cs48l32_fll_err(fll, "Can't change output on active FLL\n"); 1795 return -EINVAL; 1796 } 1797 1798 if (ref_in / CS48L32_FLL_MAX_REFDIV > CS48L32_FLLHJ_MAX_THRESH) { 1799 cs48l32_fll_err(fll, "Can't scale %dMHz to <=13MHz\n", ref_in); 1800 return -EINVAL; 1801 } 1802 1803 if (fout > CS48L32_FLL_MAX_FOUT) { 1804 cs48l32_fll_err(fll, "Fout=%dMHz exceeds maximum %dMHz\n", 1805 fout, CS48L32_FLL_MAX_FOUT); 1806 return -EINVAL; 1807 } 1808 1809 return 0; 1810 } 1811 1812 static int cs48l32_fllhj_set_refclk(struct cs48l32_fll *fll, int source, 1813 unsigned int fin, unsigned int fout) 1814 { 1815 int ret = 0; 1816 1817 if (fll->ref_src == source && fll->ref_freq == fin && fll->fout == fout) 1818 return 0; 1819 1820 if (fin && fout && cs48l32_fllhj_validate(fll, fin, fout)) 1821 return -EINVAL; 1822 1823 fll->ref_src = source; 1824 fll->ref_freq = fin; 1825 fll->fout = fout; 1826 1827 if (fout) 1828 ret = cs48l32_fllhj_enable(fll); 1829 else 1830 cs48l32_fllhj_disable(fll); 1831 1832 return ret; 1833 } 1834 1835 static int cs48l32_init_fll(struct cs48l32_fll *fll) 1836 { 1837 fll->ref_src = CS48L32_FLL_SRC_NONE; 1838 1839 return 0; 1840 } 1841 1842 static int cs48l32_set_fll(struct snd_soc_component *component, int fll_id, 1843 int source, unsigned int fref, unsigned int fout) 1844 { 1845 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 1846 1847 switch (fll_id) { 1848 case CS48L32_FLL1_REFCLK: 1849 break; 1850 default: 1851 return -EINVAL; 1852 } 1853 1854 return cs48l32_fllhj_set_refclk(&cs48l32_codec->fll, source, fref, fout); 1855 } 1856 1857 static int cs48l32_asp_dai_probe(struct snd_soc_dai *dai) 1858 { 1859 struct snd_soc_component *component = dai->component; 1860 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 1861 struct regmap *regmap = cs48l32_codec->core.regmap; 1862 unsigned int pin_reg, last_pin_reg, hiz_reg; 1863 1864 switch (dai->id) { 1865 case 1: 1866 pin_reg = CS48L32_GPIO3_CTRL1; 1867 hiz_reg = CS48L32_ASP1_CONTROL3; 1868 break; 1869 case 2: 1870 pin_reg = CS48L32_GPIO7_CTRL1; 1871 hiz_reg = CS48L32_ASP2_CONTROL3; 1872 break; 1873 default: 1874 return -EINVAL; 1875 } 1876 1877 for (last_pin_reg = pin_reg + 12; pin_reg <= last_pin_reg; ++pin_reg) 1878 regmap_clear_bits(regmap, pin_reg, CS48L32_GPIOX_CTRL1_FN_MASK); 1879 1880 /* DOUT high-impendance when not transmitting */ 1881 regmap_set_bits(regmap, hiz_reg, CS48L32_ASP_DOUT_HIZ_MASK); 1882 1883 return 0; 1884 } 1885 1886 static int cs48l32_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) 1887 { 1888 struct snd_soc_component *component = dai->component; 1889 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 1890 struct regmap *regmap = cs48l32_codec->core.regmap; 1891 unsigned int val = 0U; 1892 unsigned int base = dai->driver->base; 1893 unsigned int mask = CS48L32_ASP_FMT_MASK | CS48L32_ASP_BCLK_INV_MASK | 1894 CS48L32_ASP_BCLK_MSTR_MASK | 1895 CS48L32_ASP_FSYNC_INV_MASK | 1896 CS48L32_ASP_FSYNC_MSTR_MASK; 1897 1898 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 1899 case SND_SOC_DAIFMT_DSP_A: 1900 val |= (CS48L32_ASP_FMT_DSP_MODE_A << CS48L32_ASP_FMT_SHIFT); 1901 break; 1902 case SND_SOC_DAIFMT_DSP_B: 1903 if ((fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) != SND_SOC_DAIFMT_BP_FP) { 1904 cs48l32_asp_err(dai, "DSP_B cannot be clock consumer\n"); 1905 return -EINVAL; 1906 } 1907 val |= (CS48L32_ASP_FMT_DSP_MODE_B << CS48L32_ASP_FMT_SHIFT); 1908 break; 1909 case SND_SOC_DAIFMT_I2S: 1910 val |= (CS48L32_ASP_FMT_I2S_MODE << CS48L32_ASP_FMT_SHIFT); 1911 break; 1912 case SND_SOC_DAIFMT_LEFT_J: 1913 if ((fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) != SND_SOC_DAIFMT_BP_FP) { 1914 cs48l32_asp_err(dai, "LEFT_J cannot be clock consumer\n"); 1915 return -EINVAL; 1916 } 1917 val |= (CS48L32_ASP_FMT_LEFT_JUSTIFIED_MODE << CS48L32_ASP_FMT_SHIFT); 1918 break; 1919 default: 1920 cs48l32_asp_err(dai, "Unsupported DAI format %d\n", 1921 fmt & SND_SOC_DAIFMT_FORMAT_MASK); 1922 return -EINVAL; 1923 } 1924 1925 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { 1926 case SND_SOC_DAIFMT_BC_FC: 1927 break; 1928 case SND_SOC_DAIFMT_BC_FP: 1929 val |= CS48L32_ASP_FSYNC_MSTR_MASK; 1930 break; 1931 case SND_SOC_DAIFMT_BP_FC: 1932 val |= CS48L32_ASP_BCLK_MSTR_MASK; 1933 break; 1934 case SND_SOC_DAIFMT_BP_FP: 1935 val |= CS48L32_ASP_BCLK_MSTR_MASK; 1936 val |= CS48L32_ASP_FSYNC_MSTR_MASK; 1937 break; 1938 default: 1939 cs48l32_asp_err(dai, "Unsupported clock direction %d\n", 1940 fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK); 1941 return -EINVAL; 1942 } 1943 1944 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 1945 case SND_SOC_DAIFMT_NB_NF: 1946 break; 1947 case SND_SOC_DAIFMT_IB_IF: 1948 val |= CS48L32_ASP_BCLK_INV_MASK; 1949 val |= CS48L32_ASP_FSYNC_INV_MASK; 1950 break; 1951 case SND_SOC_DAIFMT_IB_NF: 1952 val |= CS48L32_ASP_BCLK_INV_MASK; 1953 break; 1954 case SND_SOC_DAIFMT_NB_IF: 1955 val |= CS48L32_ASP_FSYNC_INV_MASK; 1956 break; 1957 default: 1958 return -EINVAL; 1959 } 1960 1961 regmap_update_bits(regmap, base + CS48L32_ASP_CONTROL2, mask, val); 1962 1963 return 0; 1964 } 1965 1966 static const struct { 1967 u32 freq; 1968 u32 id; 1969 } cs48l32_sclk_rates[] = { 1970 { 128000, 12 }, 1971 { 176400, 13 }, 1972 { 192000, 14 }, 1973 { 256000, 15 }, 1974 { 352800, 16 }, 1975 { 384000, 17 }, 1976 { 512000, 18 }, 1977 { 705600, 19 }, 1978 { 768000, 21 }, 1979 { 1024000, 23 }, 1980 { 1411200, 25 }, 1981 { 1536000, 27 }, 1982 { 2048000, 29 }, 1983 { 2822400, 31 }, 1984 { 3072000, 33 }, 1985 { 4096000, 36 }, 1986 { 5644800, 38 }, 1987 { 6144000, 40 }, 1988 { 8192000, 47 }, 1989 { 11289600, 49 }, 1990 { 12288000, 51 }, 1991 { 22579200, 57 }, 1992 { 24576000, 59 }, 1993 }; 1994 1995 #define CS48L32_48K_RATE_MASK 0x0e00fe 1996 #define CS48L32_44K1_RATE_MASK 0x00fe00 1997 #define CS48L32_RATE_MASK (CS48L32_48K_RATE_MASK | CS48L32_44K1_RATE_MASK) 1998 1999 static const unsigned int cs48l32_sr_vals[] = { 2000 0, 2001 12000, /* CS48L32_48K_RATE_MASK */ 2002 24000, /* CS48L32_48K_RATE_MASK */ 2003 48000, /* CS48L32_48K_RATE_MASK */ 2004 96000, /* CS48L32_48K_RATE_MASK */ 2005 192000, /* CS48L32_48K_RATE_MASK */ 2006 384000, /* CS48L32_48K_RATE_MASK */ 2007 768000, /* CS48L32_48K_RATE_MASK */ 2008 0, 2009 11025, /* CS48L32_44K1_RATE_MASK */ 2010 22050, /* CS48L32_44K1_RATE_MASK */ 2011 44100, /* CS48L32_44K1_RATE_MASK */ 2012 88200, /* CS48L32_44K1_RATE_MASK */ 2013 176400, /* CS48L32_44K1_RATE_MASK */ 2014 352800, /* CS48L32_44K1_RATE_MASK */ 2015 705600, /* CS48L32_44K1_RATE_MASK */ 2016 0, 2017 8000, /* CS48L32_48K_RATE_MASK */ 2018 16000, /* CS48L32_48K_RATE_MASK */ 2019 32000, /* CS48L32_48K_RATE_MASK */ 2020 }; 2021 2022 static const struct snd_pcm_hw_constraint_list cs48l32_constraint = { 2023 .count = ARRAY_SIZE(cs48l32_sr_vals), 2024 .list = cs48l32_sr_vals, 2025 }; 2026 2027 static int cs48l32_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) 2028 { 2029 struct snd_soc_component *component = dai->component; 2030 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 2031 struct cs48l32_dai_priv *dai_priv = &cs48l32_codec->dai[dai->id - 1]; 2032 unsigned int base_rate; 2033 2034 if (!substream->runtime) 2035 return 0; 2036 2037 switch (dai_priv->clk) { 2038 case CS48L32_CLK_SYSCLK_1: 2039 case CS48L32_CLK_SYSCLK_2: 2040 case CS48L32_CLK_SYSCLK_3: 2041 case CS48L32_CLK_SYSCLK_4: 2042 base_rate = cs48l32_codec->sysclk; 2043 break; 2044 default: 2045 return 0; 2046 } 2047 2048 if (base_rate == 0) 2049 dai_priv->constraint.mask = CS48L32_RATE_MASK; 2050 else if (base_rate % 4000) 2051 dai_priv->constraint.mask = CS48L32_44K1_RATE_MASK; 2052 else 2053 dai_priv->constraint.mask = CS48L32_48K_RATE_MASK; 2054 2055 return snd_pcm_hw_constraint_list(substream->runtime, 0, 2056 SNDRV_PCM_HW_PARAM_RATE, 2057 &dai_priv->constraint); 2058 } 2059 2060 static int cs48l32_hw_params_rate(struct snd_pcm_substream *substream, 2061 struct snd_pcm_hw_params *params, 2062 struct snd_soc_dai *dai) 2063 { 2064 struct snd_soc_component *component = dai->component; 2065 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 2066 struct cs48l32_dai_priv *dai_priv = &cs48l32_codec->dai[dai->id - 1]; 2067 unsigned int sr_val, sr_reg, rate; 2068 2069 rate = params_rate(params); 2070 for (sr_val = 0; sr_val < ARRAY_SIZE(cs48l32_sr_vals); sr_val++) 2071 if (cs48l32_sr_vals[sr_val] == rate) 2072 break; 2073 2074 if (sr_val == ARRAY_SIZE(cs48l32_sr_vals)) { 2075 cs48l32_asp_err(dai, "Unsupported sample rate %dHz\n", rate); 2076 return -EINVAL; 2077 } 2078 2079 switch (dai_priv->clk) { 2080 case CS48L32_CLK_SYSCLK_1: 2081 sr_reg = CS48L32_SAMPLE_RATE1; 2082 break; 2083 case CS48L32_CLK_SYSCLK_2: 2084 sr_reg = CS48L32_SAMPLE_RATE2; 2085 break; 2086 case CS48L32_CLK_SYSCLK_3: 2087 sr_reg = CS48L32_SAMPLE_RATE3; 2088 break; 2089 case CS48L32_CLK_SYSCLK_4: 2090 sr_reg = CS48L32_SAMPLE_RATE4; 2091 break; 2092 default: 2093 return -EINVAL; 2094 } 2095 2096 snd_soc_component_update_bits(component, sr_reg, CS48L32_SAMPLE_RATE_1_MASK, sr_val); 2097 2098 return 0; 2099 } 2100 2101 static bool cs48l32_asp_cfg_changed(struct snd_soc_component *component, 2102 unsigned int base, unsigned int sclk, 2103 unsigned int slotws, unsigned int dataw) 2104 { 2105 unsigned int val; 2106 2107 val = snd_soc_component_read(component, base + CS48L32_ASP_CONTROL1); 2108 if (sclk != (val & CS48L32_ASP_BCLK_FREQ_MASK)) 2109 return true; 2110 2111 val = snd_soc_component_read(component, base + CS48L32_ASP_CONTROL2); 2112 if (slotws != (val & (CS48L32_ASP_RX_WIDTH_MASK | CS48L32_ASP_TX_WIDTH_MASK))) 2113 return true; 2114 2115 val = snd_soc_component_read(component, base + CS48L32_ASP_DATA_CONTROL1); 2116 if (dataw != (val & (CS48L32_ASP_TX_WL_MASK))) 2117 return true; 2118 2119 val = snd_soc_component_read(component, base + CS48L32_ASP_DATA_CONTROL5); 2120 if (dataw != (val & (CS48L32_ASP_RX_WL_MASK))) 2121 return true; 2122 2123 return false; 2124 } 2125 2126 static int cs48l32_hw_params(struct snd_pcm_substream *substream, 2127 struct snd_pcm_hw_params *params, 2128 struct snd_soc_dai *dai) 2129 { 2130 struct snd_soc_component *component = dai->component; 2131 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 2132 struct regmap *regmap = cs48l32_codec->core.regmap; 2133 int base = dai->driver->base; 2134 int dai_id = dai->id - 1; 2135 unsigned int rate = params_rate(params); 2136 unsigned int dataw = snd_pcm_format_width(params_format(params)); 2137 unsigned int asp_state = 0; 2138 int sclk, sclk_target; 2139 unsigned int slotw, n_slots, n_slots_multiple, val; 2140 int i, ret; 2141 2142 cs48l32_asp_dbg(dai, "hwparams in: ch:%u dataw:%u rate:%u\n", 2143 params_channels(params), dataw, rate); 2144 /* 2145 * The following calculations hold only under the assumption that 2146 * symmetric_[rates|channels|samplebits] are set to 1 2147 */ 2148 if (cs48l32_codec->tdm_slots[dai_id]) { 2149 n_slots = cs48l32_codec->tdm_slots[dai_id]; 2150 slotw = cs48l32_codec->tdm_width[dai_id]; 2151 } else { 2152 n_slots = params_channels(params); 2153 slotw = dataw; 2154 } 2155 2156 val = snd_soc_component_read(component, base + CS48L32_ASP_CONTROL2); 2157 val = (val & CS48L32_ASP_FMT_MASK) >> CS48L32_ASP_FMT_SHIFT; 2158 if (val == CS48L32_ASP_FMT_I2S_MODE) 2159 n_slots_multiple = 2; 2160 else 2161 n_slots_multiple = 1; 2162 2163 sclk_target = snd_soc_tdm_params_to_bclk(params, slotw, n_slots, n_slots_multiple); 2164 if (sclk_target < 0) { 2165 cs48l32_asp_err(dai, "Invalid parameters\n"); 2166 return sclk_target; 2167 } 2168 2169 for (i = 0; i < ARRAY_SIZE(cs48l32_sclk_rates); i++) { 2170 if ((cs48l32_sclk_rates[i].freq >= sclk_target) && 2171 (cs48l32_sclk_rates[i].freq % rate == 0)) { 2172 sclk = cs48l32_sclk_rates[i].id; 2173 break; 2174 } 2175 } 2176 if (i == ARRAY_SIZE(cs48l32_sclk_rates)) { 2177 cs48l32_asp_err(dai, "Unsupported sample rate %dHz\n", rate); 2178 return -EINVAL; 2179 } 2180 2181 cs48l32_asp_dbg(dai, "hwparams out: n_slots:%u dataw:%u slotw:%u bclk:%u bclkid:%u\n", 2182 n_slots, dataw, slotw, sclk_target, sclk); 2183 2184 slotw = (slotw << CS48L32_ASP_TX_WIDTH_SHIFT) | 2185 (slotw << CS48L32_ASP_RX_WIDTH_SHIFT); 2186 2187 if (!cs48l32_asp_cfg_changed(component, base, sclk, slotw, dataw)) 2188 return cs48l32_hw_params_rate(substream, params, dai); 2189 2190 /* ASP must be disabled while changing configuration */ 2191 asp_state = snd_soc_component_read(component, base + CS48L32_ASP_ENABLES1); 2192 regmap_clear_bits(regmap, base + CS48L32_ASP_ENABLES1, 0xff00ff); 2193 2194 ret = cs48l32_hw_params_rate(substream, params, dai); 2195 if (ret != 0) 2196 goto restore_asp; 2197 2198 regmap_update_bits_async(regmap, 2199 base + CS48L32_ASP_CONTROL1, 2200 CS48L32_ASP_BCLK_FREQ_MASK, 2201 sclk); 2202 regmap_update_bits_async(regmap, 2203 base + CS48L32_ASP_CONTROL2, 2204 CS48L32_ASP_RX_WIDTH_MASK | CS48L32_ASP_TX_WIDTH_MASK, 2205 slotw); 2206 regmap_update_bits_async(regmap, 2207 base + CS48L32_ASP_DATA_CONTROL1, 2208 CS48L32_ASP_TX_WL_MASK, 2209 dataw); 2210 regmap_update_bits(regmap, 2211 base + CS48L32_ASP_DATA_CONTROL5, 2212 CS48L32_ASP_RX_WL_MASK, 2213 dataw); 2214 2215 restore_asp: 2216 /* Restore ASP TX/RX enable state */ 2217 regmap_update_bits(regmap, 2218 base + CS48L32_ASP_ENABLES1, 2219 0xff00ff, 2220 asp_state); 2221 return ret; 2222 } 2223 2224 static const char *cs48l32_dai_clk_str(int clk_id) 2225 { 2226 switch (clk_id) { 2227 case CS48L32_CLK_SYSCLK_1: 2228 case CS48L32_CLK_SYSCLK_2: 2229 case CS48L32_CLK_SYSCLK_3: 2230 case CS48L32_CLK_SYSCLK_4: 2231 return "SYSCLK"; 2232 default: 2233 return "Unknown clock"; 2234 } 2235 } 2236 2237 static int cs48l32_dai_set_sysclk(struct snd_soc_dai *dai, 2238 int clk_id, unsigned int freq, int dir) 2239 { 2240 struct snd_soc_component *component = dai->component; 2241 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 2242 struct cs48l32_dai_priv *dai_priv = &cs48l32_codec->dai[dai->id - 1]; 2243 unsigned int base = dai->driver->base; 2244 unsigned int current_asp_rate, target_asp_rate; 2245 bool change_rate_domain = false; 2246 int ret; 2247 2248 if (clk_id == dai_priv->clk) 2249 return 0; 2250 2251 if (snd_soc_dai_active(dai)) { 2252 cs48l32_asp_err(dai, "Can't change clock on active DAI\n"); 2253 return -EBUSY; 2254 } 2255 2256 switch (clk_id) { 2257 case CS48L32_CLK_SYSCLK_1: 2258 target_asp_rate = 0U << CS48L32_ASP_RATE_SHIFT; 2259 break; 2260 case CS48L32_CLK_SYSCLK_2: 2261 target_asp_rate = 1U << CS48L32_ASP_RATE_SHIFT; 2262 break; 2263 case CS48L32_CLK_SYSCLK_3: 2264 target_asp_rate = 2U << CS48L32_ASP_RATE_SHIFT; 2265 break; 2266 case CS48L32_CLK_SYSCLK_4: 2267 target_asp_rate = 3U << CS48L32_ASP_RATE_SHIFT; 2268 break; 2269 default: 2270 return -EINVAL; 2271 } 2272 2273 dai_priv->clk = clk_id; 2274 cs48l32_asp_dbg(dai, "Setting to %s\n", cs48l32_dai_clk_str(clk_id)); 2275 2276 if (base) { 2277 ret = regmap_read(cs48l32_codec->core.regmap, 2278 base + CS48L32_ASP_CONTROL1, 2279 ¤t_asp_rate); 2280 if (ret != 0) { 2281 cs48l32_asp_err(dai, "Failed to check rate: %d\n", ret); 2282 return ret; 2283 } 2284 2285 if ((current_asp_rate & CS48L32_ASP_RATE_MASK) != 2286 (target_asp_rate & CS48L32_ASP_RATE_MASK)) { 2287 change_rate_domain = true; 2288 2289 mutex_lock(&cs48l32_codec->rate_lock); 2290 /* Guard the rate change with SYSCLK cycles */ 2291 cs48l32_spin_sysclk(cs48l32_codec); 2292 } 2293 2294 snd_soc_component_update_bits(component, base + CS48L32_ASP_CONTROL1, 2295 CS48L32_ASP_RATE_MASK, target_asp_rate); 2296 2297 if (change_rate_domain) { 2298 cs48l32_spin_sysclk(cs48l32_codec); 2299 mutex_unlock(&cs48l32_codec->rate_lock); 2300 } 2301 } 2302 2303 return 0; 2304 } 2305 2306 static void cs48l32_set_channels_to_mask(struct snd_soc_dai *dai, 2307 unsigned int base, 2308 int channels, unsigned int mask) 2309 { 2310 struct snd_soc_component *component = dai->component; 2311 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 2312 struct regmap *regmap = cs48l32_codec->core.regmap; 2313 int slot, i, j = 0, shift; 2314 unsigned int frame_ctls[2] = {0, 0}; 2315 2316 for (i = 0; i < channels; ++i) { 2317 slot = ffs(mask) - 1; 2318 if (slot < 0) 2319 return; 2320 2321 if (i - (j * 4) >= 4) { 2322 ++j; 2323 if (j >= 2) 2324 break; 2325 } 2326 2327 shift = (8 * (i - j * 4)); 2328 2329 frame_ctls[j] |= slot << shift; 2330 2331 mask &= ~(1 << slot); /* ? mask ^= 1 << slot ? */ 2332 } 2333 2334 regmap_write(regmap, base, frame_ctls[0]); 2335 regmap_write(regmap, base + 0x4, frame_ctls[1]); 2336 2337 if (mask) 2338 cs48l32_asp_warn(dai, "Too many channels in TDM mask\n"); 2339 } 2340 2341 static int cs48l32_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, 2342 unsigned int rx_mask, int slots, int slot_width) 2343 { 2344 struct snd_soc_component *component = dai->component; 2345 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 2346 int base = dai->driver->base; 2347 int rx_max_chan = dai->driver->playback.channels_max; 2348 int tx_max_chan = dai->driver->capture.channels_max; 2349 2350 /* Only support TDM for the physical ASPs */ 2351 if (dai->id > CS48L32_MAX_ASP) 2352 return -EINVAL; 2353 2354 if (slots == 0) { 2355 tx_mask = (1 << tx_max_chan) - 1; 2356 rx_mask = (1 << rx_max_chan) - 1; 2357 } 2358 2359 cs48l32_set_channels_to_mask(dai, base + CS48L32_ASP_FRAME_CONTROL1, 2360 tx_max_chan, tx_mask); 2361 cs48l32_set_channels_to_mask(dai, base + CS48L32_ASP_FRAME_CONTROL5, 2362 rx_max_chan, rx_mask); 2363 2364 cs48l32_codec->tdm_width[dai->id - 1] = slot_width; 2365 cs48l32_codec->tdm_slots[dai->id - 1] = slots; 2366 2367 return 0; 2368 } 2369 2370 static const struct snd_soc_dai_ops cs48l32_dai_ops = { 2371 .probe = &cs48l32_asp_dai_probe, 2372 .startup = &cs48l32_startup, 2373 .set_fmt = &cs48l32_set_fmt, 2374 .set_tdm_slot = &cs48l32_set_tdm_slot, 2375 .hw_params = &cs48l32_hw_params, 2376 .set_sysclk = &cs48l32_dai_set_sysclk, 2377 }; 2378 2379 static int cs48l32_sysclk_ev(struct snd_soc_dapm_widget *w, 2380 struct snd_kcontrol *kcontrol, int event) 2381 { 2382 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); 2383 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 2384 2385 cs48l32_spin_sysclk(cs48l32_codec); 2386 2387 return 0; 2388 } 2389 2390 static int cs48l32_in_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) 2391 { 2392 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); 2393 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 2394 unsigned int reg; 2395 2396 if (w->shift % 2) 2397 reg = CS48L32_IN1L_CONTROL2; 2398 else 2399 reg = CS48L32_IN1R_CONTROL2; 2400 2401 reg += (w->shift / 2) * (CS48L32_IN2L_CONTROL2 - CS48L32_IN1L_CONTROL2); 2402 2403 switch (event) { 2404 case SND_SOC_DAPM_PRE_PMU: 2405 switch (w->shift) { 2406 case CS48L32_IN1L_EN_SHIFT: 2407 snd_soc_component_update_bits(component, 2408 CS48L32_ADC1L_ANA_CONTROL1, 2409 CS48L32_ADC1x_INT_ENA_FRC_MASK, 2410 CS48L32_ADC1x_INT_ENA_FRC_MASK); 2411 break; 2412 case CS48L32_IN1R_EN_SHIFT: 2413 snd_soc_component_update_bits(component, 2414 CS48L32_ADC1R_ANA_CONTROL1, 2415 CS48L32_ADC1x_INT_ENA_FRC_MASK, 2416 CS48L32_ADC1x_INT_ENA_FRC_MASK); 2417 break; 2418 default: 2419 break; 2420 } 2421 cs48l32_codec->in_up_pending++; 2422 break; 2423 case SND_SOC_DAPM_POST_PMU: 2424 usleep_range(200, 300); 2425 2426 switch (w->shift) { 2427 case CS48L32_IN1L_EN_SHIFT: 2428 snd_soc_component_update_bits(component, 2429 CS48L32_ADC1L_ANA_CONTROL1, 2430 CS48L32_ADC1x_INT_ENA_FRC_MASK, 2431 0); 2432 break; 2433 case CS48L32_IN1R_EN_SHIFT: 2434 snd_soc_component_update_bits(component, 2435 CS48L32_ADC1R_ANA_CONTROL1, 2436 CS48L32_ADC1x_INT_ENA_FRC_MASK, 2437 0); 2438 break; 2439 2440 default: 2441 break; 2442 } 2443 cs48l32_codec->in_up_pending--; 2444 snd_soc_component_update_bits(component, reg, CS48L32_INx_MUTE_MASK, 0); 2445 2446 /* Uncached write-only register, no need for update_bits */ 2447 if (!cs48l32_codec->in_up_pending) { 2448 snd_soc_component_write(component, cs48l32_codec->in_vu_reg, 2449 CS48L32_IN_VU_MASK); 2450 } 2451 break; 2452 case SND_SOC_DAPM_PRE_PMD: 2453 snd_soc_component_update_bits(component, reg, 2454 CS48L32_INx_MUTE_MASK, CS48L32_INx_MUTE_MASK); 2455 snd_soc_component_write(component, cs48l32_codec->in_vu_reg, 2456 CS48L32_IN_VU_MASK); 2457 break; 2458 default: 2459 break; 2460 } 2461 2462 return 0; 2463 } 2464 2465 static int cs48l32_in_put_volsw(struct snd_kcontrol *kcontrol, 2466 struct snd_ctl_elem_value *ucontrol) 2467 { 2468 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 2469 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 2470 int ret; 2471 2472 ret = snd_soc_put_volsw(kcontrol, ucontrol); 2473 if (ret < 0) 2474 return ret; 2475 2476 /* 2477 * Uncached write-only register, no need for update_bits. 2478 * Will fail if codec is off but that will be handled by cs48l32_in_ev 2479 */ 2480 snd_soc_component_write(component, cs48l32_codec->in_vu_reg, CS48L32_IN_VU); 2481 2482 return ret; 2483 } 2484 2485 static bool cs48l32_eq_filter_unstable(bool mode, __be16 in_a, __be16 in_b) 2486 { 2487 s16 a = be16_to_cpu(in_a); 2488 s16 b = be16_to_cpu(in_b); 2489 2490 if (!mode) 2491 return abs(a) > CS48L32_EQ_MAX_COEFF; 2492 2493 if (abs(b) > CS48L32_EQ_MAX_COEFF) 2494 return true; 2495 2496 if (abs((a << 16) / (CS48L32_EQ_MAX_COEFF + 1 - b)) >= ((CS48L32_EQ_MAX_COEFF + 1) << 4)) 2497 return true; 2498 2499 return false; 2500 } 2501 2502 static int cs48l32_eq_ev(struct snd_soc_dapm_widget *w, 2503 struct snd_kcontrol *kcontrol, int event) 2504 { 2505 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); 2506 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 2507 struct regmap *regmap = cs48l32_codec->core.regmap; 2508 unsigned int mode = cs48l32_codec->eq_mode[w->shift]; 2509 unsigned int reg; 2510 __be16 *data = &cs48l32_codec->eq_coefficients[w->shift][0]; 2511 int ret = 0; 2512 2513 reg = CS48L32_EQ1_BAND1_COEFF1; 2514 reg += w->shift * (CS48L32_EQ2_BAND1_COEFF1 - CS48L32_EQ1_BAND1_COEFF1); 2515 2516 switch (event) { 2517 case SND_SOC_DAPM_PRE_PMU: 2518 if (cs48l32_eq_filter_unstable(!!mode, data[1], data[0]) || 2519 cs48l32_eq_filter_unstable(true, data[7], data[6]) || 2520 cs48l32_eq_filter_unstable(true, data[13], data[12]) || 2521 cs48l32_eq_filter_unstable(true, data[19], data[18]) || 2522 cs48l32_eq_filter_unstable(false, data[25], data[24])) { 2523 dev_err(cs48l32_codec->core.dev, "Rejecting unstable EQ coefficients.\n"); 2524 ret = -EINVAL; 2525 } else { 2526 ret = regmap_raw_write(regmap, reg, data, CS48L32_EQ_BLOCK_SZ); 2527 if (ret < 0) { 2528 dev_err(cs48l32_codec->core.dev, 2529 "Error writing EQ coefficients: %d\n", ret); 2530 goto out; 2531 } 2532 2533 ret = snd_soc_component_update_bits(component, 2534 CS48L32_EQ_CONTROL2, 2535 w->mask, 2536 mode << w->shift); 2537 if (ret < 0) { 2538 dev_err(cs48l32_codec->core.dev, 2539 "Error writing EQ mode: %d\n", ret); 2540 } 2541 } 2542 break; 2543 default: 2544 break; 2545 } 2546 2547 out: 2548 return ret; 2549 } 2550 2551 static const struct snd_kcontrol_new cs48l32_snd_controls[] = { 2552 SOC_ENUM("IN1 OSR", cs48l32_in_dmic_osr[0]), 2553 SOC_ENUM("IN2 OSR", cs48l32_in_dmic_osr[1]), 2554 2555 SOC_SINGLE_RANGE_TLV("IN1L Volume", CS48L32_IN1L_CONTROL2, 2556 CS48L32_INx_PGA_VOL_SHIFT, 0x40, 0x5f, 0, cs48l32_ana_tlv), 2557 SOC_SINGLE_RANGE_TLV("IN1R Volume", CS48L32_IN1R_CONTROL2, 2558 CS48L32_INx_PGA_VOL_SHIFT, 0x40, 0x5f, 0, cs48l32_ana_tlv), 2559 2560 SOC_ENUM("IN HPF Cutoff Frequency", cs48l32_in_hpf_cut_enum), 2561 2562 SOC_SINGLE_EXT("IN1L LP Switch", CS48L32_IN1L_CONTROL1, CS48L32_INx_LP_MODE_SHIFT, 2563 1, 0, snd_soc_get_volsw, cs48l32_low_power_mode_put), 2564 SOC_SINGLE_EXT("IN1R LP Switch", CS48L32_IN1R_CONTROL1, CS48L32_INx_LP_MODE_SHIFT, 2565 1, 0, snd_soc_get_volsw, cs48l32_low_power_mode_put), 2566 2567 SOC_SINGLE("IN1L HPF Switch", CS48L32_IN1L_CONTROL1, CS48L32_INx_HPF_SHIFT, 1, 0), 2568 SOC_SINGLE("IN1R HPF Switch", CS48L32_IN1R_CONTROL1, CS48L32_INx_HPF_SHIFT, 1, 0), 2569 SOC_SINGLE("IN2L HPF Switch", CS48L32_IN2L_CONTROL1, CS48L32_INx_HPF_SHIFT, 1, 0), 2570 SOC_SINGLE("IN2R HPF Switch", CS48L32_IN2R_CONTROL1, CS48L32_INx_HPF_SHIFT, 1, 0), 2571 2572 SOC_SINGLE_EXT_TLV("IN1L Digital Volume", CS48L32_IN1L_CONTROL2, 2573 CS48L32_INx_VOL_SHIFT, 0xbf, 0, snd_soc_get_volsw, 2574 cs48l32_in_put_volsw, cs48l32_digital_tlv), 2575 SOC_SINGLE_EXT_TLV("IN1R Digital Volume", CS48L32_IN1R_CONTROL2, 2576 CS48L32_INx_VOL_SHIFT, 0xbf, 0, snd_soc_get_volsw, 2577 cs48l32_in_put_volsw, cs48l32_digital_tlv), 2578 SOC_SINGLE_EXT_TLV("IN2L Digital Volume", CS48L32_IN2L_CONTROL2, 2579 CS48L32_INx_VOL_SHIFT, 0xbf, 0, snd_soc_get_volsw, 2580 cs48l32_in_put_volsw, cs48l32_digital_tlv), 2581 SOC_SINGLE_EXT_TLV("IN2R Digital Volume", CS48L32_IN2R_CONTROL2, 2582 CS48L32_INx_VOL_SHIFT, 0xbf, 0, snd_soc_get_volsw, 2583 cs48l32_in_put_volsw, cs48l32_digital_tlv), 2584 2585 SOC_ENUM("Input Ramp Up", cs48l32_in_vi_ramp), 2586 SOC_ENUM("Input Ramp Down", cs48l32_in_vd_ramp), 2587 2588 CS48L32_RATE_ENUM("Ultrasonic 1 Rate", cs48l32_us_output_rate[0]), 2589 CS48L32_RATE_ENUM("Ultrasonic 2 Rate", cs48l32_us_output_rate[1]), 2590 2591 SOC_ENUM("Ultrasonic 1 Freq", cs48l32_us_freq[0]), 2592 SOC_ENUM("Ultrasonic 2 Freq", cs48l32_us_freq[1]), 2593 2594 SOC_SINGLE_TLV("Ultrasonic 1 Volume", CS48L32_US1_CONTROL, CS48L32_US1_GAIN_SHIFT, 2595 3, 0, cs48l32_us_tlv), 2596 SOC_SINGLE_TLV("Ultrasonic 2 Volume", CS48L32_US2_CONTROL, CS48L32_US1_GAIN_SHIFT, 2597 3, 0, cs48l32_us_tlv), 2598 2599 SOC_ENUM("Ultrasonic 1 Detect Threshold", cs48l32_us_det_thr[0]), 2600 SOC_ENUM("Ultrasonic 2 Detect Threshold", cs48l32_us_det_thr[1]), 2601 2602 SOC_ENUM("Ultrasonic 1 Detect Pulse Length", cs48l32_us_det_num[0]), 2603 SOC_ENUM("Ultrasonic 2 Detect Pulse Length", cs48l32_us_det_num[1]), 2604 2605 SOC_ENUM("Ultrasonic 1 Detect Hold", cs48l32_us_det_hold[0]), 2606 SOC_ENUM("Ultrasonic 2 Detect Hold", cs48l32_us_det_hold[1]), 2607 2608 SOC_ENUM("Ultrasonic 1 Detect Decay", cs48l32_us_det_dcy[0]), 2609 SOC_ENUM("Ultrasonic 2 Detect Decay", cs48l32_us_det_dcy[1]), 2610 2611 SOC_SINGLE("Ultrasonic 1 Detect LPF Switch", 2612 CS48L32_US1_DET_CONTROL, CS48L32_US1_DET_LPF_SHIFT, 1, 0), 2613 SOC_SINGLE("Ultrasonic 2 Detect LPF Switch", 2614 CS48L32_US2_DET_CONTROL, CS48L32_US1_DET_LPF_SHIFT, 1, 0), 2615 2616 SOC_ENUM("Ultrasonic 1 Detect LPF Cut-off", cs48l32_us_det_lpf_cut[0]), 2617 SOC_ENUM("Ultrasonic 2 Detect LPF Cut-off", cs48l32_us_det_lpf_cut[1]), 2618 2619 CS48L32_MIXER_CONTROLS("EQ1", CS48L32_EQ1_INPUT1), 2620 CS48L32_MIXER_CONTROLS("EQ2", CS48L32_EQ2_INPUT1), 2621 CS48L32_MIXER_CONTROLS("EQ3", CS48L32_EQ3_INPUT1), 2622 CS48L32_MIXER_CONTROLS("EQ4", CS48L32_EQ4_INPUT1), 2623 2624 SOC_ENUM_EXT("EQ1 Mode", cs48l32_eq_mode[0], cs48l32_eq_mode_get, cs48l32_eq_mode_put), 2625 2626 CS48L32_EQ_COEFF_CONTROLS(EQ1), 2627 2628 SOC_SINGLE_TLV("EQ1 B1 Volume", CS48L32_EQ1_GAIN1, 0, 24, 0, cs48l32_eq_tlv), 2629 SOC_SINGLE_TLV("EQ1 B2 Volume", CS48L32_EQ1_GAIN1, 8, 24, 0, cs48l32_eq_tlv), 2630 SOC_SINGLE_TLV("EQ1 B3 Volume", CS48L32_EQ1_GAIN1, 16, 24, 0, cs48l32_eq_tlv), 2631 SOC_SINGLE_TLV("EQ1 B4 Volume", CS48L32_EQ1_GAIN1, 24, 24, 0, cs48l32_eq_tlv), 2632 SOC_SINGLE_TLV("EQ1 B5 Volume", CS48L32_EQ1_GAIN2, 0, 24, 0, cs48l32_eq_tlv), 2633 2634 SOC_ENUM_EXT("EQ2 Mode", cs48l32_eq_mode[1], cs48l32_eq_mode_get, cs48l32_eq_mode_put), 2635 CS48L32_EQ_COEFF_CONTROLS(EQ2), 2636 SOC_SINGLE_TLV("EQ2 B1 Volume", CS48L32_EQ2_GAIN1, 0, 24, 0, cs48l32_eq_tlv), 2637 SOC_SINGLE_TLV("EQ2 B2 Volume", CS48L32_EQ2_GAIN1, 8, 24, 0, cs48l32_eq_tlv), 2638 SOC_SINGLE_TLV("EQ2 B3 Volume", CS48L32_EQ2_GAIN1, 16, 24, 0, cs48l32_eq_tlv), 2639 SOC_SINGLE_TLV("EQ2 B4 Volume", CS48L32_EQ2_GAIN1, 24, 24, 0, cs48l32_eq_tlv), 2640 SOC_SINGLE_TLV("EQ2 B5 Volume", CS48L32_EQ2_GAIN2, 0, 24, 0, cs48l32_eq_tlv), 2641 2642 SOC_ENUM_EXT("EQ3 Mode", cs48l32_eq_mode[2], cs48l32_eq_mode_get, cs48l32_eq_mode_put), 2643 CS48L32_EQ_COEFF_CONTROLS(EQ3), 2644 SOC_SINGLE_TLV("EQ3 B1 Volume", CS48L32_EQ3_GAIN1, 0, 24, 0, cs48l32_eq_tlv), 2645 SOC_SINGLE_TLV("EQ3 B2 Volume", CS48L32_EQ3_GAIN1, 8, 24, 0, cs48l32_eq_tlv), 2646 SOC_SINGLE_TLV("EQ3 B3 Volume", CS48L32_EQ3_GAIN1, 16, 24, 0, cs48l32_eq_tlv), 2647 SOC_SINGLE_TLV("EQ3 B4 Volume", CS48L32_EQ3_GAIN1, 24, 24, 0, cs48l32_eq_tlv), 2648 SOC_SINGLE_TLV("EQ3 B5 Volume", CS48L32_EQ3_GAIN2, 0, 24, 0, cs48l32_eq_tlv), 2649 2650 SOC_ENUM_EXT("EQ4 Mode", cs48l32_eq_mode[3], cs48l32_eq_mode_get, cs48l32_eq_mode_put), 2651 CS48L32_EQ_COEFF_CONTROLS(EQ4), 2652 SOC_SINGLE_TLV("EQ4 B1 Volume", CS48L32_EQ4_GAIN1, 0, 24, 0, cs48l32_eq_tlv), 2653 SOC_SINGLE_TLV("EQ4 B2 Volume", CS48L32_EQ4_GAIN1, 8, 24, 0, cs48l32_eq_tlv), 2654 SOC_SINGLE_TLV("EQ4 B3 Volume", CS48L32_EQ4_GAIN1, 16, 24, 0, cs48l32_eq_tlv), 2655 SOC_SINGLE_TLV("EQ4 B4 Volume", CS48L32_EQ4_GAIN1, 24, 24, 0, cs48l32_eq_tlv), 2656 SOC_SINGLE_TLV("EQ4 B5 Volume", CS48L32_EQ4_GAIN2, 0, 24, 0, cs48l32_eq_tlv), 2657 2658 CS48L32_MIXER_CONTROLS("DRC1L", CS48L32_DRC1L_INPUT1), 2659 CS48L32_MIXER_CONTROLS("DRC1R", CS48L32_DRC1R_INPUT1), 2660 CS48L32_MIXER_CONTROLS("DRC2L", CS48L32_DRC2L_INPUT1), 2661 CS48L32_MIXER_CONTROLS("DRC2R", CS48L32_DRC2R_INPUT1), 2662 2663 SND_SOC_BYTES_MASK("DRC1 Coefficients", CS48L32_DRC1_CONTROL1, 4, 2664 BIT(CS48L32_DRC1R_EN_SHIFT) | BIT(CS48L32_DRC1L_EN_SHIFT)), 2665 SND_SOC_BYTES_MASK("DRC2 Coefficients", CS48L32_DRC2_CONTROL1, 4, 2666 BIT(CS48L32_DRC1R_EN_SHIFT) | BIT(CS48L32_DRC1L_EN_SHIFT)), 2667 2668 CS48L32_MIXER_CONTROLS("LHPF1", CS48L32_LHPF1_INPUT1), 2669 CS48L32_MIXER_CONTROLS("LHPF2", CS48L32_LHPF2_INPUT1), 2670 CS48L32_MIXER_CONTROLS("LHPF3", CS48L32_LHPF3_INPUT1), 2671 CS48L32_MIXER_CONTROLS("LHPF4", CS48L32_LHPF4_INPUT1), 2672 2673 CS48L32_LHPF_CONTROL("LHPF1 Coefficients", CS48L32_LHPF1_COEFF), 2674 CS48L32_LHPF_CONTROL("LHPF2 Coefficients", CS48L32_LHPF2_COEFF), 2675 CS48L32_LHPF_CONTROL("LHPF3 Coefficients", CS48L32_LHPF3_COEFF), 2676 CS48L32_LHPF_CONTROL("LHPF4 Coefficients", CS48L32_LHPF4_COEFF), 2677 2678 SOC_ENUM("LHPF1 Mode", cs48l32_lhpf_mode[0]), 2679 SOC_ENUM("LHPF2 Mode", cs48l32_lhpf_mode[1]), 2680 SOC_ENUM("LHPF3 Mode", cs48l32_lhpf_mode[2]), 2681 SOC_ENUM("LHPF4 Mode", cs48l32_lhpf_mode[3]), 2682 2683 CS48L32_RATE_CONTROL("Sample Rate 1", 1), 2684 CS48L32_RATE_CONTROL("Sample Rate 2", 2), 2685 CS48L32_RATE_CONTROL("Sample Rate 3", 3), 2686 CS48L32_RATE_CONTROL("Sample Rate 4", 4), 2687 2688 CS48L32_RATE_ENUM("FX Rate", cs48l32_fx_rate), 2689 2690 CS48L32_RATE_ENUM("ISRC1 FSL", cs48l32_isrc_fsl[0]), 2691 CS48L32_RATE_ENUM("ISRC2 FSL", cs48l32_isrc_fsl[1]), 2692 CS48L32_RATE_ENUM("ISRC3 FSL", cs48l32_isrc_fsl[2]), 2693 CS48L32_RATE_ENUM("ISRC1 FSH", cs48l32_isrc_fsh[0]), 2694 CS48L32_RATE_ENUM("ISRC2 FSH", cs48l32_isrc_fsh[1]), 2695 CS48L32_RATE_ENUM("ISRC3 FSH", cs48l32_isrc_fsh[2]), 2696 2697 SOC_ENUM("AUXPDM1 Rate", cs48l32_auxpdm1_freq), 2698 SOC_ENUM("AUXPDM2 Rate", cs48l32_auxpdm2_freq), 2699 2700 SOC_ENUM_EXT("IN1L Rate", cs48l32_input_rate[0], snd_soc_get_enum_double, cs48l32_in_rate_put), 2701 SOC_ENUM_EXT("IN1R Rate", cs48l32_input_rate[1], snd_soc_get_enum_double, cs48l32_in_rate_put), 2702 SOC_ENUM_EXT("IN2L Rate", cs48l32_input_rate[2], snd_soc_get_enum_double, cs48l32_in_rate_put), 2703 SOC_ENUM_EXT("IN2R Rate", cs48l32_input_rate[3], snd_soc_get_enum_double, cs48l32_in_rate_put), 2704 2705 CS48L32_RATE_ENUM("Noise Generator Rate", noise_gen_rate), 2706 2707 SOC_SINGLE_TLV("Noise Generator Volume", CS48L32_COMFORT_NOISE_GENERATOR, 2708 CS48L32_NOISE_GEN_GAIN_SHIFT, 0x12, 0, cs48l32_noise_tlv), 2709 2710 CS48L32_MIXER_CONTROLS("ASP1TX1", CS48L32_ASP1TX1_INPUT1), 2711 CS48L32_MIXER_CONTROLS("ASP1TX2", CS48L32_ASP1TX2_INPUT1), 2712 CS48L32_MIXER_CONTROLS("ASP1TX3", CS48L32_ASP1TX3_INPUT1), 2713 CS48L32_MIXER_CONTROLS("ASP1TX4", CS48L32_ASP1TX4_INPUT1), 2714 CS48L32_MIXER_CONTROLS("ASP1TX5", CS48L32_ASP1TX5_INPUT1), 2715 CS48L32_MIXER_CONTROLS("ASP1TX6", CS48L32_ASP1TX6_INPUT1), 2716 CS48L32_MIXER_CONTROLS("ASP1TX7", CS48L32_ASP1TX7_INPUT1), 2717 CS48L32_MIXER_CONTROLS("ASP1TX8", CS48L32_ASP1TX8_INPUT1), 2718 2719 CS48L32_MIXER_CONTROLS("ASP2TX1", CS48L32_ASP2TX1_INPUT1), 2720 CS48L32_MIXER_CONTROLS("ASP2TX2", CS48L32_ASP2TX2_INPUT1), 2721 CS48L32_MIXER_CONTROLS("ASP2TX3", CS48L32_ASP2TX3_INPUT1), 2722 CS48L32_MIXER_CONTROLS("ASP2TX4", CS48L32_ASP2TX4_INPUT1), 2723 2724 WM_ADSP2_PRELOAD_SWITCH("DSP1", 1), 2725 2726 CS48L32_MIXER_CONTROLS("DSP1RX1", CS48L32_DSP1RX1_INPUT1), 2727 CS48L32_MIXER_CONTROLS("DSP1RX2", CS48L32_DSP1RX2_INPUT1), 2728 CS48L32_MIXER_CONTROLS("DSP1RX3", CS48L32_DSP1RX3_INPUT1), 2729 CS48L32_MIXER_CONTROLS("DSP1RX4", CS48L32_DSP1RX4_INPUT1), 2730 CS48L32_MIXER_CONTROLS("DSP1RX5", CS48L32_DSP1RX5_INPUT1), 2731 CS48L32_MIXER_CONTROLS("DSP1RX6", CS48L32_DSP1RX6_INPUT1), 2732 CS48L32_MIXER_CONTROLS("DSP1RX7", CS48L32_DSP1RX7_INPUT1), 2733 CS48L32_MIXER_CONTROLS("DSP1RX8", CS48L32_DSP1RX8_INPUT1), 2734 2735 WM_ADSP_FW_CONTROL("DSP1", 0), 2736 2737 CS48L32_DSP_RATE_CONTROL("DSP1RX1", 0), 2738 CS48L32_DSP_RATE_CONTROL("DSP1RX2", 1), 2739 CS48L32_DSP_RATE_CONTROL("DSP1RX3", 2), 2740 CS48L32_DSP_RATE_CONTROL("DSP1RX4", 3), 2741 CS48L32_DSP_RATE_CONTROL("DSP1RX5", 4), 2742 CS48L32_DSP_RATE_CONTROL("DSP1RX6", 5), 2743 CS48L32_DSP_RATE_CONTROL("DSP1RX7", 6), 2744 CS48L32_DSP_RATE_CONTROL("DSP1RX8", 7), 2745 CS48L32_DSP_RATE_CONTROL("DSP1TX1", 8), 2746 CS48L32_DSP_RATE_CONTROL("DSP1TX2", 9), 2747 CS48L32_DSP_RATE_CONTROL("DSP1TX3", 10), 2748 CS48L32_DSP_RATE_CONTROL("DSP1TX4", 11), 2749 CS48L32_DSP_RATE_CONTROL("DSP1TX5", 12), 2750 CS48L32_DSP_RATE_CONTROL("DSP1TX6", 13), 2751 CS48L32_DSP_RATE_CONTROL("DSP1TX7", 14), 2752 CS48L32_DSP_RATE_CONTROL("DSP1TX8", 15), 2753 }; 2754 2755 CS48L32_MIXER_ENUMS(EQ1, CS48L32_EQ1_INPUT1); 2756 CS48L32_MIXER_ENUMS(EQ2, CS48L32_EQ2_INPUT1); 2757 CS48L32_MIXER_ENUMS(EQ3, CS48L32_EQ3_INPUT1); 2758 CS48L32_MIXER_ENUMS(EQ4, CS48L32_EQ4_INPUT1); 2759 2760 CS48L32_MIXER_ENUMS(DRC1L, CS48L32_DRC1L_INPUT1); 2761 CS48L32_MIXER_ENUMS(DRC1R, CS48L32_DRC1R_INPUT1); 2762 CS48L32_MIXER_ENUMS(DRC2L, CS48L32_DRC2L_INPUT1); 2763 CS48L32_MIXER_ENUMS(DRC2R, CS48L32_DRC2R_INPUT1); 2764 2765 CS48L32_MIXER_ENUMS(LHPF1, CS48L32_LHPF1_INPUT1); 2766 CS48L32_MIXER_ENUMS(LHPF2, CS48L32_LHPF2_INPUT1); 2767 CS48L32_MIXER_ENUMS(LHPF3, CS48L32_LHPF3_INPUT1); 2768 CS48L32_MIXER_ENUMS(LHPF4, CS48L32_LHPF4_INPUT1); 2769 2770 CS48L32_MIXER_ENUMS(ASP1TX1, CS48L32_ASP1TX1_INPUT1); 2771 CS48L32_MIXER_ENUMS(ASP1TX2, CS48L32_ASP1TX2_INPUT1); 2772 CS48L32_MIXER_ENUMS(ASP1TX3, CS48L32_ASP1TX3_INPUT1); 2773 CS48L32_MIXER_ENUMS(ASP1TX4, CS48L32_ASP1TX4_INPUT1); 2774 CS48L32_MIXER_ENUMS(ASP1TX5, CS48L32_ASP1TX5_INPUT1); 2775 CS48L32_MIXER_ENUMS(ASP1TX6, CS48L32_ASP1TX6_INPUT1); 2776 CS48L32_MIXER_ENUMS(ASP1TX7, CS48L32_ASP1TX7_INPUT1); 2777 CS48L32_MIXER_ENUMS(ASP1TX8, CS48L32_ASP1TX8_INPUT1); 2778 2779 CS48L32_MIXER_ENUMS(ASP2TX1, CS48L32_ASP2TX1_INPUT1); 2780 CS48L32_MIXER_ENUMS(ASP2TX2, CS48L32_ASP2TX2_INPUT1); 2781 CS48L32_MIXER_ENUMS(ASP2TX3, CS48L32_ASP2TX3_INPUT1); 2782 CS48L32_MIXER_ENUMS(ASP2TX4, CS48L32_ASP2TX4_INPUT1); 2783 2784 CS48L32_MUX_ENUMS(ISRC1INT1, CS48L32_ISRC1INT1_INPUT1); 2785 CS48L32_MUX_ENUMS(ISRC1INT2, CS48L32_ISRC1INT2_INPUT1); 2786 CS48L32_MUX_ENUMS(ISRC1INT3, CS48L32_ISRC1INT3_INPUT1); 2787 CS48L32_MUX_ENUMS(ISRC1INT4, CS48L32_ISRC1INT4_INPUT1); 2788 2789 CS48L32_MUX_ENUMS(ISRC1DEC1, CS48L32_ISRC1DEC1_INPUT1); 2790 CS48L32_MUX_ENUMS(ISRC1DEC2, CS48L32_ISRC1DEC2_INPUT1); 2791 CS48L32_MUX_ENUMS(ISRC1DEC3, CS48L32_ISRC1DEC3_INPUT1); 2792 CS48L32_MUX_ENUMS(ISRC1DEC4, CS48L32_ISRC1DEC4_INPUT1); 2793 2794 CS48L32_MUX_ENUMS(ISRC2INT1, CS48L32_ISRC2INT1_INPUT1); 2795 CS48L32_MUX_ENUMS(ISRC2INT2, CS48L32_ISRC2INT2_INPUT1); 2796 2797 CS48L32_MUX_ENUMS(ISRC2DEC1, CS48L32_ISRC2DEC1_INPUT1); 2798 CS48L32_MUX_ENUMS(ISRC2DEC2, CS48L32_ISRC2DEC2_INPUT1); 2799 2800 CS48L32_MUX_ENUMS(ISRC3INT1, CS48L32_ISRC3INT1_INPUT1); 2801 CS48L32_MUX_ENUMS(ISRC3INT2, CS48L32_ISRC3INT2_INPUT1); 2802 2803 CS48L32_MUX_ENUMS(ISRC3DEC1, CS48L32_ISRC3DEC1_INPUT1); 2804 CS48L32_MUX_ENUMS(ISRC3DEC2, CS48L32_ISRC3DEC2_INPUT1); 2805 2806 CS48L32_MIXER_ENUMS(DSP1RX1, CS48L32_DSP1RX1_INPUT1); 2807 CS48L32_MIXER_ENUMS(DSP1RX2, CS48L32_DSP1RX2_INPUT1); 2808 CS48L32_MIXER_ENUMS(DSP1RX3, CS48L32_DSP1RX3_INPUT1); 2809 CS48L32_MIXER_ENUMS(DSP1RX4, CS48L32_DSP1RX4_INPUT1); 2810 CS48L32_MIXER_ENUMS(DSP1RX5, CS48L32_DSP1RX5_INPUT1); 2811 CS48L32_MIXER_ENUMS(DSP1RX6, CS48L32_DSP1RX6_INPUT1); 2812 CS48L32_MIXER_ENUMS(DSP1RX7, CS48L32_DSP1RX7_INPUT1); 2813 CS48L32_MIXER_ENUMS(DSP1RX8, CS48L32_DSP1RX8_INPUT1); 2814 2815 static int cs48l32_dsp_mem_ev(struct snd_soc_dapm_widget *w, 2816 struct snd_kcontrol *kcontrol, int event) 2817 { 2818 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); 2819 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 2820 2821 switch (event) { 2822 case SND_SOC_DAPM_POST_PMU: 2823 return cs48l32_dsp_memory_enable(cs48l32_codec, &cs48l32_dsp_sram_regs); 2824 case SND_SOC_DAPM_PRE_PMD: 2825 cs48l32_dsp_memory_disable(cs48l32_codec, &cs48l32_dsp_sram_regs); 2826 return 0; 2827 default: 2828 return 0; 2829 } 2830 } 2831 2832 static const struct snd_soc_dapm_widget cs48l32_dapm_widgets[] = { 2833 SND_SOC_DAPM_SUPPLY("SYSCLK", CS48L32_SYSTEM_CLOCK1, CS48L32_SYSCLK_EN_SHIFT, 0, 2834 cs48l32_sysclk_ev, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), 2835 2836 SND_SOC_DAPM_REGULATOR_SUPPLY("vdd-cp", 20, 0), 2837 2838 SND_SOC_DAPM_SUPPLY("VOUT_MIC", CS48L32_CHARGE_PUMP1, CS48L32_CP2_EN_SHIFT, 0, NULL, 0), 2839 SND_SOC_DAPM_SUPPLY("VOUT_MIC_REGULATED", CS48L32_CHARGE_PUMP1, CS48L32_CP2_BYPASS_SHIFT, 2840 1, NULL, 0), 2841 SND_SOC_DAPM_SUPPLY("MICBIAS1", CS48L32_MICBIAS_CTRL1, CS48L32_MICB1_EN_SHIFT, 0, NULL, 0), 2842 SND_SOC_DAPM_SUPPLY("MICBIAS1A", CS48L32_MICBIAS_CTRL5, CS48L32_MICB1A_EN_SHIFT, 0, NULL, 0), 2843 SND_SOC_DAPM_SUPPLY("MICBIAS1B", CS48L32_MICBIAS_CTRL5, CS48L32_MICB1B_EN_SHIFT, 0, NULL, 0), 2844 SND_SOC_DAPM_SUPPLY("MICBIAS1C", CS48L32_MICBIAS_CTRL5, CS48L32_MICB1C_EN_SHIFT, 0, NULL, 0), 2845 2846 SND_SOC_DAPM_SUPPLY("DSP1MEM", SND_SOC_NOPM, 0, 0, cs48l32_dsp_mem_ev, 2847 SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), 2848 2849 CS48L32_DSP_FREQ_WIDGET_EV("DSP1", 0, cs48l32_dsp_freq_ev), 2850 2851 SND_SOC_DAPM_SIGGEN("TONE"), 2852 SND_SOC_DAPM_SIGGEN("NOISE"), 2853 2854 SND_SOC_DAPM_INPUT("IN1LN_1"), 2855 SND_SOC_DAPM_INPUT("IN1LN_2"), 2856 SND_SOC_DAPM_INPUT("IN1LP_1"), 2857 SND_SOC_DAPM_INPUT("IN1LP_2"), 2858 SND_SOC_DAPM_INPUT("IN1RN_1"), 2859 SND_SOC_DAPM_INPUT("IN1RN_2"), 2860 SND_SOC_DAPM_INPUT("IN1RP_1"), 2861 SND_SOC_DAPM_INPUT("IN1RP_2"), 2862 SND_SOC_DAPM_INPUT("IN1_PDMCLK"), 2863 SND_SOC_DAPM_INPUT("IN1_PDMDATA"), 2864 2865 SND_SOC_DAPM_INPUT("IN2_PDMCLK"), 2866 SND_SOC_DAPM_INPUT("IN2_PDMDATA"), 2867 2868 SND_SOC_DAPM_MUX("Ultrasonic 1 Input", SND_SOC_NOPM, 0, 0, &cs48l32_us_inmux[0]), 2869 SND_SOC_DAPM_MUX("Ultrasonic 2 Input", SND_SOC_NOPM, 0, 0, &cs48l32_us_inmux[1]), 2870 2871 SND_SOC_DAPM_OUTPUT("DRC1 Signal Activity"), 2872 SND_SOC_DAPM_OUTPUT("DRC2 Signal Activity"), 2873 2874 SND_SOC_DAPM_OUTPUT("DSP Trigger Out"), 2875 2876 SND_SOC_DAPM_MUX("IN1L Mux", SND_SOC_NOPM, 0, 0, &cs48l32_inmux[0]), 2877 SND_SOC_DAPM_MUX("IN1R Mux", SND_SOC_NOPM, 0, 0, &cs48l32_inmux[1]), 2878 2879 SND_SOC_DAPM_MUX("IN1L Mode", SND_SOC_NOPM, 0, 0, &cs48l32_dmode_mux[0]), 2880 SND_SOC_DAPM_MUX("IN1R Mode", SND_SOC_NOPM, 0, 0, &cs48l32_dmode_mux[0]), 2881 2882 SND_SOC_DAPM_AIF_OUT("ASP1TX1", NULL, 0, CS48L32_ASP1_ENABLES1, 0, 0), 2883 SND_SOC_DAPM_AIF_OUT("ASP1TX2", NULL, 1, CS48L32_ASP1_ENABLES1, 1, 0), 2884 SND_SOC_DAPM_AIF_OUT("ASP1TX3", NULL, 2, CS48L32_ASP1_ENABLES1, 2, 0), 2885 SND_SOC_DAPM_AIF_OUT("ASP1TX4", NULL, 3, CS48L32_ASP1_ENABLES1, 3, 0), 2886 SND_SOC_DAPM_AIF_OUT("ASP1TX5", NULL, 4, CS48L32_ASP1_ENABLES1, 4, 0), 2887 SND_SOC_DAPM_AIF_OUT("ASP1TX6", NULL, 5, CS48L32_ASP1_ENABLES1, 5, 0), 2888 SND_SOC_DAPM_AIF_OUT("ASP1TX7", NULL, 6, CS48L32_ASP1_ENABLES1, 6, 0), 2889 SND_SOC_DAPM_AIF_OUT("ASP1TX8", NULL, 7, CS48L32_ASP1_ENABLES1, 7, 0), 2890 2891 SND_SOC_DAPM_AIF_OUT("ASP2TX1", NULL, 0, CS48L32_ASP2_ENABLES1, 0, 0), 2892 SND_SOC_DAPM_AIF_OUT("ASP2TX2", NULL, 1, CS48L32_ASP2_ENABLES1, 1, 0), 2893 SND_SOC_DAPM_AIF_OUT("ASP2TX3", NULL, 2, CS48L32_ASP2_ENABLES1, 2, 0), 2894 SND_SOC_DAPM_AIF_OUT("ASP2TX4", NULL, 3, CS48L32_ASP2_ENABLES1, 3, 0), 2895 2896 SND_SOC_DAPM_SWITCH("AUXPDM1 Output", CS48L32_AUXPDM_CONTROL1, 0, 0, &cs48l32_auxpdm_switch[0]), 2897 SND_SOC_DAPM_SWITCH("AUXPDM2 Output", CS48L32_AUXPDM_CONTROL1, 1, 0, &cs48l32_auxpdm_switch[1]), 2898 2899 SND_SOC_DAPM_MUX("AUXPDM1 Input", SND_SOC_NOPM, 0, 0, &cs48l32_auxpdm_inmux[0]), 2900 SND_SOC_DAPM_MUX("AUXPDM2 Input", SND_SOC_NOPM, 0, 0, &cs48l32_auxpdm_inmux[1]), 2901 2902 SND_SOC_DAPM_MUX("AUXPDM1 Analog Input", SND_SOC_NOPM, 0, 0, 2903 &cs48l32_auxpdm_analog_inmux[0]), 2904 SND_SOC_DAPM_MUX("AUXPDM2 Analog Input", SND_SOC_NOPM, 0, 0, 2905 &cs48l32_auxpdm_analog_inmux[1]), 2906 2907 SND_SOC_DAPM_SWITCH("Ultrasonic 1 Detect", CS48L32_US_CONTROL, 2908 CS48L32_US1_DET_EN_SHIFT, 0, &cs48l32_us_switch[0]), 2909 SND_SOC_DAPM_SWITCH("Ultrasonic 2 Detect", CS48L32_US_CONTROL, 2910 CS48L32_US1_DET_EN_SHIFT, 0, &cs48l32_us_switch[1]), 2911 2912 /* 2913 * mux_in widgets : arranged in the order of sources 2914 * specified in CS48L32_MIXER_INPUT_ROUTES 2915 */ 2916 SND_SOC_DAPM_PGA("Tone Generator 1", CS48L32_TONE_GENERATOR1, 0, 0, NULL, 0), 2917 SND_SOC_DAPM_PGA("Tone Generator 2", CS48L32_TONE_GENERATOR1, 1, 0, NULL, 0), 2918 2919 SND_SOC_DAPM_PGA("Noise Generator", CS48L32_COMFORT_NOISE_GENERATOR, 2920 CS48L32_NOISE_GEN_EN_SHIFT, 0, NULL, 0), 2921 2922 SND_SOC_DAPM_PGA_E("IN1L PGA", CS48L32_INPUT_CONTROL, CS48L32_IN1L_EN_SHIFT, 2923 0, NULL, 0, cs48l32_in_ev, 2924 SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU), 2925 SND_SOC_DAPM_PGA_E("IN1R PGA", CS48L32_INPUT_CONTROL, CS48L32_IN1R_EN_SHIFT, 2926 0, NULL, 0, cs48l32_in_ev, 2927 SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU), 2928 SND_SOC_DAPM_PGA_E("IN2L PGA", CS48L32_INPUT_CONTROL, CS48L32_IN2L_EN_SHIFT, 2929 0, NULL, 0, cs48l32_in_ev, 2930 SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU), 2931 SND_SOC_DAPM_PGA_E("IN2R PGA", CS48L32_INPUT_CONTROL, CS48L32_IN2R_EN_SHIFT, 2932 0, NULL, 0, cs48l32_in_ev, 2933 SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU), 2934 2935 SND_SOC_DAPM_AIF_IN("ASP1RX1", NULL, 0, CS48L32_ASP1_ENABLES1, 16, 0), 2936 SND_SOC_DAPM_AIF_IN("ASP1RX2", NULL, 1, CS48L32_ASP1_ENABLES1, 17, 0), 2937 SND_SOC_DAPM_AIF_IN("ASP1RX3", NULL, 2, CS48L32_ASP1_ENABLES1, 18, 0), 2938 SND_SOC_DAPM_AIF_IN("ASP1RX4", NULL, 3, CS48L32_ASP1_ENABLES1, 19, 0), 2939 SND_SOC_DAPM_AIF_IN("ASP1RX5", NULL, 4, CS48L32_ASP1_ENABLES1, 20, 0), 2940 SND_SOC_DAPM_AIF_IN("ASP1RX6", NULL, 5, CS48L32_ASP1_ENABLES1, 21, 0), 2941 SND_SOC_DAPM_AIF_IN("ASP1RX7", NULL, 6, CS48L32_ASP1_ENABLES1, 22, 0), 2942 SND_SOC_DAPM_AIF_IN("ASP1RX8", NULL, 7, CS48L32_ASP1_ENABLES1, 23, 0), 2943 2944 SND_SOC_DAPM_AIF_IN("ASP2RX1", NULL, 0, CS48L32_ASP2_ENABLES1, 16, 0), 2945 SND_SOC_DAPM_AIF_IN("ASP2RX2", NULL, 1, CS48L32_ASP2_ENABLES1, 17, 0), 2946 SND_SOC_DAPM_AIF_IN("ASP2RX3", NULL, 2, CS48L32_ASP2_ENABLES1, 18, 0), 2947 SND_SOC_DAPM_AIF_IN("ASP2RX4", NULL, 3, CS48L32_ASP2_ENABLES1, 19, 0), 2948 2949 SND_SOC_DAPM_PGA("ISRC1DEC1", CS48L32_ISRC1_CONTROL2, CS48L32_ISRC1_DEC1_EN_SHIFT, 0, NULL, 0), 2950 SND_SOC_DAPM_PGA("ISRC1DEC2", CS48L32_ISRC1_CONTROL2, CS48L32_ISRC1_DEC2_EN_SHIFT, 0, NULL, 0), 2951 SND_SOC_DAPM_PGA("ISRC1DEC3", CS48L32_ISRC1_CONTROL2, CS48L32_ISRC1_DEC3_EN_SHIFT, 0, NULL, 0), 2952 SND_SOC_DAPM_PGA("ISRC1DEC4", CS48L32_ISRC1_CONTROL2, CS48L32_ISRC1_DEC4_EN_SHIFT, 0, NULL, 0), 2953 2954 SND_SOC_DAPM_PGA("ISRC1INT1", CS48L32_ISRC1_CONTROL2, CS48L32_ISRC1_INT1_EN_SHIFT, 0, NULL, 0), 2955 SND_SOC_DAPM_PGA("ISRC1INT2", CS48L32_ISRC1_CONTROL2, CS48L32_ISRC1_INT2_EN_SHIFT, 0, NULL, 0), 2956 SND_SOC_DAPM_PGA("ISRC1INT3", CS48L32_ISRC1_CONTROL2, CS48L32_ISRC1_INT3_EN_SHIFT, 0, NULL, 0), 2957 SND_SOC_DAPM_PGA("ISRC1INT4", CS48L32_ISRC1_CONTROL2, CS48L32_ISRC1_INT4_EN_SHIFT, 0, NULL, 0), 2958 2959 SND_SOC_DAPM_PGA("ISRC2DEC1", CS48L32_ISRC2_CONTROL2, CS48L32_ISRC1_DEC1_EN_SHIFT, 0, NULL, 0), 2960 SND_SOC_DAPM_PGA("ISRC2DEC2", CS48L32_ISRC2_CONTROL2, CS48L32_ISRC1_DEC2_EN_SHIFT, 0, NULL, 0), 2961 2962 SND_SOC_DAPM_PGA("ISRC2INT1", CS48L32_ISRC2_CONTROL2, CS48L32_ISRC1_INT1_EN_SHIFT, 0, NULL, 0), 2963 SND_SOC_DAPM_PGA("ISRC2INT2", CS48L32_ISRC2_CONTROL2, CS48L32_ISRC1_INT2_EN_SHIFT, 0, NULL, 0), 2964 2965 SND_SOC_DAPM_PGA("ISRC3DEC1", CS48L32_ISRC3_CONTROL2, CS48L32_ISRC1_DEC1_EN_SHIFT, 0, NULL, 0), 2966 SND_SOC_DAPM_PGA("ISRC3DEC2", CS48L32_ISRC3_CONTROL2, CS48L32_ISRC1_DEC2_EN_SHIFT, 0, NULL, 0), 2967 2968 SND_SOC_DAPM_PGA("ISRC3INT1", CS48L32_ISRC3_CONTROL2, CS48L32_ISRC1_INT1_EN_SHIFT, 0, NULL, 0), 2969 SND_SOC_DAPM_PGA("ISRC3INT2", CS48L32_ISRC3_CONTROL2, CS48L32_ISRC1_INT2_EN_SHIFT, 0, NULL, 0), 2970 2971 SND_SOC_DAPM_PGA_E("EQ1", CS48L32_EQ_CONTROL1, 0, 0, NULL, 0, cs48l32_eq_ev, SND_SOC_DAPM_PRE_PMU), 2972 SND_SOC_DAPM_PGA_E("EQ2", CS48L32_EQ_CONTROL1, 1, 0, NULL, 0, cs48l32_eq_ev, SND_SOC_DAPM_PRE_PMU), 2973 SND_SOC_DAPM_PGA_E("EQ3", CS48L32_EQ_CONTROL1, 2, 0, NULL, 0, cs48l32_eq_ev, SND_SOC_DAPM_PRE_PMU), 2974 SND_SOC_DAPM_PGA_E("EQ4", CS48L32_EQ_CONTROL1, 3, 0, NULL, 0, cs48l32_eq_ev, SND_SOC_DAPM_PRE_PMU), 2975 2976 SND_SOC_DAPM_PGA("DRC1L", CS48L32_DRC1_CONTROL1, CS48L32_DRC1L_EN_SHIFT, 0, NULL, 0), 2977 SND_SOC_DAPM_PGA("DRC1R", CS48L32_DRC1_CONTROL1, CS48L32_DRC1R_EN_SHIFT, 0, NULL, 0), 2978 SND_SOC_DAPM_PGA("DRC2L", CS48L32_DRC2_CONTROL1, CS48L32_DRC1L_EN_SHIFT, 0, NULL, 0), 2979 SND_SOC_DAPM_PGA("DRC2R", CS48L32_DRC2_CONTROL1, CS48L32_DRC1R_EN_SHIFT, 0, NULL, 0), 2980 2981 SND_SOC_DAPM_PGA("LHPF1", CS48L32_LHPF_CONTROL1, 0, 0, NULL, 0), 2982 SND_SOC_DAPM_PGA("LHPF2", CS48L32_LHPF_CONTROL1, 1, 0, NULL, 0), 2983 SND_SOC_DAPM_PGA("LHPF3", CS48L32_LHPF_CONTROL1, 2, 0, NULL, 0), 2984 SND_SOC_DAPM_PGA("LHPF4", CS48L32_LHPF_CONTROL1, 3, 0, NULL, 0), 2985 2986 SND_SOC_DAPM_PGA("Ultrasonic 1", CS48L32_US_CONTROL, 0, 0, NULL, 0), 2987 SND_SOC_DAPM_PGA("Ultrasonic 2", CS48L32_US_CONTROL, 1, 0, NULL, 0), 2988 2989 WM_ADSP2("DSP1", 0, wm_adsp_early_event), 2990 2991 /* end of ordered widget list */ 2992 2993 CS48L32_MIXER_WIDGETS(EQ1, "EQ1"), 2994 CS48L32_MIXER_WIDGETS(EQ2, "EQ2"), 2995 CS48L32_MIXER_WIDGETS(EQ3, "EQ3"), 2996 CS48L32_MIXER_WIDGETS(EQ4, "EQ4"), 2997 2998 CS48L32_MIXER_WIDGETS(DRC1L, "DRC1L"), 2999 CS48L32_MIXER_WIDGETS(DRC1R, "DRC1R"), 3000 CS48L32_MIXER_WIDGETS(DRC2L, "DRC2L"), 3001 CS48L32_MIXER_WIDGETS(DRC2R, "DRC2R"), 3002 3003 SND_SOC_DAPM_SWITCH("DRC1 Activity Output", SND_SOC_NOPM, 0, 0, 3004 &cs48l32_drc_activity_output_mux[0]), 3005 SND_SOC_DAPM_SWITCH("DRC2 Activity Output", SND_SOC_NOPM, 0, 0, 3006 &cs48l32_drc_activity_output_mux[1]), 3007 3008 CS48L32_MIXER_WIDGETS(LHPF1, "LHPF1"), 3009 CS48L32_MIXER_WIDGETS(LHPF2, "LHPF2"), 3010 CS48L32_MIXER_WIDGETS(LHPF3, "LHPF3"), 3011 CS48L32_MIXER_WIDGETS(LHPF4, "LHPF4"), 3012 3013 CS48L32_MIXER_WIDGETS(ASP1TX1, "ASP1TX1"), 3014 CS48L32_MIXER_WIDGETS(ASP1TX2, "ASP1TX2"), 3015 CS48L32_MIXER_WIDGETS(ASP1TX3, "ASP1TX3"), 3016 CS48L32_MIXER_WIDGETS(ASP1TX4, "ASP1TX4"), 3017 CS48L32_MIXER_WIDGETS(ASP1TX5, "ASP1TX5"), 3018 CS48L32_MIXER_WIDGETS(ASP1TX6, "ASP1TX6"), 3019 CS48L32_MIXER_WIDGETS(ASP1TX7, "ASP1TX7"), 3020 CS48L32_MIXER_WIDGETS(ASP1TX8, "ASP1TX8"), 3021 3022 CS48L32_MIXER_WIDGETS(ASP2TX1, "ASP2TX1"), 3023 CS48L32_MIXER_WIDGETS(ASP2TX2, "ASP2TX2"), 3024 CS48L32_MIXER_WIDGETS(ASP2TX3, "ASP2TX3"), 3025 CS48L32_MIXER_WIDGETS(ASP2TX4, "ASP2TX4"), 3026 3027 CS48L32_MUX_WIDGETS(ISRC1DEC1, "ISRC1DEC1"), 3028 CS48L32_MUX_WIDGETS(ISRC1DEC2, "ISRC1DEC2"), 3029 CS48L32_MUX_WIDGETS(ISRC1DEC3, "ISRC1DEC3"), 3030 CS48L32_MUX_WIDGETS(ISRC1DEC4, "ISRC1DEC4"), 3031 3032 CS48L32_MUX_WIDGETS(ISRC1INT1, "ISRC1INT1"), 3033 CS48L32_MUX_WIDGETS(ISRC1INT2, "ISRC1INT2"), 3034 CS48L32_MUX_WIDGETS(ISRC1INT3, "ISRC1INT3"), 3035 CS48L32_MUX_WIDGETS(ISRC1INT4, "ISRC1INT4"), 3036 3037 CS48L32_MUX_WIDGETS(ISRC2DEC1, "ISRC2DEC1"), 3038 CS48L32_MUX_WIDGETS(ISRC2DEC2, "ISRC2DEC2"), 3039 3040 CS48L32_MUX_WIDGETS(ISRC2INT1, "ISRC2INT1"), 3041 CS48L32_MUX_WIDGETS(ISRC2INT2, "ISRC2INT2"), 3042 3043 CS48L32_MUX_WIDGETS(ISRC3DEC1, "ISRC3DEC1"), 3044 CS48L32_MUX_WIDGETS(ISRC3DEC2, "ISRC3DEC2"), 3045 3046 CS48L32_MUX_WIDGETS(ISRC3INT1, "ISRC3INT1"), 3047 CS48L32_MUX_WIDGETS(ISRC3INT2, "ISRC3INT2"), 3048 3049 CS48L32_MIXER_WIDGETS(DSP1RX1, "DSP1RX1"), 3050 CS48L32_MIXER_WIDGETS(DSP1RX2, "DSP1RX2"), 3051 CS48L32_MIXER_WIDGETS(DSP1RX3, "DSP1RX3"), 3052 CS48L32_MIXER_WIDGETS(DSP1RX4, "DSP1RX4"), 3053 CS48L32_MIXER_WIDGETS(DSP1RX5, "DSP1RX5"), 3054 CS48L32_MIXER_WIDGETS(DSP1RX6, "DSP1RX6"), 3055 CS48L32_MIXER_WIDGETS(DSP1RX7, "DSP1RX7"), 3056 CS48L32_MIXER_WIDGETS(DSP1RX8, "DSP1RX8"), 3057 3058 SND_SOC_DAPM_SWITCH("DSP1 Trigger Output", SND_SOC_NOPM, 0, 0, 3059 &cs48l32_dsp_trigger_output_mux[0]), 3060 3061 SND_SOC_DAPM_OUTPUT("AUXPDM1_CLK"), 3062 SND_SOC_DAPM_OUTPUT("AUXPDM1_DOUT"), 3063 SND_SOC_DAPM_OUTPUT("AUXPDM2_CLK"), 3064 SND_SOC_DAPM_OUTPUT("AUXPDM2_DOUT"), 3065 3066 SND_SOC_DAPM_OUTPUT("MICSUPP"), 3067 3068 SND_SOC_DAPM_OUTPUT("Ultrasonic Dummy Output"), 3069 }; 3070 3071 static const struct snd_soc_dapm_route cs48l32_dapm_routes[] = { 3072 { "IN1LN_1", NULL, "SYSCLK" }, 3073 { "IN1LN_2", NULL, "SYSCLK" }, 3074 { "IN1LP_1", NULL, "SYSCLK" }, 3075 { "IN1LP_2", NULL, "SYSCLK" }, 3076 { "IN1RN_1", NULL, "SYSCLK" }, 3077 { "IN1RN_2", NULL, "SYSCLK" }, 3078 { "IN1RP_1", NULL, "SYSCLK" }, 3079 { "IN1RP_2", NULL, "SYSCLK" }, 3080 3081 { "IN1_PDMCLK", NULL, "SYSCLK" }, 3082 { "IN1_PDMDATA", NULL, "SYSCLK" }, 3083 { "IN2_PDMCLK", NULL, "SYSCLK" }, 3084 { "IN2_PDMDATA", NULL, "SYSCLK" }, 3085 3086 { "DSP1 Preloader", NULL, "DSP1MEM" }, 3087 { "DSP1", NULL, "DSP1FREQ" }, 3088 3089 { "Audio Trace DSP", NULL, "DSP1" }, 3090 { "Voice Ctrl DSP", NULL, "DSP1" }, 3091 3092 { "VOUT_MIC_REGULATED", NULL, "VOUT_MIC" }, 3093 { "MICBIAS1", NULL, "VOUT_MIC_REGULATED" }, 3094 { "MICBIAS1A", NULL, "MICBIAS1" }, 3095 { "MICBIAS1B", NULL, "MICBIAS1" }, 3096 { "MICBIAS1C", NULL, "MICBIAS1" }, 3097 3098 { "Tone Generator 1", NULL, "SYSCLK" }, 3099 { "Tone Generator 2", NULL, "SYSCLK" }, 3100 { "Noise Generator", NULL, "SYSCLK" }, 3101 3102 { "Tone Generator 1", NULL, "TONE" }, 3103 { "Tone Generator 2", NULL, "TONE" }, 3104 { "Noise Generator", NULL, "NOISE" }, 3105 3106 { "ASP1 Capture", NULL, "ASP1TX1" }, 3107 { "ASP1 Capture", NULL, "ASP1TX2" }, 3108 { "ASP1 Capture", NULL, "ASP1TX3" }, 3109 { "ASP1 Capture", NULL, "ASP1TX4" }, 3110 { "ASP1 Capture", NULL, "ASP1TX5" }, 3111 { "ASP1 Capture", NULL, "ASP1TX6" }, 3112 { "ASP1 Capture", NULL, "ASP1TX7" }, 3113 { "ASP1 Capture", NULL, "ASP1TX8" }, 3114 3115 { "ASP1RX1", NULL, "ASP1 Playback" }, 3116 { "ASP1RX2", NULL, "ASP1 Playback" }, 3117 { "ASP1RX3", NULL, "ASP1 Playback" }, 3118 { "ASP1RX4", NULL, "ASP1 Playback" }, 3119 { "ASP1RX5", NULL, "ASP1 Playback" }, 3120 { "ASP1RX6", NULL, "ASP1 Playback" }, 3121 { "ASP1RX7", NULL, "ASP1 Playback" }, 3122 { "ASP1RX8", NULL, "ASP1 Playback" }, 3123 3124 { "ASP2 Capture", NULL, "ASP2TX1" }, 3125 { "ASP2 Capture", NULL, "ASP2TX2" }, 3126 { "ASP2 Capture", NULL, "ASP2TX3" }, 3127 { "ASP2 Capture", NULL, "ASP2TX4" }, 3128 3129 { "ASP2RX1", NULL, "ASP2 Playback" }, 3130 { "ASP2RX2", NULL, "ASP2 Playback" }, 3131 { "ASP2RX3", NULL, "ASP2 Playback" }, 3132 { "ASP2RX4", NULL, "ASP2 Playback" }, 3133 3134 { "ASP1 Playback", NULL, "SYSCLK" }, 3135 { "ASP2 Playback", NULL, "SYSCLK" }, 3136 3137 { "ASP1 Capture", NULL, "SYSCLK" }, 3138 { "ASP2 Capture", NULL, "SYSCLK" }, 3139 3140 { "IN1L Mux", "Analog 1", "IN1LN_1" }, 3141 { "IN1L Mux", "Analog 2", "IN1LN_2" }, 3142 { "IN1L Mux", "Analog 1", "IN1LP_1" }, 3143 { "IN1L Mux", "Analog 2", "IN1LP_2" }, 3144 { "IN1R Mux", "Analog 1", "IN1RN_1" }, 3145 { "IN1R Mux", "Analog 2", "IN1RN_2" }, 3146 { "IN1R Mux", "Analog 1", "IN1RP_1" }, 3147 { "IN1R Mux", "Analog 2", "IN1RP_2" }, 3148 3149 { "IN1L PGA", NULL, "IN1L Mode" }, 3150 { "IN1R PGA", NULL, "IN1R Mode" }, 3151 3152 { "IN1L Mode", "Analog", "IN1L Mux" }, 3153 { "IN1R Mode", "Analog", "IN1R Mux" }, 3154 3155 { "IN1L Mode", "Digital", "IN1_PDMCLK" }, 3156 { "IN1L Mode", "Digital", "IN1_PDMDATA" }, 3157 { "IN1R Mode", "Digital", "IN1_PDMCLK" }, 3158 { "IN1R Mode", "Digital", "IN1_PDMDATA" }, 3159 3160 { "IN1L PGA", NULL, "VOUT_MIC" }, 3161 { "IN1R PGA", NULL, "VOUT_MIC" }, 3162 3163 { "IN2L PGA", NULL, "VOUT_MIC" }, 3164 { "IN2R PGA", NULL, "VOUT_MIC" }, 3165 3166 { "IN2L PGA", NULL, "IN2_PDMCLK" }, 3167 { "IN2R PGA", NULL, "IN2_PDMCLK" }, 3168 { "IN2L PGA", NULL, "IN2_PDMDATA" }, 3169 { "IN2R PGA", NULL, "IN2_PDMDATA" }, 3170 3171 { "Ultrasonic 1", NULL, "Ultrasonic 1 Input" }, 3172 { "Ultrasonic 2", NULL, "Ultrasonic 2 Input" }, 3173 3174 { "Ultrasonic 1 Input", "IN1L", "IN1L PGA" }, 3175 { "Ultrasonic 1 Input", "IN1R", "IN1R PGA" }, 3176 { "Ultrasonic 1 Input", "IN2L", "IN2L PGA" }, 3177 { "Ultrasonic 1 Input", "IN2R", "IN2R PGA" }, 3178 3179 { "Ultrasonic 2 Input", "IN1L", "IN1L PGA" }, 3180 { "Ultrasonic 2 Input", "IN1R", "IN1R PGA" }, 3181 { "Ultrasonic 2 Input", "IN2L", "IN2L PGA" }, 3182 { "Ultrasonic 2 Input", "IN2R", "IN2R PGA" }, 3183 3184 { "Ultrasonic 1 Detect", "Switch", "Ultrasonic 1 Input" }, 3185 { "Ultrasonic 2 Detect", "Switch", "Ultrasonic 2 Input" }, 3186 3187 { "Ultrasonic Dummy Output", NULL, "Ultrasonic 1 Detect" }, 3188 { "Ultrasonic Dummy Output", NULL, "Ultrasonic 2 Detect" }, 3189 3190 CS48L32_MIXER_ROUTES("ASP1TX1", "ASP1TX1"), 3191 CS48L32_MIXER_ROUTES("ASP1TX2", "ASP1TX2"), 3192 CS48L32_MIXER_ROUTES("ASP1TX3", "ASP1TX3"), 3193 CS48L32_MIXER_ROUTES("ASP1TX4", "ASP1TX4"), 3194 CS48L32_MIXER_ROUTES("ASP1TX5", "ASP1TX5"), 3195 CS48L32_MIXER_ROUTES("ASP1TX6", "ASP1TX6"), 3196 CS48L32_MIXER_ROUTES("ASP1TX7", "ASP1TX7"), 3197 CS48L32_MIXER_ROUTES("ASP1TX8", "ASP1TX8"), 3198 3199 CS48L32_MIXER_ROUTES("ASP2TX1", "ASP2TX1"), 3200 CS48L32_MIXER_ROUTES("ASP2TX2", "ASP2TX2"), 3201 CS48L32_MIXER_ROUTES("ASP2TX3", "ASP2TX3"), 3202 CS48L32_MIXER_ROUTES("ASP2TX4", "ASP2TX4"), 3203 3204 CS48L32_MIXER_ROUTES("EQ1", "EQ1"), 3205 CS48L32_MIXER_ROUTES("EQ2", "EQ2"), 3206 CS48L32_MIXER_ROUTES("EQ3", "EQ3"), 3207 CS48L32_MIXER_ROUTES("EQ4", "EQ4"), 3208 3209 CS48L32_MIXER_ROUTES("DRC1L", "DRC1L"), 3210 CS48L32_MIXER_ROUTES("DRC1R", "DRC1R"), 3211 CS48L32_MIXER_ROUTES("DRC2L", "DRC2L"), 3212 CS48L32_MIXER_ROUTES("DRC2R", "DRC2R"), 3213 3214 CS48L32_MIXER_ROUTES("LHPF1", "LHPF1"), 3215 CS48L32_MIXER_ROUTES("LHPF2", "LHPF2"), 3216 CS48L32_MIXER_ROUTES("LHPF3", "LHPF3"), 3217 CS48L32_MIXER_ROUTES("LHPF4", "LHPF4"), 3218 3219 CS48L32_MUX_ROUTES("ISRC1INT1", "ISRC1INT1"), 3220 CS48L32_MUX_ROUTES("ISRC1INT2", "ISRC1INT2"), 3221 CS48L32_MUX_ROUTES("ISRC1INT3", "ISRC1INT3"), 3222 CS48L32_MUX_ROUTES("ISRC1INT4", "ISRC1INT4"), 3223 3224 CS48L32_MUX_ROUTES("ISRC1DEC1", "ISRC1DEC1"), 3225 CS48L32_MUX_ROUTES("ISRC1DEC2", "ISRC1DEC2"), 3226 CS48L32_MUX_ROUTES("ISRC1DEC3", "ISRC1DEC3"), 3227 CS48L32_MUX_ROUTES("ISRC1DEC4", "ISRC1DEC4"), 3228 3229 CS48L32_MUX_ROUTES("ISRC2INT1", "ISRC2INT1"), 3230 CS48L32_MUX_ROUTES("ISRC2INT2", "ISRC2INT2"), 3231 3232 CS48L32_MUX_ROUTES("ISRC2DEC1", "ISRC2DEC1"), 3233 CS48L32_MUX_ROUTES("ISRC2DEC2", "ISRC2DEC2"), 3234 3235 CS48L32_MUX_ROUTES("ISRC3INT1", "ISRC3INT1"), 3236 CS48L32_MUX_ROUTES("ISRC3INT2", "ISRC3INT2"), 3237 3238 CS48L32_MUX_ROUTES("ISRC3DEC1", "ISRC3DEC1"), 3239 CS48L32_MUX_ROUTES("ISRC3DEC2", "ISRC3DEC2"), 3240 3241 CS48L32_DSP_ROUTES_1_8_SYSCLK("DSP1"), 3242 3243 { "DSP Trigger Out", NULL, "DSP1 Trigger Output" }, 3244 3245 { "DSP1 Trigger Output", "Switch", "DSP1" }, 3246 3247 { "AUXPDM1 Analog Input", "IN1L", "IN1L PGA" }, 3248 { "AUXPDM1 Analog Input", "IN1R", "IN1R PGA" }, 3249 3250 { "AUXPDM2 Analog Input", "IN1L", "IN1L PGA" }, 3251 { "AUXPDM2 Analog Input", "IN1R", "IN1R PGA" }, 3252 3253 { "AUXPDM1 Input", "Analog", "AUXPDM1 Analog Input" }, 3254 { "AUXPDM1 Input", "IN1 Digital", "IN1L PGA" }, 3255 { "AUXPDM1 Input", "IN1 Digital", "IN1R PGA" }, 3256 { "AUXPDM1 Input", "IN2 Digital", "IN2L PGA" }, 3257 { "AUXPDM1 Input", "IN2 Digital", "IN2R PGA" }, 3258 3259 { "AUXPDM2 Input", "Analog", "AUXPDM2 Analog Input" }, 3260 { "AUXPDM2 Input", "IN1 Digital", "IN1L PGA" }, 3261 { "AUXPDM2 Input", "IN1 Digital", "IN1R PGA" }, 3262 { "AUXPDM2 Input", "IN2 Digital", "IN2L PGA" }, 3263 { "AUXPDM2 Input", "IN2 Digital", "IN2R PGA" }, 3264 3265 { "AUXPDM1 Output", "Switch", "AUXPDM1 Input" }, 3266 { "AUXPDM1_CLK", NULL, "AUXPDM1 Output" }, 3267 { "AUXPDM1_DOUT", NULL, "AUXPDM1 Output" }, 3268 3269 { "AUXPDM2 Output", "Switch", "AUXPDM2 Input" }, 3270 { "AUXPDM2_CLK", NULL, "AUXPDM2 Output" }, 3271 { "AUXPDM2_DOUT", NULL, "AUXPDM2 Output" }, 3272 3273 { "MICSUPP", NULL, "SYSCLK" }, 3274 3275 { "DRC1 Signal Activity", NULL, "DRC1 Activity Output" }, 3276 { "DRC2 Signal Activity", NULL, "DRC2 Activity Output" }, 3277 { "DRC1 Activity Output", "Switch", "DRC1L" }, 3278 { "DRC1 Activity Output", "Switch", "DRC1R" }, 3279 { "DRC2 Activity Output", "Switch", "DRC2L" }, 3280 { "DRC2 Activity Output", "Switch", "DRC2R" }, 3281 }; 3282 3283 static int cs48l32_compr_open(struct snd_soc_component *component, 3284 struct snd_compr_stream *stream) 3285 { 3286 struct snd_soc_pcm_runtime *rtd = stream->private_data; 3287 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 3288 3289 if (strcmp(snd_soc_rtd_to_codec(rtd, 0)->name, "cs48l32-dsp-trace") && 3290 strcmp(snd_soc_rtd_to_codec(rtd, 0)->name, "cs48l32-dsp-voicectrl")) { 3291 dev_err(cs48l32_codec->core.dev, "No suitable compressed stream for DAI '%s'\n", 3292 snd_soc_rtd_to_codec(rtd, 0)->name); 3293 return -EINVAL; 3294 } 3295 3296 return wm_adsp_compr_open(&cs48l32_codec->dsp, stream); 3297 } 3298 3299 static const struct snd_compress_ops cs48l32_compress_ops = { 3300 .open = &cs48l32_compr_open, 3301 .free = &wm_adsp_compr_free, 3302 .set_params = &wm_adsp_compr_set_params, 3303 .get_caps = &wm_adsp_compr_get_caps, 3304 .trigger = &wm_adsp_compr_trigger, 3305 .pointer = &wm_adsp_compr_pointer, 3306 .copy = &wm_adsp_compr_copy, 3307 }; 3308 3309 static const struct snd_soc_dai_ops cs48l32_compress_dai_ops = { 3310 .compress_new = snd_soc_new_compress, 3311 }; 3312 3313 static struct snd_soc_dai_driver cs48l32_dai[] = { 3314 { 3315 .name = "cs48l32-asp1", 3316 .id = 1, 3317 .base = CS48L32_ASP1_ENABLES1, 3318 .playback = { 3319 .stream_name = "ASP1 Playback", 3320 .channels_min = 1, 3321 .channels_max = 8, 3322 .rates = CS48L32_RATES, 3323 .formats = CS48L32_FORMATS, 3324 }, 3325 .capture = { 3326 .stream_name = "ASP1 Capture", 3327 .channels_min = 1, 3328 .channels_max = 8, 3329 .rates = CS48L32_RATES, 3330 .formats = CS48L32_FORMATS, 3331 }, 3332 .ops = &cs48l32_dai_ops, 3333 .symmetric_rate = 1, 3334 .symmetric_sample_bits = 1, 3335 }, 3336 { 3337 .name = "cs48l32-asp2", 3338 .id = 2, 3339 .base = CS48L32_ASP2_ENABLES1, 3340 .playback = { 3341 .stream_name = "ASP2 Playback", 3342 .channels_min = 1, 3343 .channels_max = 4, 3344 .rates = CS48L32_RATES, 3345 .formats = CS48L32_FORMATS, 3346 }, 3347 .capture = { 3348 .stream_name = "ASP2 Capture", 3349 .channels_min = 1, 3350 .channels_max = 4, 3351 .rates = CS48L32_RATES, 3352 .formats = CS48L32_FORMATS, 3353 }, 3354 .ops = &cs48l32_dai_ops, 3355 .symmetric_rate = 1, 3356 .symmetric_sample_bits = 1, 3357 }, 3358 { 3359 .name = "cs48l32-cpu-trace", 3360 .id = 3, 3361 .capture = { 3362 .stream_name = "Audio Trace CPU", 3363 .channels_min = 1, 3364 .channels_max = 8, 3365 .rates = CS48L32_RATES, 3366 .formats = CS48L32_FORMATS, 3367 }, 3368 .ops = &cs48l32_compress_dai_ops, 3369 }, 3370 { 3371 .name = "cs48l32-dsp-trace", 3372 .id = 4, 3373 .capture = { 3374 .stream_name = "Audio Trace DSP", 3375 .channels_min = 1, 3376 .channels_max = 8, 3377 .rates = CS48L32_RATES, 3378 .formats = CS48L32_FORMATS, 3379 }, 3380 }, 3381 { 3382 .name = "cs48l32-cpu-voicectrl", 3383 .id = 5, 3384 .capture = { 3385 .stream_name = "Voice Ctrl CPU", 3386 .channels_min = 1, 3387 .channels_max = 8, 3388 .rates = CS48L32_RATES, 3389 .formats = CS48L32_FORMATS, 3390 }, 3391 .ops = &cs48l32_compress_dai_ops, 3392 }, 3393 { 3394 .name = "cs48l32-dsp-voicectrl", 3395 .id = 6, 3396 .capture = { 3397 .stream_name = "Voice Ctrl DSP", 3398 .channels_min = 1, 3399 .channels_max = 8, 3400 .rates = CS48L32_RATES, 3401 .formats = CS48L32_FORMATS, 3402 }, 3403 }, 3404 }; 3405 3406 static int cs48l32_init_inputs(struct snd_soc_component *component) 3407 { 3408 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 3409 struct regmap *regmap = cs48l32_codec->core.regmap; 3410 unsigned int ana_mode_l, ana_mode_r, dig_mode; 3411 int i; 3412 3413 /* 3414 * Initialize input modes from the A settings. For muxed inputs the 3415 * B settings will be applied if the mux is changed 3416 */ 3417 switch (cs48l32_codec->in_type[0][0]) { 3418 default: 3419 case CS48L32_IN_TYPE_DIFF: 3420 ana_mode_l = 0; 3421 break; 3422 case CS48L32_IN_TYPE_SE: 3423 ana_mode_l = 1 << CS48L32_INx_SRC_SHIFT; 3424 break; 3425 } 3426 3427 switch (cs48l32_codec->in_type[1][0]) { 3428 default: 3429 case CS48L32_IN_TYPE_DIFF: 3430 ana_mode_r = 0; 3431 break; 3432 case CS48L32_IN_TYPE_SE: 3433 ana_mode_r = 1 << CS48L32_INx_SRC_SHIFT; 3434 break; 3435 } 3436 3437 dev_dbg(cs48l32_codec->core.dev, "IN1_1 Analogue mode=#%x,#%x\n", 3438 ana_mode_l, ana_mode_r); 3439 3440 regmap_update_bits(regmap, 3441 CS48L32_IN1L_CONTROL1, 3442 CS48L32_INx_SRC_MASK, 3443 ana_mode_l); 3444 3445 regmap_update_bits(regmap, 3446 CS48L32_IN1R_CONTROL1, 3447 CS48L32_INx_SRC_MASK, 3448 ana_mode_r); 3449 3450 for (i = 0; i < ARRAY_SIZE(cs48l32_codec->pdm_sup); i++) { 3451 dig_mode = cs48l32_codec->pdm_sup[i] << CS48L32_IN1_PDM_SUP_SHIFT; 3452 3453 dev_dbg(cs48l32_codec->core.dev, "IN%d PDM_SUP=#%x\n", i + 1, dig_mode); 3454 3455 regmap_update_bits(regmap, 3456 CS48L32_INPUT1_CONTROL1 + (i * 0x40), 3457 CS48L32_IN1_PDM_SUP_MASK, dig_mode); 3458 } 3459 3460 return 0; 3461 } 3462 3463 static int cs48l32_init_dai(struct cs48l32_codec *cs48l32_codec, int id) 3464 { 3465 struct cs48l32_dai_priv *dai_priv = &cs48l32_codec->dai[id]; 3466 3467 dai_priv->clk = CS48L32_CLK_SYSCLK_1; 3468 dai_priv->constraint = cs48l32_constraint; 3469 3470 return 0; 3471 } 3472 3473 static int cs48l32_init_eq(struct cs48l32_codec *cs48l32_codec) 3474 { 3475 struct regmap *regmap = cs48l32_codec->core.regmap; 3476 unsigned int reg = CS48L32_EQ1_BAND1_COEFF1, mode; 3477 __be16 *data; 3478 int i, ret; 3479 3480 ret = regmap_read(regmap, CS48L32_EQ_CONTROL2, &mode); 3481 if (ret < 0) { 3482 dev_err(cs48l32_codec->core.dev, "Error reading EQ mode: %d\n", ret); 3483 goto out; 3484 } 3485 3486 for (i = 0; i < 4; ++i) { 3487 cs48l32_codec->eq_mode[i] = (mode >> i) & 0x1; 3488 3489 data = &cs48l32_codec->eq_coefficients[i][0]; 3490 ret = regmap_raw_read(regmap, reg + (i * 68), data, 3491 CS48L32_EQ_BLOCK_SZ); 3492 if (ret < 0) { 3493 dev_err(cs48l32_codec->core.dev, 3494 "Error reading EQ coefficients: %d\n", ret); 3495 goto out; 3496 } 3497 } 3498 3499 out: 3500 return ret; 3501 } 3502 3503 static int cs48l32_component_probe(struct snd_soc_component *component) 3504 { 3505 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 3506 int i, ret; 3507 3508 snd_soc_component_init_regmap(component, cs48l32_codec->core.regmap); 3509 3510 ret = cs48l32_init_inputs(component); 3511 if (ret) 3512 return ret; 3513 3514 for (i = 0; i < ARRAY_SIZE(cs48l32_dai); i++) 3515 cs48l32_init_dai(cs48l32_codec, i); 3516 3517 ret = cs48l32_init_eq(cs48l32_codec); 3518 if (ret) 3519 return ret; 3520 3521 wm_adsp2_component_probe(&cs48l32_codec->dsp, component); 3522 3523 /* Unmask DSP IRQs */ 3524 regmap_clear_bits(cs48l32_codec->core.regmap, CS48L32_IRQ1_MASK_7, 3525 CS48L32_DSP1_MPU_ERR_EINT1_MASK | CS48L32_DSP1_WDT_EXPIRE_EINT1_MASK); 3526 regmap_clear_bits(cs48l32_codec->core.regmap, CS48L32_IRQ1_MASK_9, 3527 CS48L32_DSP1_IRQ0_EINT1_MASK); 3528 3529 return 0; 3530 } 3531 3532 static void cs48l32_component_remove(struct snd_soc_component *component) 3533 { 3534 struct cs48l32_codec *cs48l32_codec = snd_soc_component_get_drvdata(component); 3535 3536 /* Mask DSP IRQs */ 3537 regmap_set_bits(cs48l32_codec->core.regmap, CS48L32_IRQ1_MASK_7, 3538 CS48L32_DSP1_MPU_ERR_EINT1_MASK | CS48L32_DSP1_WDT_EXPIRE_EINT1_MASK); 3539 regmap_set_bits(cs48l32_codec->core.regmap, CS48L32_IRQ1_MASK_9, 3540 CS48L32_DSP1_IRQ0_EINT1_MASK); 3541 3542 wm_adsp2_component_remove(&cs48l32_codec->dsp, component); 3543 } 3544 3545 static const struct snd_soc_component_driver cs48l32_soc_component_drv = { 3546 .probe = &cs48l32_component_probe, 3547 .remove = &cs48l32_component_remove, 3548 .set_sysclk = &cs48l32_set_sysclk, 3549 .set_pll = &cs48l32_set_fll, 3550 .name = "cs48l32-codec", 3551 .compress_ops = &cs48l32_compress_ops, 3552 .controls = cs48l32_snd_controls, 3553 .num_controls = ARRAY_SIZE(cs48l32_snd_controls), 3554 .dapm_widgets = cs48l32_dapm_widgets, 3555 .num_dapm_widgets = ARRAY_SIZE(cs48l32_dapm_widgets), 3556 .dapm_routes = cs48l32_dapm_routes, 3557 .num_dapm_routes = ARRAY_SIZE(cs48l32_dapm_routes), 3558 .use_pmdown_time = 1, 3559 .endianness = 1, 3560 }; 3561 3562 static int cs48l32_prop_read_u32_array(struct cs48l32_codec *cs48l32_codec, 3563 const char *propname, 3564 u32 *dest, 3565 int n_max) 3566 { 3567 struct cs48l32 *cs48l32 = &cs48l32_codec->core; 3568 int ret; 3569 3570 ret = device_property_read_u32_array(cs48l32->dev, propname, dest, n_max); 3571 if (ret == -EINVAL) 3572 return -ENOENT; 3573 3574 if (ret < 0) 3575 return dev_err_probe(cs48l32->dev, ret, "%s malformed\n", propname); 3576 3577 return 0; 3578 } 3579 3580 static void cs48l32_prop_get_in_type(struct cs48l32_codec *cs48l32_codec) 3581 { 3582 const char *propname = "cirrus,in-type"; 3583 u32 tmp[CS48L32_MAX_ANALOG_INPUT * CS48L32_MAX_IN_MUX_WAYS]; 3584 int i, in_idx, mux_way_idx, ret; 3585 3586 static_assert(ARRAY_SIZE(tmp) == 3587 ARRAY_SIZE(cs48l32_codec->in_type) * ARRAY_SIZE(cs48l32_codec->in_type[0])); 3588 3589 ret = cs48l32_prop_read_u32_array(cs48l32_codec, propname, tmp, ARRAY_SIZE(tmp)); 3590 if (ret < 0) 3591 return; 3592 3593 in_idx = 0; 3594 mux_way_idx = 0; 3595 for (i = 0; i < ARRAY_SIZE(tmp); ++i) { 3596 switch (tmp[i]) { 3597 case CS48L32_IN_TYPE_DIFF: 3598 case CS48L32_IN_TYPE_SE: 3599 cs48l32_codec->in_type[in_idx][mux_way_idx] = tmp[i]; 3600 break; 3601 default: 3602 dev_warn(cs48l32_codec->core.dev, "Illegal %s value %d ignored\n", 3603 propname, tmp[i]); 3604 break; 3605 } 3606 3607 /* 3608 * Property array is [mux_way][in_channel]. Swap to 3609 * [in_channel][mux_way] for convenience. 3610 */ 3611 if (++in_idx == ARRAY_SIZE(cs48l32_codec->in_type)) { 3612 in_idx = 0; 3613 ++mux_way_idx; 3614 } 3615 } 3616 } 3617 3618 static void cs48l32_prop_get_pdm_sup(struct cs48l32_codec *cs48l32_codec) 3619 { 3620 const char *propname = "cirrus,pdm-sup"; 3621 u32 tmp[CS48L32_MAX_ANALOG_INPUT]; 3622 int i; 3623 3624 static_assert(ARRAY_SIZE(tmp) == ARRAY_SIZE(cs48l32_codec->pdm_sup)); 3625 3626 cs48l32_prop_read_u32_array(cs48l32_codec, propname, tmp, ARRAY_SIZE(tmp)); 3627 3628 for (i = 0; i < ARRAY_SIZE(cs48l32_codec->pdm_sup); i++) { 3629 switch (tmp[i]) { 3630 case CS48L32_PDM_SUP_VOUT_MIC: 3631 case CS48L32_PDM_SUP_MICBIAS1: 3632 cs48l32_codec->pdm_sup[i] = tmp[i]; 3633 break; 3634 default: 3635 dev_warn(cs48l32_codec->core.dev, "Illegal %s value %d ignored\n", 3636 propname, cs48l32_codec->pdm_sup[i]); 3637 break; 3638 } 3639 } 3640 } 3641 3642 static void cs48l32_handle_properties(struct cs48l32_codec *cs48l32_codec) 3643 { 3644 cs48l32_prop_get_in_type(cs48l32_codec); 3645 cs48l32_prop_get_pdm_sup(cs48l32_codec); 3646 } 3647 3648 static int cs48l32_request_interrupt(struct cs48l32_codec *cs48l32_codec) 3649 { 3650 int irq = cs48l32_codec->core.irq; 3651 int ret; 3652 3653 if (irq < 1) 3654 return 0; 3655 3656 /* 3657 * Don't use devm because this must be freed before destroying the 3658 * rest of the driver 3659 */ 3660 ret = request_threaded_irq(irq, NULL, cs48l32_irq, 3661 IRQF_ONESHOT | IRQF_SHARED | IRQF_TRIGGER_LOW, 3662 "cs48l32", cs48l32_codec); 3663 if (ret) 3664 return dev_err_probe(cs48l32_codec->core.dev, ret, "Failed to get IRQ\n"); 3665 3666 return 0; 3667 } 3668 3669 static int cs48l32_create_codec_component(struct cs48l32_codec *cs48l32_codec) 3670 { 3671 struct wm_adsp *dsp; 3672 int ret; 3673 3674 ASSERT_STRUCT_OFFSET(struct cs48l32_codec, dsp, 0); 3675 static_assert(ARRAY_SIZE(cs48l32_dai) == ARRAY_SIZE(cs48l32_codec->dai)); 3676 3677 cs48l32_handle_properties(cs48l32_codec); 3678 3679 dsp = &cs48l32_codec->dsp; 3680 dsp->part = "cs48l32"; 3681 dsp->cs_dsp.num = 1; 3682 dsp->cs_dsp.type = WMFW_HALO; 3683 dsp->cs_dsp.rev = 0; 3684 dsp->cs_dsp.dev = cs48l32_codec->core.dev; 3685 dsp->cs_dsp.regmap = cs48l32_codec->core.regmap; 3686 dsp->cs_dsp.base = CS48L32_DSP1_CLOCK_FREQ; 3687 dsp->cs_dsp.base_sysinfo = CS48L32_DSP1_SYS_INFO_ID; 3688 dsp->cs_dsp.mem = cs48l32_dsp1_regions; 3689 dsp->cs_dsp.num_mems = ARRAY_SIZE(cs48l32_dsp1_regions); 3690 dsp->pre_run = cs48l32_dsp_pre_run; 3691 3692 ret = wm_halo_init(dsp); 3693 if (ret != 0) 3694 return ret; 3695 3696 cs48l32_codec->fll.codec = cs48l32_codec; 3697 cs48l32_codec->fll.id = 1; 3698 cs48l32_codec->fll.base = CS48L32_FLL1_CONTROL1; 3699 cs48l32_codec->fll.sts_addr = CS48L32_IRQ1_STS_6; 3700 cs48l32_codec->fll.sts_mask = CS48L32_FLL1_LOCK_STS1_MASK; 3701 cs48l32_init_fll(&cs48l32_codec->fll); 3702 3703 ret = cs48l32_request_interrupt(cs48l32_codec); 3704 if (ret) 3705 goto err_dsp; 3706 3707 ret = devm_snd_soc_register_component(cs48l32_codec->core.dev, 3708 &cs48l32_soc_component_drv, 3709 cs48l32_dai, 3710 ARRAY_SIZE(cs48l32_dai)); 3711 if (ret < 0) { 3712 dev_err_probe(cs48l32_codec->core.dev, ret, "Failed to register component\n"); 3713 goto err_dsp; 3714 } 3715 3716 return 0; 3717 3718 err_dsp: 3719 wm_adsp2_remove(&cs48l32_codec->dsp); 3720 3721 return ret; 3722 } 3723 3724 static int cs48l32_wait_for_boot(struct cs48l32 *cs48l32) 3725 { 3726 unsigned int val; 3727 int ret; 3728 3729 ret = regmap_read_poll_timeout(cs48l32->regmap, CS48L32_IRQ1_EINT_2, val, 3730 ((val < 0xffffffff) && (val & CS48L32_BOOT_DONE_EINT1_MASK)), 3731 1000, CS48L32_BOOT_TIMEOUT_US); 3732 if (ret) { 3733 dev_err(cs48l32->dev, "BOOT_DONE timed out\n"); 3734 return -ETIMEDOUT; 3735 } 3736 3737 ret = regmap_read(cs48l32->regmap, CS48L32_MCU_CTRL1, &val); 3738 if (ret) { 3739 dev_err(cs48l32->dev, "Failed to read MCU_CTRL1: %d\n", ret); 3740 return ret; 3741 } 3742 3743 if (val & BIT(CS48L32_MCU_STS_SHIFT)) { 3744 dev_err(cs48l32->dev, "MCU boot failed\n"); 3745 return -EIO; 3746 } 3747 3748 pm_runtime_mark_last_busy(cs48l32->dev); 3749 3750 return 0; 3751 } 3752 3753 static int cs48l32_soft_reset(struct cs48l32 *cs48l32) 3754 { 3755 int ret; 3756 3757 ret = regmap_write(cs48l32->regmap, CS48L32_SFT_RESET, CS48L32_SFT_RESET_MAGIC); 3758 if (ret != 0) { 3759 dev_err(cs48l32->dev, "Failed to write soft reset: %d\n", ret); 3760 return ret; 3761 } 3762 3763 usleep_range(CS48L32_SOFT_RESET_US, CS48L32_SOFT_RESET_US + 1000); 3764 3765 return 0; 3766 } 3767 3768 static void cs48l32_enable_hard_reset(struct cs48l32 *cs48l32) 3769 { 3770 if (cs48l32->reset_gpio) 3771 gpiod_set_raw_value_cansleep(cs48l32->reset_gpio, 0); 3772 } 3773 3774 static void cs48l32_disable_hard_reset(struct cs48l32 *cs48l32) 3775 { 3776 if (cs48l32->reset_gpio) { 3777 gpiod_set_raw_value_cansleep(cs48l32->reset_gpio, 1); 3778 usleep_range(CS48L32_HARD_RESET_MIN_US, CS48L32_HARD_RESET_MIN_US + 1000); 3779 } 3780 } 3781 3782 static int cs48l32_runtime_resume(struct device *dev) 3783 { 3784 struct cs48l32_codec *cs48l32_codec = dev_get_drvdata(dev); 3785 struct cs48l32 *cs48l32 = &cs48l32_codec->core; 3786 unsigned int val; 3787 int ret; 3788 3789 ret = regulator_enable(cs48l32->vdd_d); 3790 if (ret) { 3791 dev_err(cs48l32->dev, "Failed to enable VDD_D: %d\n", ret); 3792 return ret; 3793 } 3794 3795 usleep_range(CS48L32_SOFT_RESET_US, CS48L32_SOFT_RESET_US + 1000); 3796 3797 regcache_cache_only(cs48l32->regmap, false); 3798 3799 ret = cs48l32_wait_for_boot(cs48l32); 3800 if (ret) 3801 goto err; 3802 3803 /* Check whether registers reset during suspend */ 3804 regmap_read(cs48l32->regmap, CS48L32_CTRL_IF_DEBUG3, &val); 3805 if (!val) 3806 regcache_mark_dirty(cs48l32->regmap); 3807 else 3808 dev_dbg(cs48l32->dev, "Did not reset during suspend\n"); 3809 3810 ret = regcache_sync(cs48l32->regmap); 3811 if (ret) { 3812 dev_err(cs48l32->dev, "Failed to restore register cache\n"); 3813 goto err; 3814 } 3815 3816 return 0; 3817 3818 err: 3819 regcache_cache_only(cs48l32->regmap, true); 3820 regulator_disable(cs48l32->vdd_d); 3821 3822 return ret; 3823 } 3824 3825 static int cs48l32_runtime_suspend(struct device *dev) 3826 { 3827 struct cs48l32_codec *cs48l32_codec = dev_get_drvdata(dev); 3828 struct cs48l32 *cs48l32 = &cs48l32_codec->core; 3829 3830 /* Flag to detect if the registers reset during suspend */ 3831 regmap_write(cs48l32->regmap, CS48L32_CTRL_IF_DEBUG3, 1); 3832 3833 regcache_cache_only(cs48l32->regmap, true); 3834 regulator_disable(cs48l32->vdd_d); 3835 3836 return 0; 3837 } 3838 3839 static const struct dev_pm_ops cs48l32_pm_ops = { 3840 RUNTIME_PM_OPS(cs48l32_runtime_suspend, cs48l32_runtime_resume, NULL) 3841 }; 3842 3843 static int cs48l32_configure_clk32k(struct cs48l32 *cs48l32) 3844 { 3845 int ret = 0; 3846 3847 ret = clk_prepare_enable(cs48l32->mclk1); 3848 if (ret) 3849 return dev_err_probe(cs48l32->dev, ret, "Failed to enable 32k clock\n"); 3850 3851 ret = regmap_update_bits(cs48l32->regmap, CS48L32_CLOCK32K, 3852 CS48L32_CLK_32K_EN_MASK | CS48L32_CLK_32K_SRC_MASK, 3853 CS48L32_CLK_32K_EN_MASK | CS48L32_32K_MCLK1); 3854 if (ret) { 3855 clk_disable_unprepare(cs48l32->mclk1); 3856 return dev_err_probe(cs48l32->dev, ret, "Failed to init 32k clock\n"); 3857 } 3858 3859 return 0; 3860 } 3861 3862 static int cs48l32_get_clocks(struct cs48l32 *cs48l32) 3863 { 3864 cs48l32->mclk1 = devm_clk_get_optional(cs48l32->dev, "mclk1"); 3865 if (IS_ERR(cs48l32->mclk1)) 3866 return dev_err_probe(cs48l32->dev, PTR_ERR(cs48l32->mclk1), 3867 "Failed to get mclk1\n"); 3868 3869 return 0; 3870 } 3871 3872 static int cs48l32_get_reset_gpio(struct cs48l32 *cs48l32) 3873 { 3874 struct gpio_desc *reset; 3875 3876 reset = devm_gpiod_get_optional(cs48l32->dev, "reset", GPIOD_OUT_LOW); 3877 if (IS_ERR(reset)) 3878 return dev_err_probe(cs48l32->dev, PTR_ERR(reset), "Failed to request /RESET\n"); 3879 3880 /* ACPI can override the GPIOD_OUT_LOW so ensure it starts low */ 3881 gpiod_set_raw_value_cansleep(reset, 0); 3882 3883 cs48l32->reset_gpio = reset; 3884 3885 return 0; 3886 } 3887 3888 static int cs48l32_spi_probe(struct spi_device *spi) 3889 { 3890 struct device *dev = &spi->dev; 3891 struct cs48l32_codec *cs48l32_codec; 3892 struct cs48l32 *cs48l32; 3893 unsigned int hwid, rev, otp_rev; 3894 int i, ret; 3895 3896 cs48l32_codec = devm_kzalloc(&spi->dev, sizeof(*cs48l32_codec), GFP_KERNEL); 3897 if (!cs48l32_codec) 3898 return -ENOMEM; 3899 3900 cs48l32 = &cs48l32_codec->core; 3901 cs48l32->dev = dev; 3902 cs48l32->irq = spi->irq; 3903 mutex_init(&cs48l32_codec->rate_lock); 3904 cs48l32_codec->in_vu_reg = CS48L32_INPUT_CONTROL3; 3905 3906 dev_set_drvdata(cs48l32->dev, cs48l32_codec); 3907 3908 ret = cs48l32_create_regmap(spi, cs48l32); 3909 if (ret) 3910 return dev_err_probe(&spi->dev, ret, "Failed to allocate regmap\n"); 3911 3912 regcache_cache_only(cs48l32->regmap, true); 3913 3914 ret = cs48l32_get_reset_gpio(cs48l32); 3915 if (ret) 3916 return ret; 3917 3918 ret = cs48l32_get_clocks(cs48l32); 3919 if (ret) 3920 return ret; 3921 3922 static_assert(ARRAY_SIZE(cs48l32_core_supplies) == ARRAY_SIZE(cs48l32->core_supplies)); 3923 for (i = 0; i < ARRAY_SIZE(cs48l32->core_supplies); i++) 3924 cs48l32->core_supplies[i].supply = cs48l32_core_supplies[i]; 3925 3926 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(cs48l32->core_supplies), 3927 cs48l32->core_supplies); 3928 if (ret) 3929 return dev_err_probe(dev, ret, "Failed to request core supplies\n"); 3930 3931 cs48l32->vdd_d = devm_regulator_get(cs48l32->dev, "vdd-d"); 3932 if (IS_ERR(cs48l32->vdd_d)) 3933 return dev_err_probe(dev, PTR_ERR(cs48l32->vdd_d), "Failed to request vdd-d\n"); 3934 3935 ret = regulator_bulk_enable(ARRAY_SIZE(cs48l32->core_supplies), cs48l32->core_supplies); 3936 if (ret) 3937 return dev_err_probe(dev, ret, "Failed to enable core supplies\n"); 3938 3939 ret = regulator_enable(cs48l32->vdd_d); 3940 if (ret) { 3941 dev_err(dev, "Failed to enable vdd-d: %d\n", ret); 3942 goto err_enable; 3943 } 3944 3945 cs48l32_disable_hard_reset(cs48l32); 3946 3947 regcache_cache_only(cs48l32->regmap, false); 3948 3949 /* If we don't have a reset GPIO use a soft reset */ 3950 if (!cs48l32->reset_gpio) { 3951 ret = cs48l32_soft_reset(cs48l32); 3952 if (ret) 3953 goto err_reset; 3954 } 3955 3956 ret = cs48l32_wait_for_boot(cs48l32); 3957 if (ret) { 3958 dev_err(cs48l32->dev, "Device failed initial boot: %d\n", ret); 3959 goto err_reset; 3960 } 3961 3962 ret = regmap_read(cs48l32->regmap, CS48L32_DEVID, &hwid); 3963 if (ret) { 3964 dev_err(dev, "Failed to read ID register: %d\n", ret); 3965 goto err_reset; 3966 } 3967 hwid &= CS48L32_DEVID_MASK; 3968 3969 switch (hwid) { 3970 case CS48L32_SILICON_ID: 3971 break; 3972 default: 3973 ret = -ENODEV; 3974 dev_err_probe(cs48l32->dev, ret, "Unknown device ID: %#x\n", hwid); 3975 goto err_reset; 3976 } 3977 3978 ret = regmap_read(cs48l32->regmap, CS48L32_REVID, &rev); 3979 if (ret) { 3980 dev_err(dev, "Failed to read revision register: %d\n", ret); 3981 goto err_reset; 3982 } 3983 rev &= CS48L32_AREVID_MASK | CS48L32_MTLREVID_MASK; 3984 3985 ret = regmap_read(cs48l32->regmap, CS48L32_OTPID, &otp_rev); 3986 if (ret) { 3987 dev_err(dev, "Failed to read OTP revision register: %d\n", ret); 3988 goto err_reset; 3989 } 3990 otp_rev &= CS48L32_OTPID_MASK; 3991 3992 dev_info(dev, "CS48L%x revision %X%u OTP%u\n", hwid & 0xff, 3993 rev >> CS48L32_AREVID_SHIFT, rev & CS48L32_MTLREVID_MASK, otp_rev); 3994 3995 /* Apply hardware patch */ 3996 ret = cs48l32_apply_patch(cs48l32); 3997 if (ret) { 3998 dev_err(cs48l32->dev, "Failed to apply patch %d\n", ret); 3999 goto err_reset; 4000 } 4001 4002 /* BOOT_DONE interrupt is unmasked by default, so mask it */ 4003 ret = regmap_set_bits(cs48l32->regmap, CS48L32_IRQ1_MASK_2, CS48L32_BOOT_DONE_EINT1_MASK); 4004 4005 ret = cs48l32_configure_clk32k(cs48l32); 4006 if (ret) 4007 goto err_reset; 4008 4009 pm_runtime_set_active(cs48l32->dev); 4010 pm_runtime_set_autosuspend_delay(cs48l32->dev, 100); 4011 pm_runtime_use_autosuspend(cs48l32->dev); 4012 pm_runtime_enable(cs48l32->dev); 4013 4014 ret = cs48l32_create_codec_component(cs48l32_codec); 4015 if (ret) 4016 goto err_clk32k; 4017 4018 return 0; 4019 4020 err_clk32k: 4021 clk_disable_unprepare(cs48l32->mclk1); 4022 err_reset: 4023 cs48l32_enable_hard_reset(cs48l32); 4024 regulator_disable(cs48l32->vdd_d); 4025 err_enable: 4026 regulator_bulk_disable(ARRAY_SIZE(cs48l32->core_supplies), cs48l32->core_supplies); 4027 4028 return ret; 4029 } 4030 4031 static void cs48l32_spi_remove(struct spi_device *spi) 4032 { 4033 struct cs48l32_codec *cs48l32_codec = spi_get_drvdata(spi); 4034 struct cs48l32 *cs48l32 = &cs48l32_codec->core; 4035 4036 /* Remove IRQ handler before destroying anything else */ 4037 if (cs48l32->irq >= 1) 4038 free_irq(cs48l32->irq, cs48l32_codec); 4039 4040 pm_runtime_disable(cs48l32->dev); 4041 regulator_disable(cs48l32->vdd_d); 4042 clk_disable_unprepare(cs48l32->mclk1); 4043 cs48l32_enable_hard_reset(cs48l32); 4044 regulator_bulk_disable(ARRAY_SIZE(cs48l32->core_supplies), cs48l32->core_supplies); 4045 4046 mutex_destroy(&cs48l32_codec->rate_lock); 4047 } 4048 4049 static const struct of_device_id cs48l32_of_match[] = { 4050 { .compatible = "cirrus,cs48l32", }, 4051 {}, 4052 }; 4053 4054 static const struct spi_device_id cs48l32_spi_ids[] = { 4055 { "cs48l32", }, 4056 { }, 4057 }; 4058 MODULE_DEVICE_TABLE(spi, cs48l32_spi_ids); 4059 4060 static struct spi_driver cs48l32_spi_driver = { 4061 .driver = { 4062 .name = "cs48l32", 4063 .pm = pm_ptr(&cs48l32_pm_ops), 4064 .of_match_table = cs48l32_of_match, 4065 }, 4066 .probe = &cs48l32_spi_probe, 4067 .remove = &cs48l32_spi_remove, 4068 .id_table = cs48l32_spi_ids, 4069 }; 4070 module_spi_driver(cs48l32_spi_driver); 4071 4072 MODULE_DESCRIPTION("CS48L32 ASoC codec driver"); 4073 MODULE_AUTHOR("Stuart Henderson <stuarth@opensource.cirrus.com>"); 4074 MODULE_AUTHOR("Piotr Stankiewicz <piotrs@opensource.cirrus.com>"); 4075 MODULE_AUTHOR("Richard Fitzgerald <rf@opensource.cirrus.com>"); 4076 MODULE_LICENSE("GPL"); 4077