xref: /linux/sound/soc/atmel/atmel_ssc_dai.c (revision c411ed854584a71b0e86ac3019b60e4789d88086)
1 /*
2  * atmel_ssc_dai.c  --  ALSA SoC ATMEL SSC Audio Layer Platform driver
3  *
4  * Copyright (C) 2005 SAN People
5  * Copyright (C) 2008 Atmel
6  *
7  * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
8  *         ATMEL CORP.
9  *
10  * Based on at91-ssc.c by
11  * Frank Mandarino <fmandarino@endrelia.com>
12  * Based on pxa2xx Platform drivers by
13  * Liam Girdwood <lrg@slimlogic.co.uk>
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with this program; if not, write to the Free Software
27  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
28  */
29 
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/interrupt.h>
33 #include <linux/device.h>
34 #include <linux/delay.h>
35 #include <linux/clk.h>
36 #include <linux/atmel_pdc.h>
37 
38 #include <linux/atmel-ssc.h>
39 #include <sound/core.h>
40 #include <sound/pcm.h>
41 #include <sound/pcm_params.h>
42 #include <sound/initval.h>
43 #include <sound/soc.h>
44 
45 #include "atmel-pcm.h"
46 #include "atmel_ssc_dai.h"
47 
48 
49 #define NUM_SSC_DEVICES		3
50 
51 /*
52  * SSC PDC registers required by the PCM DMA engine.
53  */
54 static struct atmel_pdc_regs pdc_tx_reg = {
55 	.xpr		= ATMEL_PDC_TPR,
56 	.xcr		= ATMEL_PDC_TCR,
57 	.xnpr		= ATMEL_PDC_TNPR,
58 	.xncr		= ATMEL_PDC_TNCR,
59 };
60 
61 static struct atmel_pdc_regs pdc_rx_reg = {
62 	.xpr		= ATMEL_PDC_RPR,
63 	.xcr		= ATMEL_PDC_RCR,
64 	.xnpr		= ATMEL_PDC_RNPR,
65 	.xncr		= ATMEL_PDC_RNCR,
66 };
67 
68 /*
69  * SSC & PDC status bits for transmit and receive.
70  */
71 static struct atmel_ssc_mask ssc_tx_mask = {
72 	.ssc_enable	= SSC_BIT(CR_TXEN),
73 	.ssc_disable	= SSC_BIT(CR_TXDIS),
74 	.ssc_endx	= SSC_BIT(SR_ENDTX),
75 	.ssc_endbuf	= SSC_BIT(SR_TXBUFE),
76 	.ssc_error	= SSC_BIT(SR_OVRUN),
77 	.pdc_enable	= ATMEL_PDC_TXTEN,
78 	.pdc_disable	= ATMEL_PDC_TXTDIS,
79 };
80 
81 static struct atmel_ssc_mask ssc_rx_mask = {
82 	.ssc_enable	= SSC_BIT(CR_RXEN),
83 	.ssc_disable	= SSC_BIT(CR_RXDIS),
84 	.ssc_endx	= SSC_BIT(SR_ENDRX),
85 	.ssc_endbuf	= SSC_BIT(SR_RXBUFF),
86 	.ssc_error	= SSC_BIT(SR_OVRUN),
87 	.pdc_enable	= ATMEL_PDC_RXTEN,
88 	.pdc_disable	= ATMEL_PDC_RXTDIS,
89 };
90 
91 
92 /*
93  * DMA parameters.
94  */
95 static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
96 	{{
97 	.name		= "SSC0 PCM out",
98 	.pdc		= &pdc_tx_reg,
99 	.mask		= &ssc_tx_mask,
100 	},
101 	{
102 	.name		= "SSC0 PCM in",
103 	.pdc		= &pdc_rx_reg,
104 	.mask		= &ssc_rx_mask,
105 	} },
106 	{{
107 	.name		= "SSC1 PCM out",
108 	.pdc		= &pdc_tx_reg,
109 	.mask		= &ssc_tx_mask,
110 	},
111 	{
112 	.name		= "SSC1 PCM in",
113 	.pdc		= &pdc_rx_reg,
114 	.mask		= &ssc_rx_mask,
115 	} },
116 	{{
117 	.name		= "SSC2 PCM out",
118 	.pdc		= &pdc_tx_reg,
119 	.mask		= &ssc_tx_mask,
120 	},
121 	{
122 	.name		= "SSC2 PCM in",
123 	.pdc		= &pdc_rx_reg,
124 	.mask		= &ssc_rx_mask,
125 	} },
126 };
127 
128 
129 static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
130 	{
131 	.name		= "ssc0",
132 	.lock		= __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
133 	.dir_mask	= SSC_DIR_MASK_UNUSED,
134 	.initialized	= 0,
135 	},
136 	{
137 	.name		= "ssc1",
138 	.lock		= __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
139 	.dir_mask	= SSC_DIR_MASK_UNUSED,
140 	.initialized	= 0,
141 	},
142 	{
143 	.name		= "ssc2",
144 	.lock		= __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
145 	.dir_mask	= SSC_DIR_MASK_UNUSED,
146 	.initialized	= 0,
147 	},
148 };
149 
150 
151 /*
152  * SSC interrupt handler.  Passes PDC interrupts to the DMA
153  * interrupt handler in the PCM driver.
154  */
155 static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
156 {
157 	struct atmel_ssc_info *ssc_p = dev_id;
158 	struct atmel_pcm_dma_params *dma_params;
159 	u32 ssc_sr;
160 	u32 ssc_substream_mask;
161 	int i;
162 
163 	ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
164 			& (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
165 
166 	/*
167 	 * Loop through the substreams attached to this SSC.  If
168 	 * a DMA-related interrupt occurred on that substream, call
169 	 * the DMA interrupt handler function, if one has been
170 	 * registered in the dma_params structure by the PCM driver.
171 	 */
172 	for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
173 		dma_params = ssc_p->dma_params[i];
174 
175 		if ((dma_params != NULL) &&
176 			(dma_params->dma_intr_handler != NULL)) {
177 			ssc_substream_mask = (dma_params->mask->ssc_endx |
178 					dma_params->mask->ssc_endbuf);
179 			if (ssc_sr & ssc_substream_mask) {
180 				dma_params->dma_intr_handler(ssc_sr,
181 						dma_params->
182 						substream);
183 			}
184 		}
185 	}
186 
187 	return IRQ_HANDLED;
188 }
189 
190 /*
191  * When the bit clock is input, limit the maximum rate according to the
192  * Serial Clock Ratio Considerations section from the SSC documentation:
193  *
194  *   The Transmitter and the Receiver can be programmed to operate
195  *   with the clock signals provided on either the TK or RK pins.
196  *   This allows the SSC to support many slave-mode data transfers.
197  *   In this case, the maximum clock speed allowed on the RK pin is:
198  *   - Peripheral clock divided by 2 if Receiver Frame Synchro is input
199  *   - Peripheral clock divided by 3 if Receiver Frame Synchro is output
200  *   In addition, the maximum clock speed allowed on the TK pin is:
201  *   - Peripheral clock divided by 6 if Transmit Frame Synchro is input
202  *   - Peripheral clock divided by 2 if Transmit Frame Synchro is output
203  *
204  * When the bit clock is output, limit the rate according to the
205  * SSC divider restrictions.
206  */
207 static int atmel_ssc_hw_rule_rate(struct snd_pcm_hw_params *params,
208 				  struct snd_pcm_hw_rule *rule)
209 {
210 	struct atmel_ssc_info *ssc_p = rule->private;
211 	struct ssc_device *ssc = ssc_p->ssc;
212 	struct snd_interval *i = hw_param_interval(params, rule->var);
213 	struct snd_interval t;
214 	struct snd_ratnum r = {
215 		.den_min = 1,
216 		.den_max = 4095,
217 		.den_step = 1,
218 	};
219 	unsigned int num = 0, den = 0;
220 	int frame_size;
221 	int mck_div = 2;
222 	int ret;
223 
224 	frame_size = snd_soc_params_to_frame_size(params);
225 	if (frame_size < 0)
226 		return frame_size;
227 
228 	switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
229 	case SND_SOC_DAIFMT_CBM_CFS:
230 		if ((ssc_p->dir_mask & SSC_DIR_MASK_CAPTURE)
231 		    && ssc->clk_from_rk_pin)
232 			/* Receiver Frame Synchro (i.e. capture)
233 			 * is output (format is _CFS) and the RK pin
234 			 * is used for input (format is _CBM_).
235 			 */
236 			mck_div = 3;
237 		break;
238 
239 	case SND_SOC_DAIFMT_CBM_CFM:
240 		if ((ssc_p->dir_mask & SSC_DIR_MASK_PLAYBACK)
241 		    && !ssc->clk_from_rk_pin)
242 			/* Transmit Frame Synchro (i.e. playback)
243 			 * is input (format is _CFM) and the TK pin
244 			 * is used for input (format _CBM_ but not
245 			 * using the RK pin).
246 			 */
247 			mck_div = 6;
248 		break;
249 	}
250 
251 	switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
252 	case SND_SOC_DAIFMT_CBS_CFS:
253 		r.num = ssc_p->mck_rate / mck_div / frame_size;
254 
255 		ret = snd_interval_ratnum(i, 1, &r, &num, &den);
256 		if (ret >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
257 			params->rate_num = num;
258 			params->rate_den = den;
259 		}
260 		break;
261 
262 	case SND_SOC_DAIFMT_CBM_CFS:
263 	case SND_SOC_DAIFMT_CBM_CFM:
264 		t.min = 8000;
265 		t.max = ssc_p->mck_rate / mck_div / frame_size;
266 		t.openmin = t.openmax = 0;
267 		t.integer = 0;
268 		ret = snd_interval_refine(i, &t);
269 		break;
270 
271 	default:
272 		ret = -EINVAL;
273 		break;
274 	}
275 
276 	return ret;
277 }
278 
279 /*-------------------------------------------------------------------------*\
280  * DAI functions
281 \*-------------------------------------------------------------------------*/
282 /*
283  * Startup.  Only that one substream allowed in each direction.
284  */
285 static int atmel_ssc_startup(struct snd_pcm_substream *substream,
286 			     struct snd_soc_dai *dai)
287 {
288 	struct platform_device *pdev = to_platform_device(dai->dev);
289 	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
290 	struct atmel_pcm_dma_params *dma_params;
291 	int dir, dir_mask;
292 	int ret;
293 
294 	pr_debug("atmel_ssc_startup: SSC_SR=0x%x\n",
295 		ssc_readl(ssc_p->ssc->regs, SR));
296 
297 	/* Enable PMC peripheral clock for this SSC */
298 	pr_debug("atmel_ssc_dai: Starting clock\n");
299 	clk_enable(ssc_p->ssc->clk);
300 	ssc_p->mck_rate = clk_get_rate(ssc_p->ssc->clk);
301 
302 	/* Reset the SSC unless initialized to keep it in a clean state */
303 	if (!ssc_p->initialized)
304 		ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
305 
306 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
307 		dir = 0;
308 		dir_mask = SSC_DIR_MASK_PLAYBACK;
309 	} else {
310 		dir = 1;
311 		dir_mask = SSC_DIR_MASK_CAPTURE;
312 	}
313 
314 	ret = snd_pcm_hw_rule_add(substream->runtime, 0,
315 				  SNDRV_PCM_HW_PARAM_RATE,
316 				  atmel_ssc_hw_rule_rate,
317 				  ssc_p,
318 				  SNDRV_PCM_HW_PARAM_FRAME_BITS,
319 				  SNDRV_PCM_HW_PARAM_CHANNELS, -1);
320 	if (ret < 0) {
321 		dev_err(dai->dev, "Failed to specify rate rule: %d\n", ret);
322 		return ret;
323 	}
324 
325 	dma_params = &ssc_dma_params[pdev->id][dir];
326 	dma_params->ssc = ssc_p->ssc;
327 	dma_params->substream = substream;
328 
329 	ssc_p->dma_params[dir] = dma_params;
330 
331 	snd_soc_dai_set_dma_data(dai, substream, dma_params);
332 
333 	spin_lock_irq(&ssc_p->lock);
334 	if (ssc_p->dir_mask & dir_mask) {
335 		spin_unlock_irq(&ssc_p->lock);
336 		return -EBUSY;
337 	}
338 	ssc_p->dir_mask |= dir_mask;
339 	spin_unlock_irq(&ssc_p->lock);
340 
341 	return 0;
342 }
343 
344 /*
345  * Shutdown.  Clear DMA parameters and shutdown the SSC if there
346  * are no other substreams open.
347  */
348 static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
349 			       struct snd_soc_dai *dai)
350 {
351 	struct platform_device *pdev = to_platform_device(dai->dev);
352 	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
353 	struct atmel_pcm_dma_params *dma_params;
354 	int dir, dir_mask;
355 
356 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
357 		dir = 0;
358 	else
359 		dir = 1;
360 
361 	dma_params = ssc_p->dma_params[dir];
362 
363 	if (dma_params != NULL) {
364 		dma_params->ssc = NULL;
365 		dma_params->substream = NULL;
366 		ssc_p->dma_params[dir] = NULL;
367 	}
368 
369 	dir_mask = 1 << dir;
370 
371 	spin_lock_irq(&ssc_p->lock);
372 	ssc_p->dir_mask &= ~dir_mask;
373 	if (!ssc_p->dir_mask) {
374 		if (ssc_p->initialized) {
375 			free_irq(ssc_p->ssc->irq, ssc_p);
376 			ssc_p->initialized = 0;
377 		}
378 
379 		/* Reset the SSC */
380 		ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
381 		/* Clear the SSC dividers */
382 		ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
383 		ssc_p->forced_divider = 0;
384 	}
385 	spin_unlock_irq(&ssc_p->lock);
386 
387 	/* Shutdown the SSC clock. */
388 	pr_debug("atmel_ssc_dai: Stopping clock\n");
389 	clk_disable(ssc_p->ssc->clk);
390 }
391 
392 
393 /*
394  * Record the DAI format for use in hw_params().
395  */
396 static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
397 		unsigned int fmt)
398 {
399 	struct platform_device *pdev = to_platform_device(cpu_dai->dev);
400 	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
401 
402 	ssc_p->daifmt = fmt;
403 	return 0;
404 }
405 
406 /*
407  * Record SSC clock dividers for use in hw_params().
408  */
409 static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
410 	int div_id, int div)
411 {
412 	struct platform_device *pdev = to_platform_device(cpu_dai->dev);
413 	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
414 
415 	switch (div_id) {
416 	case ATMEL_SSC_CMR_DIV:
417 		/*
418 		 * The same master clock divider is used for both
419 		 * transmit and receive, so if a value has already
420 		 * been set, it must match this value.
421 		 */
422 		if (ssc_p->dir_mask !=
423 			(SSC_DIR_MASK_PLAYBACK | SSC_DIR_MASK_CAPTURE))
424 			ssc_p->cmr_div = div;
425 		else if (ssc_p->cmr_div == 0)
426 			ssc_p->cmr_div = div;
427 		else
428 			if (div != ssc_p->cmr_div)
429 				return -EBUSY;
430 		ssc_p->forced_divider |= BIT(ATMEL_SSC_CMR_DIV);
431 		break;
432 
433 	case ATMEL_SSC_TCMR_PERIOD:
434 		ssc_p->tcmr_period = div;
435 		ssc_p->forced_divider |= BIT(ATMEL_SSC_TCMR_PERIOD);
436 		break;
437 
438 	case ATMEL_SSC_RCMR_PERIOD:
439 		ssc_p->rcmr_period = div;
440 		ssc_p->forced_divider |= BIT(ATMEL_SSC_RCMR_PERIOD);
441 		break;
442 
443 	default:
444 		return -EINVAL;
445 	}
446 
447 	return 0;
448 }
449 
450 /* Is the cpu-dai master of the frame clock? */
451 static int atmel_ssc_cfs(struct atmel_ssc_info *ssc_p)
452 {
453 	switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
454 	case SND_SOC_DAIFMT_CBM_CFS:
455 	case SND_SOC_DAIFMT_CBS_CFS:
456 		return 1;
457 	}
458 	return 0;
459 }
460 
461 /* Is the cpu-dai master of the bit clock? */
462 static int atmel_ssc_cbs(struct atmel_ssc_info *ssc_p)
463 {
464 	switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
465 	case SND_SOC_DAIFMT_CBS_CFM:
466 	case SND_SOC_DAIFMT_CBS_CFS:
467 		return 1;
468 	}
469 	return 0;
470 }
471 
472 /*
473  * Configure the SSC.
474  */
475 static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
476 	struct snd_pcm_hw_params *params,
477 	struct snd_soc_dai *dai)
478 {
479 	struct platform_device *pdev = to_platform_device(dai->dev);
480 	int id = pdev->id;
481 	struct atmel_ssc_info *ssc_p = &ssc_info[id];
482 	struct ssc_device *ssc = ssc_p->ssc;
483 	struct atmel_pcm_dma_params *dma_params;
484 	int dir, channels, bits;
485 	u32 tfmr, rfmr, tcmr, rcmr;
486 	int ret;
487 	int fslen, fslen_ext;
488 	u32 cmr_div;
489 	u32 tcmr_period;
490 	u32 rcmr_period;
491 
492 	/*
493 	 * Currently, there is only one set of dma params for
494 	 * each direction.  If more are added, this code will
495 	 * have to be changed to select the proper set.
496 	 */
497 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
498 		dir = 0;
499 	else
500 		dir = 1;
501 
502 	/*
503 	 * If the cpu dai should provide BCLK, but noone has provided the
504 	 * divider needed for that to work, fall back to something sensible.
505 	 */
506 	cmr_div = ssc_p->cmr_div;
507 	if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_CMR_DIV)) &&
508 	    atmel_ssc_cbs(ssc_p)) {
509 		int bclk_rate = snd_soc_params_to_bclk(params);
510 
511 		if (bclk_rate < 0) {
512 			dev_err(dai->dev, "unable to calculate cmr_div: %d\n",
513 				bclk_rate);
514 			return bclk_rate;
515 		}
516 
517 		cmr_div = DIV_ROUND_CLOSEST(ssc_p->mck_rate, 2 * bclk_rate);
518 	}
519 
520 	/*
521 	 * If the cpu dai should provide LRCLK, but noone has provided the
522 	 * dividers needed for that to work, fall back to something sensible.
523 	 */
524 	tcmr_period = ssc_p->tcmr_period;
525 	rcmr_period = ssc_p->rcmr_period;
526 	if (atmel_ssc_cfs(ssc_p)) {
527 		int frame_size = snd_soc_params_to_frame_size(params);
528 
529 		if (frame_size < 0) {
530 			dev_err(dai->dev,
531 				"unable to calculate tx/rx cmr_period: %d\n",
532 				frame_size);
533 			return frame_size;
534 		}
535 
536 		if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_TCMR_PERIOD)))
537 			tcmr_period = frame_size / 2 - 1;
538 		if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_RCMR_PERIOD)))
539 			rcmr_period = frame_size / 2 - 1;
540 	}
541 
542 	dma_params = ssc_p->dma_params[dir];
543 
544 	channels = params_channels(params);
545 
546 	/*
547 	 * Determine sample size in bits and the PDC increment.
548 	 */
549 	switch (params_format(params)) {
550 	case SNDRV_PCM_FORMAT_S8:
551 		bits = 8;
552 		dma_params->pdc_xfer_size = 1;
553 		break;
554 	case SNDRV_PCM_FORMAT_S16_LE:
555 		bits = 16;
556 		dma_params->pdc_xfer_size = 2;
557 		break;
558 	case SNDRV_PCM_FORMAT_S24_LE:
559 		bits = 24;
560 		dma_params->pdc_xfer_size = 4;
561 		break;
562 	case SNDRV_PCM_FORMAT_S32_LE:
563 		bits = 32;
564 		dma_params->pdc_xfer_size = 4;
565 		break;
566 	default:
567 		printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
568 		return -EINVAL;
569 	}
570 
571 	/*
572 	 * Compute SSC register settings.
573 	 */
574 	switch (ssc_p->daifmt
575 		& (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
576 
577 	case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
578 		/*
579 		 * I2S format, SSC provides BCLK and LRC clocks.
580 		 *
581 		 * The SSC transmit and receive clocks are generated
582 		 * from the MCK divider, and the BCLK signal
583 		 * is output on the SSC TK line.
584 		 */
585 
586 		if (bits > 16 && !ssc->pdata->has_fslen_ext) {
587 			dev_err(dai->dev,
588 				"sample size %d is too large for SSC device\n",
589 				bits);
590 			return -EINVAL;
591 		}
592 
593 		fslen_ext = (bits - 1) / 16;
594 		fslen = (bits - 1) % 16;
595 
596 		rcmr =	  SSC_BF(RCMR_PERIOD, rcmr_period)
597 			| SSC_BF(RCMR_STTDLY, START_DELAY)
598 			| SSC_BF(RCMR_START, SSC_START_FALLING_RF)
599 			| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
600 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
601 			| SSC_BF(RCMR_CKS, SSC_CKS_DIV);
602 
603 		rfmr =    SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
604 			| SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
605 			| SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
606 			| SSC_BF(RFMR_FSLEN, fslen)
607 			| SSC_BF(RFMR_DATNB, (channels - 1))
608 			| SSC_BIT(RFMR_MSBF)
609 			| SSC_BF(RFMR_LOOP, 0)
610 			| SSC_BF(RFMR_DATLEN, (bits - 1));
611 
612 		tcmr =	  SSC_BF(TCMR_PERIOD, tcmr_period)
613 			| SSC_BF(TCMR_STTDLY, START_DELAY)
614 			| SSC_BF(TCMR_START, SSC_START_FALLING_RF)
615 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
616 			| SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
617 			| SSC_BF(TCMR_CKS, SSC_CKS_DIV);
618 
619 		tfmr =    SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
620 			| SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
621 			| SSC_BF(TFMR_FSDEN, 0)
622 			| SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
623 			| SSC_BF(TFMR_FSLEN, fslen)
624 			| SSC_BF(TFMR_DATNB, (channels - 1))
625 			| SSC_BIT(TFMR_MSBF)
626 			| SSC_BF(TFMR_DATDEF, 0)
627 			| SSC_BF(TFMR_DATLEN, (bits - 1));
628 		break;
629 
630 	case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
631 		/* I2S format, CODEC supplies BCLK and LRC clocks. */
632 		rcmr =	  SSC_BF(RCMR_PERIOD, 0)
633 			| SSC_BF(RCMR_STTDLY, START_DELAY)
634 			| SSC_BF(RCMR_START, SSC_START_FALLING_RF)
635 			| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
636 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
637 			| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
638 					   SSC_CKS_PIN : SSC_CKS_CLOCK);
639 
640 		rfmr =	  SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
641 			| SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
642 			| SSC_BF(RFMR_FSLEN, 0)
643 			| SSC_BF(RFMR_DATNB, (channels - 1))
644 			| SSC_BIT(RFMR_MSBF)
645 			| SSC_BF(RFMR_LOOP, 0)
646 			| SSC_BF(RFMR_DATLEN, (bits - 1));
647 
648 		tcmr =	  SSC_BF(TCMR_PERIOD, 0)
649 			| SSC_BF(TCMR_STTDLY, START_DELAY)
650 			| SSC_BF(TCMR_START, SSC_START_FALLING_RF)
651 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
652 			| SSC_BF(TCMR_CKO, SSC_CKO_NONE)
653 			| SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
654 					   SSC_CKS_CLOCK : SSC_CKS_PIN);
655 
656 		tfmr =	  SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
657 			| SSC_BF(TFMR_FSDEN, 0)
658 			| SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
659 			| SSC_BF(TFMR_FSLEN, 0)
660 			| SSC_BF(TFMR_DATNB, (channels - 1))
661 			| SSC_BIT(TFMR_MSBF)
662 			| SSC_BF(TFMR_DATDEF, 0)
663 			| SSC_BF(TFMR_DATLEN, (bits - 1));
664 		break;
665 
666 	case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFS:
667 		/* I2S format, CODEC supplies BCLK, SSC supplies LRCLK. */
668 		if (bits > 16 && !ssc->pdata->has_fslen_ext) {
669 			dev_err(dai->dev,
670 				"sample size %d is too large for SSC device\n",
671 				bits);
672 			return -EINVAL;
673 		}
674 
675 		fslen_ext = (bits - 1) / 16;
676 		fslen = (bits - 1) % 16;
677 
678 		rcmr =	  SSC_BF(RCMR_PERIOD, rcmr_period)
679 			| SSC_BF(RCMR_STTDLY, START_DELAY)
680 			| SSC_BF(RCMR_START, SSC_START_FALLING_RF)
681 			| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
682 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
683 			| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
684 					   SSC_CKS_PIN : SSC_CKS_CLOCK);
685 
686 		rfmr =    SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
687 			| SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
688 			| SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
689 			| SSC_BF(RFMR_FSLEN, fslen)
690 			| SSC_BF(RFMR_DATNB, (channels - 1))
691 			| SSC_BIT(RFMR_MSBF)
692 			| SSC_BF(RFMR_LOOP, 0)
693 			| SSC_BF(RFMR_DATLEN, (bits - 1));
694 
695 		tcmr =	  SSC_BF(TCMR_PERIOD, tcmr_period)
696 			| SSC_BF(TCMR_STTDLY, START_DELAY)
697 			| SSC_BF(TCMR_START, SSC_START_FALLING_RF)
698 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
699 			| SSC_BF(TCMR_CKO, SSC_CKO_NONE)
700 			| SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
701 					   SSC_CKS_CLOCK : SSC_CKS_PIN);
702 
703 		tfmr =    SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
704 			| SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_NEGATIVE)
705 			| SSC_BF(TFMR_FSDEN, 0)
706 			| SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
707 			| SSC_BF(TFMR_FSLEN, fslen)
708 			| SSC_BF(TFMR_DATNB, (channels - 1))
709 			| SSC_BIT(TFMR_MSBF)
710 			| SSC_BF(TFMR_DATDEF, 0)
711 			| SSC_BF(TFMR_DATLEN, (bits - 1));
712 		break;
713 
714 	case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
715 		/*
716 		 * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
717 		 *
718 		 * The SSC transmit and receive clocks are generated from the
719 		 * MCK divider, and the BCLK signal is output
720 		 * on the SSC TK line.
721 		 */
722 		rcmr =	  SSC_BF(RCMR_PERIOD, rcmr_period)
723 			| SSC_BF(RCMR_STTDLY, 1)
724 			| SSC_BF(RCMR_START, SSC_START_RISING_RF)
725 			| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
726 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
727 			| SSC_BF(RCMR_CKS, SSC_CKS_DIV);
728 
729 		rfmr =	  SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
730 			| SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE)
731 			| SSC_BF(RFMR_FSLEN, 0)
732 			| SSC_BF(RFMR_DATNB, (channels - 1))
733 			| SSC_BIT(RFMR_MSBF)
734 			| SSC_BF(RFMR_LOOP, 0)
735 			| SSC_BF(RFMR_DATLEN, (bits - 1));
736 
737 		tcmr =	  SSC_BF(TCMR_PERIOD, tcmr_period)
738 			| SSC_BF(TCMR_STTDLY, 1)
739 			| SSC_BF(TCMR_START, SSC_START_RISING_RF)
740 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
741 			| SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
742 			| SSC_BF(TCMR_CKS, SSC_CKS_DIV);
743 
744 		tfmr =	  SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
745 			| SSC_BF(TFMR_FSDEN, 0)
746 			| SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE)
747 			| SSC_BF(TFMR_FSLEN, 0)
748 			| SSC_BF(TFMR_DATNB, (channels - 1))
749 			| SSC_BIT(TFMR_MSBF)
750 			| SSC_BF(TFMR_DATDEF, 0)
751 			| SSC_BF(TFMR_DATLEN, (bits - 1));
752 		break;
753 
754 	case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
755 		/*
756 		 * DSP/PCM Mode A format, CODEC supplies BCLK and LRC clocks.
757 		 *
758 		 * Data is transferred on first BCLK after LRC pulse rising
759 		 * edge.If stereo, the right channel data is contiguous with
760 		 * the left channel data.
761 		 */
762 		rcmr =	  SSC_BF(RCMR_PERIOD, 0)
763 			| SSC_BF(RCMR_STTDLY, START_DELAY)
764 			| SSC_BF(RCMR_START, SSC_START_RISING_RF)
765 			| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
766 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
767 			| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
768 					   SSC_CKS_PIN : SSC_CKS_CLOCK);
769 
770 		rfmr =	  SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
771 			| SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
772 			| SSC_BF(RFMR_FSLEN, 0)
773 			| SSC_BF(RFMR_DATNB, (channels - 1))
774 			| SSC_BIT(RFMR_MSBF)
775 			| SSC_BF(RFMR_LOOP, 0)
776 			| SSC_BF(RFMR_DATLEN, (bits - 1));
777 
778 		tcmr =	  SSC_BF(TCMR_PERIOD, 0)
779 			| SSC_BF(TCMR_STTDLY, START_DELAY)
780 			| SSC_BF(TCMR_START, SSC_START_RISING_RF)
781 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
782 			| SSC_BF(TCMR_CKO, SSC_CKO_NONE)
783 			| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
784 					   SSC_CKS_CLOCK : SSC_CKS_PIN);
785 
786 		tfmr =	  SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
787 			| SSC_BF(TFMR_FSDEN, 0)
788 			| SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
789 			| SSC_BF(TFMR_FSLEN, 0)
790 			| SSC_BF(TFMR_DATNB, (channels - 1))
791 			| SSC_BIT(TFMR_MSBF)
792 			| SSC_BF(TFMR_DATDEF, 0)
793 			| SSC_BF(TFMR_DATLEN, (bits - 1));
794 		break;
795 
796 	default:
797 		printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
798 			ssc_p->daifmt);
799 		return -EINVAL;
800 	}
801 	pr_debug("atmel_ssc_hw_params: "
802 			"RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
803 			rcmr, rfmr, tcmr, tfmr);
804 
805 	if (!ssc_p->initialized) {
806 		if (!ssc_p->ssc->pdata->use_dma) {
807 			ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
808 			ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
809 			ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
810 			ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
811 
812 			ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
813 			ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
814 			ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
815 			ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
816 		}
817 
818 		ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
819 				ssc_p->name, ssc_p);
820 		if (ret < 0) {
821 			printk(KERN_WARNING
822 					"atmel_ssc_dai: request_irq failure\n");
823 			pr_debug("Atmel_ssc_dai: Stoping clock\n");
824 			clk_disable(ssc_p->ssc->clk);
825 			return ret;
826 		}
827 
828 		ssc_p->initialized = 1;
829 	}
830 
831 	/* set SSC clock mode register */
832 	ssc_writel(ssc_p->ssc->regs, CMR, cmr_div);
833 
834 	/* set receive clock mode and format */
835 	ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
836 	ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
837 
838 	/* set transmit clock mode and format */
839 	ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
840 	ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
841 
842 	pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
843 	return 0;
844 }
845 
846 
847 static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
848 			     struct snd_soc_dai *dai)
849 {
850 	struct platform_device *pdev = to_platform_device(dai->dev);
851 	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
852 	struct atmel_pcm_dma_params *dma_params;
853 	int dir;
854 
855 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
856 		dir = 0;
857 	else
858 		dir = 1;
859 
860 	dma_params = ssc_p->dma_params[dir];
861 
862 	ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
863 	ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error);
864 
865 	pr_debug("%s enabled SSC_SR=0x%08x\n",
866 			dir ? "receive" : "transmit",
867 			ssc_readl(ssc_p->ssc->regs, SR));
868 	return 0;
869 }
870 
871 static int atmel_ssc_trigger(struct snd_pcm_substream *substream,
872 			     int cmd, struct snd_soc_dai *dai)
873 {
874 	struct platform_device *pdev = to_platform_device(dai->dev);
875 	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
876 	struct atmel_pcm_dma_params *dma_params;
877 	int dir;
878 
879 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
880 		dir = 0;
881 	else
882 		dir = 1;
883 
884 	dma_params = ssc_p->dma_params[dir];
885 
886 	switch (cmd) {
887 	case SNDRV_PCM_TRIGGER_START:
888 	case SNDRV_PCM_TRIGGER_RESUME:
889 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
890 		ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
891 		break;
892 	default:
893 		ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
894 		break;
895 	}
896 
897 	return 0;
898 }
899 
900 #ifdef CONFIG_PM
901 static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai)
902 {
903 	struct atmel_ssc_info *ssc_p;
904 	struct platform_device *pdev = to_platform_device(cpu_dai->dev);
905 
906 	if (!cpu_dai->active)
907 		return 0;
908 
909 	ssc_p = &ssc_info[pdev->id];
910 
911 	/* Save the status register before disabling transmit and receive */
912 	ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
913 	ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
914 
915 	/* Save the current interrupt mask, then disable unmasked interrupts */
916 	ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
917 	ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
918 
919 	ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
920 	ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
921 	ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
922 	ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
923 	ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
924 
925 	return 0;
926 }
927 
928 
929 
930 static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai)
931 {
932 	struct atmel_ssc_info *ssc_p;
933 	struct platform_device *pdev = to_platform_device(cpu_dai->dev);
934 	u32 cr;
935 
936 	if (!cpu_dai->active)
937 		return 0;
938 
939 	ssc_p = &ssc_info[pdev->id];
940 
941 	/* restore SSC register settings */
942 	ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
943 	ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
944 	ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
945 	ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
946 	ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
947 
948 	/* re-enable interrupts */
949 	ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
950 
951 	/* Re-enable receive and transmit as appropriate */
952 	cr = 0;
953 	cr |=
954 	    (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
955 	cr |=
956 	    (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
957 	ssc_writel(ssc_p->ssc->regs, CR, cr);
958 
959 	return 0;
960 }
961 #else /* CONFIG_PM */
962 #  define atmel_ssc_suspend	NULL
963 #  define atmel_ssc_resume	NULL
964 #endif /* CONFIG_PM */
965 
966 #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8     | SNDRV_PCM_FMTBIT_S16_LE |\
967 			  SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
968 
969 static const struct snd_soc_dai_ops atmel_ssc_dai_ops = {
970 	.startup	= atmel_ssc_startup,
971 	.shutdown	= atmel_ssc_shutdown,
972 	.prepare	= atmel_ssc_prepare,
973 	.trigger	= atmel_ssc_trigger,
974 	.hw_params	= atmel_ssc_hw_params,
975 	.set_fmt	= atmel_ssc_set_dai_fmt,
976 	.set_clkdiv	= atmel_ssc_set_dai_clkdiv,
977 };
978 
979 static struct snd_soc_dai_driver atmel_ssc_dai = {
980 		.suspend = atmel_ssc_suspend,
981 		.resume = atmel_ssc_resume,
982 		.playback = {
983 			.channels_min = 1,
984 			.channels_max = 2,
985 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
986 			.rate_min = 8000,
987 			.rate_max = 384000,
988 			.formats = ATMEL_SSC_FORMATS,},
989 		.capture = {
990 			.channels_min = 1,
991 			.channels_max = 2,
992 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
993 			.rate_min = 8000,
994 			.rate_max = 384000,
995 			.formats = ATMEL_SSC_FORMATS,},
996 		.ops = &atmel_ssc_dai_ops,
997 };
998 
999 static const struct snd_soc_component_driver atmel_ssc_component = {
1000 	.name		= "atmel-ssc",
1001 };
1002 
1003 static int asoc_ssc_init(struct device *dev)
1004 {
1005 	struct platform_device *pdev = to_platform_device(dev);
1006 	struct ssc_device *ssc = platform_get_drvdata(pdev);
1007 	int ret;
1008 
1009 	ret = snd_soc_register_component(dev, &atmel_ssc_component,
1010 					 &atmel_ssc_dai, 1);
1011 	if (ret) {
1012 		dev_err(dev, "Could not register DAI: %d\n", ret);
1013 		goto err;
1014 	}
1015 
1016 	if (ssc->pdata->use_dma)
1017 		ret = atmel_pcm_dma_platform_register(dev);
1018 	else
1019 		ret = atmel_pcm_pdc_platform_register(dev);
1020 
1021 	if (ret) {
1022 		dev_err(dev, "Could not register PCM: %d\n", ret);
1023 		goto err_unregister_dai;
1024 	}
1025 
1026 	return 0;
1027 
1028 err_unregister_dai:
1029 	snd_soc_unregister_component(dev);
1030 err:
1031 	return ret;
1032 }
1033 
1034 static void asoc_ssc_exit(struct device *dev)
1035 {
1036 	struct platform_device *pdev = to_platform_device(dev);
1037 	struct ssc_device *ssc = platform_get_drvdata(pdev);
1038 
1039 	if (ssc->pdata->use_dma)
1040 		atmel_pcm_dma_platform_unregister(dev);
1041 	else
1042 		atmel_pcm_pdc_platform_unregister(dev);
1043 
1044 	snd_soc_unregister_component(dev);
1045 }
1046 
1047 /**
1048  * atmel_ssc_set_audio - Allocate the specified SSC for audio use.
1049  */
1050 int atmel_ssc_set_audio(int ssc_id)
1051 {
1052 	struct ssc_device *ssc;
1053 	int ret;
1054 
1055 	/* If we can grab the SSC briefly to parent the DAI device off it */
1056 	ssc = ssc_request(ssc_id);
1057 	if (IS_ERR(ssc)) {
1058 		pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n",
1059 			PTR_ERR(ssc));
1060 		return PTR_ERR(ssc);
1061 	} else {
1062 		ssc_info[ssc_id].ssc = ssc;
1063 	}
1064 
1065 	ret = asoc_ssc_init(&ssc->pdev->dev);
1066 
1067 	return ret;
1068 }
1069 EXPORT_SYMBOL_GPL(atmel_ssc_set_audio);
1070 
1071 void atmel_ssc_put_audio(int ssc_id)
1072 {
1073 	struct ssc_device *ssc = ssc_info[ssc_id].ssc;
1074 
1075 	asoc_ssc_exit(&ssc->pdev->dev);
1076 	ssc_free(ssc);
1077 }
1078 EXPORT_SYMBOL_GPL(atmel_ssc_put_audio);
1079 
1080 /* Module information */
1081 MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
1082 MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
1083 MODULE_LICENSE("GPL");
1084