xref: /linux/sound/soc/atmel/atmel_ssc_dai.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * atmel_ssc_dai.c  --  ALSA SoC ATMEL SSC Audio Layer Platform driver
3  *
4  * Copyright (C) 2005 SAN People
5  * Copyright (C) 2008 Atmel
6  *
7  * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
8  *         ATMEL CORP.
9  *
10  * Based on at91-ssc.c by
11  * Frank Mandarino <fmandarino@endrelia.com>
12  * Based on pxa2xx Platform drivers by
13  * Liam Girdwood <lrg@slimlogic.co.uk>
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with this program; if not, write to the Free Software
27  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
28  */
29 
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/interrupt.h>
33 #include <linux/device.h>
34 #include <linux/delay.h>
35 #include <linux/clk.h>
36 #include <linux/atmel_pdc.h>
37 
38 #include <linux/atmel-ssc.h>
39 #include <sound/core.h>
40 #include <sound/pcm.h>
41 #include <sound/pcm_params.h>
42 #include <sound/initval.h>
43 #include <sound/soc.h>
44 
45 #include "atmel-pcm.h"
46 #include "atmel_ssc_dai.h"
47 
48 
49 #define NUM_SSC_DEVICES		3
50 
51 /*
52  * SSC PDC registers required by the PCM DMA engine.
53  */
54 static struct atmel_pdc_regs pdc_tx_reg = {
55 	.xpr		= ATMEL_PDC_TPR,
56 	.xcr		= ATMEL_PDC_TCR,
57 	.xnpr		= ATMEL_PDC_TNPR,
58 	.xncr		= ATMEL_PDC_TNCR,
59 };
60 
61 static struct atmel_pdc_regs pdc_rx_reg = {
62 	.xpr		= ATMEL_PDC_RPR,
63 	.xcr		= ATMEL_PDC_RCR,
64 	.xnpr		= ATMEL_PDC_RNPR,
65 	.xncr		= ATMEL_PDC_RNCR,
66 };
67 
68 /*
69  * SSC & PDC status bits for transmit and receive.
70  */
71 static struct atmel_ssc_mask ssc_tx_mask = {
72 	.ssc_enable	= SSC_BIT(CR_TXEN),
73 	.ssc_disable	= SSC_BIT(CR_TXDIS),
74 	.ssc_endx	= SSC_BIT(SR_ENDTX),
75 	.ssc_endbuf	= SSC_BIT(SR_TXBUFE),
76 	.ssc_error	= SSC_BIT(SR_OVRUN),
77 	.pdc_enable	= ATMEL_PDC_TXTEN,
78 	.pdc_disable	= ATMEL_PDC_TXTDIS,
79 };
80 
81 static struct atmel_ssc_mask ssc_rx_mask = {
82 	.ssc_enable	= SSC_BIT(CR_RXEN),
83 	.ssc_disable	= SSC_BIT(CR_RXDIS),
84 	.ssc_endx	= SSC_BIT(SR_ENDRX),
85 	.ssc_endbuf	= SSC_BIT(SR_RXBUFF),
86 	.ssc_error	= SSC_BIT(SR_OVRUN),
87 	.pdc_enable	= ATMEL_PDC_RXTEN,
88 	.pdc_disable	= ATMEL_PDC_RXTDIS,
89 };
90 
91 
92 /*
93  * DMA parameters.
94  */
95 static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
96 	{{
97 	.name		= "SSC0 PCM out",
98 	.pdc		= &pdc_tx_reg,
99 	.mask		= &ssc_tx_mask,
100 	},
101 	{
102 	.name		= "SSC0 PCM in",
103 	.pdc		= &pdc_rx_reg,
104 	.mask		= &ssc_rx_mask,
105 	} },
106 	{{
107 	.name		= "SSC1 PCM out",
108 	.pdc		= &pdc_tx_reg,
109 	.mask		= &ssc_tx_mask,
110 	},
111 	{
112 	.name		= "SSC1 PCM in",
113 	.pdc		= &pdc_rx_reg,
114 	.mask		= &ssc_rx_mask,
115 	} },
116 	{{
117 	.name		= "SSC2 PCM out",
118 	.pdc		= &pdc_tx_reg,
119 	.mask		= &ssc_tx_mask,
120 	},
121 	{
122 	.name		= "SSC2 PCM in",
123 	.pdc		= &pdc_rx_reg,
124 	.mask		= &ssc_rx_mask,
125 	} },
126 };
127 
128 
129 static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
130 	{
131 	.name		= "ssc0",
132 	.lock		= __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
133 	.dir_mask	= SSC_DIR_MASK_UNUSED,
134 	.initialized	= 0,
135 	},
136 	{
137 	.name		= "ssc1",
138 	.lock		= __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
139 	.dir_mask	= SSC_DIR_MASK_UNUSED,
140 	.initialized	= 0,
141 	},
142 	{
143 	.name		= "ssc2",
144 	.lock		= __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
145 	.dir_mask	= SSC_DIR_MASK_UNUSED,
146 	.initialized	= 0,
147 	},
148 };
149 
150 
151 /*
152  * SSC interrupt handler.  Passes PDC interrupts to the DMA
153  * interrupt handler in the PCM driver.
154  */
155 static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
156 {
157 	struct atmel_ssc_info *ssc_p = dev_id;
158 	struct atmel_pcm_dma_params *dma_params;
159 	u32 ssc_sr;
160 	u32 ssc_substream_mask;
161 	int i;
162 
163 	ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
164 			& (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
165 
166 	/*
167 	 * Loop through the substreams attached to this SSC.  If
168 	 * a DMA-related interrupt occurred on that substream, call
169 	 * the DMA interrupt handler function, if one has been
170 	 * registered in the dma_params structure by the PCM driver.
171 	 */
172 	for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
173 		dma_params = ssc_p->dma_params[i];
174 
175 		if ((dma_params != NULL) &&
176 			(dma_params->dma_intr_handler != NULL)) {
177 			ssc_substream_mask = (dma_params->mask->ssc_endx |
178 					dma_params->mask->ssc_endbuf);
179 			if (ssc_sr & ssc_substream_mask) {
180 				dma_params->dma_intr_handler(ssc_sr,
181 						dma_params->
182 						substream);
183 			}
184 		}
185 	}
186 
187 	return IRQ_HANDLED;
188 }
189 
190 /*
191  * When the bit clock is input, limit the maximum rate according to the
192  * Serial Clock Ratio Considerations section from the SSC documentation:
193  *
194  *   The Transmitter and the Receiver can be programmed to operate
195  *   with the clock signals provided on either the TK or RK pins.
196  *   This allows the SSC to support many slave-mode data transfers.
197  *   In this case, the maximum clock speed allowed on the RK pin is:
198  *   - Peripheral clock divided by 2 if Receiver Frame Synchro is input
199  *   - Peripheral clock divided by 3 if Receiver Frame Synchro is output
200  *   In addition, the maximum clock speed allowed on the TK pin is:
201  *   - Peripheral clock divided by 6 if Transmit Frame Synchro is input
202  *   - Peripheral clock divided by 2 if Transmit Frame Synchro is output
203  *
204  * When the bit clock is output, limit the rate according to the
205  * SSC divider restrictions.
206  */
207 static int atmel_ssc_hw_rule_rate(struct snd_pcm_hw_params *params,
208 				  struct snd_pcm_hw_rule *rule)
209 {
210 	struct atmel_ssc_info *ssc_p = rule->private;
211 	struct ssc_device *ssc = ssc_p->ssc;
212 	struct snd_interval *i = hw_param_interval(params, rule->var);
213 	struct snd_interval t;
214 	struct snd_ratnum r = {
215 		.den_min = 1,
216 		.den_max = 4095,
217 		.den_step = 1,
218 	};
219 	unsigned int num = 0, den = 0;
220 	int frame_size;
221 	int mck_div = 2;
222 	int ret;
223 
224 	frame_size = snd_soc_params_to_frame_size(params);
225 	if (frame_size < 0)
226 		return frame_size;
227 
228 	switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
229 	case SND_SOC_DAIFMT_CBM_CFS:
230 		if ((ssc_p->dir_mask & SSC_DIR_MASK_CAPTURE)
231 		    && ssc->clk_from_rk_pin)
232 			/* Receiver Frame Synchro (i.e. capture)
233 			 * is output (format is _CFS) and the RK pin
234 			 * is used for input (format is _CBM_).
235 			 */
236 			mck_div = 3;
237 		break;
238 
239 	case SND_SOC_DAIFMT_CBM_CFM:
240 		if ((ssc_p->dir_mask & SSC_DIR_MASK_PLAYBACK)
241 		    && !ssc->clk_from_rk_pin)
242 			/* Transmit Frame Synchro (i.e. playback)
243 			 * is input (format is _CFM) and the TK pin
244 			 * is used for input (format _CBM_ but not
245 			 * using the RK pin).
246 			 */
247 			mck_div = 6;
248 		break;
249 	}
250 
251 	switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
252 	case SND_SOC_DAIFMT_CBS_CFS:
253 		r.num = ssc_p->mck_rate / mck_div / frame_size;
254 
255 		ret = snd_interval_ratnum(i, 1, &r, &num, &den);
256 		if (ret >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
257 			params->rate_num = num;
258 			params->rate_den = den;
259 		}
260 		break;
261 
262 	case SND_SOC_DAIFMT_CBM_CFS:
263 	case SND_SOC_DAIFMT_CBM_CFM:
264 		t.min = 8000;
265 		t.max = ssc_p->mck_rate / mck_div / frame_size;
266 		t.openmin = t.openmax = 0;
267 		t.integer = 0;
268 		ret = snd_interval_refine(i, &t);
269 		break;
270 
271 	default:
272 		ret = -EINVAL;
273 		break;
274 	}
275 
276 	return ret;
277 }
278 
279 /*-------------------------------------------------------------------------*\
280  * DAI functions
281 \*-------------------------------------------------------------------------*/
282 /*
283  * Startup.  Only that one substream allowed in each direction.
284  */
285 static int atmel_ssc_startup(struct snd_pcm_substream *substream,
286 			     struct snd_soc_dai *dai)
287 {
288 	struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
289 	struct atmel_pcm_dma_params *dma_params;
290 	int dir, dir_mask;
291 	int ret;
292 
293 	pr_debug("atmel_ssc_startup: SSC_SR=0x%x\n",
294 		ssc_readl(ssc_p->ssc->regs, SR));
295 
296 	/* Enable PMC peripheral clock for this SSC */
297 	pr_debug("atmel_ssc_dai: Starting clock\n");
298 	clk_enable(ssc_p->ssc->clk);
299 	ssc_p->mck_rate = clk_get_rate(ssc_p->ssc->clk);
300 
301 	/* Reset the SSC to keep it at a clean status */
302 	ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
303 
304 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
305 		dir = 0;
306 		dir_mask = SSC_DIR_MASK_PLAYBACK;
307 	} else {
308 		dir = 1;
309 		dir_mask = SSC_DIR_MASK_CAPTURE;
310 	}
311 
312 	ret = snd_pcm_hw_rule_add(substream->runtime, 0,
313 				  SNDRV_PCM_HW_PARAM_RATE,
314 				  atmel_ssc_hw_rule_rate,
315 				  ssc_p,
316 				  SNDRV_PCM_HW_PARAM_FRAME_BITS,
317 				  SNDRV_PCM_HW_PARAM_CHANNELS, -1);
318 	if (ret < 0) {
319 		dev_err(dai->dev, "Failed to specify rate rule: %d\n", ret);
320 		return ret;
321 	}
322 
323 	dma_params = &ssc_dma_params[dai->id][dir];
324 	dma_params->ssc = ssc_p->ssc;
325 	dma_params->substream = substream;
326 
327 	ssc_p->dma_params[dir] = dma_params;
328 
329 	snd_soc_dai_set_dma_data(dai, substream, dma_params);
330 
331 	spin_lock_irq(&ssc_p->lock);
332 	if (ssc_p->dir_mask & dir_mask) {
333 		spin_unlock_irq(&ssc_p->lock);
334 		return -EBUSY;
335 	}
336 	ssc_p->dir_mask |= dir_mask;
337 	spin_unlock_irq(&ssc_p->lock);
338 
339 	return 0;
340 }
341 
342 /*
343  * Shutdown.  Clear DMA parameters and shutdown the SSC if there
344  * are no other substreams open.
345  */
346 static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
347 			       struct snd_soc_dai *dai)
348 {
349 	struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
350 	struct atmel_pcm_dma_params *dma_params;
351 	int dir, dir_mask;
352 
353 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
354 		dir = 0;
355 	else
356 		dir = 1;
357 
358 	dma_params = ssc_p->dma_params[dir];
359 
360 	if (dma_params != NULL) {
361 		dma_params->ssc = NULL;
362 		dma_params->substream = NULL;
363 		ssc_p->dma_params[dir] = NULL;
364 	}
365 
366 	dir_mask = 1 << dir;
367 
368 	spin_lock_irq(&ssc_p->lock);
369 	ssc_p->dir_mask &= ~dir_mask;
370 	if (!ssc_p->dir_mask) {
371 		if (ssc_p->initialized) {
372 			free_irq(ssc_p->ssc->irq, ssc_p);
373 			ssc_p->initialized = 0;
374 		}
375 
376 		/* Reset the SSC */
377 		ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
378 		/* Clear the SSC dividers */
379 		ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
380 	}
381 	spin_unlock_irq(&ssc_p->lock);
382 
383 	/* Shutdown the SSC clock. */
384 	pr_debug("atmel_ssc_dai: Stopping clock\n");
385 	clk_disable(ssc_p->ssc->clk);
386 }
387 
388 
389 /*
390  * Record the DAI format for use in hw_params().
391  */
392 static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
393 		unsigned int fmt)
394 {
395 	struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
396 
397 	ssc_p->daifmt = fmt;
398 	return 0;
399 }
400 
401 /*
402  * Record SSC clock dividers for use in hw_params().
403  */
404 static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
405 	int div_id, int div)
406 {
407 	struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
408 
409 	switch (div_id) {
410 	case ATMEL_SSC_CMR_DIV:
411 		/*
412 		 * The same master clock divider is used for both
413 		 * transmit and receive, so if a value has already
414 		 * been set, it must match this value.
415 		 */
416 		if (ssc_p->dir_mask !=
417 			(SSC_DIR_MASK_PLAYBACK | SSC_DIR_MASK_CAPTURE))
418 			ssc_p->cmr_div = div;
419 		else if (ssc_p->cmr_div == 0)
420 			ssc_p->cmr_div = div;
421 		else
422 			if (div != ssc_p->cmr_div)
423 				return -EBUSY;
424 		break;
425 
426 	case ATMEL_SSC_TCMR_PERIOD:
427 		ssc_p->tcmr_period = div;
428 		break;
429 
430 	case ATMEL_SSC_RCMR_PERIOD:
431 		ssc_p->rcmr_period = div;
432 		break;
433 
434 	default:
435 		return -EINVAL;
436 	}
437 
438 	return 0;
439 }
440 
441 /*
442  * Configure the SSC.
443  */
444 static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
445 	struct snd_pcm_hw_params *params,
446 	struct snd_soc_dai *dai)
447 {
448 	int id = dai->id;
449 	struct atmel_ssc_info *ssc_p = &ssc_info[id];
450 	struct ssc_device *ssc = ssc_p->ssc;
451 	struct atmel_pcm_dma_params *dma_params;
452 	int dir, channels, bits;
453 	u32 tfmr, rfmr, tcmr, rcmr;
454 	int ret;
455 	int fslen, fslen_ext;
456 
457 	/*
458 	 * Currently, there is only one set of dma params for
459 	 * each direction.  If more are added, this code will
460 	 * have to be changed to select the proper set.
461 	 */
462 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
463 		dir = 0;
464 	else
465 		dir = 1;
466 
467 	dma_params = ssc_p->dma_params[dir];
468 
469 	channels = params_channels(params);
470 
471 	/*
472 	 * Determine sample size in bits and the PDC increment.
473 	 */
474 	switch (params_format(params)) {
475 	case SNDRV_PCM_FORMAT_S8:
476 		bits = 8;
477 		dma_params->pdc_xfer_size = 1;
478 		break;
479 	case SNDRV_PCM_FORMAT_S16_LE:
480 		bits = 16;
481 		dma_params->pdc_xfer_size = 2;
482 		break;
483 	case SNDRV_PCM_FORMAT_S24_LE:
484 		bits = 24;
485 		dma_params->pdc_xfer_size = 4;
486 		break;
487 	case SNDRV_PCM_FORMAT_S32_LE:
488 		bits = 32;
489 		dma_params->pdc_xfer_size = 4;
490 		break;
491 	default:
492 		printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
493 		return -EINVAL;
494 	}
495 
496 	/*
497 	 * Compute SSC register settings.
498 	 */
499 	switch (ssc_p->daifmt
500 		& (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
501 
502 	case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
503 		/*
504 		 * I2S format, SSC provides BCLK and LRC clocks.
505 		 *
506 		 * The SSC transmit and receive clocks are generated
507 		 * from the MCK divider, and the BCLK signal
508 		 * is output on the SSC TK line.
509 		 */
510 
511 		if (bits > 16 && !ssc->pdata->has_fslen_ext) {
512 			dev_err(dai->dev,
513 				"sample size %d is too large for SSC device\n",
514 				bits);
515 			return -EINVAL;
516 		}
517 
518 		fslen_ext = (bits - 1) / 16;
519 		fslen = (bits - 1) % 16;
520 
521 		rcmr =	  SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
522 			| SSC_BF(RCMR_STTDLY, START_DELAY)
523 			| SSC_BF(RCMR_START, SSC_START_FALLING_RF)
524 			| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
525 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
526 			| SSC_BF(RCMR_CKS, SSC_CKS_DIV);
527 
528 		rfmr =    SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
529 			| SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
530 			| SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
531 			| SSC_BF(RFMR_FSLEN, fslen)
532 			| SSC_BF(RFMR_DATNB, (channels - 1))
533 			| SSC_BIT(RFMR_MSBF)
534 			| SSC_BF(RFMR_LOOP, 0)
535 			| SSC_BF(RFMR_DATLEN, (bits - 1));
536 
537 		tcmr =	  SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
538 			| SSC_BF(TCMR_STTDLY, START_DELAY)
539 			| SSC_BF(TCMR_START, SSC_START_FALLING_RF)
540 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
541 			| SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
542 			| SSC_BF(TCMR_CKS, SSC_CKS_DIV);
543 
544 		tfmr =    SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
545 			| SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
546 			| SSC_BF(TFMR_FSDEN, 0)
547 			| SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
548 			| SSC_BF(TFMR_FSLEN, fslen)
549 			| SSC_BF(TFMR_DATNB, (channels - 1))
550 			| SSC_BIT(TFMR_MSBF)
551 			| SSC_BF(TFMR_DATDEF, 0)
552 			| SSC_BF(TFMR_DATLEN, (bits - 1));
553 		break;
554 
555 	case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
556 		/* I2S format, CODEC supplies BCLK and LRC clocks. */
557 		rcmr =	  SSC_BF(RCMR_PERIOD, 0)
558 			| SSC_BF(RCMR_STTDLY, START_DELAY)
559 			| SSC_BF(RCMR_START, SSC_START_FALLING_RF)
560 			| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
561 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
562 			| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
563 					   SSC_CKS_PIN : SSC_CKS_CLOCK);
564 
565 		rfmr =	  SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
566 			| SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
567 			| SSC_BF(RFMR_FSLEN, 0)
568 			| SSC_BF(RFMR_DATNB, (channels - 1))
569 			| SSC_BIT(RFMR_MSBF)
570 			| SSC_BF(RFMR_LOOP, 0)
571 			| SSC_BF(RFMR_DATLEN, (bits - 1));
572 
573 		tcmr =	  SSC_BF(TCMR_PERIOD, 0)
574 			| SSC_BF(TCMR_STTDLY, START_DELAY)
575 			| SSC_BF(TCMR_START, SSC_START_FALLING_RF)
576 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
577 			| SSC_BF(TCMR_CKO, SSC_CKO_NONE)
578 			| SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
579 					   SSC_CKS_CLOCK : SSC_CKS_PIN);
580 
581 		tfmr =	  SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
582 			| SSC_BF(TFMR_FSDEN, 0)
583 			| SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
584 			| SSC_BF(TFMR_FSLEN, 0)
585 			| SSC_BF(TFMR_DATNB, (channels - 1))
586 			| SSC_BIT(TFMR_MSBF)
587 			| SSC_BF(TFMR_DATDEF, 0)
588 			| SSC_BF(TFMR_DATLEN, (bits - 1));
589 		break;
590 
591 	case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFS:
592 		/* I2S format, CODEC supplies BCLK, SSC supplies LRCLK. */
593 		if (bits > 16 && !ssc->pdata->has_fslen_ext) {
594 			dev_err(dai->dev,
595 				"sample size %d is too large for SSC device\n",
596 				bits);
597 			return -EINVAL;
598 		}
599 
600 		fslen_ext = (bits - 1) / 16;
601 		fslen = (bits - 1) % 16;
602 
603 		rcmr =	  SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
604 			| SSC_BF(RCMR_STTDLY, START_DELAY)
605 			| SSC_BF(RCMR_START, SSC_START_FALLING_RF)
606 			| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
607 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
608 			| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
609 					   SSC_CKS_PIN : SSC_CKS_CLOCK);
610 
611 		rfmr =    SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
612 			| SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
613 			| SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
614 			| SSC_BF(RFMR_FSLEN, fslen)
615 			| SSC_BF(RFMR_DATNB, (channels - 1))
616 			| SSC_BIT(RFMR_MSBF)
617 			| SSC_BF(RFMR_LOOP, 0)
618 			| SSC_BF(RFMR_DATLEN, (bits - 1));
619 
620 		tcmr =	  SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
621 			| SSC_BF(TCMR_STTDLY, START_DELAY)
622 			| SSC_BF(TCMR_START, SSC_START_FALLING_RF)
623 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
624 			| SSC_BF(TCMR_CKO, SSC_CKO_NONE)
625 			| SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
626 					   SSC_CKS_CLOCK : SSC_CKS_PIN);
627 
628 		tfmr =    SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
629 			| SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_NEGATIVE)
630 			| SSC_BF(TFMR_FSDEN, 0)
631 			| SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
632 			| SSC_BF(TFMR_FSLEN, fslen)
633 			| SSC_BF(TFMR_DATNB, (channels - 1))
634 			| SSC_BIT(TFMR_MSBF)
635 			| SSC_BF(TFMR_DATDEF, 0)
636 			| SSC_BF(TFMR_DATLEN, (bits - 1));
637 		break;
638 
639 	case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
640 		/*
641 		 * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
642 		 *
643 		 * The SSC transmit and receive clocks are generated from the
644 		 * MCK divider, and the BCLK signal is output
645 		 * on the SSC TK line.
646 		 */
647 		rcmr =	  SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
648 			| SSC_BF(RCMR_STTDLY, 1)
649 			| SSC_BF(RCMR_START, SSC_START_RISING_RF)
650 			| SSC_BF(RCMR_CKI, SSC_CKI_FALLING)
651 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
652 			| SSC_BF(RCMR_CKS, SSC_CKS_DIV);
653 
654 		rfmr =	  SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
655 			| SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE)
656 			| SSC_BF(RFMR_FSLEN, 0)
657 			| SSC_BF(RFMR_DATNB, (channels - 1))
658 			| SSC_BIT(RFMR_MSBF)
659 			| SSC_BF(RFMR_LOOP, 0)
660 			| SSC_BF(RFMR_DATLEN, (bits - 1));
661 
662 		tcmr =	  SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
663 			| SSC_BF(TCMR_STTDLY, 1)
664 			| SSC_BF(TCMR_START, SSC_START_RISING_RF)
665 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
666 			| SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
667 			| SSC_BF(TCMR_CKS, SSC_CKS_DIV);
668 
669 		tfmr =	  SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
670 			| SSC_BF(TFMR_FSDEN, 0)
671 			| SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE)
672 			| SSC_BF(TFMR_FSLEN, 0)
673 			| SSC_BF(TFMR_DATNB, (channels - 1))
674 			| SSC_BIT(TFMR_MSBF)
675 			| SSC_BF(TFMR_DATDEF, 0)
676 			| SSC_BF(TFMR_DATLEN, (bits - 1));
677 		break;
678 
679 	case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
680 		/*
681 		 * DSP/PCM Mode A format, CODEC supplies BCLK and LRC clocks.
682 		 *
683 		 * Data is transferred on first BCLK after LRC pulse rising
684 		 * edge.If stereo, the right channel data is contiguous with
685 		 * the left channel data.
686 		 */
687 		rcmr =	  SSC_BF(RCMR_PERIOD, 0)
688 			| SSC_BF(RCMR_STTDLY, START_DELAY)
689 			| SSC_BF(RCMR_START, SSC_START_RISING_RF)
690 			| SSC_BF(RCMR_CKI, SSC_CKI_FALLING)
691 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
692 			| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
693 					   SSC_CKS_PIN : SSC_CKS_CLOCK);
694 
695 		rfmr =	  SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
696 			| SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
697 			| SSC_BF(RFMR_FSLEN, 0)
698 			| SSC_BF(RFMR_DATNB, (channels - 1))
699 			| SSC_BIT(RFMR_MSBF)
700 			| SSC_BF(RFMR_LOOP, 0)
701 			| SSC_BF(RFMR_DATLEN, (bits - 1));
702 
703 		tcmr =	  SSC_BF(TCMR_PERIOD, 0)
704 			| SSC_BF(TCMR_STTDLY, START_DELAY)
705 			| SSC_BF(TCMR_START, SSC_START_RISING_RF)
706 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
707 			| SSC_BF(TCMR_CKO, SSC_CKO_NONE)
708 			| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
709 					   SSC_CKS_CLOCK : SSC_CKS_PIN);
710 
711 		tfmr =	  SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
712 			| SSC_BF(TFMR_FSDEN, 0)
713 			| SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
714 			| SSC_BF(TFMR_FSLEN, 0)
715 			| SSC_BF(TFMR_DATNB, (channels - 1))
716 			| SSC_BIT(TFMR_MSBF)
717 			| SSC_BF(TFMR_DATDEF, 0)
718 			| SSC_BF(TFMR_DATLEN, (bits - 1));
719 		break;
720 
721 	default:
722 		printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
723 			ssc_p->daifmt);
724 		return -EINVAL;
725 	}
726 	pr_debug("atmel_ssc_hw_params: "
727 			"RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
728 			rcmr, rfmr, tcmr, tfmr);
729 
730 	if (!ssc_p->initialized) {
731 		if (!ssc_p->ssc->pdata->use_dma) {
732 			ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
733 			ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
734 			ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
735 			ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
736 
737 			ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
738 			ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
739 			ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
740 			ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
741 		}
742 
743 		ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
744 				ssc_p->name, ssc_p);
745 		if (ret < 0) {
746 			printk(KERN_WARNING
747 					"atmel_ssc_dai: request_irq failure\n");
748 			pr_debug("Atmel_ssc_dai: Stoping clock\n");
749 			clk_disable(ssc_p->ssc->clk);
750 			return ret;
751 		}
752 
753 		ssc_p->initialized = 1;
754 	}
755 
756 	/* set SSC clock mode register */
757 	ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->cmr_div);
758 
759 	/* set receive clock mode and format */
760 	ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
761 	ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
762 
763 	/* set transmit clock mode and format */
764 	ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
765 	ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
766 
767 	pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
768 	return 0;
769 }
770 
771 
772 static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
773 			     struct snd_soc_dai *dai)
774 {
775 	struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
776 	struct atmel_pcm_dma_params *dma_params;
777 	int dir;
778 
779 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
780 		dir = 0;
781 	else
782 		dir = 1;
783 
784 	dma_params = ssc_p->dma_params[dir];
785 
786 	ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
787 	ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error);
788 
789 	pr_debug("%s enabled SSC_SR=0x%08x\n",
790 			dir ? "receive" : "transmit",
791 			ssc_readl(ssc_p->ssc->regs, SR));
792 	return 0;
793 }
794 
795 static int atmel_ssc_trigger(struct snd_pcm_substream *substream,
796 			     int cmd, struct snd_soc_dai *dai)
797 {
798 	struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
799 	struct atmel_pcm_dma_params *dma_params;
800 	int dir;
801 
802 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
803 		dir = 0;
804 	else
805 		dir = 1;
806 
807 	dma_params = ssc_p->dma_params[dir];
808 
809 	switch (cmd) {
810 	case SNDRV_PCM_TRIGGER_START:
811 	case SNDRV_PCM_TRIGGER_RESUME:
812 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
813 		ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
814 		break;
815 	default:
816 		ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
817 		break;
818 	}
819 
820 	return 0;
821 }
822 
823 #ifdef CONFIG_PM
824 static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai)
825 {
826 	struct atmel_ssc_info *ssc_p;
827 
828 	if (!cpu_dai->active)
829 		return 0;
830 
831 	ssc_p = &ssc_info[cpu_dai->id];
832 
833 	/* Save the status register before disabling transmit and receive */
834 	ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
835 	ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
836 
837 	/* Save the current interrupt mask, then disable unmasked interrupts */
838 	ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
839 	ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
840 
841 	ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
842 	ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
843 	ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
844 	ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
845 	ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
846 
847 	return 0;
848 }
849 
850 
851 
852 static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai)
853 {
854 	struct atmel_ssc_info *ssc_p;
855 	u32 cr;
856 
857 	if (!cpu_dai->active)
858 		return 0;
859 
860 	ssc_p = &ssc_info[cpu_dai->id];
861 
862 	/* restore SSC register settings */
863 	ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
864 	ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
865 	ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
866 	ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
867 	ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
868 
869 	/* re-enable interrupts */
870 	ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
871 
872 	/* Re-enable receive and transmit as appropriate */
873 	cr = 0;
874 	cr |=
875 	    (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
876 	cr |=
877 	    (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
878 	ssc_writel(ssc_p->ssc->regs, CR, cr);
879 
880 	return 0;
881 }
882 #else /* CONFIG_PM */
883 #  define atmel_ssc_suspend	NULL
884 #  define atmel_ssc_resume	NULL
885 #endif /* CONFIG_PM */
886 
887 #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8     | SNDRV_PCM_FMTBIT_S16_LE |\
888 			  SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
889 
890 static const struct snd_soc_dai_ops atmel_ssc_dai_ops = {
891 	.startup	= atmel_ssc_startup,
892 	.shutdown	= atmel_ssc_shutdown,
893 	.prepare	= atmel_ssc_prepare,
894 	.trigger	= atmel_ssc_trigger,
895 	.hw_params	= atmel_ssc_hw_params,
896 	.set_fmt	= atmel_ssc_set_dai_fmt,
897 	.set_clkdiv	= atmel_ssc_set_dai_clkdiv,
898 };
899 
900 static struct snd_soc_dai_driver atmel_ssc_dai = {
901 		.suspend = atmel_ssc_suspend,
902 		.resume = atmel_ssc_resume,
903 		.playback = {
904 			.channels_min = 1,
905 			.channels_max = 2,
906 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
907 			.rate_min = 8000,
908 			.rate_max = 384000,
909 			.formats = ATMEL_SSC_FORMATS,},
910 		.capture = {
911 			.channels_min = 1,
912 			.channels_max = 2,
913 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
914 			.rate_min = 8000,
915 			.rate_max = 384000,
916 			.formats = ATMEL_SSC_FORMATS,},
917 		.ops = &atmel_ssc_dai_ops,
918 };
919 
920 static const struct snd_soc_component_driver atmel_ssc_component = {
921 	.name		= "atmel-ssc",
922 };
923 
924 static int asoc_ssc_init(struct device *dev)
925 {
926 	struct platform_device *pdev = to_platform_device(dev);
927 	struct ssc_device *ssc = platform_get_drvdata(pdev);
928 	int ret;
929 
930 	ret = snd_soc_register_component(dev, &atmel_ssc_component,
931 					 &atmel_ssc_dai, 1);
932 	if (ret) {
933 		dev_err(dev, "Could not register DAI: %d\n", ret);
934 		goto err;
935 	}
936 
937 	if (ssc->pdata->use_dma)
938 		ret = atmel_pcm_dma_platform_register(dev);
939 	else
940 		ret = atmel_pcm_pdc_platform_register(dev);
941 
942 	if (ret) {
943 		dev_err(dev, "Could not register PCM: %d\n", ret);
944 		goto err_unregister_dai;
945 	}
946 
947 	return 0;
948 
949 err_unregister_dai:
950 	snd_soc_unregister_component(dev);
951 err:
952 	return ret;
953 }
954 
955 static void asoc_ssc_exit(struct device *dev)
956 {
957 	struct platform_device *pdev = to_platform_device(dev);
958 	struct ssc_device *ssc = platform_get_drvdata(pdev);
959 
960 	if (ssc->pdata->use_dma)
961 		atmel_pcm_dma_platform_unregister(dev);
962 	else
963 		atmel_pcm_pdc_platform_unregister(dev);
964 
965 	snd_soc_unregister_component(dev);
966 }
967 
968 /**
969  * atmel_ssc_set_audio - Allocate the specified SSC for audio use.
970  */
971 int atmel_ssc_set_audio(int ssc_id)
972 {
973 	struct ssc_device *ssc;
974 	int ret;
975 
976 	/* If we can grab the SSC briefly to parent the DAI device off it */
977 	ssc = ssc_request(ssc_id);
978 	if (IS_ERR(ssc)) {
979 		pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n",
980 			PTR_ERR(ssc));
981 		return PTR_ERR(ssc);
982 	} else {
983 		ssc_info[ssc_id].ssc = ssc;
984 	}
985 
986 	ret = asoc_ssc_init(&ssc->pdev->dev);
987 
988 	return ret;
989 }
990 EXPORT_SYMBOL_GPL(atmel_ssc_set_audio);
991 
992 void atmel_ssc_put_audio(int ssc_id)
993 {
994 	struct ssc_device *ssc = ssc_info[ssc_id].ssc;
995 
996 	asoc_ssc_exit(&ssc->pdev->dev);
997 	ssc_free(ssc);
998 }
999 EXPORT_SYMBOL_GPL(atmel_ssc_put_audio);
1000 
1001 /* Module information */
1002 MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
1003 MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
1004 MODULE_LICENSE("GPL");
1005