xref: /linux/sound/soc/atmel/atmel_ssc_dai.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * atmel_ssc_dai.c  --  ALSA SoC ATMEL SSC Audio Layer Platform driver
3  *
4  * Copyright (C) 2005 SAN People
5  * Copyright (C) 2008 Atmel
6  *
7  * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
8  *         ATMEL CORP.
9  *
10  * Based on at91-ssc.c by
11  * Frank Mandarino <fmandarino@endrelia.com>
12  * Based on pxa2xx Platform drivers by
13  * Liam Girdwood <lrg@slimlogic.co.uk>
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with this program; if not, write to the Free Software
27  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
28  */
29 
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/interrupt.h>
33 #include <linux/device.h>
34 #include <linux/delay.h>
35 #include <linux/clk.h>
36 #include <linux/atmel_pdc.h>
37 
38 #include <linux/atmel-ssc.h>
39 #include <sound/core.h>
40 #include <sound/pcm.h>
41 #include <sound/pcm_params.h>
42 #include <sound/initval.h>
43 #include <sound/soc.h>
44 
45 #include "atmel-pcm.h"
46 #include "atmel_ssc_dai.h"
47 
48 
49 #define NUM_SSC_DEVICES		3
50 
51 /*
52  * SSC PDC registers required by the PCM DMA engine.
53  */
54 static struct atmel_pdc_regs pdc_tx_reg = {
55 	.xpr		= ATMEL_PDC_TPR,
56 	.xcr		= ATMEL_PDC_TCR,
57 	.xnpr		= ATMEL_PDC_TNPR,
58 	.xncr		= ATMEL_PDC_TNCR,
59 };
60 
61 static struct atmel_pdc_regs pdc_rx_reg = {
62 	.xpr		= ATMEL_PDC_RPR,
63 	.xcr		= ATMEL_PDC_RCR,
64 	.xnpr		= ATMEL_PDC_RNPR,
65 	.xncr		= ATMEL_PDC_RNCR,
66 };
67 
68 /*
69  * SSC & PDC status bits for transmit and receive.
70  */
71 static struct atmel_ssc_mask ssc_tx_mask = {
72 	.ssc_enable	= SSC_BIT(CR_TXEN),
73 	.ssc_disable	= SSC_BIT(CR_TXDIS),
74 	.ssc_endx	= SSC_BIT(SR_ENDTX),
75 	.ssc_endbuf	= SSC_BIT(SR_TXBUFE),
76 	.ssc_error	= SSC_BIT(SR_OVRUN),
77 	.pdc_enable	= ATMEL_PDC_TXTEN,
78 	.pdc_disable	= ATMEL_PDC_TXTDIS,
79 };
80 
81 static struct atmel_ssc_mask ssc_rx_mask = {
82 	.ssc_enable	= SSC_BIT(CR_RXEN),
83 	.ssc_disable	= SSC_BIT(CR_RXDIS),
84 	.ssc_endx	= SSC_BIT(SR_ENDRX),
85 	.ssc_endbuf	= SSC_BIT(SR_RXBUFF),
86 	.ssc_error	= SSC_BIT(SR_OVRUN),
87 	.pdc_enable	= ATMEL_PDC_RXTEN,
88 	.pdc_disable	= ATMEL_PDC_RXTDIS,
89 };
90 
91 
92 /*
93  * DMA parameters.
94  */
95 static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
96 	{{
97 	.name		= "SSC0 PCM out",
98 	.pdc		= &pdc_tx_reg,
99 	.mask		= &ssc_tx_mask,
100 	},
101 	{
102 	.name		= "SSC0 PCM in",
103 	.pdc		= &pdc_rx_reg,
104 	.mask		= &ssc_rx_mask,
105 	} },
106 	{{
107 	.name		= "SSC1 PCM out",
108 	.pdc		= &pdc_tx_reg,
109 	.mask		= &ssc_tx_mask,
110 	},
111 	{
112 	.name		= "SSC1 PCM in",
113 	.pdc		= &pdc_rx_reg,
114 	.mask		= &ssc_rx_mask,
115 	} },
116 	{{
117 	.name		= "SSC2 PCM out",
118 	.pdc		= &pdc_tx_reg,
119 	.mask		= &ssc_tx_mask,
120 	},
121 	{
122 	.name		= "SSC2 PCM in",
123 	.pdc		= &pdc_rx_reg,
124 	.mask		= &ssc_rx_mask,
125 	} },
126 };
127 
128 
129 static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
130 	{
131 	.name		= "ssc0",
132 	.lock		= __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
133 	.dir_mask	= SSC_DIR_MASK_UNUSED,
134 	.initialized	= 0,
135 	},
136 	{
137 	.name		= "ssc1",
138 	.lock		= __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
139 	.dir_mask	= SSC_DIR_MASK_UNUSED,
140 	.initialized	= 0,
141 	},
142 	{
143 	.name		= "ssc2",
144 	.lock		= __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
145 	.dir_mask	= SSC_DIR_MASK_UNUSED,
146 	.initialized	= 0,
147 	},
148 };
149 
150 
151 /*
152  * SSC interrupt handler.  Passes PDC interrupts to the DMA
153  * interrupt handler in the PCM driver.
154  */
155 static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
156 {
157 	struct atmel_ssc_info *ssc_p = dev_id;
158 	struct atmel_pcm_dma_params *dma_params;
159 	u32 ssc_sr;
160 	u32 ssc_substream_mask;
161 	int i;
162 
163 	ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
164 			& (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
165 
166 	/*
167 	 * Loop through the substreams attached to this SSC.  If
168 	 * a DMA-related interrupt occurred on that substream, call
169 	 * the DMA interrupt handler function, if one has been
170 	 * registered in the dma_params structure by the PCM driver.
171 	 */
172 	for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
173 		dma_params = ssc_p->dma_params[i];
174 
175 		if ((dma_params != NULL) &&
176 			(dma_params->dma_intr_handler != NULL)) {
177 			ssc_substream_mask = (dma_params->mask->ssc_endx |
178 					dma_params->mask->ssc_endbuf);
179 			if (ssc_sr & ssc_substream_mask) {
180 				dma_params->dma_intr_handler(ssc_sr,
181 						dma_params->
182 						substream);
183 			}
184 		}
185 	}
186 
187 	return IRQ_HANDLED;
188 }
189 
190 /*
191  * When the bit clock is input, limit the maximum rate according to the
192  * Serial Clock Ratio Considerations section from the SSC documentation:
193  *
194  *   The Transmitter and the Receiver can be programmed to operate
195  *   with the clock signals provided on either the TK or RK pins.
196  *   This allows the SSC to support many slave-mode data transfers.
197  *   In this case, the maximum clock speed allowed on the RK pin is:
198  *   - Peripheral clock divided by 2 if Receiver Frame Synchro is input
199  *   - Peripheral clock divided by 3 if Receiver Frame Synchro is output
200  *   In addition, the maximum clock speed allowed on the TK pin is:
201  *   - Peripheral clock divided by 6 if Transmit Frame Synchro is input
202  *   - Peripheral clock divided by 2 if Transmit Frame Synchro is output
203  *
204  * When the bit clock is output, limit the rate according to the
205  * SSC divider restrictions.
206  */
207 static int atmel_ssc_hw_rule_rate(struct snd_pcm_hw_params *params,
208 				  struct snd_pcm_hw_rule *rule)
209 {
210 	struct atmel_ssc_info *ssc_p = rule->private;
211 	struct ssc_device *ssc = ssc_p->ssc;
212 	struct snd_interval *i = hw_param_interval(params, rule->var);
213 	struct snd_interval t;
214 	struct snd_ratnum r = {
215 		.den_min = 1,
216 		.den_max = 4095,
217 		.den_step = 1,
218 	};
219 	unsigned int num = 0, den = 0;
220 	int frame_size;
221 	int mck_div = 2;
222 	int ret;
223 
224 	frame_size = snd_soc_params_to_frame_size(params);
225 	if (frame_size < 0)
226 		return frame_size;
227 
228 	switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
229 	case SND_SOC_DAIFMT_CBM_CFS:
230 		if ((ssc_p->dir_mask & SSC_DIR_MASK_CAPTURE)
231 		    && ssc->clk_from_rk_pin)
232 			/* Receiver Frame Synchro (i.e. capture)
233 			 * is output (format is _CFS) and the RK pin
234 			 * is used for input (format is _CBM_).
235 			 */
236 			mck_div = 3;
237 		break;
238 
239 	case SND_SOC_DAIFMT_CBM_CFM:
240 		if ((ssc_p->dir_mask & SSC_DIR_MASK_PLAYBACK)
241 		    && !ssc->clk_from_rk_pin)
242 			/* Transmit Frame Synchro (i.e. playback)
243 			 * is input (format is _CFM) and the TK pin
244 			 * is used for input (format _CBM_ but not
245 			 * using the RK pin).
246 			 */
247 			mck_div = 6;
248 		break;
249 	}
250 
251 	switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
252 	case SND_SOC_DAIFMT_CBS_CFS:
253 		r.num = ssc_p->mck_rate / mck_div / frame_size;
254 
255 		ret = snd_interval_ratnum(i, 1, &r, &num, &den);
256 		if (ret >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
257 			params->rate_num = num;
258 			params->rate_den = den;
259 		}
260 		break;
261 
262 	case SND_SOC_DAIFMT_CBM_CFS:
263 	case SND_SOC_DAIFMT_CBM_CFM:
264 		t.min = 8000;
265 		t.max = ssc_p->mck_rate / mck_div / frame_size;
266 		t.openmin = t.openmax = 0;
267 		t.integer = 0;
268 		ret = snd_interval_refine(i, &t);
269 		break;
270 
271 	default:
272 		ret = -EINVAL;
273 		break;
274 	}
275 
276 	return ret;
277 }
278 
279 /*-------------------------------------------------------------------------*\
280  * DAI functions
281 \*-------------------------------------------------------------------------*/
282 /*
283  * Startup.  Only that one substream allowed in each direction.
284  */
285 static int atmel_ssc_startup(struct snd_pcm_substream *substream,
286 			     struct snd_soc_dai *dai)
287 {
288 	struct platform_device *pdev = to_platform_device(dai->dev);
289 	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
290 	struct atmel_pcm_dma_params *dma_params;
291 	int dir, dir_mask;
292 	int ret;
293 
294 	pr_debug("atmel_ssc_startup: SSC_SR=0x%x\n",
295 		ssc_readl(ssc_p->ssc->regs, SR));
296 
297 	/* Enable PMC peripheral clock for this SSC */
298 	pr_debug("atmel_ssc_dai: Starting clock\n");
299 	clk_enable(ssc_p->ssc->clk);
300 	ssc_p->mck_rate = clk_get_rate(ssc_p->ssc->clk);
301 
302 	/* Reset the SSC to keep it at a clean status */
303 	ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
304 
305 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
306 		dir = 0;
307 		dir_mask = SSC_DIR_MASK_PLAYBACK;
308 	} else {
309 		dir = 1;
310 		dir_mask = SSC_DIR_MASK_CAPTURE;
311 	}
312 
313 	ret = snd_pcm_hw_rule_add(substream->runtime, 0,
314 				  SNDRV_PCM_HW_PARAM_RATE,
315 				  atmel_ssc_hw_rule_rate,
316 				  ssc_p,
317 				  SNDRV_PCM_HW_PARAM_FRAME_BITS,
318 				  SNDRV_PCM_HW_PARAM_CHANNELS, -1);
319 	if (ret < 0) {
320 		dev_err(dai->dev, "Failed to specify rate rule: %d\n", ret);
321 		return ret;
322 	}
323 
324 	dma_params = &ssc_dma_params[dai->id][dir];
325 	dma_params->ssc = ssc_p->ssc;
326 	dma_params->substream = substream;
327 
328 	ssc_p->dma_params[dir] = dma_params;
329 
330 	snd_soc_dai_set_dma_data(dai, substream, dma_params);
331 
332 	spin_lock_irq(&ssc_p->lock);
333 	if (ssc_p->dir_mask & dir_mask) {
334 		spin_unlock_irq(&ssc_p->lock);
335 		return -EBUSY;
336 	}
337 	ssc_p->dir_mask |= dir_mask;
338 	spin_unlock_irq(&ssc_p->lock);
339 
340 	return 0;
341 }
342 
343 /*
344  * Shutdown.  Clear DMA parameters and shutdown the SSC if there
345  * are no other substreams open.
346  */
347 static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
348 			       struct snd_soc_dai *dai)
349 {
350 	struct platform_device *pdev = to_platform_device(dai->dev);
351 	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
352 	struct atmel_pcm_dma_params *dma_params;
353 	int dir, dir_mask;
354 
355 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
356 		dir = 0;
357 	else
358 		dir = 1;
359 
360 	dma_params = ssc_p->dma_params[dir];
361 
362 	if (dma_params != NULL) {
363 		dma_params->ssc = NULL;
364 		dma_params->substream = NULL;
365 		ssc_p->dma_params[dir] = NULL;
366 	}
367 
368 	dir_mask = 1 << dir;
369 
370 	spin_lock_irq(&ssc_p->lock);
371 	ssc_p->dir_mask &= ~dir_mask;
372 	if (!ssc_p->dir_mask) {
373 		if (ssc_p->initialized) {
374 			free_irq(ssc_p->ssc->irq, ssc_p);
375 			ssc_p->initialized = 0;
376 		}
377 
378 		/* Reset the SSC */
379 		ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
380 		/* Clear the SSC dividers */
381 		ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
382 	}
383 	spin_unlock_irq(&ssc_p->lock);
384 
385 	/* Shutdown the SSC clock. */
386 	pr_debug("atmel_ssc_dai: Stopping clock\n");
387 	clk_disable(ssc_p->ssc->clk);
388 }
389 
390 
391 /*
392  * Record the DAI format for use in hw_params().
393  */
394 static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
395 		unsigned int fmt)
396 {
397 	struct platform_device *pdev = to_platform_device(cpu_dai->dev);
398 	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
399 
400 	ssc_p->daifmt = fmt;
401 	return 0;
402 }
403 
404 /*
405  * Record SSC clock dividers for use in hw_params().
406  */
407 static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
408 	int div_id, int div)
409 {
410 	struct platform_device *pdev = to_platform_device(cpu_dai->dev);
411 	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
412 
413 	switch (div_id) {
414 	case ATMEL_SSC_CMR_DIV:
415 		/*
416 		 * The same master clock divider is used for both
417 		 * transmit and receive, so if a value has already
418 		 * been set, it must match this value.
419 		 */
420 		if (ssc_p->dir_mask !=
421 			(SSC_DIR_MASK_PLAYBACK | SSC_DIR_MASK_CAPTURE))
422 			ssc_p->cmr_div = div;
423 		else if (ssc_p->cmr_div == 0)
424 			ssc_p->cmr_div = div;
425 		else
426 			if (div != ssc_p->cmr_div)
427 				return -EBUSY;
428 		break;
429 
430 	case ATMEL_SSC_TCMR_PERIOD:
431 		ssc_p->tcmr_period = div;
432 		break;
433 
434 	case ATMEL_SSC_RCMR_PERIOD:
435 		ssc_p->rcmr_period = div;
436 		break;
437 
438 	default:
439 		return -EINVAL;
440 	}
441 
442 	return 0;
443 }
444 
445 /*
446  * Configure the SSC.
447  */
448 static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
449 	struct snd_pcm_hw_params *params,
450 	struct snd_soc_dai *dai)
451 {
452 	struct platform_device *pdev = to_platform_device(dai->dev);
453 	int id = pdev->id;
454 	struct atmel_ssc_info *ssc_p = &ssc_info[id];
455 	struct ssc_device *ssc = ssc_p->ssc;
456 	struct atmel_pcm_dma_params *dma_params;
457 	int dir, channels, bits;
458 	u32 tfmr, rfmr, tcmr, rcmr;
459 	int ret;
460 	int fslen, fslen_ext;
461 
462 	/*
463 	 * Currently, there is only one set of dma params for
464 	 * each direction.  If more are added, this code will
465 	 * have to be changed to select the proper set.
466 	 */
467 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
468 		dir = 0;
469 	else
470 		dir = 1;
471 
472 	dma_params = ssc_p->dma_params[dir];
473 
474 	channels = params_channels(params);
475 
476 	/*
477 	 * Determine sample size in bits and the PDC increment.
478 	 */
479 	switch (params_format(params)) {
480 	case SNDRV_PCM_FORMAT_S8:
481 		bits = 8;
482 		dma_params->pdc_xfer_size = 1;
483 		break;
484 	case SNDRV_PCM_FORMAT_S16_LE:
485 		bits = 16;
486 		dma_params->pdc_xfer_size = 2;
487 		break;
488 	case SNDRV_PCM_FORMAT_S24_LE:
489 		bits = 24;
490 		dma_params->pdc_xfer_size = 4;
491 		break;
492 	case SNDRV_PCM_FORMAT_S32_LE:
493 		bits = 32;
494 		dma_params->pdc_xfer_size = 4;
495 		break;
496 	default:
497 		printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
498 		return -EINVAL;
499 	}
500 
501 	/*
502 	 * Compute SSC register settings.
503 	 */
504 	switch (ssc_p->daifmt
505 		& (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
506 
507 	case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
508 		/*
509 		 * I2S format, SSC provides BCLK and LRC clocks.
510 		 *
511 		 * The SSC transmit and receive clocks are generated
512 		 * from the MCK divider, and the BCLK signal
513 		 * is output on the SSC TK line.
514 		 */
515 
516 		if (bits > 16 && !ssc->pdata->has_fslen_ext) {
517 			dev_err(dai->dev,
518 				"sample size %d is too large for SSC device\n",
519 				bits);
520 			return -EINVAL;
521 		}
522 
523 		fslen_ext = (bits - 1) / 16;
524 		fslen = (bits - 1) % 16;
525 
526 		rcmr =	  SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
527 			| SSC_BF(RCMR_STTDLY, START_DELAY)
528 			| SSC_BF(RCMR_START, SSC_START_FALLING_RF)
529 			| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
530 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
531 			| SSC_BF(RCMR_CKS, SSC_CKS_DIV);
532 
533 		rfmr =    SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
534 			| SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
535 			| SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
536 			| SSC_BF(RFMR_FSLEN, fslen)
537 			| SSC_BF(RFMR_DATNB, (channels - 1))
538 			| SSC_BIT(RFMR_MSBF)
539 			| SSC_BF(RFMR_LOOP, 0)
540 			| SSC_BF(RFMR_DATLEN, (bits - 1));
541 
542 		tcmr =	  SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
543 			| SSC_BF(TCMR_STTDLY, START_DELAY)
544 			| SSC_BF(TCMR_START, SSC_START_FALLING_RF)
545 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
546 			| SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
547 			| SSC_BF(TCMR_CKS, SSC_CKS_DIV);
548 
549 		tfmr =    SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
550 			| SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
551 			| SSC_BF(TFMR_FSDEN, 0)
552 			| SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
553 			| SSC_BF(TFMR_FSLEN, fslen)
554 			| SSC_BF(TFMR_DATNB, (channels - 1))
555 			| SSC_BIT(TFMR_MSBF)
556 			| SSC_BF(TFMR_DATDEF, 0)
557 			| SSC_BF(TFMR_DATLEN, (bits - 1));
558 		break;
559 
560 	case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
561 		/* I2S format, CODEC supplies BCLK and LRC clocks. */
562 		rcmr =	  SSC_BF(RCMR_PERIOD, 0)
563 			| SSC_BF(RCMR_STTDLY, START_DELAY)
564 			| SSC_BF(RCMR_START, SSC_START_FALLING_RF)
565 			| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
566 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
567 			| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
568 					   SSC_CKS_PIN : SSC_CKS_CLOCK);
569 
570 		rfmr =	  SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
571 			| SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
572 			| SSC_BF(RFMR_FSLEN, 0)
573 			| SSC_BF(RFMR_DATNB, (channels - 1))
574 			| SSC_BIT(RFMR_MSBF)
575 			| SSC_BF(RFMR_LOOP, 0)
576 			| SSC_BF(RFMR_DATLEN, (bits - 1));
577 
578 		tcmr =	  SSC_BF(TCMR_PERIOD, 0)
579 			| SSC_BF(TCMR_STTDLY, START_DELAY)
580 			| SSC_BF(TCMR_START, SSC_START_FALLING_RF)
581 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
582 			| SSC_BF(TCMR_CKO, SSC_CKO_NONE)
583 			| SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
584 					   SSC_CKS_CLOCK : SSC_CKS_PIN);
585 
586 		tfmr =	  SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
587 			| SSC_BF(TFMR_FSDEN, 0)
588 			| SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
589 			| SSC_BF(TFMR_FSLEN, 0)
590 			| SSC_BF(TFMR_DATNB, (channels - 1))
591 			| SSC_BIT(TFMR_MSBF)
592 			| SSC_BF(TFMR_DATDEF, 0)
593 			| SSC_BF(TFMR_DATLEN, (bits - 1));
594 		break;
595 
596 	case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFS:
597 		/* I2S format, CODEC supplies BCLK, SSC supplies LRCLK. */
598 		if (bits > 16 && !ssc->pdata->has_fslen_ext) {
599 			dev_err(dai->dev,
600 				"sample size %d is too large for SSC device\n",
601 				bits);
602 			return -EINVAL;
603 		}
604 
605 		fslen_ext = (bits - 1) / 16;
606 		fslen = (bits - 1) % 16;
607 
608 		rcmr =	  SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
609 			| SSC_BF(RCMR_STTDLY, START_DELAY)
610 			| SSC_BF(RCMR_START, SSC_START_FALLING_RF)
611 			| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
612 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
613 			| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
614 					   SSC_CKS_PIN : SSC_CKS_CLOCK);
615 
616 		rfmr =    SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
617 			| SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
618 			| SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
619 			| SSC_BF(RFMR_FSLEN, fslen)
620 			| SSC_BF(RFMR_DATNB, (channels - 1))
621 			| SSC_BIT(RFMR_MSBF)
622 			| SSC_BF(RFMR_LOOP, 0)
623 			| SSC_BF(RFMR_DATLEN, (bits - 1));
624 
625 		tcmr =	  SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
626 			| SSC_BF(TCMR_STTDLY, START_DELAY)
627 			| SSC_BF(TCMR_START, SSC_START_FALLING_RF)
628 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
629 			| SSC_BF(TCMR_CKO, SSC_CKO_NONE)
630 			| SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
631 					   SSC_CKS_CLOCK : SSC_CKS_PIN);
632 
633 		tfmr =    SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
634 			| SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_NEGATIVE)
635 			| SSC_BF(TFMR_FSDEN, 0)
636 			| SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
637 			| SSC_BF(TFMR_FSLEN, fslen)
638 			| SSC_BF(TFMR_DATNB, (channels - 1))
639 			| SSC_BIT(TFMR_MSBF)
640 			| SSC_BF(TFMR_DATDEF, 0)
641 			| SSC_BF(TFMR_DATLEN, (bits - 1));
642 		break;
643 
644 	case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
645 		/*
646 		 * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
647 		 *
648 		 * The SSC transmit and receive clocks are generated from the
649 		 * MCK divider, and the BCLK signal is output
650 		 * on the SSC TK line.
651 		 */
652 		rcmr =	  SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
653 			| SSC_BF(RCMR_STTDLY, 1)
654 			| SSC_BF(RCMR_START, SSC_START_RISING_RF)
655 			| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
656 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
657 			| SSC_BF(RCMR_CKS, SSC_CKS_DIV);
658 
659 		rfmr =	  SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
660 			| SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE)
661 			| SSC_BF(RFMR_FSLEN, 0)
662 			| SSC_BF(RFMR_DATNB, (channels - 1))
663 			| SSC_BIT(RFMR_MSBF)
664 			| SSC_BF(RFMR_LOOP, 0)
665 			| SSC_BF(RFMR_DATLEN, (bits - 1));
666 
667 		tcmr =	  SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
668 			| SSC_BF(TCMR_STTDLY, 1)
669 			| SSC_BF(TCMR_START, SSC_START_RISING_RF)
670 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
671 			| SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
672 			| SSC_BF(TCMR_CKS, SSC_CKS_DIV);
673 
674 		tfmr =	  SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
675 			| SSC_BF(TFMR_FSDEN, 0)
676 			| SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE)
677 			| SSC_BF(TFMR_FSLEN, 0)
678 			| SSC_BF(TFMR_DATNB, (channels - 1))
679 			| SSC_BIT(TFMR_MSBF)
680 			| SSC_BF(TFMR_DATDEF, 0)
681 			| SSC_BF(TFMR_DATLEN, (bits - 1));
682 		break;
683 
684 	case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
685 		/*
686 		 * DSP/PCM Mode A format, CODEC supplies BCLK and LRC clocks.
687 		 *
688 		 * Data is transferred on first BCLK after LRC pulse rising
689 		 * edge.If stereo, the right channel data is contiguous with
690 		 * the left channel data.
691 		 */
692 		rcmr =	  SSC_BF(RCMR_PERIOD, 0)
693 			| SSC_BF(RCMR_STTDLY, START_DELAY)
694 			| SSC_BF(RCMR_START, SSC_START_RISING_RF)
695 			| SSC_BF(RCMR_CKI, SSC_CKI_RISING)
696 			| SSC_BF(RCMR_CKO, SSC_CKO_NONE)
697 			| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
698 					   SSC_CKS_PIN : SSC_CKS_CLOCK);
699 
700 		rfmr =	  SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
701 			| SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
702 			| SSC_BF(RFMR_FSLEN, 0)
703 			| SSC_BF(RFMR_DATNB, (channels - 1))
704 			| SSC_BIT(RFMR_MSBF)
705 			| SSC_BF(RFMR_LOOP, 0)
706 			| SSC_BF(RFMR_DATLEN, (bits - 1));
707 
708 		tcmr =	  SSC_BF(TCMR_PERIOD, 0)
709 			| SSC_BF(TCMR_STTDLY, START_DELAY)
710 			| SSC_BF(TCMR_START, SSC_START_RISING_RF)
711 			| SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
712 			| SSC_BF(TCMR_CKO, SSC_CKO_NONE)
713 			| SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
714 					   SSC_CKS_CLOCK : SSC_CKS_PIN);
715 
716 		tfmr =	  SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
717 			| SSC_BF(TFMR_FSDEN, 0)
718 			| SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
719 			| SSC_BF(TFMR_FSLEN, 0)
720 			| SSC_BF(TFMR_DATNB, (channels - 1))
721 			| SSC_BIT(TFMR_MSBF)
722 			| SSC_BF(TFMR_DATDEF, 0)
723 			| SSC_BF(TFMR_DATLEN, (bits - 1));
724 		break;
725 
726 	default:
727 		printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
728 			ssc_p->daifmt);
729 		return -EINVAL;
730 	}
731 	pr_debug("atmel_ssc_hw_params: "
732 			"RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
733 			rcmr, rfmr, tcmr, tfmr);
734 
735 	if (!ssc_p->initialized) {
736 		if (!ssc_p->ssc->pdata->use_dma) {
737 			ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
738 			ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
739 			ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
740 			ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
741 
742 			ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
743 			ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
744 			ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
745 			ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
746 		}
747 
748 		ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
749 				ssc_p->name, ssc_p);
750 		if (ret < 0) {
751 			printk(KERN_WARNING
752 					"atmel_ssc_dai: request_irq failure\n");
753 			pr_debug("Atmel_ssc_dai: Stoping clock\n");
754 			clk_disable(ssc_p->ssc->clk);
755 			return ret;
756 		}
757 
758 		ssc_p->initialized = 1;
759 	}
760 
761 	/* set SSC clock mode register */
762 	ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->cmr_div);
763 
764 	/* set receive clock mode and format */
765 	ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
766 	ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
767 
768 	/* set transmit clock mode and format */
769 	ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
770 	ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
771 
772 	pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
773 	return 0;
774 }
775 
776 
777 static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
778 			     struct snd_soc_dai *dai)
779 {
780 	struct platform_device *pdev = to_platform_device(dai->dev);
781 	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
782 	struct atmel_pcm_dma_params *dma_params;
783 	int dir;
784 
785 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
786 		dir = 0;
787 	else
788 		dir = 1;
789 
790 	dma_params = ssc_p->dma_params[dir];
791 
792 	ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
793 	ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error);
794 
795 	pr_debug("%s enabled SSC_SR=0x%08x\n",
796 			dir ? "receive" : "transmit",
797 			ssc_readl(ssc_p->ssc->regs, SR));
798 	return 0;
799 }
800 
801 static int atmel_ssc_trigger(struct snd_pcm_substream *substream,
802 			     int cmd, struct snd_soc_dai *dai)
803 {
804 	struct platform_device *pdev = to_platform_device(dai->dev);
805 	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
806 	struct atmel_pcm_dma_params *dma_params;
807 	int dir;
808 
809 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
810 		dir = 0;
811 	else
812 		dir = 1;
813 
814 	dma_params = ssc_p->dma_params[dir];
815 
816 	switch (cmd) {
817 	case SNDRV_PCM_TRIGGER_START:
818 	case SNDRV_PCM_TRIGGER_RESUME:
819 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
820 		ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
821 		break;
822 	default:
823 		ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
824 		break;
825 	}
826 
827 	return 0;
828 }
829 
830 #ifdef CONFIG_PM
831 static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai)
832 {
833 	struct atmel_ssc_info *ssc_p;
834 	struct platform_device *pdev = to_platform_device(cpu_dai->dev);
835 
836 	if (!cpu_dai->active)
837 		return 0;
838 
839 	ssc_p = &ssc_info[pdev->id];
840 
841 	/* Save the status register before disabling transmit and receive */
842 	ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
843 	ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
844 
845 	/* Save the current interrupt mask, then disable unmasked interrupts */
846 	ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
847 	ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
848 
849 	ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
850 	ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
851 	ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
852 	ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
853 	ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
854 
855 	return 0;
856 }
857 
858 
859 
860 static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai)
861 {
862 	struct atmel_ssc_info *ssc_p;
863 	struct platform_device *pdev = to_platform_device(cpu_dai->dev);
864 	u32 cr;
865 
866 	if (!cpu_dai->active)
867 		return 0;
868 
869 	ssc_p = &ssc_info[pdev->id];
870 
871 	/* restore SSC register settings */
872 	ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
873 	ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
874 	ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
875 	ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
876 	ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
877 
878 	/* re-enable interrupts */
879 	ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
880 
881 	/* Re-enable receive and transmit as appropriate */
882 	cr = 0;
883 	cr |=
884 	    (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
885 	cr |=
886 	    (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
887 	ssc_writel(ssc_p->ssc->regs, CR, cr);
888 
889 	return 0;
890 }
891 #else /* CONFIG_PM */
892 #  define atmel_ssc_suspend	NULL
893 #  define atmel_ssc_resume	NULL
894 #endif /* CONFIG_PM */
895 
896 #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8     | SNDRV_PCM_FMTBIT_S16_LE |\
897 			  SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
898 
899 static const struct snd_soc_dai_ops atmel_ssc_dai_ops = {
900 	.startup	= atmel_ssc_startup,
901 	.shutdown	= atmel_ssc_shutdown,
902 	.prepare	= atmel_ssc_prepare,
903 	.trigger	= atmel_ssc_trigger,
904 	.hw_params	= atmel_ssc_hw_params,
905 	.set_fmt	= atmel_ssc_set_dai_fmt,
906 	.set_clkdiv	= atmel_ssc_set_dai_clkdiv,
907 };
908 
909 static struct snd_soc_dai_driver atmel_ssc_dai = {
910 		.suspend = atmel_ssc_suspend,
911 		.resume = atmel_ssc_resume,
912 		.playback = {
913 			.channels_min = 1,
914 			.channels_max = 2,
915 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
916 			.rate_min = 8000,
917 			.rate_max = 384000,
918 			.formats = ATMEL_SSC_FORMATS,},
919 		.capture = {
920 			.channels_min = 1,
921 			.channels_max = 2,
922 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
923 			.rate_min = 8000,
924 			.rate_max = 384000,
925 			.formats = ATMEL_SSC_FORMATS,},
926 		.ops = &atmel_ssc_dai_ops,
927 };
928 
929 static const struct snd_soc_component_driver atmel_ssc_component = {
930 	.name		= "atmel-ssc",
931 };
932 
933 static int asoc_ssc_init(struct device *dev)
934 {
935 	struct platform_device *pdev = to_platform_device(dev);
936 	struct ssc_device *ssc = platform_get_drvdata(pdev);
937 	int ret;
938 
939 	ret = snd_soc_register_component(dev, &atmel_ssc_component,
940 					 &atmel_ssc_dai, 1);
941 	if (ret) {
942 		dev_err(dev, "Could not register DAI: %d\n", ret);
943 		goto err;
944 	}
945 
946 	if (ssc->pdata->use_dma)
947 		ret = atmel_pcm_dma_platform_register(dev);
948 	else
949 		ret = atmel_pcm_pdc_platform_register(dev);
950 
951 	if (ret) {
952 		dev_err(dev, "Could not register PCM: %d\n", ret);
953 		goto err_unregister_dai;
954 	}
955 
956 	return 0;
957 
958 err_unregister_dai:
959 	snd_soc_unregister_component(dev);
960 err:
961 	return ret;
962 }
963 
964 static void asoc_ssc_exit(struct device *dev)
965 {
966 	struct platform_device *pdev = to_platform_device(dev);
967 	struct ssc_device *ssc = platform_get_drvdata(pdev);
968 
969 	if (ssc->pdata->use_dma)
970 		atmel_pcm_dma_platform_unregister(dev);
971 	else
972 		atmel_pcm_pdc_platform_unregister(dev);
973 
974 	snd_soc_unregister_component(dev);
975 }
976 
977 /**
978  * atmel_ssc_set_audio - Allocate the specified SSC for audio use.
979  */
980 int atmel_ssc_set_audio(int ssc_id)
981 {
982 	struct ssc_device *ssc;
983 	int ret;
984 
985 	/* If we can grab the SSC briefly to parent the DAI device off it */
986 	ssc = ssc_request(ssc_id);
987 	if (IS_ERR(ssc)) {
988 		pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n",
989 			PTR_ERR(ssc));
990 		return PTR_ERR(ssc);
991 	} else {
992 		ssc_info[ssc_id].ssc = ssc;
993 	}
994 
995 	ret = asoc_ssc_init(&ssc->pdev->dev);
996 
997 	return ret;
998 }
999 EXPORT_SYMBOL_GPL(atmel_ssc_set_audio);
1000 
1001 void atmel_ssc_put_audio(int ssc_id)
1002 {
1003 	struct ssc_device *ssc = ssc_info[ssc_id].ssc;
1004 
1005 	asoc_ssc_exit(&ssc->pdev->dev);
1006 	ssc_free(ssc);
1007 }
1008 EXPORT_SYMBOL_GPL(atmel_ssc_put_audio);
1009 
1010 /* Module information */
1011 MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
1012 MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
1013 MODULE_LICENSE("GPL");
1014