xref: /linux/sound/ppc/pmac.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PMac DBDMA lowlevel functions
4  *
5  * Copyright (c) by Takashi Iwai <tiwai@suse.de>
6  * code based on dmasound.c.
7  */
8 
9 
10 #include <linux/io.h>
11 #include <asm/irq.h>
12 #include <linux/init.h>
13 #include <linux/delay.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/pci.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <sound/core.h>
21 #include "pmac.h"
22 #include <sound/pcm_params.h>
23 #include <asm/pmac_feature.h>
24 
25 
26 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
27 static const int awacs_freqs[8] = {
28 	44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
29 };
30 /* fixed frequency table for tumbler */
31 static const int tumbler_freqs[1] = {
32 	44100
33 };
34 
35 
36 /*
37  * we will allocate a single 'emergency' dbdma cmd block to use if the
38  * tx status comes up "DEAD".  This happens on some PowerComputing Pmac
39  * clones, either owing to a bug in dbdma or some interaction between
40  * IDE and sound.  However, this measure would deal with DEAD status if
41  * it appeared elsewhere.
42  */
43 static struct pmac_dbdma emergency_dbdma;
44 static int emergency_in_use;
45 
46 
47 /*
48  * allocate DBDMA command arrays
49  */
50 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
51 {
52 	unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
53 
54 	rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
55 					&rec->dma_base, GFP_KERNEL);
56 	if (rec->space == NULL)
57 		return -ENOMEM;
58 	rec->size = size;
59 	memset(rec->space, 0, rsize);
60 	rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
61 	rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
62 
63 	return 0;
64 }
65 
66 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
67 {
68 	if (rec->space) {
69 		unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
70 
71 		dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
72 	}
73 }
74 
75 
76 /*
77  * pcm stuff
78  */
79 
80 /*
81  * look up frequency table
82  */
83 
84 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
85 {
86 	int i, ok, found;
87 
88 	ok = rec->cur_freqs;
89 	if (rate > chip->freq_table[0])
90 		return 0;
91 	found = 0;
92 	for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
93 		if (! (ok & 1)) continue;
94 		found = i;
95 		if (rate >= chip->freq_table[i])
96 			break;
97 	}
98 	return found;
99 }
100 
101 /*
102  * check whether another stream is active
103  */
104 static inline int another_stream(int stream)
105 {
106 	return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
107 		SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
108 }
109 
110 /*
111  * get a stream of the opposite direction
112  */
113 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
114 {
115 	switch (stream) {
116 	case SNDRV_PCM_STREAM_PLAYBACK:
117 		return &chip->playback;
118 	case SNDRV_PCM_STREAM_CAPTURE:
119 		return &chip->capture;
120 	default:
121 		snd_BUG();
122 		return NULL;
123 	}
124 }
125 
126 /*
127  * wait while run status is on
128  */
129 static inline void
130 snd_pmac_wait_ack(struct pmac_stream *rec)
131 {
132 	int timeout = 50000;
133 	while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
134 		udelay(1);
135 }
136 
137 /*
138  * set the format and rate to the chip.
139  * call the lowlevel function if defined (e.g. for AWACS).
140  */
141 static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
142 {
143 	/* set up frequency and format */
144 	out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
145 	out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
146 	if (chip->set_format)
147 		chip->set_format(chip);
148 }
149 
150 /*
151  * stop the DMA transfer
152  */
153 static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
154 {
155 	out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
156 	snd_pmac_wait_ack(rec);
157 }
158 
159 /*
160  * set the command pointer address
161  */
162 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
163 {
164 	out_le32(&rec->dma->cmdptr, cmd->addr);
165 }
166 
167 /*
168  * start the DMA
169  */
170 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
171 {
172 	out_le32(&rec->dma->control, status | (status << 16));
173 }
174 
175 
176 /*
177  * prepare playback/capture stream
178  */
179 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
180 {
181 	int i;
182 	volatile struct dbdma_cmd __iomem *cp;
183 	struct snd_pcm_runtime *runtime = subs->runtime;
184 	int rate_index;
185 	long offset;
186 	struct pmac_stream *astr;
187 
188 	rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
189 	rec->period_size = snd_pcm_lib_period_bytes(subs);
190 	rec->nperiods = rec->dma_size / rec->period_size;
191 	rec->cur_period = 0;
192 	rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
193 
194 	/* set up constraints */
195 	astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
196 	if (! astr)
197 		return -EINVAL;
198 	astr->cur_freqs = 1 << rate_index;
199 	astr->cur_formats = 1 << runtime->format;
200 	chip->rate_index = rate_index;
201 	chip->format = runtime->format;
202 
203 	/* We really want to execute a DMA stop command, after the AWACS
204 	 * is initialized.
205 	 * For reasons I don't understand, it stops the hissing noise
206 	 * common to many PowerBook G3 systems and random noise otherwise
207 	 * captured on iBook2's about every third time. -ReneR
208 	 */
209 	spin_lock_irq(&chip->reg_lock);
210 	snd_pmac_dma_stop(rec);
211 	chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
212 	snd_pmac_dma_set_command(rec, &chip->extra_dma);
213 	snd_pmac_dma_run(rec, RUN);
214 	spin_unlock_irq(&chip->reg_lock);
215 	mdelay(5);
216 	spin_lock_irq(&chip->reg_lock);
217 	/* continuous DMA memory type doesn't provide the physical address,
218 	 * so we need to resolve the address here...
219 	 */
220 	offset = runtime->dma_addr;
221 	for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
222 		cp->phy_addr = cpu_to_le32(offset);
223 		cp->req_count = cpu_to_le16(rec->period_size);
224 		/*cp->res_count = cpu_to_le16(0);*/
225 		cp->xfer_status = cpu_to_le16(0);
226 		offset += rec->period_size;
227 	}
228 	/* make loop */
229 	cp->command = cpu_to_le16(DBDMA_NOP | BR_ALWAYS);
230 	cp->cmd_dep = cpu_to_le32(rec->cmd.addr);
231 
232 	snd_pmac_dma_stop(rec);
233 	snd_pmac_dma_set_command(rec, &rec->cmd);
234 	spin_unlock_irq(&chip->reg_lock);
235 
236 	return 0;
237 }
238 
239 
240 /*
241  * PCM trigger/stop
242  */
243 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
244 				struct snd_pcm_substream *subs, int cmd)
245 {
246 	volatile struct dbdma_cmd __iomem *cp;
247 	int i, command;
248 
249 	switch (cmd) {
250 	case SNDRV_PCM_TRIGGER_START:
251 	case SNDRV_PCM_TRIGGER_RESUME:
252 		if (rec->running)
253 			return -EBUSY;
254 		command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
255 			   OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
256 		spin_lock(&chip->reg_lock);
257 		snd_pmac_beep_stop(chip);
258 		snd_pmac_pcm_set_format(chip);
259 		for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
260 			out_le16(&cp->command, command);
261 		snd_pmac_dma_set_command(rec, &rec->cmd);
262 		(void)in_le32(&rec->dma->status);
263 		snd_pmac_dma_run(rec, RUN|WAKE);
264 		rec->running = 1;
265 		spin_unlock(&chip->reg_lock);
266 		break;
267 
268 	case SNDRV_PCM_TRIGGER_STOP:
269 	case SNDRV_PCM_TRIGGER_SUSPEND:
270 		spin_lock(&chip->reg_lock);
271 		rec->running = 0;
272 		snd_pmac_dma_stop(rec);
273 		for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
274 			out_le16(&cp->command, DBDMA_STOP);
275 		spin_unlock(&chip->reg_lock);
276 		break;
277 
278 	default:
279 		return -EINVAL;
280 	}
281 
282 	return 0;
283 }
284 
285 /*
286  * return the current pointer
287  */
288 inline
289 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
290 					      struct pmac_stream *rec,
291 					      struct snd_pcm_substream *subs)
292 {
293 	int count = 0;
294 
295 #if 1 /* hmm.. how can we get the current dma pointer?? */
296 	int stat;
297 	volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
298 	stat = le16_to_cpu(cp->xfer_status);
299 	if (stat & (ACTIVE|DEAD)) {
300 		count = in_le16(&cp->res_count);
301 		if (count)
302 			count = rec->period_size - count;
303 	}
304 #endif
305 	count += rec->cur_period * rec->period_size;
306 	return bytes_to_frames(subs->runtime, count);
307 }
308 
309 /*
310  * playback
311  */
312 
313 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
314 {
315 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
316 	return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
317 }
318 
319 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
320 				     int cmd)
321 {
322 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
323 	return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
324 }
325 
326 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
327 {
328 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
329 	return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
330 }
331 
332 
333 /*
334  * capture
335  */
336 
337 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
338 {
339 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
340 	return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
341 }
342 
343 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
344 				    int cmd)
345 {
346 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
347 	return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
348 }
349 
350 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
351 {
352 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
353 	return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
354 }
355 
356 
357 /*
358  * Handle DEAD DMA transfers:
359  * if the TX status comes up "DEAD" - reported on some Power Computing machines
360  * we need to re-start the dbdma - but from a different physical start address
361  * and with a different transfer length.  It would get very messy to do this
362  * with the normal dbdma_cmd blocks - we would have to re-write the buffer start
363  * addresses each time.  So, we will keep a single dbdma_cmd block which can be
364  * fiddled with.
365  * When DEAD status is first reported the content of the faulted dbdma block is
366  * copied into the emergency buffer and we note that the buffer is in use.
367  * we then bump the start physical address by the amount that was successfully
368  * output before it died.
369  * On any subsequent DEAD result we just do the bump-ups (we know that we are
370  * already using the emergency dbdma_cmd).
371  * CHECK: this just tries to "do it".  It is possible that we should abandon
372  * xfers when the number of residual bytes gets below a certain value - I can
373  * see that this might cause a loop-forever if a too small transfer causes
374  * DEAD status.  However this is a TODO for now - we'll see what gets reported.
375  * When we get a successful transfer result with the emergency buffer we just
376  * pretend that it completed using the original dmdma_cmd and carry on.  The
377  * 'next_cmd' field will already point back to the original loop of blocks.
378  */
379 static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec,
380 					  volatile struct dbdma_cmd __iomem *cp)
381 {
382 	unsigned short req, res ;
383 	unsigned int phy ;
384 
385 	/* to clear DEAD status we must first clear RUN
386 	   set it to quiescent to be on the safe side */
387 	(void)in_le32(&rec->dma->status);
388 	out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
389 
390 	if (!emergency_in_use) { /* new problem */
391 		memcpy((void *)emergency_dbdma.cmds, (void *)cp,
392 		       sizeof(struct dbdma_cmd));
393 		emergency_in_use = 1;
394 		cp->xfer_status = cpu_to_le16(0);
395 		cp->req_count = cpu_to_le16(rec->period_size);
396 		cp = emergency_dbdma.cmds;
397 	}
398 
399 	/* now bump the values to reflect the amount
400 	   we haven't yet shifted */
401 	req = le16_to_cpu(cp->req_count);
402 	res = le16_to_cpu(cp->res_count);
403 	phy = le32_to_cpu(cp->phy_addr);
404 	phy += (req - res);
405 	cp->req_count = cpu_to_le16(res);
406 	cp->res_count = cpu_to_le16(0);
407 	cp->xfer_status = cpu_to_le16(0);
408 	cp->phy_addr = cpu_to_le32(phy);
409 
410 	cp->cmd_dep = cpu_to_le32(rec->cmd.addr
411 		+ sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods));
412 
413 	cp->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS);
414 
415 	/* point at our patched up command block */
416 	out_le32(&rec->dma->cmdptr, emergency_dbdma.addr);
417 
418 	/* we must re-start the controller */
419 	(void)in_le32(&rec->dma->status);
420 	/* should complete clearing the DEAD status */
421 	out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
422 }
423 
424 /*
425  * update playback/capture pointer from interrupts
426  */
427 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
428 {
429 	volatile struct dbdma_cmd __iomem *cp;
430 	int c;
431 	int stat;
432 
433 	spin_lock(&chip->reg_lock);
434 	if (rec->running) {
435 		for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
436 
437 			if (emergency_in_use)   /* already using DEAD xfer? */
438 				cp = emergency_dbdma.cmds;
439 			else
440 				cp = &rec->cmd.cmds[rec->cur_period];
441 
442 			stat = le16_to_cpu(cp->xfer_status);
443 
444 			if (stat & DEAD) {
445 				snd_pmac_pcm_dead_xfer(rec, cp);
446 				break; /* this block is still going */
447 			}
448 
449 			if (emergency_in_use)
450 				emergency_in_use = 0 ; /* done that */
451 
452 			if (! (stat & ACTIVE))
453 				break;
454 
455 			cp->xfer_status = cpu_to_le16(0);
456 			cp->req_count = cpu_to_le16(rec->period_size);
457 			/*cp->res_count = cpu_to_le16(0);*/
458 			rec->cur_period++;
459 			if (rec->cur_period >= rec->nperiods) {
460 				rec->cur_period = 0;
461 			}
462 
463 			spin_unlock(&chip->reg_lock);
464 			snd_pcm_period_elapsed(rec->substream);
465 			spin_lock(&chip->reg_lock);
466 		}
467 	}
468 	spin_unlock(&chip->reg_lock);
469 }
470 
471 
472 /*
473  * hw info
474  */
475 
476 static const struct snd_pcm_hardware snd_pmac_playback =
477 {
478 	.info =			(SNDRV_PCM_INFO_INTERLEAVED |
479 				 SNDRV_PCM_INFO_MMAP |
480 				 SNDRV_PCM_INFO_MMAP_VALID |
481 				 SNDRV_PCM_INFO_RESUME),
482 	.formats =		SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
483 	.rates =		SNDRV_PCM_RATE_8000_44100,
484 	.rate_min =		7350,
485 	.rate_max =		44100,
486 	.channels_min =		2,
487 	.channels_max =		2,
488 	.buffer_bytes_max =	131072,
489 	.period_bytes_min =	256,
490 	.period_bytes_max =	16384,
491 	.periods_min =		3,
492 	.periods_max =		PMAC_MAX_FRAGS,
493 };
494 
495 static const struct snd_pcm_hardware snd_pmac_capture =
496 {
497 	.info =			(SNDRV_PCM_INFO_INTERLEAVED |
498 				 SNDRV_PCM_INFO_MMAP |
499 				 SNDRV_PCM_INFO_MMAP_VALID |
500 				 SNDRV_PCM_INFO_RESUME),
501 	.formats =		SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
502 	.rates =		SNDRV_PCM_RATE_8000_44100,
503 	.rate_min =		7350,
504 	.rate_max =		44100,
505 	.channels_min =		2,
506 	.channels_max =		2,
507 	.buffer_bytes_max =	131072,
508 	.period_bytes_min =	256,
509 	.period_bytes_max =	16384,
510 	.periods_min =		3,
511 	.periods_max =		PMAC_MAX_FRAGS,
512 };
513 
514 
515 #if 0 // NYI
516 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
517 				 struct snd_pcm_hw_rule *rule)
518 {
519 	struct snd_pmac *chip = rule->private;
520 	struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
521 	int i, freq_table[8], num_freqs;
522 
523 	if (! rec)
524 		return -EINVAL;
525 	num_freqs = 0;
526 	for (i = chip->num_freqs - 1; i >= 0; i--) {
527 		if (rec->cur_freqs & (1 << i))
528 			freq_table[num_freqs++] = chip->freq_table[i];
529 	}
530 
531 	return snd_interval_list(hw_param_interval(params, rule->var),
532 				 num_freqs, freq_table, 0);
533 }
534 
535 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
536 				   struct snd_pcm_hw_rule *rule)
537 {
538 	struct snd_pmac *chip = rule->private;
539 	struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
540 
541 	if (! rec)
542 		return -EINVAL;
543 	return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
544 				   rec->cur_formats);
545 }
546 #endif // NYI
547 
548 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
549 			     struct snd_pcm_substream *subs)
550 {
551 	struct snd_pcm_runtime *runtime = subs->runtime;
552 	int i;
553 
554 	/* look up frequency table and fill bit mask */
555 	runtime->hw.rates = 0;
556 	for (i = 0; i < chip->num_freqs; i++)
557 		if (chip->freqs_ok & (1 << i))
558 			runtime->hw.rates |=
559 				snd_pcm_rate_to_rate_bit(chip->freq_table[i]);
560 
561 	/* check for minimum and maximum rates */
562 	for (i = 0; i < chip->num_freqs; i++) {
563 		if (chip->freqs_ok & (1 << i)) {
564 			runtime->hw.rate_max = chip->freq_table[i];
565 			break;
566 		}
567 	}
568 	for (i = chip->num_freqs - 1; i >= 0; i--) {
569 		if (chip->freqs_ok & (1 << i)) {
570 			runtime->hw.rate_min = chip->freq_table[i];
571 			break;
572 		}
573 	}
574 	runtime->hw.formats = chip->formats_ok;
575 	if (chip->can_capture) {
576 		if (! chip->can_duplex)
577 			runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
578 		runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
579 	}
580 	runtime->private_data = rec;
581 	rec->substream = subs;
582 
583 #if 0 /* FIXME: still under development.. */
584 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
585 			    snd_pmac_hw_rule_rate, chip, rec->stream, -1);
586 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
587 			    snd_pmac_hw_rule_format, chip, rec->stream, -1);
588 #endif
589 
590 	runtime->hw.periods_max = rec->cmd.size - 1;
591 
592 	/* constraints to fix choppy sound */
593 	snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
594 	return 0;
595 }
596 
597 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
598 			      struct snd_pcm_substream *subs)
599 {
600 	struct pmac_stream *astr;
601 
602 	snd_pmac_dma_stop(rec);
603 
604 	astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
605 	if (! astr)
606 		return -EINVAL;
607 
608 	/* reset constraints */
609 	astr->cur_freqs = chip->freqs_ok;
610 	astr->cur_formats = chip->formats_ok;
611 
612 	return 0;
613 }
614 
615 static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
616 {
617 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
618 
619 	subs->runtime->hw = snd_pmac_playback;
620 	return snd_pmac_pcm_open(chip, &chip->playback, subs);
621 }
622 
623 static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
624 {
625 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
626 
627 	subs->runtime->hw = snd_pmac_capture;
628 	return snd_pmac_pcm_open(chip, &chip->capture, subs);
629 }
630 
631 static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
632 {
633 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
634 
635 	return snd_pmac_pcm_close(chip, &chip->playback, subs);
636 }
637 
638 static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
639 {
640 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
641 
642 	return snd_pmac_pcm_close(chip, &chip->capture, subs);
643 }
644 
645 /*
646  */
647 
648 static const struct snd_pcm_ops snd_pmac_playback_ops = {
649 	.open =		snd_pmac_playback_open,
650 	.close =	snd_pmac_playback_close,
651 	.prepare =	snd_pmac_playback_prepare,
652 	.trigger =	snd_pmac_playback_trigger,
653 	.pointer =	snd_pmac_playback_pointer,
654 };
655 
656 static const struct snd_pcm_ops snd_pmac_capture_ops = {
657 	.open =		snd_pmac_capture_open,
658 	.close =	snd_pmac_capture_close,
659 	.prepare =	snd_pmac_capture_prepare,
660 	.trigger =	snd_pmac_capture_trigger,
661 	.pointer =	snd_pmac_capture_pointer,
662 };
663 
664 int snd_pmac_pcm_new(struct snd_pmac *chip)
665 {
666 	struct snd_pcm *pcm;
667 	int err;
668 	int num_captures = 1;
669 
670 	if (! chip->can_capture)
671 		num_captures = 0;
672 	err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
673 	if (err < 0)
674 		return err;
675 
676 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
677 	if (chip->can_capture)
678 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
679 
680 	pcm->private_data = chip;
681 	pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
682 	strcpy(pcm->name, chip->card->shortname);
683 	chip->pcm = pcm;
684 
685 	chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
686 	if (chip->can_byte_swap)
687 		chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
688 
689 	chip->playback.cur_formats = chip->formats_ok;
690 	chip->capture.cur_formats = chip->formats_ok;
691 	chip->playback.cur_freqs = chip->freqs_ok;
692 	chip->capture.cur_freqs = chip->freqs_ok;
693 
694 	/* preallocate 64k buffer */
695 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
696 				       &chip->pdev->dev,
697 				       64 * 1024, 64 * 1024);
698 
699 	return 0;
700 }
701 
702 
703 static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
704 {
705 	out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
706 	snd_pmac_wait_ack(&chip->playback);
707 	out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
708 	snd_pmac_wait_ack(&chip->capture);
709 }
710 
711 
712 /*
713  * handling beep
714  */
715 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
716 {
717 	struct pmac_stream *rec = &chip->playback;
718 
719 	snd_pmac_dma_stop(rec);
720 	chip->extra_dma.cmds->req_count = cpu_to_le16(bytes);
721 	chip->extra_dma.cmds->xfer_status = cpu_to_le16(0);
722 	chip->extra_dma.cmds->cmd_dep = cpu_to_le32(chip->extra_dma.addr);
723 	chip->extra_dma.cmds->phy_addr = cpu_to_le32(addr);
724 	chip->extra_dma.cmds->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS);
725 	out_le32(&chip->awacs->control,
726 		 (in_le32(&chip->awacs->control) & ~0x1f00)
727 		 | (speed << 8));
728 	out_le32(&chip->awacs->byteswap, 0);
729 	snd_pmac_dma_set_command(rec, &chip->extra_dma);
730 	snd_pmac_dma_run(rec, RUN);
731 }
732 
733 void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
734 {
735 	snd_pmac_dma_stop(&chip->playback);
736 	chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
737 	snd_pmac_pcm_set_format(chip); /* reset format */
738 }
739 
740 
741 /*
742  * interrupt handlers
743  */
744 static irqreturn_t
745 snd_pmac_tx_intr(int irq, void *devid)
746 {
747 	struct snd_pmac *chip = devid;
748 	snd_pmac_pcm_update(chip, &chip->playback);
749 	return IRQ_HANDLED;
750 }
751 
752 
753 static irqreturn_t
754 snd_pmac_rx_intr(int irq, void *devid)
755 {
756 	struct snd_pmac *chip = devid;
757 	snd_pmac_pcm_update(chip, &chip->capture);
758 	return IRQ_HANDLED;
759 }
760 
761 
762 static irqreturn_t
763 snd_pmac_ctrl_intr(int irq, void *devid)
764 {
765 	struct snd_pmac *chip = devid;
766 	int ctrl = in_le32(&chip->awacs->control);
767 
768 	if (ctrl & MASK_PORTCHG) {
769 		/* do something when headphone is plugged/unplugged? */
770 		if (chip->update_automute)
771 			chip->update_automute(chip, 1);
772 	}
773 	if (ctrl & MASK_CNTLERR) {
774 		int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
775 		if (err && chip->model <= PMAC_SCREAMER)
776 			dev_dbg(chip->card->dev, "%s: error %x\n", __func__, err);
777 	}
778 	/* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
779 	out_le32(&chip->awacs->control, ctrl);
780 	return IRQ_HANDLED;
781 }
782 
783 
784 /*
785  * a wrapper to feature call for compatibility
786  */
787 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
788 {
789 	if (ppc_md.feature_call)
790 		ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
791 }
792 
793 /*
794  * release resources
795  */
796 
797 static int snd_pmac_free(struct snd_pmac *chip)
798 {
799 	/* stop sounds */
800 	if (chip->initialized) {
801 		snd_pmac_dbdma_reset(chip);
802 		/* disable interrupts from awacs interface */
803 		out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
804 	}
805 
806 	if (chip->node)
807 		snd_pmac_sound_feature(chip, 0);
808 
809 	/* clean up mixer if any */
810 	if (chip->mixer_free)
811 		chip->mixer_free(chip);
812 
813 	snd_pmac_detach_beep(chip);
814 
815 	/* release resources */
816 	if (chip->irq >= 0)
817 		free_irq(chip->irq, (void*)chip);
818 	if (chip->tx_irq >= 0)
819 		free_irq(chip->tx_irq, (void*)chip);
820 	if (chip->rx_irq >= 0)
821 		free_irq(chip->rx_irq, (void*)chip);
822 	snd_pmac_dbdma_free(chip, &chip->playback.cmd);
823 	snd_pmac_dbdma_free(chip, &chip->capture.cmd);
824 	snd_pmac_dbdma_free(chip, &chip->extra_dma);
825 	snd_pmac_dbdma_free(chip, &emergency_dbdma);
826 	iounmap(chip->macio_base);
827 	iounmap(chip->latch_base);
828 	iounmap(chip->awacs);
829 	iounmap(chip->playback.dma);
830 	iounmap(chip->capture.dma);
831 
832 	if (chip->node) {
833 		int i;
834 		for (i = 0; i < 3; i++) {
835 			if (chip->requested & (1 << i))
836 				release_mem_region(chip->rsrc[i].start,
837 						   resource_size(&chip->rsrc[i]));
838 		}
839 	}
840 
841 	pci_dev_put(chip->pdev);
842 	of_node_put(chip->node);
843 	kfree(chip);
844 	return 0;
845 }
846 
847 
848 /*
849  * free the device
850  */
851 static int snd_pmac_dev_free(struct snd_device *device)
852 {
853 	struct snd_pmac *chip = device->device_data;
854 	return snd_pmac_free(chip);
855 }
856 
857 
858 /*
859  * check the machine support byteswap (little-endian)
860  */
861 
862 static void detect_byte_swap(struct snd_pmac *chip)
863 {
864 	struct device_node *mio;
865 
866 	/* if seems that Keylargo can't byte-swap  */
867 	for (mio = chip->node->parent; mio; mio = mio->parent) {
868 		if (of_node_name_eq(mio, "mac-io")) {
869 			if (of_device_is_compatible(mio, "Keylargo"))
870 				chip->can_byte_swap = 0;
871 			break;
872 		}
873 	}
874 
875 	/* it seems the Pismo & iBook can't byte-swap in hardware. */
876 	if (of_machine_is_compatible("PowerBook3,1") ||
877 	    of_machine_is_compatible("PowerBook2,1"))
878 		chip->can_byte_swap = 0 ;
879 
880 	if (of_machine_is_compatible("PowerBook2,1"))
881 		chip->can_duplex = 0;
882 }
883 
884 
885 /*
886  * detect a sound chip
887  */
888 static int snd_pmac_detect(struct snd_pmac *chip)
889 {
890 	struct device_node *sound;
891 	struct device_node *dn;
892 	const unsigned int *prop;
893 	unsigned int l;
894 	struct macio_chip* macio;
895 
896 	if (!machine_is(powermac))
897 		return -ENODEV;
898 
899 	chip->subframe = 0;
900 	chip->revision = 0;
901 	chip->freqs_ok = 0xff; /* all ok */
902 	chip->model = PMAC_AWACS;
903 	chip->can_byte_swap = 1;
904 	chip->can_duplex = 1;
905 	chip->can_capture = 1;
906 	chip->num_freqs = ARRAY_SIZE(awacs_freqs);
907 	chip->freq_table = awacs_freqs;
908 	chip->pdev = NULL;
909 
910 	chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
911 
912 	/* check machine type */
913 	if (of_machine_is_compatible("AAPL,3400/2400")
914 	    || of_machine_is_compatible("AAPL,3500"))
915 		chip->is_pbook_3400 = 1;
916 	else if (of_machine_is_compatible("PowerBook1,1")
917 		 || of_machine_is_compatible("AAPL,PowerBook1998"))
918 		chip->is_pbook_G3 = 1;
919 	chip->node = of_find_node_by_name(NULL, "awacs");
920 	sound = of_node_get(chip->node);
921 
922 	/*
923 	 * powermac G3 models have a node called "davbus"
924 	 * with a child called "sound".
925 	 */
926 	if (!chip->node)
927 		chip->node = of_find_node_by_name(NULL, "davbus");
928 	/*
929 	 * if we didn't find a davbus device, try 'i2s-a' since
930 	 * this seems to be what iBooks have
931 	 */
932 	if (! chip->node) {
933 		chip->node = of_find_node_by_name(NULL, "i2s-a");
934 		if (chip->node && chip->node->parent &&
935 		    chip->node->parent->parent) {
936 			if (of_device_is_compatible(chip->node->parent->parent,
937 						 "K2-Keylargo"))
938 				chip->is_k2 = 1;
939 		}
940 	}
941 	if (! chip->node)
942 		return -ENODEV;
943 
944 	if (!sound) {
945 		for_each_node_by_name(sound, "sound")
946 			if (sound->parent == chip->node)
947 				break;
948 	}
949 	if (! sound) {
950 		of_node_put(chip->node);
951 		chip->node = NULL;
952 		return -ENODEV;
953 	}
954 	prop = of_get_property(sound, "sub-frame", NULL);
955 	if (prop && *prop < 16)
956 		chip->subframe = *prop;
957 	prop = of_get_property(sound, "layout-id", NULL);
958 	if (prop) {
959 		/* partly deprecate snd-powermac, for those machines
960 		 * that have a layout-id property for now */
961 		dev_info(chip->card->dev,
962 			 "snd-powermac no longer handles any machines with a layout-id property in the device-tree, use snd-aoa.\n");
963 		of_node_put(sound);
964 		of_node_put(chip->node);
965 		chip->node = NULL;
966 		return -ENODEV;
967 	}
968 	/* This should be verified on older screamers */
969 	if (of_device_is_compatible(sound, "screamer")) {
970 		chip->model = PMAC_SCREAMER;
971 		// chip->can_byte_swap = 0; /* FIXME: check this */
972 	}
973 	if (of_device_is_compatible(sound, "burgundy")) {
974 		chip->model = PMAC_BURGUNDY;
975 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
976 	}
977 	if (of_device_is_compatible(sound, "daca")) {
978 		chip->model = PMAC_DACA;
979 		chip->can_capture = 0;  /* no capture */
980 		chip->can_duplex = 0;
981 		// chip->can_byte_swap = 0; /* FIXME: check this */
982 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
983 	}
984 	if (of_device_is_compatible(sound, "tumbler")) {
985 		chip->model = PMAC_TUMBLER;
986 		chip->can_capture = of_machine_is_compatible("PowerMac4,2")
987 				|| of_machine_is_compatible("PowerBook3,2")
988 				|| of_machine_is_compatible("PowerBook3,3")
989 				|| of_machine_is_compatible("PowerBook4,1")
990 				|| of_machine_is_compatible("PowerBook4,2")
991 				|| of_machine_is_compatible("PowerBook4,3");
992 		chip->can_duplex = 0;
993 		// chip->can_byte_swap = 0; /* FIXME: check this */
994 		chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
995 		chip->freq_table = tumbler_freqs;
996 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
997 	}
998 	if (of_device_is_compatible(sound, "snapper")) {
999 		chip->model = PMAC_SNAPPER;
1000 		// chip->can_byte_swap = 0; /* FIXME: check this */
1001 		chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1002 		chip->freq_table = tumbler_freqs;
1003 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1004 	}
1005 	prop = of_get_property(sound, "device-id", NULL);
1006 	if (prop)
1007 		chip->device_id = *prop;
1008 	dn = of_find_node_by_name(NULL, "perch");
1009 	chip->has_iic = (dn != NULL);
1010 	of_node_put(dn);
1011 
1012 	/* We need the PCI device for DMA allocations, let's use a crude method
1013 	 * for now ...
1014 	 */
1015 	macio = macio_find(chip->node, macio_unknown);
1016 	if (macio == NULL)
1017 		dev_warn(chip->card->dev, "snd-powermac: can't locate macio !\n");
1018 	else {
1019 		struct pci_dev *pdev = NULL;
1020 
1021 		for_each_pci_dev(pdev) {
1022 			struct device_node *np = pci_device_to_OF_node(pdev);
1023 			if (np && np == macio->of_node) {
1024 				chip->pdev = pdev;
1025 				break;
1026 			}
1027 		}
1028 	}
1029 	if (chip->pdev == NULL)
1030 		dev_warn(chip->card->dev,
1031 			 "snd-powermac: can't locate macio PCI device !\n");
1032 
1033 	detect_byte_swap(chip);
1034 
1035 	/* look for a property saying what sample rates
1036 	   are available */
1037 	prop = of_get_property(sound, "sample-rates", &l);
1038 	if (! prop)
1039 		prop = of_get_property(sound, "output-frame-rates", &l);
1040 	if (prop) {
1041 		int i;
1042 		chip->freqs_ok = 0;
1043 		for (l /= sizeof(int); l > 0; --l) {
1044 			unsigned int r = *prop++;
1045 			/* Apple 'Fixed' format */
1046 			if (r >= 0x10000)
1047 				r >>= 16;
1048 			for (i = 0; i < chip->num_freqs; ++i) {
1049 				if (r == chip->freq_table[i]) {
1050 					chip->freqs_ok |= (1 << i);
1051 					break;
1052 				}
1053 			}
1054 		}
1055 	} else {
1056 		/* assume only 44.1khz */
1057 		chip->freqs_ok = 1;
1058 	}
1059 
1060 	of_node_put(sound);
1061 	return 0;
1062 }
1063 
1064 #ifdef PMAC_SUPPORT_AUTOMUTE
1065 /*
1066  * auto-mute
1067  */
1068 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1069 			      struct snd_ctl_elem_value *ucontrol)
1070 {
1071 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1072 	ucontrol->value.integer.value[0] = chip->auto_mute;
1073 	return 0;
1074 }
1075 
1076 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1077 			      struct snd_ctl_elem_value *ucontrol)
1078 {
1079 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1080 	if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1081 		chip->auto_mute = !!ucontrol->value.integer.value[0];
1082 		if (chip->update_automute)
1083 			chip->update_automute(chip, 1);
1084 		return 1;
1085 	}
1086 	return 0;
1087 }
1088 
1089 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1090 			      struct snd_ctl_elem_value *ucontrol)
1091 {
1092 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1093 	if (chip->detect_headphone)
1094 		ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1095 	else
1096 		ucontrol->value.integer.value[0] = 0;
1097 	return 0;
1098 }
1099 
1100 static const struct snd_kcontrol_new auto_mute_controls[] = {
1101 	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1102 	  .name = "Auto Mute Switch",
1103 	  .info = snd_pmac_boolean_mono_info,
1104 	  .get = pmac_auto_mute_get,
1105 	  .put = pmac_auto_mute_put,
1106 	},
1107 	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1108 	  .name = "Headphone Detection",
1109 	  .access = SNDRV_CTL_ELEM_ACCESS_READ,
1110 	  .info = snd_pmac_boolean_mono_info,
1111 	  .get = pmac_hp_detect_get,
1112 	},
1113 };
1114 
1115 int snd_pmac_add_automute(struct snd_pmac *chip)
1116 {
1117 	int err;
1118 	chip->auto_mute = 1;
1119 	err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1120 	if (err < 0) {
1121 		dev_err(chip->card->dev,
1122 			"snd-powermac: Failed to add automute control\n");
1123 		return err;
1124 	}
1125 	chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1126 	return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1127 }
1128 #endif /* PMAC_SUPPORT_AUTOMUTE */
1129 
1130 /*
1131  * create and detect a pmac chip record
1132  */
1133 int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1134 {
1135 	struct snd_pmac *chip;
1136 	struct device_node *np;
1137 	int i, err;
1138 	unsigned int irq;
1139 	unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1140 	static const struct snd_device_ops ops = {
1141 		.dev_free =	snd_pmac_dev_free,
1142 	};
1143 
1144 	*chip_return = NULL;
1145 
1146 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1147 	if (chip == NULL)
1148 		return -ENOMEM;
1149 	chip->card = card;
1150 
1151 	spin_lock_init(&chip->reg_lock);
1152 	chip->irq = chip->tx_irq = chip->rx_irq = -1;
1153 
1154 	chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1155 	chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1156 
1157 	err = snd_pmac_detect(chip);
1158 	if (err < 0)
1159 		goto __error;
1160 
1161 	if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1162 	    snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1163 	    snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 ||
1164 	    snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) {
1165 		err = -ENOMEM;
1166 		goto __error;
1167 	}
1168 
1169 	np = chip->node;
1170 	chip->requested = 0;
1171 	if (chip->is_k2) {
1172 		static const char * const rnames[] = {
1173 			"Sound Control", "Sound DMA" };
1174 		for (i = 0; i < 2; i ++) {
1175 			if (of_address_to_resource(np->parent, i,
1176 						   &chip->rsrc[i])) {
1177 				dev_err(chip->card->dev,
1178 					"snd: can't translate rsrc %d (%s)\n",
1179 					i, rnames[i]);
1180 				err = -ENODEV;
1181 				goto __error;
1182 			}
1183 			if (request_mem_region(chip->rsrc[i].start,
1184 					       resource_size(&chip->rsrc[i]),
1185 					       rnames[i]) == NULL) {
1186 				dev_err(chip->card->dev,
1187 					"snd: can't request rsrc %d (%s: %pR)\n",
1188 					i, rnames[i], &chip->rsrc[i]);
1189 				err = -ENODEV;
1190 				goto __error;
1191 			}
1192 			chip->requested |= (1 << i);
1193 		}
1194 		ctrl_addr = chip->rsrc[0].start;
1195 		txdma_addr = chip->rsrc[1].start;
1196 		rxdma_addr = txdma_addr + 0x100;
1197 	} else {
1198 		static const char * const rnames[] = {
1199 			"Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
1200 		for (i = 0; i < 3; i ++) {
1201 			if (of_address_to_resource(np, i,
1202 						   &chip->rsrc[i])) {
1203 				dev_err(chip->card->dev,
1204 					"snd: can't translate rsrc %d (%s)\n",
1205 					i, rnames[i]);
1206 				err = -ENODEV;
1207 				goto __error;
1208 			}
1209 			if (request_mem_region(chip->rsrc[i].start,
1210 					       resource_size(&chip->rsrc[i]),
1211 					       rnames[i]) == NULL) {
1212 				dev_err(chip->card->dev,
1213 					"snd: can't request rsrc %d (%s: %pR)\n",
1214 					i, rnames[i], &chip->rsrc[i]);
1215 				err = -ENODEV;
1216 				goto __error;
1217 			}
1218 			chip->requested |= (1 << i);
1219 		}
1220 		ctrl_addr = chip->rsrc[0].start;
1221 		txdma_addr = chip->rsrc[1].start;
1222 		rxdma_addr = chip->rsrc[2].start;
1223 	}
1224 
1225 	chip->awacs = ioremap(ctrl_addr, 0x1000);
1226 	chip->playback.dma = ioremap(txdma_addr, 0x100);
1227 	chip->capture.dma = ioremap(rxdma_addr, 0x100);
1228 	if (chip->model <= PMAC_BURGUNDY) {
1229 		irq = irq_of_parse_and_map(np, 0);
1230 		if (request_irq(irq, snd_pmac_ctrl_intr, 0,
1231 				"PMac", (void*)chip)) {
1232 			dev_err(chip->card->dev,
1233 				"pmac: unable to grab IRQ %d\n", irq);
1234 			err = -EBUSY;
1235 			goto __error;
1236 		}
1237 		chip->irq = irq;
1238 	}
1239 	irq = irq_of_parse_and_map(np, 1);
1240 	if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){
1241 		dev_err(chip->card->dev, "pmac: unable to grab IRQ %d\n", irq);
1242 		err = -EBUSY;
1243 		goto __error;
1244 	}
1245 	chip->tx_irq = irq;
1246 	irq = irq_of_parse_and_map(np, 2);
1247 	if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) {
1248 		dev_err(chip->card->dev, "pmac: unable to grab IRQ %d\n", irq);
1249 		err = -EBUSY;
1250 		goto __error;
1251 	}
1252 	chip->rx_irq = irq;
1253 
1254 	snd_pmac_sound_feature(chip, 1);
1255 
1256 	/* reset & enable interrupts */
1257 	if (chip->model <= PMAC_BURGUNDY)
1258 		out_le32(&chip->awacs->control, chip->control_mask);
1259 
1260 	/* Powerbooks have odd ways of enabling inputs such as
1261 	   an expansion-bay CD or sound from an internal modem
1262 	   or a PC-card modem. */
1263 	if (chip->is_pbook_3400) {
1264 		/* Enable CD and PC-card sound inputs. */
1265 		/* This is done by reading from address
1266 		 * f301a000, + 0x10 to enable the expansion-bay
1267 		 * CD sound input, + 0x80 to enable the PC-card
1268 		 * sound input.  The 0x100 enables the SCSI bus
1269 		 * terminator power.
1270 		 */
1271 		chip->latch_base = ioremap (0xf301a000, 0x1000);
1272 		in_8(chip->latch_base + 0x190);
1273 	} else if (chip->is_pbook_G3) {
1274 		struct device_node* mio;
1275 		for (mio = chip->node->parent; mio; mio = mio->parent) {
1276 			if (of_node_name_eq(mio, "mac-io")) {
1277 				struct resource r;
1278 				if (of_address_to_resource(mio, 0, &r) == 0)
1279 					chip->macio_base =
1280 						ioremap(r.start, 0x40);
1281 				break;
1282 			}
1283 		}
1284 		/* Enable CD sound input. */
1285 		/* The relevant bits for writing to this byte are 0x8f.
1286 		 * I haven't found out what the 0x80 bit does.
1287 		 * For the 0xf bits, writing 3 or 7 enables the CD
1288 		 * input, any other value disables it.  Values
1289 		 * 1, 3, 5, 7 enable the microphone.  Values 0, 2,
1290 		 * 4, 6, 8 - f enable the input from the modem.
1291 		 */
1292 		if (chip->macio_base)
1293 			out_8(chip->macio_base + 0x37, 3);
1294 	}
1295 
1296 	/* Reset dbdma channels */
1297 	snd_pmac_dbdma_reset(chip);
1298 
1299 	err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1300 	if (err < 0)
1301 		goto __error;
1302 
1303 	*chip_return = chip;
1304 	return 0;
1305 
1306  __error:
1307 	snd_pmac_free(chip);
1308 	return err;
1309 }
1310 
1311 
1312 /*
1313  * sleep notify for powerbook
1314  */
1315 
1316 #ifdef CONFIG_PM
1317 
1318 /*
1319  * Save state when going to sleep, restore it afterwards.
1320  */
1321 
1322 void snd_pmac_suspend(struct snd_pmac *chip)
1323 {
1324 	unsigned long flags;
1325 
1326 	snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1327 	if (chip->suspend)
1328 		chip->suspend(chip);
1329 	spin_lock_irqsave(&chip->reg_lock, flags);
1330 	snd_pmac_beep_stop(chip);
1331 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1332 	if (chip->irq >= 0)
1333 		disable_irq(chip->irq);
1334 	if (chip->tx_irq >= 0)
1335 		disable_irq(chip->tx_irq);
1336 	if (chip->rx_irq >= 0)
1337 		disable_irq(chip->rx_irq);
1338 	snd_pmac_sound_feature(chip, 0);
1339 }
1340 
1341 void snd_pmac_resume(struct snd_pmac *chip)
1342 {
1343 	snd_pmac_sound_feature(chip, 1);
1344 	if (chip->resume)
1345 		chip->resume(chip);
1346 	/* enable CD sound input */
1347 	if (chip->macio_base && chip->is_pbook_G3)
1348 		out_8(chip->macio_base + 0x37, 3);
1349 	else if (chip->is_pbook_3400)
1350 		in_8(chip->latch_base + 0x190);
1351 
1352 	snd_pmac_pcm_set_format(chip);
1353 
1354 	if (chip->irq >= 0)
1355 		enable_irq(chip->irq);
1356 	if (chip->tx_irq >= 0)
1357 		enable_irq(chip->tx_irq);
1358 	if (chip->rx_irq >= 0)
1359 		enable_irq(chip->rx_irq);
1360 
1361 	snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1362 }
1363 
1364 #endif /* CONFIG_PM */
1365 
1366