1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PMac DBDMA lowlevel functions 4 * 5 * Copyright (c) by Takashi Iwai <tiwai@suse.de> 6 * code based on dmasound.c. 7 */ 8 9 10 #include <linux/io.h> 11 #include <asm/irq.h> 12 #include <linux/init.h> 13 #include <linux/delay.h> 14 #include <linux/slab.h> 15 #include <linux/interrupt.h> 16 #include <linux/pci.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/of_address.h> 19 #include <linux/of_irq.h> 20 #include <sound/core.h> 21 #include "pmac.h" 22 #include <sound/pcm_params.h> 23 #include <asm/pmac_feature.h> 24 25 26 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */ 27 static int awacs_freqs[8] = { 28 44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350 29 }; 30 /* fixed frequency table for tumbler */ 31 static int tumbler_freqs[1] = { 32 44100 33 }; 34 35 36 /* 37 * we will allocate a single 'emergency' dbdma cmd block to use if the 38 * tx status comes up "DEAD". This happens on some PowerComputing Pmac 39 * clones, either owing to a bug in dbdma or some interaction between 40 * IDE and sound. However, this measure would deal with DEAD status if 41 * it appeared elsewhere. 42 */ 43 static struct pmac_dbdma emergency_dbdma; 44 static int emergency_in_use; 45 46 47 /* 48 * allocate DBDMA command arrays 49 */ 50 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size) 51 { 52 unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1); 53 54 rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize, 55 &rec->dma_base, GFP_KERNEL); 56 if (rec->space == NULL) 57 return -ENOMEM; 58 rec->size = size; 59 memset(rec->space, 0, rsize); 60 rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space); 61 rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space); 62 63 return 0; 64 } 65 66 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec) 67 { 68 if (rec->space) { 69 unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1); 70 71 dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base); 72 } 73 } 74 75 76 /* 77 * pcm stuff 78 */ 79 80 /* 81 * look up frequency table 82 */ 83 84 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate) 85 { 86 int i, ok, found; 87 88 ok = rec->cur_freqs; 89 if (rate > chip->freq_table[0]) 90 return 0; 91 found = 0; 92 for (i = 0; i < chip->num_freqs; i++, ok >>= 1) { 93 if (! (ok & 1)) continue; 94 found = i; 95 if (rate >= chip->freq_table[i]) 96 break; 97 } 98 return found; 99 } 100 101 /* 102 * check whether another stream is active 103 */ 104 static inline int another_stream(int stream) 105 { 106 return (stream == SNDRV_PCM_STREAM_PLAYBACK) ? 107 SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; 108 } 109 110 /* 111 * allocate buffers 112 */ 113 static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs, 114 struct snd_pcm_hw_params *hw_params) 115 { 116 return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params)); 117 } 118 119 /* 120 * release buffers 121 */ 122 static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs) 123 { 124 snd_pcm_lib_free_pages(subs); 125 return 0; 126 } 127 128 /* 129 * get a stream of the opposite direction 130 */ 131 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream) 132 { 133 switch (stream) { 134 case SNDRV_PCM_STREAM_PLAYBACK: 135 return &chip->playback; 136 case SNDRV_PCM_STREAM_CAPTURE: 137 return &chip->capture; 138 default: 139 snd_BUG(); 140 return NULL; 141 } 142 } 143 144 /* 145 * wait while run status is on 146 */ 147 static inline void 148 snd_pmac_wait_ack(struct pmac_stream *rec) 149 { 150 int timeout = 50000; 151 while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0) 152 udelay(1); 153 } 154 155 /* 156 * set the format and rate to the chip. 157 * call the lowlevel function if defined (e.g. for AWACS). 158 */ 159 static void snd_pmac_pcm_set_format(struct snd_pmac *chip) 160 { 161 /* set up frequency and format */ 162 out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8)); 163 out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0); 164 if (chip->set_format) 165 chip->set_format(chip); 166 } 167 168 /* 169 * stop the DMA transfer 170 */ 171 static inline void snd_pmac_dma_stop(struct pmac_stream *rec) 172 { 173 out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16); 174 snd_pmac_wait_ack(rec); 175 } 176 177 /* 178 * set the command pointer address 179 */ 180 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd) 181 { 182 out_le32(&rec->dma->cmdptr, cmd->addr); 183 } 184 185 /* 186 * start the DMA 187 */ 188 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status) 189 { 190 out_le32(&rec->dma->control, status | (status << 16)); 191 } 192 193 194 /* 195 * prepare playback/capture stream 196 */ 197 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs) 198 { 199 int i; 200 volatile struct dbdma_cmd __iomem *cp; 201 struct snd_pcm_runtime *runtime = subs->runtime; 202 int rate_index; 203 long offset; 204 struct pmac_stream *astr; 205 206 rec->dma_size = snd_pcm_lib_buffer_bytes(subs); 207 rec->period_size = snd_pcm_lib_period_bytes(subs); 208 rec->nperiods = rec->dma_size / rec->period_size; 209 rec->cur_period = 0; 210 rate_index = snd_pmac_rate_index(chip, rec, runtime->rate); 211 212 /* set up constraints */ 213 astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); 214 if (! astr) 215 return -EINVAL; 216 astr->cur_freqs = 1 << rate_index; 217 astr->cur_formats = 1 << runtime->format; 218 chip->rate_index = rate_index; 219 chip->format = runtime->format; 220 221 /* We really want to execute a DMA stop command, after the AWACS 222 * is initialized. 223 * For reasons I don't understand, it stops the hissing noise 224 * common to many PowerBook G3 systems and random noise otherwise 225 * captured on iBook2's about every third time. -ReneR 226 */ 227 spin_lock_irq(&chip->reg_lock); 228 snd_pmac_dma_stop(rec); 229 chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP); 230 snd_pmac_dma_set_command(rec, &chip->extra_dma); 231 snd_pmac_dma_run(rec, RUN); 232 spin_unlock_irq(&chip->reg_lock); 233 mdelay(5); 234 spin_lock_irq(&chip->reg_lock); 235 /* continuous DMA memory type doesn't provide the physical address, 236 * so we need to resolve the address here... 237 */ 238 offset = runtime->dma_addr; 239 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) { 240 cp->phy_addr = cpu_to_le32(offset); 241 cp->req_count = cpu_to_le16(rec->period_size); 242 /*cp->res_count = cpu_to_le16(0);*/ 243 cp->xfer_status = cpu_to_le16(0); 244 offset += rec->period_size; 245 } 246 /* make loop */ 247 cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS); 248 cp->cmd_dep = cpu_to_le32(rec->cmd.addr); 249 250 snd_pmac_dma_stop(rec); 251 snd_pmac_dma_set_command(rec, &rec->cmd); 252 spin_unlock_irq(&chip->reg_lock); 253 254 return 0; 255 } 256 257 258 /* 259 * PCM trigger/stop 260 */ 261 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec, 262 struct snd_pcm_substream *subs, int cmd) 263 { 264 volatile struct dbdma_cmd __iomem *cp; 265 int i, command; 266 267 switch (cmd) { 268 case SNDRV_PCM_TRIGGER_START: 269 case SNDRV_PCM_TRIGGER_RESUME: 270 if (rec->running) 271 return -EBUSY; 272 command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ? 273 OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS; 274 spin_lock(&chip->reg_lock); 275 snd_pmac_beep_stop(chip); 276 snd_pmac_pcm_set_format(chip); 277 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) 278 out_le16(&cp->command, command); 279 snd_pmac_dma_set_command(rec, &rec->cmd); 280 (void)in_le32(&rec->dma->status); 281 snd_pmac_dma_run(rec, RUN|WAKE); 282 rec->running = 1; 283 spin_unlock(&chip->reg_lock); 284 break; 285 286 case SNDRV_PCM_TRIGGER_STOP: 287 case SNDRV_PCM_TRIGGER_SUSPEND: 288 spin_lock(&chip->reg_lock); 289 rec->running = 0; 290 /*printk(KERN_DEBUG "stopped!!\n");*/ 291 snd_pmac_dma_stop(rec); 292 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) 293 out_le16(&cp->command, DBDMA_STOP); 294 spin_unlock(&chip->reg_lock); 295 break; 296 297 default: 298 return -EINVAL; 299 } 300 301 return 0; 302 } 303 304 /* 305 * return the current pointer 306 */ 307 inline 308 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip, 309 struct pmac_stream *rec, 310 struct snd_pcm_substream *subs) 311 { 312 int count = 0; 313 314 #if 1 /* hmm.. how can we get the current dma pointer?? */ 315 int stat; 316 volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period]; 317 stat = le16_to_cpu(cp->xfer_status); 318 if (stat & (ACTIVE|DEAD)) { 319 count = in_le16(&cp->res_count); 320 if (count) 321 count = rec->period_size - count; 322 } 323 #endif 324 count += rec->cur_period * rec->period_size; 325 /*printk(KERN_DEBUG "pointer=%d\n", count);*/ 326 return bytes_to_frames(subs->runtime, count); 327 } 328 329 /* 330 * playback 331 */ 332 333 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs) 334 { 335 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 336 return snd_pmac_pcm_prepare(chip, &chip->playback, subs); 337 } 338 339 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs, 340 int cmd) 341 { 342 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 343 return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd); 344 } 345 346 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs) 347 { 348 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 349 return snd_pmac_pcm_pointer(chip, &chip->playback, subs); 350 } 351 352 353 /* 354 * capture 355 */ 356 357 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs) 358 { 359 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 360 return snd_pmac_pcm_prepare(chip, &chip->capture, subs); 361 } 362 363 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs, 364 int cmd) 365 { 366 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 367 return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd); 368 } 369 370 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs) 371 { 372 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 373 return snd_pmac_pcm_pointer(chip, &chip->capture, subs); 374 } 375 376 377 /* 378 * Handle DEAD DMA transfers: 379 * if the TX status comes up "DEAD" - reported on some Power Computing machines 380 * we need to re-start the dbdma - but from a different physical start address 381 * and with a different transfer length. It would get very messy to do this 382 * with the normal dbdma_cmd blocks - we would have to re-write the buffer start 383 * addresses each time. So, we will keep a single dbdma_cmd block which can be 384 * fiddled with. 385 * When DEAD status is first reported the content of the faulted dbdma block is 386 * copied into the emergency buffer and we note that the buffer is in use. 387 * we then bump the start physical address by the amount that was successfully 388 * output before it died. 389 * On any subsequent DEAD result we just do the bump-ups (we know that we are 390 * already using the emergency dbdma_cmd). 391 * CHECK: this just tries to "do it". It is possible that we should abandon 392 * xfers when the number of residual bytes gets below a certain value - I can 393 * see that this might cause a loop-forever if a too small transfer causes 394 * DEAD status. However this is a TODO for now - we'll see what gets reported. 395 * When we get a successful transfer result with the emergency buffer we just 396 * pretend that it completed using the original dmdma_cmd and carry on. The 397 * 'next_cmd' field will already point back to the original loop of blocks. 398 */ 399 static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec, 400 volatile struct dbdma_cmd __iomem *cp) 401 { 402 unsigned short req, res ; 403 unsigned int phy ; 404 405 /* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */ 406 407 /* to clear DEAD status we must first clear RUN 408 set it to quiescent to be on the safe side */ 409 (void)in_le32(&rec->dma->status); 410 out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16); 411 412 if (!emergency_in_use) { /* new problem */ 413 memcpy((void *)emergency_dbdma.cmds, (void *)cp, 414 sizeof(struct dbdma_cmd)); 415 emergency_in_use = 1; 416 cp->xfer_status = cpu_to_le16(0); 417 cp->req_count = cpu_to_le16(rec->period_size); 418 cp = emergency_dbdma.cmds; 419 } 420 421 /* now bump the values to reflect the amount 422 we haven't yet shifted */ 423 req = le16_to_cpu(cp->req_count); 424 res = le16_to_cpu(cp->res_count); 425 phy = le32_to_cpu(cp->phy_addr); 426 phy += (req - res); 427 cp->req_count = cpu_to_le16(res); 428 cp->res_count = cpu_to_le16(0); 429 cp->xfer_status = cpu_to_le16(0); 430 cp->phy_addr = cpu_to_le32(phy); 431 432 cp->cmd_dep = cpu_to_le32(rec->cmd.addr 433 + sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods)); 434 435 cp->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS); 436 437 /* point at our patched up command block */ 438 out_le32(&rec->dma->cmdptr, emergency_dbdma.addr); 439 440 /* we must re-start the controller */ 441 (void)in_le32(&rec->dma->status); 442 /* should complete clearing the DEAD status */ 443 out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE)); 444 } 445 446 /* 447 * update playback/capture pointer from interrupts 448 */ 449 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec) 450 { 451 volatile struct dbdma_cmd __iomem *cp; 452 int c; 453 int stat; 454 455 spin_lock(&chip->reg_lock); 456 if (rec->running) { 457 for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */ 458 459 if (emergency_in_use) /* already using DEAD xfer? */ 460 cp = emergency_dbdma.cmds; 461 else 462 cp = &rec->cmd.cmds[rec->cur_period]; 463 464 stat = le16_to_cpu(cp->xfer_status); 465 466 if (stat & DEAD) { 467 snd_pmac_pcm_dead_xfer(rec, cp); 468 break; /* this block is still going */ 469 } 470 471 if (emergency_in_use) 472 emergency_in_use = 0 ; /* done that */ 473 474 if (! (stat & ACTIVE)) 475 break; 476 477 /*printk(KERN_DEBUG "update frag %d\n", rec->cur_period);*/ 478 cp->xfer_status = cpu_to_le16(0); 479 cp->req_count = cpu_to_le16(rec->period_size); 480 /*cp->res_count = cpu_to_le16(0);*/ 481 rec->cur_period++; 482 if (rec->cur_period >= rec->nperiods) { 483 rec->cur_period = 0; 484 } 485 486 spin_unlock(&chip->reg_lock); 487 snd_pcm_period_elapsed(rec->substream); 488 spin_lock(&chip->reg_lock); 489 } 490 } 491 spin_unlock(&chip->reg_lock); 492 } 493 494 495 /* 496 * hw info 497 */ 498 499 static const struct snd_pcm_hardware snd_pmac_playback = 500 { 501 .info = (SNDRV_PCM_INFO_INTERLEAVED | 502 SNDRV_PCM_INFO_MMAP | 503 SNDRV_PCM_INFO_MMAP_VALID | 504 SNDRV_PCM_INFO_RESUME), 505 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, 506 .rates = SNDRV_PCM_RATE_8000_44100, 507 .rate_min = 7350, 508 .rate_max = 44100, 509 .channels_min = 2, 510 .channels_max = 2, 511 .buffer_bytes_max = 131072, 512 .period_bytes_min = 256, 513 .period_bytes_max = 16384, 514 .periods_min = 3, 515 .periods_max = PMAC_MAX_FRAGS, 516 }; 517 518 static const struct snd_pcm_hardware snd_pmac_capture = 519 { 520 .info = (SNDRV_PCM_INFO_INTERLEAVED | 521 SNDRV_PCM_INFO_MMAP | 522 SNDRV_PCM_INFO_MMAP_VALID | 523 SNDRV_PCM_INFO_RESUME), 524 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, 525 .rates = SNDRV_PCM_RATE_8000_44100, 526 .rate_min = 7350, 527 .rate_max = 44100, 528 .channels_min = 2, 529 .channels_max = 2, 530 .buffer_bytes_max = 131072, 531 .period_bytes_min = 256, 532 .period_bytes_max = 16384, 533 .periods_min = 3, 534 .periods_max = PMAC_MAX_FRAGS, 535 }; 536 537 538 #if 0 // NYI 539 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params, 540 struct snd_pcm_hw_rule *rule) 541 { 542 struct snd_pmac *chip = rule->private; 543 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]); 544 int i, freq_table[8], num_freqs; 545 546 if (! rec) 547 return -EINVAL; 548 num_freqs = 0; 549 for (i = chip->num_freqs - 1; i >= 0; i--) { 550 if (rec->cur_freqs & (1 << i)) 551 freq_table[num_freqs++] = chip->freq_table[i]; 552 } 553 554 return snd_interval_list(hw_param_interval(params, rule->var), 555 num_freqs, freq_table, 0); 556 } 557 558 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params, 559 struct snd_pcm_hw_rule *rule) 560 { 561 struct snd_pmac *chip = rule->private; 562 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]); 563 564 if (! rec) 565 return -EINVAL; 566 return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT), 567 rec->cur_formats); 568 } 569 #endif // NYI 570 571 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec, 572 struct snd_pcm_substream *subs) 573 { 574 struct snd_pcm_runtime *runtime = subs->runtime; 575 int i; 576 577 /* look up frequency table and fill bit mask */ 578 runtime->hw.rates = 0; 579 for (i = 0; i < chip->num_freqs; i++) 580 if (chip->freqs_ok & (1 << i)) 581 runtime->hw.rates |= 582 snd_pcm_rate_to_rate_bit(chip->freq_table[i]); 583 584 /* check for minimum and maximum rates */ 585 for (i = 0; i < chip->num_freqs; i++) { 586 if (chip->freqs_ok & (1 << i)) { 587 runtime->hw.rate_max = chip->freq_table[i]; 588 break; 589 } 590 } 591 for (i = chip->num_freqs - 1; i >= 0; i--) { 592 if (chip->freqs_ok & (1 << i)) { 593 runtime->hw.rate_min = chip->freq_table[i]; 594 break; 595 } 596 } 597 runtime->hw.formats = chip->formats_ok; 598 if (chip->can_capture) { 599 if (! chip->can_duplex) 600 runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX; 601 runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX; 602 } 603 runtime->private_data = rec; 604 rec->substream = subs; 605 606 #if 0 /* FIXME: still under development.. */ 607 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 608 snd_pmac_hw_rule_rate, chip, rec->stream, -1); 609 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, 610 snd_pmac_hw_rule_format, chip, rec->stream, -1); 611 #endif 612 613 runtime->hw.periods_max = rec->cmd.size - 1; 614 615 /* constraints to fix choppy sound */ 616 snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 617 return 0; 618 } 619 620 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec, 621 struct snd_pcm_substream *subs) 622 { 623 struct pmac_stream *astr; 624 625 snd_pmac_dma_stop(rec); 626 627 astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); 628 if (! astr) 629 return -EINVAL; 630 631 /* reset constraints */ 632 astr->cur_freqs = chip->freqs_ok; 633 astr->cur_formats = chip->formats_ok; 634 635 return 0; 636 } 637 638 static int snd_pmac_playback_open(struct snd_pcm_substream *subs) 639 { 640 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 641 642 subs->runtime->hw = snd_pmac_playback; 643 return snd_pmac_pcm_open(chip, &chip->playback, subs); 644 } 645 646 static int snd_pmac_capture_open(struct snd_pcm_substream *subs) 647 { 648 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 649 650 subs->runtime->hw = snd_pmac_capture; 651 return snd_pmac_pcm_open(chip, &chip->capture, subs); 652 } 653 654 static int snd_pmac_playback_close(struct snd_pcm_substream *subs) 655 { 656 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 657 658 return snd_pmac_pcm_close(chip, &chip->playback, subs); 659 } 660 661 static int snd_pmac_capture_close(struct snd_pcm_substream *subs) 662 { 663 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 664 665 return snd_pmac_pcm_close(chip, &chip->capture, subs); 666 } 667 668 /* 669 */ 670 671 static const struct snd_pcm_ops snd_pmac_playback_ops = { 672 .open = snd_pmac_playback_open, 673 .close = snd_pmac_playback_close, 674 .ioctl = snd_pcm_lib_ioctl, 675 .hw_params = snd_pmac_pcm_hw_params, 676 .hw_free = snd_pmac_pcm_hw_free, 677 .prepare = snd_pmac_playback_prepare, 678 .trigger = snd_pmac_playback_trigger, 679 .pointer = snd_pmac_playback_pointer, 680 }; 681 682 static const struct snd_pcm_ops snd_pmac_capture_ops = { 683 .open = snd_pmac_capture_open, 684 .close = snd_pmac_capture_close, 685 .ioctl = snd_pcm_lib_ioctl, 686 .hw_params = snd_pmac_pcm_hw_params, 687 .hw_free = snd_pmac_pcm_hw_free, 688 .prepare = snd_pmac_capture_prepare, 689 .trigger = snd_pmac_capture_trigger, 690 .pointer = snd_pmac_capture_pointer, 691 }; 692 693 int snd_pmac_pcm_new(struct snd_pmac *chip) 694 { 695 struct snd_pcm *pcm; 696 int err; 697 int num_captures = 1; 698 699 if (! chip->can_capture) 700 num_captures = 0; 701 err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm); 702 if (err < 0) 703 return err; 704 705 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops); 706 if (chip->can_capture) 707 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops); 708 709 pcm->private_data = chip; 710 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 711 strcpy(pcm->name, chip->card->shortname); 712 chip->pcm = pcm; 713 714 chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE; 715 if (chip->can_byte_swap) 716 chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE; 717 718 chip->playback.cur_formats = chip->formats_ok; 719 chip->capture.cur_formats = chip->formats_ok; 720 chip->playback.cur_freqs = chip->freqs_ok; 721 chip->capture.cur_freqs = chip->freqs_ok; 722 723 /* preallocate 64k buffer */ 724 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 725 &chip->pdev->dev, 726 64 * 1024, 64 * 1024); 727 728 return 0; 729 } 730 731 732 static void snd_pmac_dbdma_reset(struct snd_pmac *chip) 733 { 734 out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); 735 snd_pmac_wait_ack(&chip->playback); 736 out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); 737 snd_pmac_wait_ack(&chip->capture); 738 } 739 740 741 /* 742 * handling beep 743 */ 744 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed) 745 { 746 struct pmac_stream *rec = &chip->playback; 747 748 snd_pmac_dma_stop(rec); 749 chip->extra_dma.cmds->req_count = cpu_to_le16(bytes); 750 chip->extra_dma.cmds->xfer_status = cpu_to_le16(0); 751 chip->extra_dma.cmds->cmd_dep = cpu_to_le32(chip->extra_dma.addr); 752 chip->extra_dma.cmds->phy_addr = cpu_to_le32(addr); 753 chip->extra_dma.cmds->command = cpu_to_le16(OUTPUT_MORE + BR_ALWAYS); 754 out_le32(&chip->awacs->control, 755 (in_le32(&chip->awacs->control) & ~0x1f00) 756 | (speed << 8)); 757 out_le32(&chip->awacs->byteswap, 0); 758 snd_pmac_dma_set_command(rec, &chip->extra_dma); 759 snd_pmac_dma_run(rec, RUN); 760 } 761 762 void snd_pmac_beep_dma_stop(struct snd_pmac *chip) 763 { 764 snd_pmac_dma_stop(&chip->playback); 765 chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP); 766 snd_pmac_pcm_set_format(chip); /* reset format */ 767 } 768 769 770 /* 771 * interrupt handlers 772 */ 773 static irqreturn_t 774 snd_pmac_tx_intr(int irq, void *devid) 775 { 776 struct snd_pmac *chip = devid; 777 snd_pmac_pcm_update(chip, &chip->playback); 778 return IRQ_HANDLED; 779 } 780 781 782 static irqreturn_t 783 snd_pmac_rx_intr(int irq, void *devid) 784 { 785 struct snd_pmac *chip = devid; 786 snd_pmac_pcm_update(chip, &chip->capture); 787 return IRQ_HANDLED; 788 } 789 790 791 static irqreturn_t 792 snd_pmac_ctrl_intr(int irq, void *devid) 793 { 794 struct snd_pmac *chip = devid; 795 int ctrl = in_le32(&chip->awacs->control); 796 797 /*printk(KERN_DEBUG "pmac: control interrupt.. 0x%x\n", ctrl);*/ 798 if (ctrl & MASK_PORTCHG) { 799 /* do something when headphone is plugged/unplugged? */ 800 if (chip->update_automute) 801 chip->update_automute(chip, 1); 802 } 803 if (ctrl & MASK_CNTLERR) { 804 int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16; 805 if (err && chip->model <= PMAC_SCREAMER) 806 snd_printk(KERN_DEBUG "error %x\n", err); 807 } 808 /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */ 809 out_le32(&chip->awacs->control, ctrl); 810 return IRQ_HANDLED; 811 } 812 813 814 /* 815 * a wrapper to feature call for compatibility 816 */ 817 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable) 818 { 819 if (ppc_md.feature_call) 820 ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable); 821 } 822 823 /* 824 * release resources 825 */ 826 827 static int snd_pmac_free(struct snd_pmac *chip) 828 { 829 /* stop sounds */ 830 if (chip->initialized) { 831 snd_pmac_dbdma_reset(chip); 832 /* disable interrupts from awacs interface */ 833 out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff); 834 } 835 836 if (chip->node) 837 snd_pmac_sound_feature(chip, 0); 838 839 /* clean up mixer if any */ 840 if (chip->mixer_free) 841 chip->mixer_free(chip); 842 843 snd_pmac_detach_beep(chip); 844 845 /* release resources */ 846 if (chip->irq >= 0) 847 free_irq(chip->irq, (void*)chip); 848 if (chip->tx_irq >= 0) 849 free_irq(chip->tx_irq, (void*)chip); 850 if (chip->rx_irq >= 0) 851 free_irq(chip->rx_irq, (void*)chip); 852 snd_pmac_dbdma_free(chip, &chip->playback.cmd); 853 snd_pmac_dbdma_free(chip, &chip->capture.cmd); 854 snd_pmac_dbdma_free(chip, &chip->extra_dma); 855 snd_pmac_dbdma_free(chip, &emergency_dbdma); 856 iounmap(chip->macio_base); 857 iounmap(chip->latch_base); 858 iounmap(chip->awacs); 859 iounmap(chip->playback.dma); 860 iounmap(chip->capture.dma); 861 862 if (chip->node) { 863 int i; 864 for (i = 0; i < 3; i++) { 865 if (chip->requested & (1 << i)) 866 release_mem_region(chip->rsrc[i].start, 867 resource_size(&chip->rsrc[i])); 868 } 869 } 870 871 pci_dev_put(chip->pdev); 872 of_node_put(chip->node); 873 kfree(chip); 874 return 0; 875 } 876 877 878 /* 879 * free the device 880 */ 881 static int snd_pmac_dev_free(struct snd_device *device) 882 { 883 struct snd_pmac *chip = device->device_data; 884 return snd_pmac_free(chip); 885 } 886 887 888 /* 889 * check the machine support byteswap (little-endian) 890 */ 891 892 static void detect_byte_swap(struct snd_pmac *chip) 893 { 894 struct device_node *mio; 895 896 /* if seems that Keylargo can't byte-swap */ 897 for (mio = chip->node->parent; mio; mio = mio->parent) { 898 if (of_node_name_eq(mio, "mac-io")) { 899 if (of_device_is_compatible(mio, "Keylargo")) 900 chip->can_byte_swap = 0; 901 break; 902 } 903 } 904 905 /* it seems the Pismo & iBook can't byte-swap in hardware. */ 906 if (of_machine_is_compatible("PowerBook3,1") || 907 of_machine_is_compatible("PowerBook2,1")) 908 chip->can_byte_swap = 0 ; 909 910 if (of_machine_is_compatible("PowerBook2,1")) 911 chip->can_duplex = 0; 912 } 913 914 915 /* 916 * detect a sound chip 917 */ 918 static int snd_pmac_detect(struct snd_pmac *chip) 919 { 920 struct device_node *sound; 921 struct device_node *dn; 922 const unsigned int *prop; 923 unsigned int l; 924 struct macio_chip* macio; 925 926 if (!machine_is(powermac)) 927 return -ENODEV; 928 929 chip->subframe = 0; 930 chip->revision = 0; 931 chip->freqs_ok = 0xff; /* all ok */ 932 chip->model = PMAC_AWACS; 933 chip->can_byte_swap = 1; 934 chip->can_duplex = 1; 935 chip->can_capture = 1; 936 chip->num_freqs = ARRAY_SIZE(awacs_freqs); 937 chip->freq_table = awacs_freqs; 938 chip->pdev = NULL; 939 940 chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */ 941 942 /* check machine type */ 943 if (of_machine_is_compatible("AAPL,3400/2400") 944 || of_machine_is_compatible("AAPL,3500")) 945 chip->is_pbook_3400 = 1; 946 else if (of_machine_is_compatible("PowerBook1,1") 947 || of_machine_is_compatible("AAPL,PowerBook1998")) 948 chip->is_pbook_G3 = 1; 949 chip->node = of_find_node_by_name(NULL, "awacs"); 950 sound = of_node_get(chip->node); 951 952 /* 953 * powermac G3 models have a node called "davbus" 954 * with a child called "sound". 955 */ 956 if (!chip->node) 957 chip->node = of_find_node_by_name(NULL, "davbus"); 958 /* 959 * if we didn't find a davbus device, try 'i2s-a' since 960 * this seems to be what iBooks have 961 */ 962 if (! chip->node) { 963 chip->node = of_find_node_by_name(NULL, "i2s-a"); 964 if (chip->node && chip->node->parent && 965 chip->node->parent->parent) { 966 if (of_device_is_compatible(chip->node->parent->parent, 967 "K2-Keylargo")) 968 chip->is_k2 = 1; 969 } 970 } 971 if (! chip->node) 972 return -ENODEV; 973 974 if (!sound) { 975 for_each_node_by_name(sound, "sound") 976 if (sound->parent == chip->node) 977 break; 978 } 979 if (! sound) { 980 of_node_put(chip->node); 981 chip->node = NULL; 982 return -ENODEV; 983 } 984 prop = of_get_property(sound, "sub-frame", NULL); 985 if (prop && *prop < 16) 986 chip->subframe = *prop; 987 prop = of_get_property(sound, "layout-id", NULL); 988 if (prop) { 989 /* partly deprecate snd-powermac, for those machines 990 * that have a layout-id property for now */ 991 printk(KERN_INFO "snd-powermac no longer handles any " 992 "machines with a layout-id property " 993 "in the device-tree, use snd-aoa.\n"); 994 of_node_put(sound); 995 of_node_put(chip->node); 996 chip->node = NULL; 997 return -ENODEV; 998 } 999 /* This should be verified on older screamers */ 1000 if (of_device_is_compatible(sound, "screamer")) { 1001 chip->model = PMAC_SCREAMER; 1002 // chip->can_byte_swap = 0; /* FIXME: check this */ 1003 } 1004 if (of_device_is_compatible(sound, "burgundy")) { 1005 chip->model = PMAC_BURGUNDY; 1006 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1007 } 1008 if (of_device_is_compatible(sound, "daca")) { 1009 chip->model = PMAC_DACA; 1010 chip->can_capture = 0; /* no capture */ 1011 chip->can_duplex = 0; 1012 // chip->can_byte_swap = 0; /* FIXME: check this */ 1013 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1014 } 1015 if (of_device_is_compatible(sound, "tumbler")) { 1016 chip->model = PMAC_TUMBLER; 1017 chip->can_capture = of_machine_is_compatible("PowerMac4,2") 1018 || of_machine_is_compatible("PowerBook3,2") 1019 || of_machine_is_compatible("PowerBook3,3") 1020 || of_machine_is_compatible("PowerBook4,1") 1021 || of_machine_is_compatible("PowerBook4,2") 1022 || of_machine_is_compatible("PowerBook4,3"); 1023 chip->can_duplex = 0; 1024 // chip->can_byte_swap = 0; /* FIXME: check this */ 1025 chip->num_freqs = ARRAY_SIZE(tumbler_freqs); 1026 chip->freq_table = tumbler_freqs; 1027 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1028 } 1029 if (of_device_is_compatible(sound, "snapper")) { 1030 chip->model = PMAC_SNAPPER; 1031 // chip->can_byte_swap = 0; /* FIXME: check this */ 1032 chip->num_freqs = ARRAY_SIZE(tumbler_freqs); 1033 chip->freq_table = tumbler_freqs; 1034 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1035 } 1036 prop = of_get_property(sound, "device-id", NULL); 1037 if (prop) 1038 chip->device_id = *prop; 1039 dn = of_find_node_by_name(NULL, "perch"); 1040 chip->has_iic = (dn != NULL); 1041 of_node_put(dn); 1042 1043 /* We need the PCI device for DMA allocations, let's use a crude method 1044 * for now ... 1045 */ 1046 macio = macio_find(chip->node, macio_unknown); 1047 if (macio == NULL) 1048 printk(KERN_WARNING "snd-powermac: can't locate macio !\n"); 1049 else { 1050 struct pci_dev *pdev = NULL; 1051 1052 for_each_pci_dev(pdev) { 1053 struct device_node *np = pci_device_to_OF_node(pdev); 1054 if (np && np == macio->of_node) { 1055 chip->pdev = pdev; 1056 break; 1057 } 1058 } 1059 } 1060 if (chip->pdev == NULL) 1061 printk(KERN_WARNING "snd-powermac: can't locate macio PCI" 1062 " device !\n"); 1063 1064 detect_byte_swap(chip); 1065 1066 /* look for a property saying what sample rates 1067 are available */ 1068 prop = of_get_property(sound, "sample-rates", &l); 1069 if (! prop) 1070 prop = of_get_property(sound, "output-frame-rates", &l); 1071 if (prop) { 1072 int i; 1073 chip->freqs_ok = 0; 1074 for (l /= sizeof(int); l > 0; --l) { 1075 unsigned int r = *prop++; 1076 /* Apple 'Fixed' format */ 1077 if (r >= 0x10000) 1078 r >>= 16; 1079 for (i = 0; i < chip->num_freqs; ++i) { 1080 if (r == chip->freq_table[i]) { 1081 chip->freqs_ok |= (1 << i); 1082 break; 1083 } 1084 } 1085 } 1086 } else { 1087 /* assume only 44.1khz */ 1088 chip->freqs_ok = 1; 1089 } 1090 1091 of_node_put(sound); 1092 return 0; 1093 } 1094 1095 #ifdef PMAC_SUPPORT_AUTOMUTE 1096 /* 1097 * auto-mute 1098 */ 1099 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol, 1100 struct snd_ctl_elem_value *ucontrol) 1101 { 1102 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1103 ucontrol->value.integer.value[0] = chip->auto_mute; 1104 return 0; 1105 } 1106 1107 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol, 1108 struct snd_ctl_elem_value *ucontrol) 1109 { 1110 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1111 if (ucontrol->value.integer.value[0] != chip->auto_mute) { 1112 chip->auto_mute = !!ucontrol->value.integer.value[0]; 1113 if (chip->update_automute) 1114 chip->update_automute(chip, 1); 1115 return 1; 1116 } 1117 return 0; 1118 } 1119 1120 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol, 1121 struct snd_ctl_elem_value *ucontrol) 1122 { 1123 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1124 if (chip->detect_headphone) 1125 ucontrol->value.integer.value[0] = chip->detect_headphone(chip); 1126 else 1127 ucontrol->value.integer.value[0] = 0; 1128 return 0; 1129 } 1130 1131 static struct snd_kcontrol_new auto_mute_controls[] = { 1132 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1133 .name = "Auto Mute Switch", 1134 .info = snd_pmac_boolean_mono_info, 1135 .get = pmac_auto_mute_get, 1136 .put = pmac_auto_mute_put, 1137 }, 1138 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1139 .name = "Headphone Detection", 1140 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1141 .info = snd_pmac_boolean_mono_info, 1142 .get = pmac_hp_detect_get, 1143 }, 1144 }; 1145 1146 int snd_pmac_add_automute(struct snd_pmac *chip) 1147 { 1148 int err; 1149 chip->auto_mute = 1; 1150 err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip)); 1151 if (err < 0) { 1152 printk(KERN_ERR "snd-powermac: Failed to add automute control\n"); 1153 return err; 1154 } 1155 chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip); 1156 return snd_ctl_add(chip->card, chip->hp_detect_ctl); 1157 } 1158 #endif /* PMAC_SUPPORT_AUTOMUTE */ 1159 1160 /* 1161 * create and detect a pmac chip record 1162 */ 1163 int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return) 1164 { 1165 struct snd_pmac *chip; 1166 struct device_node *np; 1167 int i, err; 1168 unsigned int irq; 1169 unsigned long ctrl_addr, txdma_addr, rxdma_addr; 1170 static struct snd_device_ops ops = { 1171 .dev_free = snd_pmac_dev_free, 1172 }; 1173 1174 *chip_return = NULL; 1175 1176 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 1177 if (chip == NULL) 1178 return -ENOMEM; 1179 chip->card = card; 1180 1181 spin_lock_init(&chip->reg_lock); 1182 chip->irq = chip->tx_irq = chip->rx_irq = -1; 1183 1184 chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK; 1185 chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE; 1186 1187 if ((err = snd_pmac_detect(chip)) < 0) 1188 goto __error; 1189 1190 if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 || 1191 snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 || 1192 snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 || 1193 snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) { 1194 err = -ENOMEM; 1195 goto __error; 1196 } 1197 1198 np = chip->node; 1199 chip->requested = 0; 1200 if (chip->is_k2) { 1201 static char *rnames[] = { 1202 "Sound Control", "Sound DMA" }; 1203 for (i = 0; i < 2; i ++) { 1204 if (of_address_to_resource(np->parent, i, 1205 &chip->rsrc[i])) { 1206 printk(KERN_ERR "snd: can't translate rsrc " 1207 " %d (%s)\n", i, rnames[i]); 1208 err = -ENODEV; 1209 goto __error; 1210 } 1211 if (request_mem_region(chip->rsrc[i].start, 1212 resource_size(&chip->rsrc[i]), 1213 rnames[i]) == NULL) { 1214 printk(KERN_ERR "snd: can't request rsrc " 1215 " %d (%s: %pR)\n", 1216 i, rnames[i], &chip->rsrc[i]); 1217 err = -ENODEV; 1218 goto __error; 1219 } 1220 chip->requested |= (1 << i); 1221 } 1222 ctrl_addr = chip->rsrc[0].start; 1223 txdma_addr = chip->rsrc[1].start; 1224 rxdma_addr = txdma_addr + 0x100; 1225 } else { 1226 static char *rnames[] = { 1227 "Sound Control", "Sound Tx DMA", "Sound Rx DMA" }; 1228 for (i = 0; i < 3; i ++) { 1229 if (of_address_to_resource(np, i, 1230 &chip->rsrc[i])) { 1231 printk(KERN_ERR "snd: can't translate rsrc " 1232 " %d (%s)\n", i, rnames[i]); 1233 err = -ENODEV; 1234 goto __error; 1235 } 1236 if (request_mem_region(chip->rsrc[i].start, 1237 resource_size(&chip->rsrc[i]), 1238 rnames[i]) == NULL) { 1239 printk(KERN_ERR "snd: can't request rsrc " 1240 " %d (%s: %pR)\n", 1241 i, rnames[i], &chip->rsrc[i]); 1242 err = -ENODEV; 1243 goto __error; 1244 } 1245 chip->requested |= (1 << i); 1246 } 1247 ctrl_addr = chip->rsrc[0].start; 1248 txdma_addr = chip->rsrc[1].start; 1249 rxdma_addr = chip->rsrc[2].start; 1250 } 1251 1252 chip->awacs = ioremap(ctrl_addr, 0x1000); 1253 chip->playback.dma = ioremap(txdma_addr, 0x100); 1254 chip->capture.dma = ioremap(rxdma_addr, 0x100); 1255 if (chip->model <= PMAC_BURGUNDY) { 1256 irq = irq_of_parse_and_map(np, 0); 1257 if (request_irq(irq, snd_pmac_ctrl_intr, 0, 1258 "PMac", (void*)chip)) { 1259 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", 1260 irq); 1261 err = -EBUSY; 1262 goto __error; 1263 } 1264 chip->irq = irq; 1265 } 1266 irq = irq_of_parse_and_map(np, 1); 1267 if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){ 1268 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq); 1269 err = -EBUSY; 1270 goto __error; 1271 } 1272 chip->tx_irq = irq; 1273 irq = irq_of_parse_and_map(np, 2); 1274 if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) { 1275 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq); 1276 err = -EBUSY; 1277 goto __error; 1278 } 1279 chip->rx_irq = irq; 1280 1281 snd_pmac_sound_feature(chip, 1); 1282 1283 /* reset & enable interrupts */ 1284 if (chip->model <= PMAC_BURGUNDY) 1285 out_le32(&chip->awacs->control, chip->control_mask); 1286 1287 /* Powerbooks have odd ways of enabling inputs such as 1288 an expansion-bay CD or sound from an internal modem 1289 or a PC-card modem. */ 1290 if (chip->is_pbook_3400) { 1291 /* Enable CD and PC-card sound inputs. */ 1292 /* This is done by reading from address 1293 * f301a000, + 0x10 to enable the expansion-bay 1294 * CD sound input, + 0x80 to enable the PC-card 1295 * sound input. The 0x100 enables the SCSI bus 1296 * terminator power. 1297 */ 1298 chip->latch_base = ioremap (0xf301a000, 0x1000); 1299 in_8(chip->latch_base + 0x190); 1300 } else if (chip->is_pbook_G3) { 1301 struct device_node* mio; 1302 for (mio = chip->node->parent; mio; mio = mio->parent) { 1303 if (of_node_name_eq(mio, "mac-io")) { 1304 struct resource r; 1305 if (of_address_to_resource(mio, 0, &r) == 0) 1306 chip->macio_base = 1307 ioremap(r.start, 0x40); 1308 break; 1309 } 1310 } 1311 /* Enable CD sound input. */ 1312 /* The relevant bits for writing to this byte are 0x8f. 1313 * I haven't found out what the 0x80 bit does. 1314 * For the 0xf bits, writing 3 or 7 enables the CD 1315 * input, any other value disables it. Values 1316 * 1, 3, 5, 7 enable the microphone. Values 0, 2, 1317 * 4, 6, 8 - f enable the input from the modem. 1318 */ 1319 if (chip->macio_base) 1320 out_8(chip->macio_base + 0x37, 3); 1321 } 1322 1323 /* Reset dbdma channels */ 1324 snd_pmac_dbdma_reset(chip); 1325 1326 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) 1327 goto __error; 1328 1329 *chip_return = chip; 1330 return 0; 1331 1332 __error: 1333 snd_pmac_free(chip); 1334 return err; 1335 } 1336 1337 1338 /* 1339 * sleep notify for powerbook 1340 */ 1341 1342 #ifdef CONFIG_PM 1343 1344 /* 1345 * Save state when going to sleep, restore it afterwards. 1346 */ 1347 1348 void snd_pmac_suspend(struct snd_pmac *chip) 1349 { 1350 unsigned long flags; 1351 1352 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot); 1353 if (chip->suspend) 1354 chip->suspend(chip); 1355 spin_lock_irqsave(&chip->reg_lock, flags); 1356 snd_pmac_beep_stop(chip); 1357 spin_unlock_irqrestore(&chip->reg_lock, flags); 1358 if (chip->irq >= 0) 1359 disable_irq(chip->irq); 1360 if (chip->tx_irq >= 0) 1361 disable_irq(chip->tx_irq); 1362 if (chip->rx_irq >= 0) 1363 disable_irq(chip->rx_irq); 1364 snd_pmac_sound_feature(chip, 0); 1365 } 1366 1367 void snd_pmac_resume(struct snd_pmac *chip) 1368 { 1369 snd_pmac_sound_feature(chip, 1); 1370 if (chip->resume) 1371 chip->resume(chip); 1372 /* enable CD sound input */ 1373 if (chip->macio_base && chip->is_pbook_G3) 1374 out_8(chip->macio_base + 0x37, 3); 1375 else if (chip->is_pbook_3400) 1376 in_8(chip->latch_base + 0x190); 1377 1378 snd_pmac_pcm_set_format(chip); 1379 1380 if (chip->irq >= 0) 1381 enable_irq(chip->irq); 1382 if (chip->tx_irq >= 0) 1383 enable_irq(chip->tx_irq); 1384 if (chip->rx_irq >= 0) 1385 enable_irq(chip->rx_irq); 1386 1387 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0); 1388 } 1389 1390 #endif /* CONFIG_PM */ 1391 1392