1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PMac DBDMA lowlevel functions 4 * 5 * Copyright (c) by Takashi Iwai <tiwai@suse.de> 6 * code based on dmasound.c. 7 */ 8 9 10 #include <linux/io.h> 11 #include <asm/irq.h> 12 #include <linux/init.h> 13 #include <linux/delay.h> 14 #include <linux/slab.h> 15 #include <linux/interrupt.h> 16 #include <linux/pci.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/of_address.h> 19 #include <linux/of_irq.h> 20 #include <sound/core.h> 21 #include "pmac.h" 22 #include <sound/pcm_params.h> 23 #include <asm/pmac_feature.h> 24 25 26 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */ 27 static const int awacs_freqs[8] = { 28 44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350 29 }; 30 /* fixed frequency table for tumbler */ 31 static const int tumbler_freqs[1] = { 32 44100 33 }; 34 35 36 /* 37 * we will allocate a single 'emergency' dbdma cmd block to use if the 38 * tx status comes up "DEAD". This happens on some PowerComputing Pmac 39 * clones, either owing to a bug in dbdma or some interaction between 40 * IDE and sound. However, this measure would deal with DEAD status if 41 * it appeared elsewhere. 42 */ 43 static struct pmac_dbdma emergency_dbdma; 44 static int emergency_in_use; 45 46 47 /* 48 * allocate DBDMA command arrays 49 */ 50 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size) 51 { 52 unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1); 53 54 rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize, 55 &rec->dma_base, GFP_KERNEL); 56 if (rec->space == NULL) 57 return -ENOMEM; 58 rec->size = size; 59 memset(rec->space, 0, rsize); 60 rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space); 61 rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space); 62 63 return 0; 64 } 65 66 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec) 67 { 68 if (rec->space) { 69 unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1); 70 71 dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base); 72 } 73 } 74 75 76 /* 77 * pcm stuff 78 */ 79 80 /* 81 * look up frequency table 82 */ 83 84 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate) 85 { 86 int i, ok, found; 87 88 ok = rec->cur_freqs; 89 if (rate > chip->freq_table[0]) 90 return 0; 91 found = 0; 92 for (i = 0; i < chip->num_freqs; i++, ok >>= 1) { 93 if (! (ok & 1)) continue; 94 found = i; 95 if (rate >= chip->freq_table[i]) 96 break; 97 } 98 return found; 99 } 100 101 /* 102 * check whether another stream is active 103 */ 104 static inline int another_stream(int stream) 105 { 106 return (stream == SNDRV_PCM_STREAM_PLAYBACK) ? 107 SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; 108 } 109 110 /* 111 * get a stream of the opposite direction 112 */ 113 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream) 114 { 115 switch (stream) { 116 case SNDRV_PCM_STREAM_PLAYBACK: 117 return &chip->playback; 118 case SNDRV_PCM_STREAM_CAPTURE: 119 return &chip->capture; 120 default: 121 snd_BUG(); 122 return NULL; 123 } 124 } 125 126 /* 127 * wait while run status is on 128 */ 129 static inline void 130 snd_pmac_wait_ack(struct pmac_stream *rec) 131 { 132 int timeout = 50000; 133 while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0) 134 udelay(1); 135 } 136 137 /* 138 * set the format and rate to the chip. 139 * call the lowlevel function if defined (e.g. for AWACS). 140 */ 141 static void snd_pmac_pcm_set_format(struct snd_pmac *chip) 142 { 143 /* set up frequency and format */ 144 out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8)); 145 out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0); 146 if (chip->set_format) 147 chip->set_format(chip); 148 } 149 150 /* 151 * stop the DMA transfer 152 */ 153 static inline void snd_pmac_dma_stop(struct pmac_stream *rec) 154 { 155 out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16); 156 snd_pmac_wait_ack(rec); 157 } 158 159 /* 160 * set the command pointer address 161 */ 162 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd) 163 { 164 out_le32(&rec->dma->cmdptr, cmd->addr); 165 } 166 167 /* 168 * start the DMA 169 */ 170 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status) 171 { 172 out_le32(&rec->dma->control, status | (status << 16)); 173 } 174 175 176 /* 177 * prepare playback/capture stream 178 */ 179 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs) 180 { 181 int i; 182 volatile struct dbdma_cmd __iomem *cp; 183 struct snd_pcm_runtime *runtime = subs->runtime; 184 int rate_index; 185 long offset; 186 struct pmac_stream *astr; 187 188 rec->dma_size = snd_pcm_lib_buffer_bytes(subs); 189 rec->period_size = snd_pcm_lib_period_bytes(subs); 190 rec->nperiods = rec->dma_size / rec->period_size; 191 rec->cur_period = 0; 192 rate_index = snd_pmac_rate_index(chip, rec, runtime->rate); 193 194 /* set up constraints */ 195 astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); 196 if (! astr) 197 return -EINVAL; 198 astr->cur_freqs = 1 << rate_index; 199 astr->cur_formats = 1 << runtime->format; 200 chip->rate_index = rate_index; 201 chip->format = runtime->format; 202 203 /* We really want to execute a DMA stop command, after the AWACS 204 * is initialized. 205 * For reasons I don't understand, it stops the hissing noise 206 * common to many PowerBook G3 systems and random noise otherwise 207 * captured on iBook2's about every third time. -ReneR 208 */ 209 spin_lock_irq(&chip->reg_lock); 210 snd_pmac_dma_stop(rec); 211 chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP); 212 snd_pmac_dma_set_command(rec, &chip->extra_dma); 213 snd_pmac_dma_run(rec, RUN); 214 spin_unlock_irq(&chip->reg_lock); 215 mdelay(5); 216 spin_lock_irq(&chip->reg_lock); 217 /* continuous DMA memory type doesn't provide the physical address, 218 * so we need to resolve the address here... 219 */ 220 offset = runtime->dma_addr; 221 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) { 222 cp->phy_addr = cpu_to_le32(offset); 223 cp->req_count = cpu_to_le16(rec->period_size); 224 /*cp->res_count = cpu_to_le16(0);*/ 225 cp->xfer_status = cpu_to_le16(0); 226 offset += rec->period_size; 227 } 228 /* make loop */ 229 cp->command = cpu_to_le16(DBDMA_NOP | BR_ALWAYS); 230 cp->cmd_dep = cpu_to_le32(rec->cmd.addr); 231 232 snd_pmac_dma_stop(rec); 233 snd_pmac_dma_set_command(rec, &rec->cmd); 234 spin_unlock_irq(&chip->reg_lock); 235 236 return 0; 237 } 238 239 240 /* 241 * PCM trigger/stop 242 */ 243 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec, 244 struct snd_pcm_substream *subs, int cmd) 245 { 246 volatile struct dbdma_cmd __iomem *cp; 247 int i, command; 248 249 switch (cmd) { 250 case SNDRV_PCM_TRIGGER_START: 251 case SNDRV_PCM_TRIGGER_RESUME: 252 if (rec->running) 253 return -EBUSY; 254 command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ? 255 OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS; 256 spin_lock(&chip->reg_lock); 257 snd_pmac_beep_stop(chip); 258 snd_pmac_pcm_set_format(chip); 259 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) 260 out_le16(&cp->command, command); 261 snd_pmac_dma_set_command(rec, &rec->cmd); 262 (void)in_le32(&rec->dma->status); 263 snd_pmac_dma_run(rec, RUN|WAKE); 264 rec->running = 1; 265 spin_unlock(&chip->reg_lock); 266 break; 267 268 case SNDRV_PCM_TRIGGER_STOP: 269 case SNDRV_PCM_TRIGGER_SUSPEND: 270 spin_lock(&chip->reg_lock); 271 rec->running = 0; 272 snd_pmac_dma_stop(rec); 273 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) 274 out_le16(&cp->command, DBDMA_STOP); 275 spin_unlock(&chip->reg_lock); 276 break; 277 278 default: 279 return -EINVAL; 280 } 281 282 return 0; 283 } 284 285 /* 286 * return the current pointer 287 */ 288 inline 289 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip, 290 struct pmac_stream *rec, 291 struct snd_pcm_substream *subs) 292 { 293 int count = 0; 294 295 #if 1 /* hmm.. how can we get the current dma pointer?? */ 296 int stat; 297 volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period]; 298 stat = le16_to_cpu(cp->xfer_status); 299 if (stat & (ACTIVE|DEAD)) { 300 count = in_le16(&cp->res_count); 301 if (count) 302 count = rec->period_size - count; 303 } 304 #endif 305 count += rec->cur_period * rec->period_size; 306 return bytes_to_frames(subs->runtime, count); 307 } 308 309 /* 310 * playback 311 */ 312 313 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs) 314 { 315 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 316 return snd_pmac_pcm_prepare(chip, &chip->playback, subs); 317 } 318 319 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs, 320 int cmd) 321 { 322 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 323 return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd); 324 } 325 326 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs) 327 { 328 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 329 return snd_pmac_pcm_pointer(chip, &chip->playback, subs); 330 } 331 332 333 /* 334 * capture 335 */ 336 337 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs) 338 { 339 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 340 return snd_pmac_pcm_prepare(chip, &chip->capture, subs); 341 } 342 343 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs, 344 int cmd) 345 { 346 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 347 return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd); 348 } 349 350 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs) 351 { 352 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 353 return snd_pmac_pcm_pointer(chip, &chip->capture, subs); 354 } 355 356 357 /* 358 * Handle DEAD DMA transfers: 359 * if the TX status comes up "DEAD" - reported on some Power Computing machines 360 * we need to re-start the dbdma - but from a different physical start address 361 * and with a different transfer length. It would get very messy to do this 362 * with the normal dbdma_cmd blocks - we would have to re-write the buffer start 363 * addresses each time. So, we will keep a single dbdma_cmd block which can be 364 * fiddled with. 365 * When DEAD status is first reported the content of the faulted dbdma block is 366 * copied into the emergency buffer and we note that the buffer is in use. 367 * we then bump the start physical address by the amount that was successfully 368 * output before it died. 369 * On any subsequent DEAD result we just do the bump-ups (we know that we are 370 * already using the emergency dbdma_cmd). 371 * CHECK: this just tries to "do it". It is possible that we should abandon 372 * xfers when the number of residual bytes gets below a certain value - I can 373 * see that this might cause a loop-forever if a too small transfer causes 374 * DEAD status. However this is a TODO for now - we'll see what gets reported. 375 * When we get a successful transfer result with the emergency buffer we just 376 * pretend that it completed using the original dmdma_cmd and carry on. The 377 * 'next_cmd' field will already point back to the original loop of blocks. 378 */ 379 static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec, 380 volatile struct dbdma_cmd __iomem *cp) 381 { 382 unsigned short req, res ; 383 unsigned int phy ; 384 385 /* to clear DEAD status we must first clear RUN 386 set it to quiescent to be on the safe side */ 387 (void)in_le32(&rec->dma->status); 388 out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16); 389 390 if (!emergency_in_use) { /* new problem */ 391 memcpy((void *)emergency_dbdma.cmds, (void *)cp, 392 sizeof(struct dbdma_cmd)); 393 emergency_in_use = 1; 394 cp->xfer_status = cpu_to_le16(0); 395 cp->req_count = cpu_to_le16(rec->period_size); 396 cp = emergency_dbdma.cmds; 397 } 398 399 /* now bump the values to reflect the amount 400 we haven't yet shifted */ 401 req = le16_to_cpu(cp->req_count); 402 res = le16_to_cpu(cp->res_count); 403 phy = le32_to_cpu(cp->phy_addr); 404 phy += (req - res); 405 cp->req_count = cpu_to_le16(res); 406 cp->res_count = cpu_to_le16(0); 407 cp->xfer_status = cpu_to_le16(0); 408 cp->phy_addr = cpu_to_le32(phy); 409 410 cp->cmd_dep = cpu_to_le32(rec->cmd.addr 411 + sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods)); 412 413 cp->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS); 414 415 /* point at our patched up command block */ 416 out_le32(&rec->dma->cmdptr, emergency_dbdma.addr); 417 418 /* we must re-start the controller */ 419 (void)in_le32(&rec->dma->status); 420 /* should complete clearing the DEAD status */ 421 out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE)); 422 } 423 424 /* 425 * update playback/capture pointer from interrupts 426 */ 427 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec) 428 { 429 volatile struct dbdma_cmd __iomem *cp; 430 int c; 431 int stat; 432 433 spin_lock(&chip->reg_lock); 434 if (rec->running) { 435 for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */ 436 437 if (emergency_in_use) /* already using DEAD xfer? */ 438 cp = emergency_dbdma.cmds; 439 else 440 cp = &rec->cmd.cmds[rec->cur_period]; 441 442 stat = le16_to_cpu(cp->xfer_status); 443 444 if (stat & DEAD) { 445 snd_pmac_pcm_dead_xfer(rec, cp); 446 break; /* this block is still going */ 447 } 448 449 if (emergency_in_use) 450 emergency_in_use = 0 ; /* done that */ 451 452 if (! (stat & ACTIVE)) 453 break; 454 455 cp->xfer_status = cpu_to_le16(0); 456 cp->req_count = cpu_to_le16(rec->period_size); 457 /*cp->res_count = cpu_to_le16(0);*/ 458 rec->cur_period++; 459 if (rec->cur_period >= rec->nperiods) { 460 rec->cur_period = 0; 461 } 462 463 spin_unlock(&chip->reg_lock); 464 snd_pcm_period_elapsed(rec->substream); 465 spin_lock(&chip->reg_lock); 466 } 467 } 468 spin_unlock(&chip->reg_lock); 469 } 470 471 472 /* 473 * hw info 474 */ 475 476 static const struct snd_pcm_hardware snd_pmac_playback = 477 { 478 .info = (SNDRV_PCM_INFO_INTERLEAVED | 479 SNDRV_PCM_INFO_MMAP | 480 SNDRV_PCM_INFO_MMAP_VALID | 481 SNDRV_PCM_INFO_RESUME), 482 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, 483 .rates = SNDRV_PCM_RATE_8000_44100, 484 .rate_min = 7350, 485 .rate_max = 44100, 486 .channels_min = 2, 487 .channels_max = 2, 488 .buffer_bytes_max = 131072, 489 .period_bytes_min = 256, 490 .period_bytes_max = 16384, 491 .periods_min = 3, 492 .periods_max = PMAC_MAX_FRAGS, 493 }; 494 495 static const struct snd_pcm_hardware snd_pmac_capture = 496 { 497 .info = (SNDRV_PCM_INFO_INTERLEAVED | 498 SNDRV_PCM_INFO_MMAP | 499 SNDRV_PCM_INFO_MMAP_VALID | 500 SNDRV_PCM_INFO_RESUME), 501 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, 502 .rates = SNDRV_PCM_RATE_8000_44100, 503 .rate_min = 7350, 504 .rate_max = 44100, 505 .channels_min = 2, 506 .channels_max = 2, 507 .buffer_bytes_max = 131072, 508 .period_bytes_min = 256, 509 .period_bytes_max = 16384, 510 .periods_min = 3, 511 .periods_max = PMAC_MAX_FRAGS, 512 }; 513 514 515 #if 0 // NYI 516 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params, 517 struct snd_pcm_hw_rule *rule) 518 { 519 struct snd_pmac *chip = rule->private; 520 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]); 521 int i, freq_table[8], num_freqs; 522 523 if (! rec) 524 return -EINVAL; 525 num_freqs = 0; 526 for (i = chip->num_freqs - 1; i >= 0; i--) { 527 if (rec->cur_freqs & (1 << i)) 528 freq_table[num_freqs++] = chip->freq_table[i]; 529 } 530 531 return snd_interval_list(hw_param_interval(params, rule->var), 532 num_freqs, freq_table, 0); 533 } 534 535 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params, 536 struct snd_pcm_hw_rule *rule) 537 { 538 struct snd_pmac *chip = rule->private; 539 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]); 540 541 if (! rec) 542 return -EINVAL; 543 return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT), 544 rec->cur_formats); 545 } 546 #endif // NYI 547 548 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec, 549 struct snd_pcm_substream *subs) 550 { 551 struct snd_pcm_runtime *runtime = subs->runtime; 552 int i; 553 554 /* look up frequency table and fill bit mask */ 555 runtime->hw.rates = 0; 556 for (i = 0; i < chip->num_freqs; i++) 557 if (chip->freqs_ok & (1 << i)) 558 runtime->hw.rates |= 559 snd_pcm_rate_to_rate_bit(chip->freq_table[i]); 560 561 /* check for minimum and maximum rates */ 562 for (i = 0; i < chip->num_freqs; i++) { 563 if (chip->freqs_ok & (1 << i)) { 564 runtime->hw.rate_max = chip->freq_table[i]; 565 break; 566 } 567 } 568 for (i = chip->num_freqs - 1; i >= 0; i--) { 569 if (chip->freqs_ok & (1 << i)) { 570 runtime->hw.rate_min = chip->freq_table[i]; 571 break; 572 } 573 } 574 runtime->hw.formats = chip->formats_ok; 575 if (chip->can_capture) { 576 if (! chip->can_duplex) 577 runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX; 578 runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX; 579 } 580 runtime->private_data = rec; 581 rec->substream = subs; 582 583 #if 0 /* FIXME: still under development.. */ 584 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 585 snd_pmac_hw_rule_rate, chip, rec->stream, -1); 586 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, 587 snd_pmac_hw_rule_format, chip, rec->stream, -1); 588 #endif 589 590 runtime->hw.periods_max = rec->cmd.size - 1; 591 592 /* constraints to fix choppy sound */ 593 snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 594 return 0; 595 } 596 597 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec, 598 struct snd_pcm_substream *subs) 599 { 600 struct pmac_stream *astr; 601 602 snd_pmac_dma_stop(rec); 603 604 astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); 605 if (! astr) 606 return -EINVAL; 607 608 /* reset constraints */ 609 astr->cur_freqs = chip->freqs_ok; 610 astr->cur_formats = chip->formats_ok; 611 612 return 0; 613 } 614 615 static int snd_pmac_playback_open(struct snd_pcm_substream *subs) 616 { 617 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 618 619 subs->runtime->hw = snd_pmac_playback; 620 return snd_pmac_pcm_open(chip, &chip->playback, subs); 621 } 622 623 static int snd_pmac_capture_open(struct snd_pcm_substream *subs) 624 { 625 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 626 627 subs->runtime->hw = snd_pmac_capture; 628 return snd_pmac_pcm_open(chip, &chip->capture, subs); 629 } 630 631 static int snd_pmac_playback_close(struct snd_pcm_substream *subs) 632 { 633 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 634 635 return snd_pmac_pcm_close(chip, &chip->playback, subs); 636 } 637 638 static int snd_pmac_capture_close(struct snd_pcm_substream *subs) 639 { 640 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 641 642 return snd_pmac_pcm_close(chip, &chip->capture, subs); 643 } 644 645 /* 646 */ 647 648 static const struct snd_pcm_ops snd_pmac_playback_ops = { 649 .open = snd_pmac_playback_open, 650 .close = snd_pmac_playback_close, 651 .prepare = snd_pmac_playback_prepare, 652 .trigger = snd_pmac_playback_trigger, 653 .pointer = snd_pmac_playback_pointer, 654 }; 655 656 static const struct snd_pcm_ops snd_pmac_capture_ops = { 657 .open = snd_pmac_capture_open, 658 .close = snd_pmac_capture_close, 659 .prepare = snd_pmac_capture_prepare, 660 .trigger = snd_pmac_capture_trigger, 661 .pointer = snd_pmac_capture_pointer, 662 }; 663 664 int snd_pmac_pcm_new(struct snd_pmac *chip) 665 { 666 struct snd_pcm *pcm; 667 int err; 668 int num_captures = 1; 669 670 if (! chip->can_capture) 671 num_captures = 0; 672 err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm); 673 if (err < 0) 674 return err; 675 676 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops); 677 if (chip->can_capture) 678 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops); 679 680 pcm->private_data = chip; 681 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 682 strcpy(pcm->name, chip->card->shortname); 683 chip->pcm = pcm; 684 685 chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE; 686 if (chip->can_byte_swap) 687 chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE; 688 689 chip->playback.cur_formats = chip->formats_ok; 690 chip->capture.cur_formats = chip->formats_ok; 691 chip->playback.cur_freqs = chip->freqs_ok; 692 chip->capture.cur_freqs = chip->freqs_ok; 693 694 /* preallocate 64k buffer */ 695 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 696 &chip->pdev->dev, 697 64 * 1024, 64 * 1024); 698 699 return 0; 700 } 701 702 703 static void snd_pmac_dbdma_reset(struct snd_pmac *chip) 704 { 705 out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); 706 snd_pmac_wait_ack(&chip->playback); 707 out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); 708 snd_pmac_wait_ack(&chip->capture); 709 } 710 711 712 /* 713 * handling beep 714 */ 715 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed) 716 { 717 struct pmac_stream *rec = &chip->playback; 718 719 snd_pmac_dma_stop(rec); 720 chip->extra_dma.cmds->req_count = cpu_to_le16(bytes); 721 chip->extra_dma.cmds->xfer_status = cpu_to_le16(0); 722 chip->extra_dma.cmds->cmd_dep = cpu_to_le32(chip->extra_dma.addr); 723 chip->extra_dma.cmds->phy_addr = cpu_to_le32(addr); 724 chip->extra_dma.cmds->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS); 725 out_le32(&chip->awacs->control, 726 (in_le32(&chip->awacs->control) & ~0x1f00) 727 | (speed << 8)); 728 out_le32(&chip->awacs->byteswap, 0); 729 snd_pmac_dma_set_command(rec, &chip->extra_dma); 730 snd_pmac_dma_run(rec, RUN); 731 } 732 733 void snd_pmac_beep_dma_stop(struct snd_pmac *chip) 734 { 735 snd_pmac_dma_stop(&chip->playback); 736 chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP); 737 snd_pmac_pcm_set_format(chip); /* reset format */ 738 } 739 740 741 /* 742 * interrupt handlers 743 */ 744 static irqreturn_t 745 snd_pmac_tx_intr(int irq, void *devid) 746 { 747 struct snd_pmac *chip = devid; 748 snd_pmac_pcm_update(chip, &chip->playback); 749 return IRQ_HANDLED; 750 } 751 752 753 static irqreturn_t 754 snd_pmac_rx_intr(int irq, void *devid) 755 { 756 struct snd_pmac *chip = devid; 757 snd_pmac_pcm_update(chip, &chip->capture); 758 return IRQ_HANDLED; 759 } 760 761 762 static irqreturn_t 763 snd_pmac_ctrl_intr(int irq, void *devid) 764 { 765 struct snd_pmac *chip = devid; 766 int ctrl = in_le32(&chip->awacs->control); 767 768 if (ctrl & MASK_PORTCHG) { 769 /* do something when headphone is plugged/unplugged? */ 770 if (chip->update_automute) 771 chip->update_automute(chip, 1); 772 } 773 if (ctrl & MASK_CNTLERR) { 774 int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16; 775 if (err && chip->model <= PMAC_SCREAMER) 776 dev_dbg(chip->card->dev, "%s: error %x\n", __func__, err); 777 } 778 /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */ 779 out_le32(&chip->awacs->control, ctrl); 780 return IRQ_HANDLED; 781 } 782 783 784 /* 785 * a wrapper to feature call for compatibility 786 */ 787 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable) 788 { 789 if (ppc_md.feature_call) 790 ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable); 791 } 792 793 /* 794 * release resources 795 */ 796 797 static int snd_pmac_free(struct snd_pmac *chip) 798 { 799 /* stop sounds */ 800 if (chip->initialized) { 801 snd_pmac_dbdma_reset(chip); 802 /* disable interrupts from awacs interface */ 803 out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff); 804 } 805 806 if (chip->node) 807 snd_pmac_sound_feature(chip, 0); 808 809 /* clean up mixer if any */ 810 if (chip->mixer_free) 811 chip->mixer_free(chip); 812 813 snd_pmac_detach_beep(chip); 814 815 /* release resources */ 816 if (chip->irq >= 0) 817 free_irq(chip->irq, (void*)chip); 818 if (chip->tx_irq >= 0) 819 free_irq(chip->tx_irq, (void*)chip); 820 if (chip->rx_irq >= 0) 821 free_irq(chip->rx_irq, (void*)chip); 822 snd_pmac_dbdma_free(chip, &chip->playback.cmd); 823 snd_pmac_dbdma_free(chip, &chip->capture.cmd); 824 snd_pmac_dbdma_free(chip, &chip->extra_dma); 825 snd_pmac_dbdma_free(chip, &emergency_dbdma); 826 iounmap(chip->macio_base); 827 iounmap(chip->latch_base); 828 iounmap(chip->awacs); 829 iounmap(chip->playback.dma); 830 iounmap(chip->capture.dma); 831 832 if (chip->node) { 833 int i; 834 for (i = 0; i < 3; i++) { 835 if (chip->requested & (1 << i)) 836 release_mem_region(chip->rsrc[i].start, 837 resource_size(&chip->rsrc[i])); 838 } 839 } 840 841 pci_dev_put(chip->pdev); 842 of_node_put(chip->node); 843 kfree(chip); 844 return 0; 845 } 846 847 848 /* 849 * free the device 850 */ 851 static int snd_pmac_dev_free(struct snd_device *device) 852 { 853 struct snd_pmac *chip = device->device_data; 854 return snd_pmac_free(chip); 855 } 856 857 858 /* 859 * check the machine support byteswap (little-endian) 860 */ 861 862 static void detect_byte_swap(struct snd_pmac *chip) 863 { 864 struct device_node *mio; 865 866 /* if seems that Keylargo can't byte-swap */ 867 for (mio = chip->node->parent; mio; mio = mio->parent) { 868 if (of_node_name_eq(mio, "mac-io")) { 869 if (of_device_is_compatible(mio, "Keylargo")) 870 chip->can_byte_swap = 0; 871 break; 872 } 873 } 874 875 /* it seems the Pismo & iBook can't byte-swap in hardware. */ 876 if (of_machine_is_compatible("PowerBook3,1") || 877 of_machine_is_compatible("PowerBook2,1")) 878 chip->can_byte_swap = 0 ; 879 880 if (of_machine_is_compatible("PowerBook2,1")) 881 chip->can_duplex = 0; 882 } 883 884 885 /* 886 * detect a sound chip 887 */ 888 static int snd_pmac_detect(struct snd_pmac *chip) 889 { 890 struct device_node *sound; 891 struct device_node *dn; 892 const unsigned int *prop; 893 unsigned int l; 894 struct macio_chip* macio; 895 896 if (!machine_is(powermac)) 897 return -ENODEV; 898 899 chip->subframe = 0; 900 chip->revision = 0; 901 chip->freqs_ok = 0xff; /* all ok */ 902 chip->model = PMAC_AWACS; 903 chip->can_byte_swap = 1; 904 chip->can_duplex = 1; 905 chip->can_capture = 1; 906 chip->num_freqs = ARRAY_SIZE(awacs_freqs); 907 chip->freq_table = awacs_freqs; 908 chip->pdev = NULL; 909 910 chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */ 911 912 /* check machine type */ 913 if (of_machine_is_compatible("AAPL,3400/2400") 914 || of_machine_is_compatible("AAPL,3500")) 915 chip->is_pbook_3400 = 1; 916 else if (of_machine_is_compatible("PowerBook1,1") 917 || of_machine_is_compatible("AAPL,PowerBook1998")) 918 chip->is_pbook_G3 = 1; 919 chip->node = of_find_node_by_name(NULL, "awacs"); 920 sound = of_node_get(chip->node); 921 922 /* 923 * powermac G3 models have a node called "davbus" 924 * with a child called "sound". 925 */ 926 if (!chip->node) 927 chip->node = of_find_node_by_name(NULL, "davbus"); 928 /* 929 * if we didn't find a davbus device, try 'i2s-a' since 930 * this seems to be what iBooks have 931 */ 932 if (! chip->node) { 933 chip->node = of_find_node_by_name(NULL, "i2s-a"); 934 if (chip->node && chip->node->parent && 935 chip->node->parent->parent) { 936 if (of_device_is_compatible(chip->node->parent->parent, 937 "K2-Keylargo")) 938 chip->is_k2 = 1; 939 } 940 } 941 if (! chip->node) 942 return -ENODEV; 943 944 if (!sound) { 945 for_each_node_by_name(sound, "sound") 946 if (sound->parent == chip->node) 947 break; 948 } 949 if (! sound) { 950 of_node_put(chip->node); 951 chip->node = NULL; 952 return -ENODEV; 953 } 954 prop = of_get_property(sound, "sub-frame", NULL); 955 if (prop && *prop < 16) 956 chip->subframe = *prop; 957 prop = of_get_property(sound, "layout-id", NULL); 958 if (prop) { 959 /* partly deprecate snd-powermac, for those machines 960 * that have a layout-id property for now */ 961 dev_info(chip->card->dev, 962 "snd-powermac no longer handles any machines with a layout-id property in the device-tree, use snd-aoa.\n"); 963 of_node_put(sound); 964 of_node_put(chip->node); 965 chip->node = NULL; 966 return -ENODEV; 967 } 968 /* This should be verified on older screamers */ 969 if (of_device_is_compatible(sound, "screamer")) { 970 chip->model = PMAC_SCREAMER; 971 // chip->can_byte_swap = 0; /* FIXME: check this */ 972 } 973 if (of_device_is_compatible(sound, "burgundy")) { 974 chip->model = PMAC_BURGUNDY; 975 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 976 } 977 if (of_device_is_compatible(sound, "daca")) { 978 chip->model = PMAC_DACA; 979 chip->can_capture = 0; /* no capture */ 980 chip->can_duplex = 0; 981 // chip->can_byte_swap = 0; /* FIXME: check this */ 982 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 983 } 984 if (of_device_is_compatible(sound, "tumbler")) { 985 chip->model = PMAC_TUMBLER; 986 chip->can_capture = of_machine_is_compatible("PowerMac4,2") 987 || of_machine_is_compatible("PowerBook3,2") 988 || of_machine_is_compatible("PowerBook3,3") 989 || of_machine_is_compatible("PowerBook4,1") 990 || of_machine_is_compatible("PowerBook4,2") 991 || of_machine_is_compatible("PowerBook4,3"); 992 chip->can_duplex = 0; 993 // chip->can_byte_swap = 0; /* FIXME: check this */ 994 chip->num_freqs = ARRAY_SIZE(tumbler_freqs); 995 chip->freq_table = tumbler_freqs; 996 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 997 } 998 if (of_device_is_compatible(sound, "snapper")) { 999 chip->model = PMAC_SNAPPER; 1000 // chip->can_byte_swap = 0; /* FIXME: check this */ 1001 chip->num_freqs = ARRAY_SIZE(tumbler_freqs); 1002 chip->freq_table = tumbler_freqs; 1003 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1004 } 1005 prop = of_get_property(sound, "device-id", NULL); 1006 if (prop) 1007 chip->device_id = *prop; 1008 dn = of_find_node_by_name(NULL, "perch"); 1009 chip->has_iic = (dn != NULL); 1010 of_node_put(dn); 1011 1012 /* We need the PCI device for DMA allocations, let's use a crude method 1013 * for now ... 1014 */ 1015 macio = macio_find(chip->node, macio_unknown); 1016 if (macio == NULL) 1017 dev_warn(chip->card->dev, "snd-powermac: can't locate macio !\n"); 1018 else { 1019 struct pci_dev *pdev = NULL; 1020 1021 for_each_pci_dev(pdev) { 1022 struct device_node *np = pci_device_to_OF_node(pdev); 1023 if (np && np == macio->of_node) { 1024 chip->pdev = pdev; 1025 break; 1026 } 1027 } 1028 } 1029 if (chip->pdev == NULL) 1030 dev_warn(chip->card->dev, 1031 "snd-powermac: can't locate macio PCI device !\n"); 1032 1033 detect_byte_swap(chip); 1034 1035 /* look for a property saying what sample rates 1036 are available */ 1037 prop = of_get_property(sound, "sample-rates", &l); 1038 if (! prop) 1039 prop = of_get_property(sound, "output-frame-rates", &l); 1040 if (prop) { 1041 int i; 1042 chip->freqs_ok = 0; 1043 for (l /= sizeof(int); l > 0; --l) { 1044 unsigned int r = *prop++; 1045 /* Apple 'Fixed' format */ 1046 if (r >= 0x10000) 1047 r >>= 16; 1048 for (i = 0; i < chip->num_freqs; ++i) { 1049 if (r == chip->freq_table[i]) { 1050 chip->freqs_ok |= (1 << i); 1051 break; 1052 } 1053 } 1054 } 1055 } else { 1056 /* assume only 44.1khz */ 1057 chip->freqs_ok = 1; 1058 } 1059 1060 of_node_put(sound); 1061 return 0; 1062 } 1063 1064 #ifdef PMAC_SUPPORT_AUTOMUTE 1065 /* 1066 * auto-mute 1067 */ 1068 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol, 1069 struct snd_ctl_elem_value *ucontrol) 1070 { 1071 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1072 ucontrol->value.integer.value[0] = chip->auto_mute; 1073 return 0; 1074 } 1075 1076 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol, 1077 struct snd_ctl_elem_value *ucontrol) 1078 { 1079 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1080 if (ucontrol->value.integer.value[0] != chip->auto_mute) { 1081 chip->auto_mute = !!ucontrol->value.integer.value[0]; 1082 if (chip->update_automute) 1083 chip->update_automute(chip, 1); 1084 return 1; 1085 } 1086 return 0; 1087 } 1088 1089 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol, 1090 struct snd_ctl_elem_value *ucontrol) 1091 { 1092 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1093 if (chip->detect_headphone) 1094 ucontrol->value.integer.value[0] = chip->detect_headphone(chip); 1095 else 1096 ucontrol->value.integer.value[0] = 0; 1097 return 0; 1098 } 1099 1100 static const struct snd_kcontrol_new auto_mute_controls[] = { 1101 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1102 .name = "Auto Mute Switch", 1103 .info = snd_pmac_boolean_mono_info, 1104 .get = pmac_auto_mute_get, 1105 .put = pmac_auto_mute_put, 1106 }, 1107 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1108 .name = "Headphone Detection", 1109 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1110 .info = snd_pmac_boolean_mono_info, 1111 .get = pmac_hp_detect_get, 1112 }, 1113 }; 1114 1115 int snd_pmac_add_automute(struct snd_pmac *chip) 1116 { 1117 int err; 1118 chip->auto_mute = 1; 1119 err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip)); 1120 if (err < 0) { 1121 dev_err(chip->card->dev, 1122 "snd-powermac: Failed to add automute control\n"); 1123 return err; 1124 } 1125 chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip); 1126 return snd_ctl_add(chip->card, chip->hp_detect_ctl); 1127 } 1128 #endif /* PMAC_SUPPORT_AUTOMUTE */ 1129 1130 /* 1131 * create and detect a pmac chip record 1132 */ 1133 int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return) 1134 { 1135 struct snd_pmac *chip; 1136 struct device_node *np; 1137 int i, err; 1138 unsigned int irq; 1139 unsigned long ctrl_addr, txdma_addr, rxdma_addr; 1140 static const struct snd_device_ops ops = { 1141 .dev_free = snd_pmac_dev_free, 1142 }; 1143 1144 *chip_return = NULL; 1145 1146 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 1147 if (chip == NULL) 1148 return -ENOMEM; 1149 chip->card = card; 1150 1151 spin_lock_init(&chip->reg_lock); 1152 chip->irq = chip->tx_irq = chip->rx_irq = -1; 1153 1154 chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK; 1155 chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE; 1156 1157 err = snd_pmac_detect(chip); 1158 if (err < 0) 1159 goto __error; 1160 1161 if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 || 1162 snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 || 1163 snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 || 1164 snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) { 1165 err = -ENOMEM; 1166 goto __error; 1167 } 1168 1169 np = chip->node; 1170 chip->requested = 0; 1171 if (chip->is_k2) { 1172 static const char * const rnames[] = { 1173 "Sound Control", "Sound DMA" }; 1174 for (i = 0; i < 2; i ++) { 1175 if (of_address_to_resource(np->parent, i, 1176 &chip->rsrc[i])) { 1177 dev_err(chip->card->dev, 1178 "snd: can't translate rsrc %d (%s)\n", 1179 i, rnames[i]); 1180 err = -ENODEV; 1181 goto __error; 1182 } 1183 if (request_mem_region(chip->rsrc[i].start, 1184 resource_size(&chip->rsrc[i]), 1185 rnames[i]) == NULL) { 1186 dev_err(chip->card->dev, 1187 "snd: can't request rsrc %d (%s: %pR)\n", 1188 i, rnames[i], &chip->rsrc[i]); 1189 err = -ENODEV; 1190 goto __error; 1191 } 1192 chip->requested |= (1 << i); 1193 } 1194 ctrl_addr = chip->rsrc[0].start; 1195 txdma_addr = chip->rsrc[1].start; 1196 rxdma_addr = txdma_addr + 0x100; 1197 } else { 1198 static const char * const rnames[] = { 1199 "Sound Control", "Sound Tx DMA", "Sound Rx DMA" }; 1200 for (i = 0; i < 3; i ++) { 1201 if (of_address_to_resource(np, i, 1202 &chip->rsrc[i])) { 1203 dev_err(chip->card->dev, 1204 "snd: can't translate rsrc %d (%s)\n", 1205 i, rnames[i]); 1206 err = -ENODEV; 1207 goto __error; 1208 } 1209 if (request_mem_region(chip->rsrc[i].start, 1210 resource_size(&chip->rsrc[i]), 1211 rnames[i]) == NULL) { 1212 dev_err(chip->card->dev, 1213 "snd: can't request rsrc %d (%s: %pR)\n", 1214 i, rnames[i], &chip->rsrc[i]); 1215 err = -ENODEV; 1216 goto __error; 1217 } 1218 chip->requested |= (1 << i); 1219 } 1220 ctrl_addr = chip->rsrc[0].start; 1221 txdma_addr = chip->rsrc[1].start; 1222 rxdma_addr = chip->rsrc[2].start; 1223 } 1224 1225 chip->awacs = ioremap(ctrl_addr, 0x1000); 1226 chip->playback.dma = ioremap(txdma_addr, 0x100); 1227 chip->capture.dma = ioremap(rxdma_addr, 0x100); 1228 if (chip->model <= PMAC_BURGUNDY) { 1229 irq = irq_of_parse_and_map(np, 0); 1230 if (request_irq(irq, snd_pmac_ctrl_intr, 0, 1231 "PMac", (void*)chip)) { 1232 dev_err(chip->card->dev, 1233 "pmac: unable to grab IRQ %d\n", irq); 1234 err = -EBUSY; 1235 goto __error; 1236 } 1237 chip->irq = irq; 1238 } 1239 irq = irq_of_parse_and_map(np, 1); 1240 if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){ 1241 dev_err(chip->card->dev, "pmac: unable to grab IRQ %d\n", irq); 1242 err = -EBUSY; 1243 goto __error; 1244 } 1245 chip->tx_irq = irq; 1246 irq = irq_of_parse_and_map(np, 2); 1247 if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) { 1248 dev_err(chip->card->dev, "pmac: unable to grab IRQ %d\n", irq); 1249 err = -EBUSY; 1250 goto __error; 1251 } 1252 chip->rx_irq = irq; 1253 1254 snd_pmac_sound_feature(chip, 1); 1255 1256 /* reset & enable interrupts */ 1257 if (chip->model <= PMAC_BURGUNDY) 1258 out_le32(&chip->awacs->control, chip->control_mask); 1259 1260 /* Powerbooks have odd ways of enabling inputs such as 1261 an expansion-bay CD or sound from an internal modem 1262 or a PC-card modem. */ 1263 if (chip->is_pbook_3400) { 1264 /* Enable CD and PC-card sound inputs. */ 1265 /* This is done by reading from address 1266 * f301a000, + 0x10 to enable the expansion-bay 1267 * CD sound input, + 0x80 to enable the PC-card 1268 * sound input. The 0x100 enables the SCSI bus 1269 * terminator power. 1270 */ 1271 chip->latch_base = ioremap (0xf301a000, 0x1000); 1272 in_8(chip->latch_base + 0x190); 1273 } else if (chip->is_pbook_G3) { 1274 struct device_node* mio; 1275 for (mio = chip->node->parent; mio; mio = mio->parent) { 1276 if (of_node_name_eq(mio, "mac-io")) { 1277 struct resource r; 1278 if (of_address_to_resource(mio, 0, &r) == 0) 1279 chip->macio_base = 1280 ioremap(r.start, 0x40); 1281 break; 1282 } 1283 } 1284 /* Enable CD sound input. */ 1285 /* The relevant bits for writing to this byte are 0x8f. 1286 * I haven't found out what the 0x80 bit does. 1287 * For the 0xf bits, writing 3 or 7 enables the CD 1288 * input, any other value disables it. Values 1289 * 1, 3, 5, 7 enable the microphone. Values 0, 2, 1290 * 4, 6, 8 - f enable the input from the modem. 1291 */ 1292 if (chip->macio_base) 1293 out_8(chip->macio_base + 0x37, 3); 1294 } 1295 1296 /* Reset dbdma channels */ 1297 snd_pmac_dbdma_reset(chip); 1298 1299 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); 1300 if (err < 0) 1301 goto __error; 1302 1303 *chip_return = chip; 1304 return 0; 1305 1306 __error: 1307 snd_pmac_free(chip); 1308 return err; 1309 } 1310 1311 1312 /* 1313 * sleep notify for powerbook 1314 */ 1315 1316 #ifdef CONFIG_PM 1317 1318 /* 1319 * Save state when going to sleep, restore it afterwards. 1320 */ 1321 1322 void snd_pmac_suspend(struct snd_pmac *chip) 1323 { 1324 unsigned long flags; 1325 1326 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot); 1327 if (chip->suspend) 1328 chip->suspend(chip); 1329 spin_lock_irqsave(&chip->reg_lock, flags); 1330 snd_pmac_beep_stop(chip); 1331 spin_unlock_irqrestore(&chip->reg_lock, flags); 1332 if (chip->irq >= 0) 1333 disable_irq(chip->irq); 1334 if (chip->tx_irq >= 0) 1335 disable_irq(chip->tx_irq); 1336 if (chip->rx_irq >= 0) 1337 disable_irq(chip->rx_irq); 1338 snd_pmac_sound_feature(chip, 0); 1339 } 1340 1341 void snd_pmac_resume(struct snd_pmac *chip) 1342 { 1343 snd_pmac_sound_feature(chip, 1); 1344 if (chip->resume) 1345 chip->resume(chip); 1346 /* enable CD sound input */ 1347 if (chip->macio_base && chip->is_pbook_G3) 1348 out_8(chip->macio_base + 0x37, 3); 1349 else if (chip->is_pbook_3400) 1350 in_8(chip->latch_base + 0x190); 1351 1352 snd_pmac_pcm_set_format(chip); 1353 1354 if (chip->irq >= 0) 1355 enable_irq(chip->irq); 1356 if (chip->tx_irq >= 0) 1357 enable_irq(chip->tx_irq); 1358 if (chip->rx_irq >= 0) 1359 enable_irq(chip->rx_irq); 1360 1361 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0); 1362 } 1363 1364 #endif /* CONFIG_PM */ 1365 1366