xref: /linux/sound/ppc/pmac.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * PMac DBDMA lowlevel functions
3  *
4  * Copyright (c) by Takashi Iwai <tiwai@suse.de>
5  * code based on dmasound.c.
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21 
22 
23 #include <linux/io.h>
24 #include <asm/irq.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <sound/core.h>
34 #include "pmac.h"
35 #include <sound/pcm_params.h>
36 #include <asm/pmac_feature.h>
37 
38 
39 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
40 static int awacs_freqs[8] = {
41 	44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
42 };
43 /* fixed frequency table for tumbler */
44 static int tumbler_freqs[1] = {
45 	44100
46 };
47 
48 
49 /*
50  * we will allocate a single 'emergency' dbdma cmd block to use if the
51  * tx status comes up "DEAD".  This happens on some PowerComputing Pmac
52  * clones, either owing to a bug in dbdma or some interaction between
53  * IDE and sound.  However, this measure would deal with DEAD status if
54  * it appeared elsewhere.
55  */
56 static struct pmac_dbdma emergency_dbdma;
57 static int emergency_in_use;
58 
59 
60 /*
61  * allocate DBDMA command arrays
62  */
63 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
64 {
65 	unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
66 
67 	rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
68 					&rec->dma_base, GFP_KERNEL);
69 	if (rec->space == NULL)
70 		return -ENOMEM;
71 	rec->size = size;
72 	memset(rec->space, 0, rsize);
73 	rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
74 	rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
75 
76 	return 0;
77 }
78 
79 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
80 {
81 	if (rec->space) {
82 		unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
83 
84 		dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
85 	}
86 }
87 
88 
89 /*
90  * pcm stuff
91  */
92 
93 /*
94  * look up frequency table
95  */
96 
97 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
98 {
99 	int i, ok, found;
100 
101 	ok = rec->cur_freqs;
102 	if (rate > chip->freq_table[0])
103 		return 0;
104 	found = 0;
105 	for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
106 		if (! (ok & 1)) continue;
107 		found = i;
108 		if (rate >= chip->freq_table[i])
109 			break;
110 	}
111 	return found;
112 }
113 
114 /*
115  * check whether another stream is active
116  */
117 static inline int another_stream(int stream)
118 {
119 	return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
120 		SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
121 }
122 
123 /*
124  * allocate buffers
125  */
126 static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs,
127 				  struct snd_pcm_hw_params *hw_params)
128 {
129 	return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
130 }
131 
132 /*
133  * release buffers
134  */
135 static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs)
136 {
137 	snd_pcm_lib_free_pages(subs);
138 	return 0;
139 }
140 
141 /*
142  * get a stream of the opposite direction
143  */
144 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
145 {
146 	switch (stream) {
147 	case SNDRV_PCM_STREAM_PLAYBACK:
148 		return &chip->playback;
149 	case SNDRV_PCM_STREAM_CAPTURE:
150 		return &chip->capture;
151 	default:
152 		snd_BUG();
153 		return NULL;
154 	}
155 }
156 
157 /*
158  * wait while run status is on
159  */
160 static inline void
161 snd_pmac_wait_ack(struct pmac_stream *rec)
162 {
163 	int timeout = 50000;
164 	while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
165 		udelay(1);
166 }
167 
168 /*
169  * set the format and rate to the chip.
170  * call the lowlevel function if defined (e.g. for AWACS).
171  */
172 static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
173 {
174 	/* set up frequency and format */
175 	out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
176 	out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
177 	if (chip->set_format)
178 		chip->set_format(chip);
179 }
180 
181 /*
182  * stop the DMA transfer
183  */
184 static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
185 {
186 	out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
187 	snd_pmac_wait_ack(rec);
188 }
189 
190 /*
191  * set the command pointer address
192  */
193 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
194 {
195 	out_le32(&rec->dma->cmdptr, cmd->addr);
196 }
197 
198 /*
199  * start the DMA
200  */
201 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
202 {
203 	out_le32(&rec->dma->control, status | (status << 16));
204 }
205 
206 
207 /*
208  * prepare playback/capture stream
209  */
210 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
211 {
212 	int i;
213 	volatile struct dbdma_cmd __iomem *cp;
214 	struct snd_pcm_runtime *runtime = subs->runtime;
215 	int rate_index;
216 	long offset;
217 	struct pmac_stream *astr;
218 
219 	rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
220 	rec->period_size = snd_pcm_lib_period_bytes(subs);
221 	rec->nperiods = rec->dma_size / rec->period_size;
222 	rec->cur_period = 0;
223 	rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
224 
225 	/* set up constraints */
226 	astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
227 	if (! astr)
228 		return -EINVAL;
229 	astr->cur_freqs = 1 << rate_index;
230 	astr->cur_formats = 1 << runtime->format;
231 	chip->rate_index = rate_index;
232 	chip->format = runtime->format;
233 
234 	/* We really want to execute a DMA stop command, after the AWACS
235 	 * is initialized.
236 	 * For reasons I don't understand, it stops the hissing noise
237 	 * common to many PowerBook G3 systems and random noise otherwise
238 	 * captured on iBook2's about every third time. -ReneR
239 	 */
240 	spin_lock_irq(&chip->reg_lock);
241 	snd_pmac_dma_stop(rec);
242 	chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
243 	snd_pmac_dma_set_command(rec, &chip->extra_dma);
244 	snd_pmac_dma_run(rec, RUN);
245 	spin_unlock_irq(&chip->reg_lock);
246 	mdelay(5);
247 	spin_lock_irq(&chip->reg_lock);
248 	/* continuous DMA memory type doesn't provide the physical address,
249 	 * so we need to resolve the address here...
250 	 */
251 	offset = runtime->dma_addr;
252 	for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
253 		cp->phy_addr = cpu_to_le32(offset);
254 		cp->req_count = cpu_to_le16(rec->period_size);
255 		/*cp->res_count = cpu_to_le16(0);*/
256 		cp->xfer_status = cpu_to_le16(0);
257 		offset += rec->period_size;
258 	}
259 	/* make loop */
260 	cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS);
261 	cp->cmd_dep = cpu_to_le32(rec->cmd.addr);
262 
263 	snd_pmac_dma_stop(rec);
264 	snd_pmac_dma_set_command(rec, &rec->cmd);
265 	spin_unlock_irq(&chip->reg_lock);
266 
267 	return 0;
268 }
269 
270 
271 /*
272  * PCM trigger/stop
273  */
274 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
275 				struct snd_pcm_substream *subs, int cmd)
276 {
277 	volatile struct dbdma_cmd __iomem *cp;
278 	int i, command;
279 
280 	switch (cmd) {
281 	case SNDRV_PCM_TRIGGER_START:
282 	case SNDRV_PCM_TRIGGER_RESUME:
283 		if (rec->running)
284 			return -EBUSY;
285 		command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
286 			   OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
287 		spin_lock(&chip->reg_lock);
288 		snd_pmac_beep_stop(chip);
289 		snd_pmac_pcm_set_format(chip);
290 		for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
291 			out_le16(&cp->command, command);
292 		snd_pmac_dma_set_command(rec, &rec->cmd);
293 		(void)in_le32(&rec->dma->status);
294 		snd_pmac_dma_run(rec, RUN|WAKE);
295 		rec->running = 1;
296 		spin_unlock(&chip->reg_lock);
297 		break;
298 
299 	case SNDRV_PCM_TRIGGER_STOP:
300 	case SNDRV_PCM_TRIGGER_SUSPEND:
301 		spin_lock(&chip->reg_lock);
302 		rec->running = 0;
303 		/*printk(KERN_DEBUG "stopped!!\n");*/
304 		snd_pmac_dma_stop(rec);
305 		for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
306 			out_le16(&cp->command, DBDMA_STOP);
307 		spin_unlock(&chip->reg_lock);
308 		break;
309 
310 	default:
311 		return -EINVAL;
312 	}
313 
314 	return 0;
315 }
316 
317 /*
318  * return the current pointer
319  */
320 inline
321 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
322 					      struct pmac_stream *rec,
323 					      struct snd_pcm_substream *subs)
324 {
325 	int count = 0;
326 
327 #if 1 /* hmm.. how can we get the current dma pointer?? */
328 	int stat;
329 	volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
330 	stat = le16_to_cpu(cp->xfer_status);
331 	if (stat & (ACTIVE|DEAD)) {
332 		count = in_le16(&cp->res_count);
333 		if (count)
334 			count = rec->period_size - count;
335 	}
336 #endif
337 	count += rec->cur_period * rec->period_size;
338 	/*printk(KERN_DEBUG "pointer=%d\n", count);*/
339 	return bytes_to_frames(subs->runtime, count);
340 }
341 
342 /*
343  * playback
344  */
345 
346 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
347 {
348 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
349 	return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
350 }
351 
352 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
353 				     int cmd)
354 {
355 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
356 	return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
357 }
358 
359 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
360 {
361 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
362 	return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
363 }
364 
365 
366 /*
367  * capture
368  */
369 
370 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
371 {
372 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
373 	return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
374 }
375 
376 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
377 				    int cmd)
378 {
379 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
380 	return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
381 }
382 
383 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
384 {
385 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
386 	return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
387 }
388 
389 
390 /*
391  * Handle DEAD DMA transfers:
392  * if the TX status comes up "DEAD" - reported on some Power Computing machines
393  * we need to re-start the dbdma - but from a different physical start address
394  * and with a different transfer length.  It would get very messy to do this
395  * with the normal dbdma_cmd blocks - we would have to re-write the buffer start
396  * addresses each time.  So, we will keep a single dbdma_cmd block which can be
397  * fiddled with.
398  * When DEAD status is first reported the content of the faulted dbdma block is
399  * copied into the emergency buffer and we note that the buffer is in use.
400  * we then bump the start physical address by the amount that was successfully
401  * output before it died.
402  * On any subsequent DEAD result we just do the bump-ups (we know that we are
403  * already using the emergency dbdma_cmd).
404  * CHECK: this just tries to "do it".  It is possible that we should abandon
405  * xfers when the number of residual bytes gets below a certain value - I can
406  * see that this might cause a loop-forever if a too small transfer causes
407  * DEAD status.  However this is a TODO for now - we'll see what gets reported.
408  * When we get a successful transfer result with the emergency buffer we just
409  * pretend that it completed using the original dmdma_cmd and carry on.  The
410  * 'next_cmd' field will already point back to the original loop of blocks.
411  */
412 static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec,
413 					  volatile struct dbdma_cmd __iomem *cp)
414 {
415 	unsigned short req, res ;
416 	unsigned int phy ;
417 
418 	/* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */
419 
420 	/* to clear DEAD status we must first clear RUN
421 	   set it to quiescent to be on the safe side */
422 	(void)in_le32(&rec->dma->status);
423 	out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
424 
425 	if (!emergency_in_use) { /* new problem */
426 		memcpy((void *)emergency_dbdma.cmds, (void *)cp,
427 		       sizeof(struct dbdma_cmd));
428 		emergency_in_use = 1;
429 		cp->xfer_status = cpu_to_le16(0);
430 		cp->req_count = cpu_to_le16(rec->period_size);
431 		cp = emergency_dbdma.cmds;
432 	}
433 
434 	/* now bump the values to reflect the amount
435 	   we haven't yet shifted */
436 	req = le16_to_cpu(cp->req_count);
437 	res = le16_to_cpu(cp->res_count);
438 	phy = le32_to_cpu(cp->phy_addr);
439 	phy += (req - res);
440 	cp->req_count = cpu_to_le16(res);
441 	cp->res_count = cpu_to_le16(0);
442 	cp->xfer_status = cpu_to_le16(0);
443 	cp->phy_addr = cpu_to_le32(phy);
444 
445 	cp->cmd_dep = cpu_to_le32(rec->cmd.addr
446 		+ sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods));
447 
448 	cp->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS);
449 
450 	/* point at our patched up command block */
451 	out_le32(&rec->dma->cmdptr, emergency_dbdma.addr);
452 
453 	/* we must re-start the controller */
454 	(void)in_le32(&rec->dma->status);
455 	/* should complete clearing the DEAD status */
456 	out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
457 }
458 
459 /*
460  * update playback/capture pointer from interrupts
461  */
462 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
463 {
464 	volatile struct dbdma_cmd __iomem *cp;
465 	int c;
466 	int stat;
467 
468 	spin_lock(&chip->reg_lock);
469 	if (rec->running) {
470 		for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
471 
472 			if (emergency_in_use)   /* already using DEAD xfer? */
473 				cp = emergency_dbdma.cmds;
474 			else
475 				cp = &rec->cmd.cmds[rec->cur_period];
476 
477 			stat = le16_to_cpu(cp->xfer_status);
478 
479 			if (stat & DEAD) {
480 				snd_pmac_pcm_dead_xfer(rec, cp);
481 				break; /* this block is still going */
482 			}
483 
484 			if (emergency_in_use)
485 				emergency_in_use = 0 ; /* done that */
486 
487 			if (! (stat & ACTIVE))
488 				break;
489 
490 			/*printk(KERN_DEBUG "update frag %d\n", rec->cur_period);*/
491 			cp->xfer_status = cpu_to_le16(0);
492 			cp->req_count = cpu_to_le16(rec->period_size);
493 			/*cp->res_count = cpu_to_le16(0);*/
494 			rec->cur_period++;
495 			if (rec->cur_period >= rec->nperiods) {
496 				rec->cur_period = 0;
497 			}
498 
499 			spin_unlock(&chip->reg_lock);
500 			snd_pcm_period_elapsed(rec->substream);
501 			spin_lock(&chip->reg_lock);
502 		}
503 	}
504 	spin_unlock(&chip->reg_lock);
505 }
506 
507 
508 /*
509  * hw info
510  */
511 
512 static struct snd_pcm_hardware snd_pmac_playback =
513 {
514 	.info =			(SNDRV_PCM_INFO_INTERLEAVED |
515 				 SNDRV_PCM_INFO_MMAP |
516 				 SNDRV_PCM_INFO_MMAP_VALID |
517 				 SNDRV_PCM_INFO_RESUME),
518 	.formats =		SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
519 	.rates =		SNDRV_PCM_RATE_8000_44100,
520 	.rate_min =		7350,
521 	.rate_max =		44100,
522 	.channels_min =		2,
523 	.channels_max =		2,
524 	.buffer_bytes_max =	131072,
525 	.period_bytes_min =	256,
526 	.period_bytes_max =	16384,
527 	.periods_min =		3,
528 	.periods_max =		PMAC_MAX_FRAGS,
529 };
530 
531 static struct snd_pcm_hardware snd_pmac_capture =
532 {
533 	.info =			(SNDRV_PCM_INFO_INTERLEAVED |
534 				 SNDRV_PCM_INFO_MMAP |
535 				 SNDRV_PCM_INFO_MMAP_VALID |
536 				 SNDRV_PCM_INFO_RESUME),
537 	.formats =		SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
538 	.rates =		SNDRV_PCM_RATE_8000_44100,
539 	.rate_min =		7350,
540 	.rate_max =		44100,
541 	.channels_min =		2,
542 	.channels_max =		2,
543 	.buffer_bytes_max =	131072,
544 	.period_bytes_min =	256,
545 	.period_bytes_max =	16384,
546 	.periods_min =		3,
547 	.periods_max =		PMAC_MAX_FRAGS,
548 };
549 
550 
551 #if 0 // NYI
552 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
553 				 struct snd_pcm_hw_rule *rule)
554 {
555 	struct snd_pmac *chip = rule->private;
556 	struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
557 	int i, freq_table[8], num_freqs;
558 
559 	if (! rec)
560 		return -EINVAL;
561 	num_freqs = 0;
562 	for (i = chip->num_freqs - 1; i >= 0; i--) {
563 		if (rec->cur_freqs & (1 << i))
564 			freq_table[num_freqs++] = chip->freq_table[i];
565 	}
566 
567 	return snd_interval_list(hw_param_interval(params, rule->var),
568 				 num_freqs, freq_table, 0);
569 }
570 
571 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
572 				   struct snd_pcm_hw_rule *rule)
573 {
574 	struct snd_pmac *chip = rule->private;
575 	struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
576 
577 	if (! rec)
578 		return -EINVAL;
579 	return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
580 				   rec->cur_formats);
581 }
582 #endif // NYI
583 
584 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
585 			     struct snd_pcm_substream *subs)
586 {
587 	struct snd_pcm_runtime *runtime = subs->runtime;
588 	int i;
589 
590 	/* look up frequency table and fill bit mask */
591 	runtime->hw.rates = 0;
592 	for (i = 0; i < chip->num_freqs; i++)
593 		if (chip->freqs_ok & (1 << i))
594 			runtime->hw.rates |=
595 				snd_pcm_rate_to_rate_bit(chip->freq_table[i]);
596 
597 	/* check for minimum and maximum rates */
598 	for (i = 0; i < chip->num_freqs; i++) {
599 		if (chip->freqs_ok & (1 << i)) {
600 			runtime->hw.rate_max = chip->freq_table[i];
601 			break;
602 		}
603 	}
604 	for (i = chip->num_freqs - 1; i >= 0; i--) {
605 		if (chip->freqs_ok & (1 << i)) {
606 			runtime->hw.rate_min = chip->freq_table[i];
607 			break;
608 		}
609 	}
610 	runtime->hw.formats = chip->formats_ok;
611 	if (chip->can_capture) {
612 		if (! chip->can_duplex)
613 			runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
614 		runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
615 	}
616 	runtime->private_data = rec;
617 	rec->substream = subs;
618 
619 #if 0 /* FIXME: still under development.. */
620 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
621 			    snd_pmac_hw_rule_rate, chip, rec->stream, -1);
622 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
623 			    snd_pmac_hw_rule_format, chip, rec->stream, -1);
624 #endif
625 
626 	runtime->hw.periods_max = rec->cmd.size - 1;
627 
628 	/* constraints to fix choppy sound */
629 	snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
630 	return 0;
631 }
632 
633 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
634 			      struct snd_pcm_substream *subs)
635 {
636 	struct pmac_stream *astr;
637 
638 	snd_pmac_dma_stop(rec);
639 
640 	astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
641 	if (! astr)
642 		return -EINVAL;
643 
644 	/* reset constraints */
645 	astr->cur_freqs = chip->freqs_ok;
646 	astr->cur_formats = chip->formats_ok;
647 
648 	return 0;
649 }
650 
651 static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
652 {
653 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
654 
655 	subs->runtime->hw = snd_pmac_playback;
656 	return snd_pmac_pcm_open(chip, &chip->playback, subs);
657 }
658 
659 static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
660 {
661 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
662 
663 	subs->runtime->hw = snd_pmac_capture;
664 	return snd_pmac_pcm_open(chip, &chip->capture, subs);
665 }
666 
667 static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
668 {
669 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
670 
671 	return snd_pmac_pcm_close(chip, &chip->playback, subs);
672 }
673 
674 static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
675 {
676 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
677 
678 	return snd_pmac_pcm_close(chip, &chip->capture, subs);
679 }
680 
681 /*
682  */
683 
684 static struct snd_pcm_ops snd_pmac_playback_ops = {
685 	.open =		snd_pmac_playback_open,
686 	.close =	snd_pmac_playback_close,
687 	.ioctl =	snd_pcm_lib_ioctl,
688 	.hw_params =	snd_pmac_pcm_hw_params,
689 	.hw_free =	snd_pmac_pcm_hw_free,
690 	.prepare =	snd_pmac_playback_prepare,
691 	.trigger =	snd_pmac_playback_trigger,
692 	.pointer =	snd_pmac_playback_pointer,
693 };
694 
695 static struct snd_pcm_ops snd_pmac_capture_ops = {
696 	.open =		snd_pmac_capture_open,
697 	.close =	snd_pmac_capture_close,
698 	.ioctl =	snd_pcm_lib_ioctl,
699 	.hw_params =	snd_pmac_pcm_hw_params,
700 	.hw_free =	snd_pmac_pcm_hw_free,
701 	.prepare =	snd_pmac_capture_prepare,
702 	.trigger =	snd_pmac_capture_trigger,
703 	.pointer =	snd_pmac_capture_pointer,
704 };
705 
706 int snd_pmac_pcm_new(struct snd_pmac *chip)
707 {
708 	struct snd_pcm *pcm;
709 	int err;
710 	int num_captures = 1;
711 
712 	if (! chip->can_capture)
713 		num_captures = 0;
714 	err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
715 	if (err < 0)
716 		return err;
717 
718 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
719 	if (chip->can_capture)
720 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
721 
722 	pcm->private_data = chip;
723 	pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
724 	strcpy(pcm->name, chip->card->shortname);
725 	chip->pcm = pcm;
726 
727 	chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
728 	if (chip->can_byte_swap)
729 		chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
730 
731 	chip->playback.cur_formats = chip->formats_ok;
732 	chip->capture.cur_formats = chip->formats_ok;
733 	chip->playback.cur_freqs = chip->freqs_ok;
734 	chip->capture.cur_freqs = chip->freqs_ok;
735 
736 	/* preallocate 64k buffer */
737 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
738 					      &chip->pdev->dev,
739 					      64 * 1024, 64 * 1024);
740 
741 	return 0;
742 }
743 
744 
745 static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
746 {
747 	out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
748 	snd_pmac_wait_ack(&chip->playback);
749 	out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
750 	snd_pmac_wait_ack(&chip->capture);
751 }
752 
753 
754 /*
755  * handling beep
756  */
757 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
758 {
759 	struct pmac_stream *rec = &chip->playback;
760 
761 	snd_pmac_dma_stop(rec);
762 	chip->extra_dma.cmds->req_count = cpu_to_le16(bytes);
763 	chip->extra_dma.cmds->xfer_status = cpu_to_le16(0);
764 	chip->extra_dma.cmds->cmd_dep = cpu_to_le32(chip->extra_dma.addr);
765 	chip->extra_dma.cmds->phy_addr = cpu_to_le32(addr);
766 	chip->extra_dma.cmds->command = cpu_to_le16(OUTPUT_MORE + BR_ALWAYS);
767 	out_le32(&chip->awacs->control,
768 		 (in_le32(&chip->awacs->control) & ~0x1f00)
769 		 | (speed << 8));
770 	out_le32(&chip->awacs->byteswap, 0);
771 	snd_pmac_dma_set_command(rec, &chip->extra_dma);
772 	snd_pmac_dma_run(rec, RUN);
773 }
774 
775 void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
776 {
777 	snd_pmac_dma_stop(&chip->playback);
778 	chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
779 	snd_pmac_pcm_set_format(chip); /* reset format */
780 }
781 
782 
783 /*
784  * interrupt handlers
785  */
786 static irqreturn_t
787 snd_pmac_tx_intr(int irq, void *devid)
788 {
789 	struct snd_pmac *chip = devid;
790 	snd_pmac_pcm_update(chip, &chip->playback);
791 	return IRQ_HANDLED;
792 }
793 
794 
795 static irqreturn_t
796 snd_pmac_rx_intr(int irq, void *devid)
797 {
798 	struct snd_pmac *chip = devid;
799 	snd_pmac_pcm_update(chip, &chip->capture);
800 	return IRQ_HANDLED;
801 }
802 
803 
804 static irqreturn_t
805 snd_pmac_ctrl_intr(int irq, void *devid)
806 {
807 	struct snd_pmac *chip = devid;
808 	int ctrl = in_le32(&chip->awacs->control);
809 
810 	/*printk(KERN_DEBUG "pmac: control interrupt.. 0x%x\n", ctrl);*/
811 	if (ctrl & MASK_PORTCHG) {
812 		/* do something when headphone is plugged/unplugged? */
813 		if (chip->update_automute)
814 			chip->update_automute(chip, 1);
815 	}
816 	if (ctrl & MASK_CNTLERR) {
817 		int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
818 		if (err && chip->model <= PMAC_SCREAMER)
819 			snd_printk(KERN_DEBUG "error %x\n", err);
820 	}
821 	/* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
822 	out_le32(&chip->awacs->control, ctrl);
823 	return IRQ_HANDLED;
824 }
825 
826 
827 /*
828  * a wrapper to feature call for compatibility
829  */
830 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
831 {
832 	if (ppc_md.feature_call)
833 		ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
834 }
835 
836 /*
837  * release resources
838  */
839 
840 static int snd_pmac_free(struct snd_pmac *chip)
841 {
842 	/* stop sounds */
843 	if (chip->initialized) {
844 		snd_pmac_dbdma_reset(chip);
845 		/* disable interrupts from awacs interface */
846 		out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
847 	}
848 
849 	if (chip->node)
850 		snd_pmac_sound_feature(chip, 0);
851 
852 	/* clean up mixer if any */
853 	if (chip->mixer_free)
854 		chip->mixer_free(chip);
855 
856 	snd_pmac_detach_beep(chip);
857 
858 	/* release resources */
859 	if (chip->irq >= 0)
860 		free_irq(chip->irq, (void*)chip);
861 	if (chip->tx_irq >= 0)
862 		free_irq(chip->tx_irq, (void*)chip);
863 	if (chip->rx_irq >= 0)
864 		free_irq(chip->rx_irq, (void*)chip);
865 	snd_pmac_dbdma_free(chip, &chip->playback.cmd);
866 	snd_pmac_dbdma_free(chip, &chip->capture.cmd);
867 	snd_pmac_dbdma_free(chip, &chip->extra_dma);
868 	snd_pmac_dbdma_free(chip, &emergency_dbdma);
869 	iounmap(chip->macio_base);
870 	iounmap(chip->latch_base);
871 	iounmap(chip->awacs);
872 	iounmap(chip->playback.dma);
873 	iounmap(chip->capture.dma);
874 
875 	if (chip->node) {
876 		int i;
877 		for (i = 0; i < 3; i++) {
878 			if (chip->requested & (1 << i))
879 				release_mem_region(chip->rsrc[i].start,
880 						   resource_size(&chip->rsrc[i]));
881 		}
882 	}
883 
884 	pci_dev_put(chip->pdev);
885 	of_node_put(chip->node);
886 	kfree(chip);
887 	return 0;
888 }
889 
890 
891 /*
892  * free the device
893  */
894 static int snd_pmac_dev_free(struct snd_device *device)
895 {
896 	struct snd_pmac *chip = device->device_data;
897 	return snd_pmac_free(chip);
898 }
899 
900 
901 /*
902  * check the machine support byteswap (little-endian)
903  */
904 
905 static void detect_byte_swap(struct snd_pmac *chip)
906 {
907 	struct device_node *mio;
908 
909 	/* if seems that Keylargo can't byte-swap  */
910 	for (mio = chip->node->parent; mio; mio = mio->parent) {
911 		if (strcmp(mio->name, "mac-io") == 0) {
912 			if (of_device_is_compatible(mio, "Keylargo"))
913 				chip->can_byte_swap = 0;
914 			break;
915 		}
916 	}
917 
918 	/* it seems the Pismo & iBook can't byte-swap in hardware. */
919 	if (of_machine_is_compatible("PowerBook3,1") ||
920 	    of_machine_is_compatible("PowerBook2,1"))
921 		chip->can_byte_swap = 0 ;
922 
923 	if (of_machine_is_compatible("PowerBook2,1"))
924 		chip->can_duplex = 0;
925 }
926 
927 
928 /*
929  * detect a sound chip
930  */
931 static int snd_pmac_detect(struct snd_pmac *chip)
932 {
933 	struct device_node *sound;
934 	struct device_node *dn;
935 	const unsigned int *prop;
936 	unsigned int l;
937 	struct macio_chip* macio;
938 
939 	if (!machine_is(powermac))
940 		return -ENODEV;
941 
942 	chip->subframe = 0;
943 	chip->revision = 0;
944 	chip->freqs_ok = 0xff; /* all ok */
945 	chip->model = PMAC_AWACS;
946 	chip->can_byte_swap = 1;
947 	chip->can_duplex = 1;
948 	chip->can_capture = 1;
949 	chip->num_freqs = ARRAY_SIZE(awacs_freqs);
950 	chip->freq_table = awacs_freqs;
951 	chip->pdev = NULL;
952 
953 	chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
954 
955 	/* check machine type */
956 	if (of_machine_is_compatible("AAPL,3400/2400")
957 	    || of_machine_is_compatible("AAPL,3500"))
958 		chip->is_pbook_3400 = 1;
959 	else if (of_machine_is_compatible("PowerBook1,1")
960 		 || of_machine_is_compatible("AAPL,PowerBook1998"))
961 		chip->is_pbook_G3 = 1;
962 	chip->node = of_find_node_by_name(NULL, "awacs");
963 	sound = of_node_get(chip->node);
964 
965 	/*
966 	 * powermac G3 models have a node called "davbus"
967 	 * with a child called "sound".
968 	 */
969 	if (!chip->node)
970 		chip->node = of_find_node_by_name(NULL, "davbus");
971 	/*
972 	 * if we didn't find a davbus device, try 'i2s-a' since
973 	 * this seems to be what iBooks have
974 	 */
975 	if (! chip->node) {
976 		chip->node = of_find_node_by_name(NULL, "i2s-a");
977 		if (chip->node && chip->node->parent &&
978 		    chip->node->parent->parent) {
979 			if (of_device_is_compatible(chip->node->parent->parent,
980 						 "K2-Keylargo"))
981 				chip->is_k2 = 1;
982 		}
983 	}
984 	if (! chip->node)
985 		return -ENODEV;
986 
987 	if (!sound) {
988 		for_each_node_by_name(sound, "sound")
989 			if (sound->parent == chip->node)
990 				break;
991 	}
992 	if (! sound) {
993 		of_node_put(chip->node);
994 		chip->node = NULL;
995 		return -ENODEV;
996 	}
997 	prop = of_get_property(sound, "sub-frame", NULL);
998 	if (prop && *prop < 16)
999 		chip->subframe = *prop;
1000 	prop = of_get_property(sound, "layout-id", NULL);
1001 	if (prop) {
1002 		/* partly deprecate snd-powermac, for those machines
1003 		 * that have a layout-id property for now */
1004 		printk(KERN_INFO "snd-powermac no longer handles any "
1005 				 "machines with a layout-id property "
1006 				 "in the device-tree, use snd-aoa.\n");
1007 		of_node_put(sound);
1008 		of_node_put(chip->node);
1009 		chip->node = NULL;
1010 		return -ENODEV;
1011 	}
1012 	/* This should be verified on older screamers */
1013 	if (of_device_is_compatible(sound, "screamer")) {
1014 		chip->model = PMAC_SCREAMER;
1015 		// chip->can_byte_swap = 0; /* FIXME: check this */
1016 	}
1017 	if (of_device_is_compatible(sound, "burgundy")) {
1018 		chip->model = PMAC_BURGUNDY;
1019 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1020 	}
1021 	if (of_device_is_compatible(sound, "daca")) {
1022 		chip->model = PMAC_DACA;
1023 		chip->can_capture = 0;  /* no capture */
1024 		chip->can_duplex = 0;
1025 		// chip->can_byte_swap = 0; /* FIXME: check this */
1026 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1027 	}
1028 	if (of_device_is_compatible(sound, "tumbler")) {
1029 		chip->model = PMAC_TUMBLER;
1030 		chip->can_capture = of_machine_is_compatible("PowerMac4,2")
1031 				|| of_machine_is_compatible("PowerBook3,2")
1032 				|| of_machine_is_compatible("PowerBook3,3")
1033 				|| of_machine_is_compatible("PowerBook4,1")
1034 				|| of_machine_is_compatible("PowerBook4,2")
1035 				|| of_machine_is_compatible("PowerBook4,3");
1036 		chip->can_duplex = 0;
1037 		// chip->can_byte_swap = 0; /* FIXME: check this */
1038 		chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1039 		chip->freq_table = tumbler_freqs;
1040 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1041 	}
1042 	if (of_device_is_compatible(sound, "snapper")) {
1043 		chip->model = PMAC_SNAPPER;
1044 		// chip->can_byte_swap = 0; /* FIXME: check this */
1045 		chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1046 		chip->freq_table = tumbler_freqs;
1047 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1048 	}
1049 	prop = of_get_property(sound, "device-id", NULL);
1050 	if (prop)
1051 		chip->device_id = *prop;
1052 	dn = of_find_node_by_name(NULL, "perch");
1053 	chip->has_iic = (dn != NULL);
1054 	of_node_put(dn);
1055 
1056 	/* We need the PCI device for DMA allocations, let's use a crude method
1057 	 * for now ...
1058 	 */
1059 	macio = macio_find(chip->node, macio_unknown);
1060 	if (macio == NULL)
1061 		printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
1062 	else {
1063 		struct pci_dev *pdev = NULL;
1064 
1065 		for_each_pci_dev(pdev) {
1066 			struct device_node *np = pci_device_to_OF_node(pdev);
1067 			if (np && np == macio->of_node) {
1068 				chip->pdev = pdev;
1069 				break;
1070 			}
1071 		}
1072 	}
1073 	if (chip->pdev == NULL)
1074 		printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
1075 		       " device !\n");
1076 
1077 	detect_byte_swap(chip);
1078 
1079 	/* look for a property saying what sample rates
1080 	   are available */
1081 	prop = of_get_property(sound, "sample-rates", &l);
1082 	if (! prop)
1083 		prop = of_get_property(sound, "output-frame-rates", &l);
1084 	if (prop) {
1085 		int i;
1086 		chip->freqs_ok = 0;
1087 		for (l /= sizeof(int); l > 0; --l) {
1088 			unsigned int r = *prop++;
1089 			/* Apple 'Fixed' format */
1090 			if (r >= 0x10000)
1091 				r >>= 16;
1092 			for (i = 0; i < chip->num_freqs; ++i) {
1093 				if (r == chip->freq_table[i]) {
1094 					chip->freqs_ok |= (1 << i);
1095 					break;
1096 				}
1097 			}
1098 		}
1099 	} else {
1100 		/* assume only 44.1khz */
1101 		chip->freqs_ok = 1;
1102 	}
1103 
1104 	of_node_put(sound);
1105 	return 0;
1106 }
1107 
1108 #ifdef PMAC_SUPPORT_AUTOMUTE
1109 /*
1110  * auto-mute
1111  */
1112 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1113 			      struct snd_ctl_elem_value *ucontrol)
1114 {
1115 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1116 	ucontrol->value.integer.value[0] = chip->auto_mute;
1117 	return 0;
1118 }
1119 
1120 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1121 			      struct snd_ctl_elem_value *ucontrol)
1122 {
1123 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1124 	if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1125 		chip->auto_mute = !!ucontrol->value.integer.value[0];
1126 		if (chip->update_automute)
1127 			chip->update_automute(chip, 1);
1128 		return 1;
1129 	}
1130 	return 0;
1131 }
1132 
1133 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1134 			      struct snd_ctl_elem_value *ucontrol)
1135 {
1136 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1137 	if (chip->detect_headphone)
1138 		ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1139 	else
1140 		ucontrol->value.integer.value[0] = 0;
1141 	return 0;
1142 }
1143 
1144 static struct snd_kcontrol_new auto_mute_controls[] = {
1145 	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1146 	  .name = "Auto Mute Switch",
1147 	  .info = snd_pmac_boolean_mono_info,
1148 	  .get = pmac_auto_mute_get,
1149 	  .put = pmac_auto_mute_put,
1150 	},
1151 	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1152 	  .name = "Headphone Detection",
1153 	  .access = SNDRV_CTL_ELEM_ACCESS_READ,
1154 	  .info = snd_pmac_boolean_mono_info,
1155 	  .get = pmac_hp_detect_get,
1156 	},
1157 };
1158 
1159 int snd_pmac_add_automute(struct snd_pmac *chip)
1160 {
1161 	int err;
1162 	chip->auto_mute = 1;
1163 	err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1164 	if (err < 0) {
1165 		printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
1166 		return err;
1167 	}
1168 	chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1169 	return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1170 }
1171 #endif /* PMAC_SUPPORT_AUTOMUTE */
1172 
1173 /*
1174  * create and detect a pmac chip record
1175  */
1176 int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1177 {
1178 	struct snd_pmac *chip;
1179 	struct device_node *np;
1180 	int i, err;
1181 	unsigned int irq;
1182 	unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1183 	static struct snd_device_ops ops = {
1184 		.dev_free =	snd_pmac_dev_free,
1185 	};
1186 
1187 	*chip_return = NULL;
1188 
1189 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1190 	if (chip == NULL)
1191 		return -ENOMEM;
1192 	chip->card = card;
1193 
1194 	spin_lock_init(&chip->reg_lock);
1195 	chip->irq = chip->tx_irq = chip->rx_irq = -1;
1196 
1197 	chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1198 	chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1199 
1200 	if ((err = snd_pmac_detect(chip)) < 0)
1201 		goto __error;
1202 
1203 	if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1204 	    snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1205 	    snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 ||
1206 	    snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) {
1207 		err = -ENOMEM;
1208 		goto __error;
1209 	}
1210 
1211 	np = chip->node;
1212 	chip->requested = 0;
1213 	if (chip->is_k2) {
1214 		static char *rnames[] = {
1215 			"Sound Control", "Sound DMA" };
1216 		for (i = 0; i < 2; i ++) {
1217 			if (of_address_to_resource(np->parent, i,
1218 						   &chip->rsrc[i])) {
1219 				printk(KERN_ERR "snd: can't translate rsrc "
1220 				       " %d (%s)\n", i, rnames[i]);
1221 				err = -ENODEV;
1222 				goto __error;
1223 			}
1224 			if (request_mem_region(chip->rsrc[i].start,
1225 					       resource_size(&chip->rsrc[i]),
1226 					       rnames[i]) == NULL) {
1227 				printk(KERN_ERR "snd: can't request rsrc "
1228 				       " %d (%s: %pR)\n",
1229 				       i, rnames[i], &chip->rsrc[i]);
1230 				err = -ENODEV;
1231 				goto __error;
1232 			}
1233 			chip->requested |= (1 << i);
1234 		}
1235 		ctrl_addr = chip->rsrc[0].start;
1236 		txdma_addr = chip->rsrc[1].start;
1237 		rxdma_addr = txdma_addr + 0x100;
1238 	} else {
1239 		static char *rnames[] = {
1240 			"Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
1241 		for (i = 0; i < 3; i ++) {
1242 			if (of_address_to_resource(np, i,
1243 						   &chip->rsrc[i])) {
1244 				printk(KERN_ERR "snd: can't translate rsrc "
1245 				       " %d (%s)\n", i, rnames[i]);
1246 				err = -ENODEV;
1247 				goto __error;
1248 			}
1249 			if (request_mem_region(chip->rsrc[i].start,
1250 					       resource_size(&chip->rsrc[i]),
1251 					       rnames[i]) == NULL) {
1252 				printk(KERN_ERR "snd: can't request rsrc "
1253 				       " %d (%s: %pR)\n",
1254 				       i, rnames[i], &chip->rsrc[i]);
1255 				err = -ENODEV;
1256 				goto __error;
1257 			}
1258 			chip->requested |= (1 << i);
1259 		}
1260 		ctrl_addr = chip->rsrc[0].start;
1261 		txdma_addr = chip->rsrc[1].start;
1262 		rxdma_addr = chip->rsrc[2].start;
1263 	}
1264 
1265 	chip->awacs = ioremap(ctrl_addr, 0x1000);
1266 	chip->playback.dma = ioremap(txdma_addr, 0x100);
1267 	chip->capture.dma = ioremap(rxdma_addr, 0x100);
1268 	if (chip->model <= PMAC_BURGUNDY) {
1269 		irq = irq_of_parse_and_map(np, 0);
1270 		if (request_irq(irq, snd_pmac_ctrl_intr, 0,
1271 				"PMac", (void*)chip)) {
1272 			snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n",
1273 				   irq);
1274 			err = -EBUSY;
1275 			goto __error;
1276 		}
1277 		chip->irq = irq;
1278 	}
1279 	irq = irq_of_parse_and_map(np, 1);
1280 	if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){
1281 		snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1282 		err = -EBUSY;
1283 		goto __error;
1284 	}
1285 	chip->tx_irq = irq;
1286 	irq = irq_of_parse_and_map(np, 2);
1287 	if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) {
1288 		snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1289 		err = -EBUSY;
1290 		goto __error;
1291 	}
1292 	chip->rx_irq = irq;
1293 
1294 	snd_pmac_sound_feature(chip, 1);
1295 
1296 	/* reset & enable interrupts */
1297 	if (chip->model <= PMAC_BURGUNDY)
1298 		out_le32(&chip->awacs->control, chip->control_mask);
1299 
1300 	/* Powerbooks have odd ways of enabling inputs such as
1301 	   an expansion-bay CD or sound from an internal modem
1302 	   or a PC-card modem. */
1303 	if (chip->is_pbook_3400) {
1304 		/* Enable CD and PC-card sound inputs. */
1305 		/* This is done by reading from address
1306 		 * f301a000, + 0x10 to enable the expansion-bay
1307 		 * CD sound input, + 0x80 to enable the PC-card
1308 		 * sound input.  The 0x100 enables the SCSI bus
1309 		 * terminator power.
1310 		 */
1311 		chip->latch_base = ioremap (0xf301a000, 0x1000);
1312 		in_8(chip->latch_base + 0x190);
1313 	} else if (chip->is_pbook_G3) {
1314 		struct device_node* mio;
1315 		for (mio = chip->node->parent; mio; mio = mio->parent) {
1316 			if (strcmp(mio->name, "mac-io") == 0) {
1317 				struct resource r;
1318 				if (of_address_to_resource(mio, 0, &r) == 0)
1319 					chip->macio_base =
1320 						ioremap(r.start, 0x40);
1321 				break;
1322 			}
1323 		}
1324 		/* Enable CD sound input. */
1325 		/* The relevant bits for writing to this byte are 0x8f.
1326 		 * I haven't found out what the 0x80 bit does.
1327 		 * For the 0xf bits, writing 3 or 7 enables the CD
1328 		 * input, any other value disables it.  Values
1329 		 * 1, 3, 5, 7 enable the microphone.  Values 0, 2,
1330 		 * 4, 6, 8 - f enable the input from the modem.
1331 		 */
1332 		if (chip->macio_base)
1333 			out_8(chip->macio_base + 0x37, 3);
1334 	}
1335 
1336 	/* Reset dbdma channels */
1337 	snd_pmac_dbdma_reset(chip);
1338 
1339 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
1340 		goto __error;
1341 
1342 	*chip_return = chip;
1343 	return 0;
1344 
1345  __error:
1346 	snd_pmac_free(chip);
1347 	return err;
1348 }
1349 
1350 
1351 /*
1352  * sleep notify for powerbook
1353  */
1354 
1355 #ifdef CONFIG_PM
1356 
1357 /*
1358  * Save state when going to sleep, restore it afterwards.
1359  */
1360 
1361 void snd_pmac_suspend(struct snd_pmac *chip)
1362 {
1363 	unsigned long flags;
1364 
1365 	snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1366 	if (chip->suspend)
1367 		chip->suspend(chip);
1368 	snd_pcm_suspend_all(chip->pcm);
1369 	spin_lock_irqsave(&chip->reg_lock, flags);
1370 	snd_pmac_beep_stop(chip);
1371 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1372 	if (chip->irq >= 0)
1373 		disable_irq(chip->irq);
1374 	if (chip->tx_irq >= 0)
1375 		disable_irq(chip->tx_irq);
1376 	if (chip->rx_irq >= 0)
1377 		disable_irq(chip->rx_irq);
1378 	snd_pmac_sound_feature(chip, 0);
1379 }
1380 
1381 void snd_pmac_resume(struct snd_pmac *chip)
1382 {
1383 	snd_pmac_sound_feature(chip, 1);
1384 	if (chip->resume)
1385 		chip->resume(chip);
1386 	/* enable CD sound input */
1387 	if (chip->macio_base && chip->is_pbook_G3)
1388 		out_8(chip->macio_base + 0x37, 3);
1389 	else if (chip->is_pbook_3400)
1390 		in_8(chip->latch_base + 0x190);
1391 
1392 	snd_pmac_pcm_set_format(chip);
1393 
1394 	if (chip->irq >= 0)
1395 		enable_irq(chip->irq);
1396 	if (chip->tx_irq >= 0)
1397 		enable_irq(chip->tx_irq);
1398 	if (chip->rx_irq >= 0)
1399 		enable_irq(chip->rx_irq);
1400 
1401 	snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1402 }
1403 
1404 #endif /* CONFIG_PM */
1405 
1406