xref: /linux/sound/pci/ymfpci/ymfpci_main.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
3  *  Routines for control of YMF724/740/744/754 chips
4  *
5  *  BUGS:
6  *    --
7  *
8  *  TODO:
9  *    --
10  *
11  *   This program is free software; you can redistribute it and/or modify
12  *   it under the terms of the GNU General Public License as published by
13  *   the Free Software Foundation; either version 2 of the License, or
14  *   (at your option) any later version.
15  *
16  *   This program is distributed in the hope that it will be useful,
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  *   GNU General Public License for more details.
20  *
21  *   You should have received a copy of the GNU General Public License
22  *   along with this program; if not, write to the Free Software
23  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
24  *
25  */
26 
27 #include <sound/driver.h>
28 #include <linux/delay.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/vmalloc.h>
35 
36 #include <sound/core.h>
37 #include <sound/control.h>
38 #include <sound/info.h>
39 #include <sound/ymfpci.h>
40 #include <sound/asoundef.h>
41 #include <sound/mpu401.h>
42 
43 #include <asm/io.h>
44 
45 /*
46  *  constants
47  */
48 
49 /*
50  *  common I/O routines
51  */
52 
53 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
54 
55 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
56 {
57 	return readb(chip->reg_area_virt + offset);
58 }
59 
60 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
61 {
62 	writeb(val, chip->reg_area_virt + offset);
63 }
64 
65 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
66 {
67 	return readw(chip->reg_area_virt + offset);
68 }
69 
70 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
71 {
72 	writew(val, chip->reg_area_virt + offset);
73 }
74 
75 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
76 {
77 	return readl(chip->reg_area_virt + offset);
78 }
79 
80 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
81 {
82 	writel(val, chip->reg_area_virt + offset);
83 }
84 
85 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
86 {
87 	unsigned long end_time;
88 	u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
89 
90 	end_time = jiffies + msecs_to_jiffies(750);
91 	do {
92 		if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
93 			return 0;
94 		set_current_state(TASK_UNINTERRUPTIBLE);
95 		schedule_timeout_uninterruptible(1);
96 	} while (time_before(jiffies, end_time));
97 	snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg));
98 	return -EBUSY;
99 }
100 
101 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
102 {
103 	struct snd_ymfpci *chip = ac97->private_data;
104 	u32 cmd;
105 
106 	snd_ymfpci_codec_ready(chip, 0);
107 	cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
108 	snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
109 }
110 
111 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
112 {
113 	struct snd_ymfpci *chip = ac97->private_data;
114 
115 	if (snd_ymfpci_codec_ready(chip, 0))
116 		return ~0;
117 	snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
118 	if (snd_ymfpci_codec_ready(chip, 0))
119 		return ~0;
120 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
121 		int i;
122 		for (i = 0; i < 600; i++)
123 			snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
124 	}
125 	return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
126 }
127 
128 /*
129  *  Misc routines
130  */
131 
132 static u32 snd_ymfpci_calc_delta(u32 rate)
133 {
134 	switch (rate) {
135 	case 8000:	return 0x02aaab00;
136 	case 11025:	return 0x03accd00;
137 	case 16000:	return 0x05555500;
138 	case 22050:	return 0x07599a00;
139 	case 32000:	return 0x0aaaab00;
140 	case 44100:	return 0x0eb33300;
141 	default:	return ((rate << 16) / 375) << 5;
142 	}
143 }
144 
145 static u32 def_rate[8] = {
146 	100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
147 };
148 
149 static u32 snd_ymfpci_calc_lpfK(u32 rate)
150 {
151 	u32 i;
152 	static u32 val[8] = {
153 		0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
154 		0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
155 	};
156 
157 	if (rate == 44100)
158 		return 0x40000000;	/* FIXME: What's the right value? */
159 	for (i = 0; i < 8; i++)
160 		if (rate <= def_rate[i])
161 			return val[i];
162 	return val[0];
163 }
164 
165 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
166 {
167 	u32 i;
168 	static u32 val[8] = {
169 		0x35280000, 0x34A70000, 0x32020000, 0x31770000,
170 		0x31390000, 0x31C90000, 0x33D00000, 0x40000000
171 	};
172 
173 	if (rate == 44100)
174 		return 0x370A0000;
175 	for (i = 0; i < 8; i++)
176 		if (rate <= def_rate[i])
177 			return val[i];
178 	return val[0];
179 }
180 
181 /*
182  *  Hardware start management
183  */
184 
185 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
186 {
187 	unsigned long flags;
188 
189 	spin_lock_irqsave(&chip->reg_lock, flags);
190 	if (chip->start_count++ > 0)
191 		goto __end;
192 	snd_ymfpci_writel(chip, YDSXGR_MODE,
193 			  snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
194 	chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
195       __end:
196       	spin_unlock_irqrestore(&chip->reg_lock, flags);
197 }
198 
199 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
200 {
201 	unsigned long flags;
202 	long timeout = 1000;
203 
204 	spin_lock_irqsave(&chip->reg_lock, flags);
205 	if (--chip->start_count > 0)
206 		goto __end;
207 	snd_ymfpci_writel(chip, YDSXGR_MODE,
208 			  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
209 	while (timeout-- > 0) {
210 		if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
211 			break;
212 	}
213 	if (atomic_read(&chip->interrupt_sleep_count)) {
214 		atomic_set(&chip->interrupt_sleep_count, 0);
215 		wake_up(&chip->interrupt_sleep);
216 	}
217       __end:
218       	spin_unlock_irqrestore(&chip->reg_lock, flags);
219 }
220 
221 /*
222  *  Playback voice management
223  */
224 
225 static int voice_alloc(struct snd_ymfpci *chip,
226 		       enum snd_ymfpci_voice_type type, int pair,
227 		       struct snd_ymfpci_voice **rvoice)
228 {
229 	struct snd_ymfpci_voice *voice, *voice2;
230 	int idx;
231 
232 	*rvoice = NULL;
233 	for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
234 		voice = &chip->voices[idx];
235 		voice2 = pair ? &chip->voices[idx+1] : NULL;
236 		if (voice->use || (voice2 && voice2->use))
237 			continue;
238 		voice->use = 1;
239 		if (voice2)
240 			voice2->use = 1;
241 		switch (type) {
242 		case YMFPCI_PCM:
243 			voice->pcm = 1;
244 			if (voice2)
245 				voice2->pcm = 1;
246 			break;
247 		case YMFPCI_SYNTH:
248 			voice->synth = 1;
249 			break;
250 		case YMFPCI_MIDI:
251 			voice->midi = 1;
252 			break;
253 		}
254 		snd_ymfpci_hw_start(chip);
255 		if (voice2)
256 			snd_ymfpci_hw_start(chip);
257 		*rvoice = voice;
258 		return 0;
259 	}
260 	return -ENOMEM;
261 }
262 
263 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
264 				  enum snd_ymfpci_voice_type type, int pair,
265 				  struct snd_ymfpci_voice **rvoice)
266 {
267 	unsigned long flags;
268 	int result;
269 
270 	snd_assert(rvoice != NULL, return -EINVAL);
271 	snd_assert(!pair || type == YMFPCI_PCM, return -EINVAL);
272 
273 	spin_lock_irqsave(&chip->voice_lock, flags);
274 	for (;;) {
275 		result = voice_alloc(chip, type, pair, rvoice);
276 		if (result == 0 || type != YMFPCI_PCM)
277 			break;
278 		/* TODO: synth/midi voice deallocation */
279 		break;
280 	}
281 	spin_unlock_irqrestore(&chip->voice_lock, flags);
282 	return result;
283 }
284 
285 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
286 {
287 	unsigned long flags;
288 
289 	snd_assert(pvoice != NULL, return -EINVAL);
290 	snd_ymfpci_hw_stop(chip);
291 	spin_lock_irqsave(&chip->voice_lock, flags);
292 	pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
293 	pvoice->ypcm = NULL;
294 	pvoice->interrupt = NULL;
295 	spin_unlock_irqrestore(&chip->voice_lock, flags);
296 	return 0;
297 }
298 
299 /*
300  *  PCM part
301  */
302 
303 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
304 {
305 	struct snd_ymfpci_pcm *ypcm;
306 	u32 pos, delta;
307 
308 	if ((ypcm = voice->ypcm) == NULL)
309 		return;
310 	if (ypcm->substream == NULL)
311 		return;
312 	spin_lock(&chip->reg_lock);
313 	if (ypcm->running) {
314 		pos = le32_to_cpu(voice->bank[chip->active_bank].start);
315 		if (pos < ypcm->last_pos)
316 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
317 		else
318 			delta = pos - ypcm->last_pos;
319 		ypcm->period_pos += delta;
320 		ypcm->last_pos = pos;
321 		if (ypcm->period_pos >= ypcm->period_size) {
322 			// printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
323 			ypcm->period_pos %= ypcm->period_size;
324 			spin_unlock(&chip->reg_lock);
325 			snd_pcm_period_elapsed(ypcm->substream);
326 			spin_lock(&chip->reg_lock);
327 		}
328 
329 		if (unlikely(ypcm->update_pcm_vol)) {
330 			unsigned int subs = ypcm->substream->number;
331 			unsigned int next_bank = 1 - chip->active_bank;
332 			struct snd_ymfpci_playback_bank *bank;
333 			u32 volume;
334 
335 			bank = &voice->bank[next_bank];
336 			volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
337 			bank->left_gain_end = volume;
338 			if (ypcm->output_rear)
339 				bank->eff2_gain_end = volume;
340 			if (ypcm->voices[1])
341 				bank = &ypcm->voices[1]->bank[next_bank];
342 			volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
343 			bank->right_gain_end = volume;
344 			if (ypcm->output_rear)
345 				bank->eff3_gain_end = volume;
346 			ypcm->update_pcm_vol--;
347 		}
348 	}
349 	spin_unlock(&chip->reg_lock);
350 }
351 
352 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
353 {
354 	struct snd_pcm_runtime *runtime = substream->runtime;
355 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
356 	struct snd_ymfpci *chip = ypcm->chip;
357 	u32 pos, delta;
358 
359 	spin_lock(&chip->reg_lock);
360 	if (ypcm->running) {
361 		pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
362 		if (pos < ypcm->last_pos)
363 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
364 		else
365 			delta = pos - ypcm->last_pos;
366 		ypcm->period_pos += delta;
367 		ypcm->last_pos = pos;
368 		if (ypcm->period_pos >= ypcm->period_size) {
369 			ypcm->period_pos %= ypcm->period_size;
370 			// printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
371 			spin_unlock(&chip->reg_lock);
372 			snd_pcm_period_elapsed(substream);
373 			spin_lock(&chip->reg_lock);
374 		}
375 	}
376 	spin_unlock(&chip->reg_lock);
377 }
378 
379 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
380 				       int cmd)
381 {
382 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
383 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
384 	int result = 0;
385 
386 	spin_lock(&chip->reg_lock);
387 	if (ypcm->voices[0] == NULL) {
388 		result = -EINVAL;
389 		goto __unlock;
390 	}
391 	switch (cmd) {
392 	case SNDRV_PCM_TRIGGER_START:
393 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
394 	case SNDRV_PCM_TRIGGER_RESUME:
395 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
396 		if (ypcm->voices[1] != NULL)
397 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
398 		ypcm->running = 1;
399 		break;
400 	case SNDRV_PCM_TRIGGER_STOP:
401 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
402 	case SNDRV_PCM_TRIGGER_SUSPEND:
403 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
404 		if (ypcm->voices[1] != NULL)
405 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
406 		ypcm->running = 0;
407 		break;
408 	default:
409 		result = -EINVAL;
410 		break;
411 	}
412       __unlock:
413 	spin_unlock(&chip->reg_lock);
414 	return result;
415 }
416 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
417 				      int cmd)
418 {
419 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
420 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
421 	int result = 0;
422 	u32 tmp;
423 
424 	spin_lock(&chip->reg_lock);
425 	switch (cmd) {
426 	case SNDRV_PCM_TRIGGER_START:
427 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
428 	case SNDRV_PCM_TRIGGER_RESUME:
429 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
430 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
431 		ypcm->running = 1;
432 		break;
433 	case SNDRV_PCM_TRIGGER_STOP:
434 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
435 	case SNDRV_PCM_TRIGGER_SUSPEND:
436 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
437 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
438 		ypcm->running = 0;
439 		break;
440 	default:
441 		result = -EINVAL;
442 		break;
443 	}
444 	spin_unlock(&chip->reg_lock);
445 	return result;
446 }
447 
448 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
449 {
450 	int err;
451 
452 	if (ypcm->voices[1] != NULL && voices < 2) {
453 		snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
454 		ypcm->voices[1] = NULL;
455 	}
456 	if (voices == 1 && ypcm->voices[0] != NULL)
457 		return 0;		/* already allocated */
458 	if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
459 		return 0;		/* already allocated */
460 	if (voices > 1) {
461 		if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
462 			snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
463 			ypcm->voices[0] = NULL;
464 		}
465 	}
466 	err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
467 	if (err < 0)
468 		return err;
469 	ypcm->voices[0]->ypcm = ypcm;
470 	ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
471 	if (voices > 1) {
472 		ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
473 		ypcm->voices[1]->ypcm = ypcm;
474 	}
475 	return 0;
476 }
477 
478 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
479 				      struct snd_pcm_runtime *runtime,
480 				      int has_pcm_volume)
481 {
482 	struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
483 	u32 format;
484 	u32 delta = snd_ymfpci_calc_delta(runtime->rate);
485 	u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
486 	u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
487 	struct snd_ymfpci_playback_bank *bank;
488 	unsigned int nbank;
489 	u32 vol_left, vol_right;
490 	u8 use_left, use_right;
491 
492 	snd_assert(voice != NULL, return);
493 	if (runtime->channels == 1) {
494 		use_left = 1;
495 		use_right = 1;
496 	} else {
497 		use_left = (voiceidx & 1) == 0;
498 		use_right = !use_left;
499 	}
500 	if (has_pcm_volume) {
501 		vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
502 				       [ypcm->substream->number].left << 15);
503 		vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
504 					[ypcm->substream->number].right << 15);
505 	} else {
506 		vol_left = cpu_to_le32(0x40000000);
507 		vol_right = cpu_to_le32(0x40000000);
508 	}
509 	format = runtime->channels == 2 ? 0x00010000 : 0;
510 	if (snd_pcm_format_width(runtime->format) == 8)
511 		format |= 0x80000000;
512 	if (runtime->channels == 2 && (voiceidx & 1) != 0)
513 		format |= 1;
514 	for (nbank = 0; nbank < 2; nbank++) {
515 		bank = &voice->bank[nbank];
516 		memset(bank, 0, sizeof(*bank));
517 		bank->format = cpu_to_le32(format);
518 		bank->base = cpu_to_le32(runtime->dma_addr);
519 		bank->loop_end = cpu_to_le32(ypcm->buffer_size);
520 		bank->lpfQ = cpu_to_le32(lpfQ);
521 		bank->delta =
522 		bank->delta_end = cpu_to_le32(delta);
523 		bank->lpfK =
524 		bank->lpfK_end = cpu_to_le32(lpfK);
525 		bank->eg_gain =
526 		bank->eg_gain_end = cpu_to_le32(0x40000000);
527 
528 		if (ypcm->output_front) {
529 			if (use_left) {
530 				bank->left_gain =
531 				bank->left_gain_end = vol_left;
532 			}
533 			if (use_right) {
534 				bank->right_gain =
535 				bank->right_gain_end = vol_right;
536 			}
537 		}
538 		if (ypcm->output_rear) {
539 		        if (!ypcm->swap_rear) {
540         			if (use_left) {
541         				bank->eff2_gain =
542         				bank->eff2_gain_end = vol_left;
543         			}
544         			if (use_right) {
545         				bank->eff3_gain =
546         				bank->eff3_gain_end = vol_right;
547         			}
548 		        } else {
549         			/* The SPDIF out channels seem to be swapped, so we have
550         			 * to swap them here, too.  The rear analog out channels
551         			 * will be wrong, but otherwise AC3 would not work.
552         			 */
553         			if (use_left) {
554         				bank->eff3_gain =
555         				bank->eff3_gain_end = vol_left;
556         			}
557         			if (use_right) {
558         				bank->eff2_gain =
559         				bank->eff2_gain_end = vol_right;
560         			}
561         		}
562                 }
563 	}
564 }
565 
566 static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
567 {
568 	if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
569 				4096, &chip->ac3_tmp_base) < 0)
570 		return -ENOMEM;
571 
572 	chip->bank_effect[3][0]->base =
573 	chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
574 	chip->bank_effect[3][0]->loop_end =
575 	chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
576 	chip->bank_effect[4][0]->base =
577 	chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
578 	chip->bank_effect[4][0]->loop_end =
579 	chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
580 
581 	spin_lock_irq(&chip->reg_lock);
582 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
583 			  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
584 	spin_unlock_irq(&chip->reg_lock);
585 	return 0;
586 }
587 
588 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
589 {
590 	spin_lock_irq(&chip->reg_lock);
591 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
592 			  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
593 	spin_unlock_irq(&chip->reg_lock);
594 	// snd_ymfpci_irq_wait(chip);
595 	if (chip->ac3_tmp_base.area) {
596 		snd_dma_free_pages(&chip->ac3_tmp_base);
597 		chip->ac3_tmp_base.area = NULL;
598 	}
599 	return 0;
600 }
601 
602 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
603 					 struct snd_pcm_hw_params *hw_params)
604 {
605 	struct snd_pcm_runtime *runtime = substream->runtime;
606 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
607 	int err;
608 
609 	if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
610 		return err;
611 	if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
612 		return err;
613 	return 0;
614 }
615 
616 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
617 {
618 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
619 	struct snd_pcm_runtime *runtime = substream->runtime;
620 	struct snd_ymfpci_pcm *ypcm;
621 
622 	if (runtime->private_data == NULL)
623 		return 0;
624 	ypcm = runtime->private_data;
625 
626 	/* wait, until the PCI operations are not finished */
627 	snd_ymfpci_irq_wait(chip);
628 	snd_pcm_lib_free_pages(substream);
629 	if (ypcm->voices[1]) {
630 		snd_ymfpci_voice_free(chip, ypcm->voices[1]);
631 		ypcm->voices[1] = NULL;
632 	}
633 	if (ypcm->voices[0]) {
634 		snd_ymfpci_voice_free(chip, ypcm->voices[0]);
635 		ypcm->voices[0] = NULL;
636 	}
637 	return 0;
638 }
639 
640 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
641 {
642 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
643 	struct snd_pcm_runtime *runtime = substream->runtime;
644 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
645 	unsigned int nvoice;
646 
647 	ypcm->period_size = runtime->period_size;
648 	ypcm->buffer_size = runtime->buffer_size;
649 	ypcm->period_pos = 0;
650 	ypcm->last_pos = 0;
651 	for (nvoice = 0; nvoice < runtime->channels; nvoice++)
652 		snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
653 					  substream->pcm == chip->pcm);
654 	return 0;
655 }
656 
657 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
658 					struct snd_pcm_hw_params *hw_params)
659 {
660 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
661 }
662 
663 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
664 {
665 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
666 
667 	/* wait, until the PCI operations are not finished */
668 	snd_ymfpci_irq_wait(chip);
669 	return snd_pcm_lib_free_pages(substream);
670 }
671 
672 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
673 {
674 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
675 	struct snd_pcm_runtime *runtime = substream->runtime;
676 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
677 	struct snd_ymfpci_capture_bank * bank;
678 	int nbank;
679 	u32 rate, format;
680 
681 	ypcm->period_size = runtime->period_size;
682 	ypcm->buffer_size = runtime->buffer_size;
683 	ypcm->period_pos = 0;
684 	ypcm->last_pos = 0;
685 	ypcm->shift = 0;
686 	rate = ((48000 * 4096) / runtime->rate) - 1;
687 	format = 0;
688 	if (runtime->channels == 2) {
689 		format |= 2;
690 		ypcm->shift++;
691 	}
692 	if (snd_pcm_format_width(runtime->format) == 8)
693 		format |= 1;
694 	else
695 		ypcm->shift++;
696 	switch (ypcm->capture_bank_number) {
697 	case 0:
698 		snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
699 		snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
700 		break;
701 	case 1:
702 		snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
703 		snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
704 		break;
705 	}
706 	for (nbank = 0; nbank < 2; nbank++) {
707 		bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
708 		bank->base = cpu_to_le32(runtime->dma_addr);
709 		bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
710 		bank->start = 0;
711 		bank->num_of_loops = 0;
712 	}
713 	return 0;
714 }
715 
716 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
717 {
718 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
719 	struct snd_pcm_runtime *runtime = substream->runtime;
720 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
721 	struct snd_ymfpci_voice *voice = ypcm->voices[0];
722 
723 	if (!(ypcm->running && voice))
724 		return 0;
725 	return le32_to_cpu(voice->bank[chip->active_bank].start);
726 }
727 
728 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
729 {
730 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
731 	struct snd_pcm_runtime *runtime = substream->runtime;
732 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
733 
734 	if (!ypcm->running)
735 		return 0;
736 	return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
737 }
738 
739 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
740 {
741 	wait_queue_t wait;
742 	int loops = 4;
743 
744 	while (loops-- > 0) {
745 		if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
746 		 	continue;
747 		init_waitqueue_entry(&wait, current);
748 		add_wait_queue(&chip->interrupt_sleep, &wait);
749 		atomic_inc(&chip->interrupt_sleep_count);
750 		schedule_timeout_uninterruptible(msecs_to_jiffies(50));
751 		remove_wait_queue(&chip->interrupt_sleep, &wait);
752 	}
753 }
754 
755 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id, struct pt_regs *regs)
756 {
757 	struct snd_ymfpci *chip = dev_id;
758 	u32 status, nvoice, mode;
759 	struct snd_ymfpci_voice *voice;
760 
761 	status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
762 	if (status & 0x80000000) {
763 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
764 		spin_lock(&chip->voice_lock);
765 		for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
766 			voice = &chip->voices[nvoice];
767 			if (voice->interrupt)
768 				voice->interrupt(chip, voice);
769 		}
770 		for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
771 			if (chip->capture_substream[nvoice])
772 				snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
773 		}
774 #if 0
775 		for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
776 			if (chip->effect_substream[nvoice])
777 				snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
778 		}
779 #endif
780 		spin_unlock(&chip->voice_lock);
781 		spin_lock(&chip->reg_lock);
782 		snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
783 		mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
784 		snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
785 		spin_unlock(&chip->reg_lock);
786 
787 		if (atomic_read(&chip->interrupt_sleep_count)) {
788 			atomic_set(&chip->interrupt_sleep_count, 0);
789 			wake_up(&chip->interrupt_sleep);
790 		}
791 	}
792 
793 	status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
794 	if (status & 1) {
795 		if (chip->timer)
796 			snd_timer_interrupt(chip->timer, chip->timer->sticks);
797 	}
798 	snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
799 
800 	if (chip->rawmidi)
801 		snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data, regs);
802 	return IRQ_HANDLED;
803 }
804 
805 static struct snd_pcm_hardware snd_ymfpci_playback =
806 {
807 	.info =			(SNDRV_PCM_INFO_MMAP |
808 				 SNDRV_PCM_INFO_MMAP_VALID |
809 				 SNDRV_PCM_INFO_INTERLEAVED |
810 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
811 				 SNDRV_PCM_INFO_PAUSE |
812 				 SNDRV_PCM_INFO_RESUME),
813 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
814 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
815 	.rate_min =		8000,
816 	.rate_max =		48000,
817 	.channels_min =		1,
818 	.channels_max =		2,
819 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
820 	.period_bytes_min =	64,
821 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
822 	.periods_min =		3,
823 	.periods_max =		1024,
824 	.fifo_size =		0,
825 };
826 
827 static struct snd_pcm_hardware snd_ymfpci_capture =
828 {
829 	.info =			(SNDRV_PCM_INFO_MMAP |
830 				 SNDRV_PCM_INFO_MMAP_VALID |
831 				 SNDRV_PCM_INFO_INTERLEAVED |
832 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
833 				 SNDRV_PCM_INFO_PAUSE |
834 				 SNDRV_PCM_INFO_RESUME),
835 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
836 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
837 	.rate_min =		8000,
838 	.rate_max =		48000,
839 	.channels_min =		1,
840 	.channels_max =		2,
841 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
842 	.period_bytes_min =	64,
843 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
844 	.periods_min =		3,
845 	.periods_max =		1024,
846 	.fifo_size =		0,
847 };
848 
849 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
850 {
851 	kfree(runtime->private_data);
852 }
853 
854 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
855 {
856 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
857 	struct snd_pcm_runtime *runtime = substream->runtime;
858 	struct snd_ymfpci_pcm *ypcm;
859 
860 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
861 	if (ypcm == NULL)
862 		return -ENOMEM;
863 	ypcm->chip = chip;
864 	ypcm->type = PLAYBACK_VOICE;
865 	ypcm->substream = substream;
866 	runtime->hw = snd_ymfpci_playback;
867 	runtime->private_data = ypcm;
868 	runtime->private_free = snd_ymfpci_pcm_free_substream;
869 	/* FIXME? True value is 256/48 = 5.33333 ms */
870 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
871 	return 0;
872 }
873 
874 /* call with spinlock held */
875 static void ymfpci_open_extension(struct snd_ymfpci *chip)
876 {
877 	if (! chip->rear_opened) {
878 		if (! chip->spdif_opened) /* set AC3 */
879 			snd_ymfpci_writel(chip, YDSXGR_MODE,
880 					  snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
881 		/* enable second codec (4CHEN) */
882 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
883 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
884 	}
885 }
886 
887 /* call with spinlock held */
888 static void ymfpci_close_extension(struct snd_ymfpci *chip)
889 {
890 	if (! chip->rear_opened) {
891 		if (! chip->spdif_opened)
892 			snd_ymfpci_writel(chip, YDSXGR_MODE,
893 					  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
894 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
895 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
896 	}
897 }
898 
899 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
900 {
901 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
902 	struct snd_pcm_runtime *runtime = substream->runtime;
903 	struct snd_ymfpci_pcm *ypcm;
904 	struct snd_kcontrol *kctl;
905 	int err;
906 
907 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
908 		return err;
909 	ypcm = runtime->private_data;
910 	ypcm->output_front = 1;
911 	ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
912 	ypcm->swap_rear = chip->rear_swap;
913 	spin_lock_irq(&chip->reg_lock);
914 	if (ypcm->output_rear) {
915 		ymfpci_open_extension(chip);
916 		chip->rear_opened++;
917 	}
918 	spin_unlock_irq(&chip->reg_lock);
919 
920 	kctl = chip->pcm_mixer[substream->number].ctl;
921 	kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
922 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
923 	return 0;
924 }
925 
926 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
927 {
928 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
929 	struct snd_pcm_runtime *runtime = substream->runtime;
930 	struct snd_ymfpci_pcm *ypcm;
931 	int err;
932 
933 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
934 		return err;
935 	ypcm = runtime->private_data;
936 	ypcm->output_front = 0;
937 	ypcm->output_rear = 1;
938 	spin_lock_irq(&chip->reg_lock);
939 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
940 			  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
941 	ymfpci_open_extension(chip);
942 	chip->spdif_pcm_bits = chip->spdif_bits;
943 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
944 	chip->spdif_opened++;
945 	spin_unlock_irq(&chip->reg_lock);
946 
947 	chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
948 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
949 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
950 	return 0;
951 }
952 
953 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
954 {
955 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
956 	struct snd_pcm_runtime *runtime = substream->runtime;
957 	struct snd_ymfpci_pcm *ypcm;
958 	int err;
959 
960 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
961 		return err;
962 	ypcm = runtime->private_data;
963 	ypcm->output_front = 0;
964 	ypcm->output_rear = 1;
965 	spin_lock_irq(&chip->reg_lock);
966 	ymfpci_open_extension(chip);
967 	chip->rear_opened++;
968 	spin_unlock_irq(&chip->reg_lock);
969 	return 0;
970 }
971 
972 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
973 				   u32 capture_bank_number)
974 {
975 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
976 	struct snd_pcm_runtime *runtime = substream->runtime;
977 	struct snd_ymfpci_pcm *ypcm;
978 
979 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
980 	if (ypcm == NULL)
981 		return -ENOMEM;
982 	ypcm->chip = chip;
983 	ypcm->type = capture_bank_number + CAPTURE_REC;
984 	ypcm->substream = substream;
985 	ypcm->capture_bank_number = capture_bank_number;
986 	chip->capture_substream[capture_bank_number] = substream;
987 	runtime->hw = snd_ymfpci_capture;
988 	/* FIXME? True value is 256/48 = 5.33333 ms */
989 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
990 	runtime->private_data = ypcm;
991 	runtime->private_free = snd_ymfpci_pcm_free_substream;
992 	snd_ymfpci_hw_start(chip);
993 	return 0;
994 }
995 
996 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
997 {
998 	return snd_ymfpci_capture_open(substream, 0);
999 }
1000 
1001 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1002 {
1003 	return snd_ymfpci_capture_open(substream, 1);
1004 }
1005 
1006 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1007 {
1008 	return 0;
1009 }
1010 
1011 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1012 {
1013 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1014 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1015 	struct snd_kcontrol *kctl;
1016 
1017 	spin_lock_irq(&chip->reg_lock);
1018 	if (ypcm->output_rear && chip->rear_opened > 0) {
1019 		chip->rear_opened--;
1020 		ymfpci_close_extension(chip);
1021 	}
1022 	spin_unlock_irq(&chip->reg_lock);
1023 	kctl = chip->pcm_mixer[substream->number].ctl;
1024 	kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1025 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
1026 	return snd_ymfpci_playback_close_1(substream);
1027 }
1028 
1029 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1030 {
1031 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1032 
1033 	spin_lock_irq(&chip->reg_lock);
1034 	chip->spdif_opened = 0;
1035 	ymfpci_close_extension(chip);
1036 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1037 			  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1038 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1039 	spin_unlock_irq(&chip->reg_lock);
1040 	chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1041 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1042 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1043 	return snd_ymfpci_playback_close_1(substream);
1044 }
1045 
1046 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1047 {
1048 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1049 
1050 	spin_lock_irq(&chip->reg_lock);
1051 	if (chip->rear_opened > 0) {
1052 		chip->rear_opened--;
1053 		ymfpci_close_extension(chip);
1054 	}
1055 	spin_unlock_irq(&chip->reg_lock);
1056 	return snd_ymfpci_playback_close_1(substream);
1057 }
1058 
1059 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1060 {
1061 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1062 	struct snd_pcm_runtime *runtime = substream->runtime;
1063 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1064 
1065 	if (ypcm != NULL) {
1066 		chip->capture_substream[ypcm->capture_bank_number] = NULL;
1067 		snd_ymfpci_hw_stop(chip);
1068 	}
1069 	return 0;
1070 }
1071 
1072 static struct snd_pcm_ops snd_ymfpci_playback_ops = {
1073 	.open =			snd_ymfpci_playback_open,
1074 	.close =		snd_ymfpci_playback_close,
1075 	.ioctl =		snd_pcm_lib_ioctl,
1076 	.hw_params =		snd_ymfpci_playback_hw_params,
1077 	.hw_free =		snd_ymfpci_playback_hw_free,
1078 	.prepare =		snd_ymfpci_playback_prepare,
1079 	.trigger =		snd_ymfpci_playback_trigger,
1080 	.pointer =		snd_ymfpci_playback_pointer,
1081 };
1082 
1083 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1084 	.open =			snd_ymfpci_capture_rec_open,
1085 	.close =		snd_ymfpci_capture_close,
1086 	.ioctl =		snd_pcm_lib_ioctl,
1087 	.hw_params =		snd_ymfpci_capture_hw_params,
1088 	.hw_free =		snd_ymfpci_capture_hw_free,
1089 	.prepare =		snd_ymfpci_capture_prepare,
1090 	.trigger =		snd_ymfpci_capture_trigger,
1091 	.pointer =		snd_ymfpci_capture_pointer,
1092 };
1093 
1094 int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1095 {
1096 	struct snd_pcm *pcm;
1097 	int err;
1098 
1099 	if (rpcm)
1100 		*rpcm = NULL;
1101 	if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1102 		return err;
1103 	pcm->private_data = chip;
1104 
1105 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1106 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1107 
1108 	/* global setup */
1109 	pcm->info_flags = 0;
1110 	strcpy(pcm->name, "YMFPCI");
1111 	chip->pcm = pcm;
1112 
1113 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1114 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1115 
1116 	if (rpcm)
1117 		*rpcm = pcm;
1118 	return 0;
1119 }
1120 
1121 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1122 	.open =			snd_ymfpci_capture_ac97_open,
1123 	.close =		snd_ymfpci_capture_close,
1124 	.ioctl =		snd_pcm_lib_ioctl,
1125 	.hw_params =		snd_ymfpci_capture_hw_params,
1126 	.hw_free =		snd_ymfpci_capture_hw_free,
1127 	.prepare =		snd_ymfpci_capture_prepare,
1128 	.trigger =		snd_ymfpci_capture_trigger,
1129 	.pointer =		snd_ymfpci_capture_pointer,
1130 };
1131 
1132 int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1133 {
1134 	struct snd_pcm *pcm;
1135 	int err;
1136 
1137 	if (rpcm)
1138 		*rpcm = NULL;
1139 	if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1140 		return err;
1141 	pcm->private_data = chip;
1142 
1143 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1144 
1145 	/* global setup */
1146 	pcm->info_flags = 0;
1147 	sprintf(pcm->name, "YMFPCI - %s",
1148 		chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1149 	chip->pcm2 = pcm;
1150 
1151 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1152 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1153 
1154 	if (rpcm)
1155 		*rpcm = pcm;
1156 	return 0;
1157 }
1158 
1159 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1160 	.open =			snd_ymfpci_playback_spdif_open,
1161 	.close =		snd_ymfpci_playback_spdif_close,
1162 	.ioctl =		snd_pcm_lib_ioctl,
1163 	.hw_params =		snd_ymfpci_playback_hw_params,
1164 	.hw_free =		snd_ymfpci_playback_hw_free,
1165 	.prepare =		snd_ymfpci_playback_prepare,
1166 	.trigger =		snd_ymfpci_playback_trigger,
1167 	.pointer =		snd_ymfpci_playback_pointer,
1168 };
1169 
1170 int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1171 {
1172 	struct snd_pcm *pcm;
1173 	int err;
1174 
1175 	if (rpcm)
1176 		*rpcm = NULL;
1177 	if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1178 		return err;
1179 	pcm->private_data = chip;
1180 
1181 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1182 
1183 	/* global setup */
1184 	pcm->info_flags = 0;
1185 	strcpy(pcm->name, "YMFPCI - IEC958");
1186 	chip->pcm_spdif = pcm;
1187 
1188 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1189 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1190 
1191 	if (rpcm)
1192 		*rpcm = pcm;
1193 	return 0;
1194 }
1195 
1196 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1197 	.open =			snd_ymfpci_playback_4ch_open,
1198 	.close =		snd_ymfpci_playback_4ch_close,
1199 	.ioctl =		snd_pcm_lib_ioctl,
1200 	.hw_params =		snd_ymfpci_playback_hw_params,
1201 	.hw_free =		snd_ymfpci_playback_hw_free,
1202 	.prepare =		snd_ymfpci_playback_prepare,
1203 	.trigger =		snd_ymfpci_playback_trigger,
1204 	.pointer =		snd_ymfpci_playback_pointer,
1205 };
1206 
1207 int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1208 {
1209 	struct snd_pcm *pcm;
1210 	int err;
1211 
1212 	if (rpcm)
1213 		*rpcm = NULL;
1214 	if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1215 		return err;
1216 	pcm->private_data = chip;
1217 
1218 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1219 
1220 	/* global setup */
1221 	pcm->info_flags = 0;
1222 	strcpy(pcm->name, "YMFPCI - Rear PCM");
1223 	chip->pcm_4ch = pcm;
1224 
1225 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1226 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1227 
1228 	if (rpcm)
1229 		*rpcm = pcm;
1230 	return 0;
1231 }
1232 
1233 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1234 {
1235 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1236 	uinfo->count = 1;
1237 	return 0;
1238 }
1239 
1240 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1241 					struct snd_ctl_elem_value *ucontrol)
1242 {
1243 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1244 
1245 	spin_lock_irq(&chip->reg_lock);
1246 	ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1247 	ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1248 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1249 	spin_unlock_irq(&chip->reg_lock);
1250 	return 0;
1251 }
1252 
1253 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1254 					 struct snd_ctl_elem_value *ucontrol)
1255 {
1256 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1257 	unsigned int val;
1258 	int change;
1259 
1260 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1261 	      (ucontrol->value.iec958.status[1] << 8);
1262 	spin_lock_irq(&chip->reg_lock);
1263 	change = chip->spdif_bits != val;
1264 	chip->spdif_bits = val;
1265 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1266 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1267 	spin_unlock_irq(&chip->reg_lock);
1268 	return change;
1269 }
1270 
1271 static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata =
1272 {
1273 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1274 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1275 	.info =		snd_ymfpci_spdif_default_info,
1276 	.get =		snd_ymfpci_spdif_default_get,
1277 	.put =		snd_ymfpci_spdif_default_put
1278 };
1279 
1280 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1281 {
1282 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1283 	uinfo->count = 1;
1284 	return 0;
1285 }
1286 
1287 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1288 				      struct snd_ctl_elem_value *ucontrol)
1289 {
1290 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1291 
1292 	spin_lock_irq(&chip->reg_lock);
1293 	ucontrol->value.iec958.status[0] = 0x3e;
1294 	ucontrol->value.iec958.status[1] = 0xff;
1295 	spin_unlock_irq(&chip->reg_lock);
1296 	return 0;
1297 }
1298 
1299 static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata =
1300 {
1301 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1302 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1303 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1304 	.info =		snd_ymfpci_spdif_mask_info,
1305 	.get =		snd_ymfpci_spdif_mask_get,
1306 };
1307 
1308 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1309 {
1310 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1311 	uinfo->count = 1;
1312 	return 0;
1313 }
1314 
1315 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1316 					struct snd_ctl_elem_value *ucontrol)
1317 {
1318 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1319 
1320 	spin_lock_irq(&chip->reg_lock);
1321 	ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1322 	ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1323 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1324 	spin_unlock_irq(&chip->reg_lock);
1325 	return 0;
1326 }
1327 
1328 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1329 					struct snd_ctl_elem_value *ucontrol)
1330 {
1331 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1332 	unsigned int val;
1333 	int change;
1334 
1335 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1336 	      (ucontrol->value.iec958.status[1] << 8);
1337 	spin_lock_irq(&chip->reg_lock);
1338 	change = chip->spdif_pcm_bits != val;
1339 	chip->spdif_pcm_bits = val;
1340 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1341 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1342 	spin_unlock_irq(&chip->reg_lock);
1343 	return change;
1344 }
1345 
1346 static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata =
1347 {
1348 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1349 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1350 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1351 	.info =		snd_ymfpci_spdif_stream_info,
1352 	.get =		snd_ymfpci_spdif_stream_get,
1353 	.put =		snd_ymfpci_spdif_stream_put
1354 };
1355 
1356 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1357 {
1358 	static char *texts[3] = {"AC'97", "IEC958", "ZV Port"};
1359 
1360 	info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1361 	info->count = 1;
1362 	info->value.enumerated.items = 3;
1363 	if (info->value.enumerated.item > 2)
1364 		info->value.enumerated.item = 2;
1365 	strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]);
1366 	return 0;
1367 }
1368 
1369 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1370 {
1371 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1372 	u16 reg;
1373 
1374 	spin_lock_irq(&chip->reg_lock);
1375 	reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1376 	spin_unlock_irq(&chip->reg_lock);
1377 	if (!(reg & 0x100))
1378 		value->value.enumerated.item[0] = 0;
1379 	else
1380 		value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1381 	return 0;
1382 }
1383 
1384 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1385 {
1386 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1387 	u16 reg, old_reg;
1388 
1389 	spin_lock_irq(&chip->reg_lock);
1390 	old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1391 	if (value->value.enumerated.item[0] == 0)
1392 		reg = old_reg & ~0x100;
1393 	else
1394 		reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1395 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1396 	spin_unlock_irq(&chip->reg_lock);
1397 	return reg != old_reg;
1398 }
1399 
1400 static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = {
1401 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE,
1402 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
1403 	.name =		"Direct Recording Source",
1404 	.info =		snd_ymfpci_drec_source_info,
1405 	.get =		snd_ymfpci_drec_source_get,
1406 	.put =		snd_ymfpci_drec_source_put
1407 };
1408 
1409 /*
1410  *  Mixer controls
1411  */
1412 
1413 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1414 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1415   .info = snd_ymfpci_info_single, \
1416   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1417   .private_value = ((reg) | ((shift) << 16)) }
1418 
1419 static int snd_ymfpci_info_single(struct snd_kcontrol *kcontrol,
1420 				  struct snd_ctl_elem_info *uinfo)
1421 {
1422 	int reg = kcontrol->private_value & 0xffff;
1423 
1424 	switch (reg) {
1425 	case YDSXGR_SPDIFOUTCTRL: break;
1426 	case YDSXGR_SPDIFINCTRL: break;
1427 	default: return -EINVAL;
1428 	}
1429 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1430 	uinfo->count = 1;
1431 	uinfo->value.integer.min = 0;
1432 	uinfo->value.integer.max = 1;
1433 	return 0;
1434 }
1435 
1436 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1437 				 struct snd_ctl_elem_value *ucontrol)
1438 {
1439 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1440 	int reg = kcontrol->private_value & 0xffff;
1441 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1442 	unsigned int mask = 1;
1443 
1444 	switch (reg) {
1445 	case YDSXGR_SPDIFOUTCTRL: break;
1446 	case YDSXGR_SPDIFINCTRL: break;
1447 	default: return -EINVAL;
1448 	}
1449 	ucontrol->value.integer.value[0] =
1450 		(snd_ymfpci_readl(chip, reg) >> shift) & mask;
1451 	return 0;
1452 }
1453 
1454 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1455 				 struct snd_ctl_elem_value *ucontrol)
1456 {
1457 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1458 	int reg = kcontrol->private_value & 0xffff;
1459 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1460  	unsigned int mask = 1;
1461 	int change;
1462 	unsigned int val, oval;
1463 
1464 	switch (reg) {
1465 	case YDSXGR_SPDIFOUTCTRL: break;
1466 	case YDSXGR_SPDIFINCTRL: break;
1467 	default: return -EINVAL;
1468 	}
1469 	val = (ucontrol->value.integer.value[0] & mask);
1470 	val <<= shift;
1471 	spin_lock_irq(&chip->reg_lock);
1472 	oval = snd_ymfpci_readl(chip, reg);
1473 	val = (oval & ~(mask << shift)) | val;
1474 	change = val != oval;
1475 	snd_ymfpci_writel(chip, reg, val);
1476 	spin_unlock_irq(&chip->reg_lock);
1477 	return change;
1478 }
1479 
1480 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1481 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1482   .info = snd_ymfpci_info_double, \
1483   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1484   .private_value = reg }
1485 
1486 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1487 {
1488 	unsigned int reg = kcontrol->private_value;
1489 
1490 	if (reg < 0x80 || reg >= 0xc0)
1491 		return -EINVAL;
1492 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1493 	uinfo->count = 2;
1494 	uinfo->value.integer.min = 0;
1495 	uinfo->value.integer.max = 16383;
1496 	return 0;
1497 }
1498 
1499 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1500 {
1501 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1502 	unsigned int reg = kcontrol->private_value;
1503 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1504 	unsigned int val;
1505 
1506 	if (reg < 0x80 || reg >= 0xc0)
1507 		return -EINVAL;
1508 	spin_lock_irq(&chip->reg_lock);
1509 	val = snd_ymfpci_readl(chip, reg);
1510 	spin_unlock_irq(&chip->reg_lock);
1511 	ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1512 	ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1513 	return 0;
1514 }
1515 
1516 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1517 {
1518 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1519 	unsigned int reg = kcontrol->private_value;
1520 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1521 	int change;
1522 	unsigned int val1, val2, oval;
1523 
1524 	if (reg < 0x80 || reg >= 0xc0)
1525 		return -EINVAL;
1526 	val1 = ucontrol->value.integer.value[0] & mask;
1527 	val2 = ucontrol->value.integer.value[1] & mask;
1528 	val1 <<= shift_left;
1529 	val2 <<= shift_right;
1530 	spin_lock_irq(&chip->reg_lock);
1531 	oval = snd_ymfpci_readl(chip, reg);
1532 	val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1533 	change = val1 != oval;
1534 	snd_ymfpci_writel(chip, reg, val1);
1535 	spin_unlock_irq(&chip->reg_lock);
1536 	return change;
1537 }
1538 
1539 /*
1540  * 4ch duplication
1541  */
1542 static int snd_ymfpci_info_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1543 {
1544 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1545 	uinfo->count = 1;
1546 	uinfo->value.integer.min = 0;
1547 	uinfo->value.integer.max = 1;
1548 	return 0;
1549 }
1550 
1551 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1552 {
1553 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1554 	ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1555 	return 0;
1556 }
1557 
1558 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1559 {
1560 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1561 	int change;
1562 	change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1563 	if (change)
1564 		chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1565 	return change;
1566 }
1567 
1568 
1569 static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = {
1570 YMFPCI_DOUBLE("Wave Playback Volume", 0, YDSXGR_NATIVEDACOUTVOL),
1571 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1572 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1573 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1574 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1575 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1576 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1577 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1578 YMFPCI_DOUBLE("FM Legacy Volume", 0, YDSXGR_LEGACYOUTVOL),
1579 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1580 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1581 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1582 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1583 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1584 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1585 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1586 {
1587 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1588 	.name = "4ch Duplication",
1589 	.info = snd_ymfpci_info_dup4ch,
1590 	.get = snd_ymfpci_get_dup4ch,
1591 	.put = snd_ymfpci_put_dup4ch,
1592 },
1593 };
1594 
1595 
1596 /*
1597  * GPIO
1598  */
1599 
1600 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1601 {
1602 	u16 reg, mode;
1603 	unsigned long flags;
1604 
1605 	spin_lock_irqsave(&chip->reg_lock, flags);
1606 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1607 	reg &= ~(1 << (pin + 8));
1608 	reg |= (1 << pin);
1609 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1610 	/* set the level mode for input line */
1611 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1612 	mode &= ~(3 << (pin * 2));
1613 	snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1614 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1615 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1616 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1617 	return (mode >> pin) & 1;
1618 }
1619 
1620 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1621 {
1622 	u16 reg;
1623 	unsigned long flags;
1624 
1625 	spin_lock_irqsave(&chip->reg_lock, flags);
1626 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1627 	reg &= ~(1 << pin);
1628 	reg &= ~(1 << (pin + 8));
1629 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1630 	snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1631 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1632 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1633 
1634 	return 0;
1635 }
1636 
1637 static int snd_ymfpci_gpio_sw_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1638 {
1639 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1640 	uinfo->count = 1;
1641 	uinfo->value.integer.min = 0;
1642 	uinfo->value.integer.max = 1;
1643 	return 0;
1644 }
1645 
1646 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1647 {
1648 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1649 	int pin = (int)kcontrol->private_value;
1650 	ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1651 	return 0;
1652 }
1653 
1654 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1655 {
1656 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1657 	int pin = (int)kcontrol->private_value;
1658 
1659 	if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1660 		snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1661 		ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1662 		return 1;
1663 	}
1664 	return 0;
1665 }
1666 
1667 static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = {
1668 	.name = "Shared Rear/Line-In Switch",
1669 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1670 	.info = snd_ymfpci_gpio_sw_info,
1671 	.get = snd_ymfpci_gpio_sw_get,
1672 	.put = snd_ymfpci_gpio_sw_put,
1673 	.private_value = 2,
1674 };
1675 
1676 /*
1677  * PCM voice volume
1678  */
1679 
1680 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1681 				   struct snd_ctl_elem_info *uinfo)
1682 {
1683 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1684 	uinfo->count = 2;
1685 	uinfo->value.integer.min = 0;
1686 	uinfo->value.integer.max = 0x8000;
1687 	return 0;
1688 }
1689 
1690 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1691 				  struct snd_ctl_elem_value *ucontrol)
1692 {
1693 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1694 	unsigned int subs = kcontrol->id.subdevice;
1695 
1696 	ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1697 	ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1698 	return 0;
1699 }
1700 
1701 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1702 				  struct snd_ctl_elem_value *ucontrol)
1703 {
1704 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1705 	unsigned int subs = kcontrol->id.subdevice;
1706 	struct snd_pcm_substream *substream;
1707 	unsigned long flags;
1708 
1709 	if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1710 	    ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1711 		chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1712 		chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1713 
1714 		substream = (struct snd_pcm_substream *)kcontrol->private_value;
1715 		spin_lock_irqsave(&chip->voice_lock, flags);
1716 		if (substream->runtime && substream->runtime->private_data) {
1717 			struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1718 			ypcm->update_pcm_vol = 2;
1719 		}
1720 		spin_unlock_irqrestore(&chip->voice_lock, flags);
1721 		return 1;
1722 	}
1723 	return 0;
1724 }
1725 
1726 static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = {
1727 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1728 	.name = "PCM Playback Volume",
1729 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1730 		SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1731 	.info = snd_ymfpci_pcm_vol_info,
1732 	.get = snd_ymfpci_pcm_vol_get,
1733 	.put = snd_ymfpci_pcm_vol_put,
1734 };
1735 
1736 
1737 /*
1738  *  Mixer routines
1739  */
1740 
1741 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1742 {
1743 	struct snd_ymfpci *chip = bus->private_data;
1744 	chip->ac97_bus = NULL;
1745 }
1746 
1747 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1748 {
1749 	struct snd_ymfpci *chip = ac97->private_data;
1750 	chip->ac97 = NULL;
1751 }
1752 
1753 int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch, int rear_swap)
1754 {
1755 	struct snd_ac97_template ac97;
1756 	struct snd_kcontrol *kctl;
1757 	struct snd_pcm_substream *substream;
1758 	unsigned int idx;
1759 	int err;
1760 	static struct snd_ac97_bus_ops ops = {
1761 		.write = snd_ymfpci_codec_write,
1762 		.read = snd_ymfpci_codec_read,
1763 	};
1764 
1765 	chip->rear_swap = rear_swap;
1766 	if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1767 		return err;
1768 	chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1769 	chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1770 
1771 	memset(&ac97, 0, sizeof(ac97));
1772 	ac97.private_data = chip;
1773 	ac97.private_free = snd_ymfpci_mixer_free_ac97;
1774 	if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1775 		return err;
1776 
1777 	/* to be sure */
1778 	snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1779 			     AC97_EA_VRA|AC97_EA_VRM, 0);
1780 
1781 	for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1782 		if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1783 			return err;
1784 	}
1785 
1786 	/* add S/PDIF control */
1787 	snd_assert(chip->pcm_spdif != NULL, return -EIO);
1788 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1789 		return err;
1790 	kctl->id.device = chip->pcm_spdif->device;
1791 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1792 		return err;
1793 	kctl->id.device = chip->pcm_spdif->device;
1794 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1795 		return err;
1796 	kctl->id.device = chip->pcm_spdif->device;
1797 	chip->spdif_pcm_ctl = kctl;
1798 
1799 	/* direct recording source */
1800 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1801 	    (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1802 		return err;
1803 
1804 	/*
1805 	 * shared rear/line-in
1806 	 */
1807 	if (rear_switch) {
1808 		if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1809 			return err;
1810 	}
1811 
1812 	/* per-voice volume */
1813 	substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1814 	for (idx = 0; idx < 32; ++idx) {
1815 		kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1816 		if (!kctl)
1817 			return -ENOMEM;
1818 		kctl->id.device = chip->pcm->device;
1819 		kctl->id.subdevice = idx;
1820 		kctl->private_value = (unsigned long)substream;
1821 		if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1822 			return err;
1823 		chip->pcm_mixer[idx].left = 0x8000;
1824 		chip->pcm_mixer[idx].right = 0x8000;
1825 		chip->pcm_mixer[idx].ctl = kctl;
1826 		substream = substream->next;
1827 	}
1828 
1829 	return 0;
1830 }
1831 
1832 
1833 /*
1834  * timer
1835  */
1836 
1837 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1838 {
1839 	struct snd_ymfpci *chip;
1840 	unsigned long flags;
1841 	unsigned int count;
1842 
1843 	chip = snd_timer_chip(timer);
1844 	count = (timer->sticks << 1) - 1;
1845 	spin_lock_irqsave(&chip->reg_lock, flags);
1846 	snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1847 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1848 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1849 	return 0;
1850 }
1851 
1852 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1853 {
1854 	struct snd_ymfpci *chip;
1855 	unsigned long flags;
1856 
1857 	chip = snd_timer_chip(timer);
1858 	spin_lock_irqsave(&chip->reg_lock, flags);
1859 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1860 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1861 	return 0;
1862 }
1863 
1864 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1865 					       unsigned long *num, unsigned long *den)
1866 {
1867 	*num = 1;
1868 	*den = 48000;
1869 	return 0;
1870 }
1871 
1872 static struct snd_timer_hardware snd_ymfpci_timer_hw = {
1873 	.flags = SNDRV_TIMER_HW_AUTO,
1874 	.resolution = 20833, /* 1/fs = 20.8333...us */
1875 	.ticks = 0x8000,
1876 	.start = snd_ymfpci_timer_start,
1877 	.stop = snd_ymfpci_timer_stop,
1878 	.precise_resolution = snd_ymfpci_timer_precise_resolution,
1879 };
1880 
1881 int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1882 {
1883 	struct snd_timer *timer = NULL;
1884 	struct snd_timer_id tid;
1885 	int err;
1886 
1887 	tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1888 	tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1889 	tid.card = chip->card->number;
1890 	tid.device = device;
1891 	tid.subdevice = 0;
1892 	if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1893 		strcpy(timer->name, "YMFPCI timer");
1894 		timer->private_data = chip;
1895 		timer->hw = snd_ymfpci_timer_hw;
1896 	}
1897 	chip->timer = timer;
1898 	return err;
1899 }
1900 
1901 
1902 /*
1903  *  proc interface
1904  */
1905 
1906 static void snd_ymfpci_proc_read(struct snd_info_entry *entry,
1907 				 struct snd_info_buffer *buffer)
1908 {
1909 	struct snd_ymfpci *chip = entry->private_data;
1910 	int i;
1911 
1912 	snd_iprintf(buffer, "YMFPCI\n\n");
1913 	for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1914 		snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1915 }
1916 
1917 static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1918 {
1919 	struct snd_info_entry *entry;
1920 
1921 	if (! snd_card_proc_new(card, "ymfpci", &entry))
1922 		snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read);
1923 	return 0;
1924 }
1925 
1926 /*
1927  *  initialization routines
1928  */
1929 
1930 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1931 {
1932 	u8 cmd;
1933 
1934 	pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1935 #if 0 // force to reset
1936 	if (cmd & 0x03) {
1937 #endif
1938 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1939 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1940 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1941 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
1942 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
1943 #if 0
1944 	}
1945 #endif
1946 }
1947 
1948 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
1949 {
1950 	snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
1951 }
1952 
1953 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
1954 {
1955 	u32 val;
1956 	int timeout = 1000;
1957 
1958 	val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
1959 	if (val)
1960 		snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
1961 	while (timeout-- > 0) {
1962 		val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
1963 		if ((val & 0x00000002) == 0)
1964 			break;
1965 	}
1966 }
1967 
1968 #include "ymfpci_image.h"
1969 
1970 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
1971 {
1972 	int i;
1973 	u16 ctrl;
1974 	unsigned long *inst;
1975 
1976 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
1977 	snd_ymfpci_disable_dsp(chip);
1978 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
1979 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
1980 	snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
1981 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
1982 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
1983 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
1984 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
1985 	ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1986 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
1987 
1988 	/* setup DSP instruction code */
1989 	for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
1990 		snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), DspInst[i]);
1991 
1992 	/* setup control instruction code */
1993 	switch (chip->device_id) {
1994 	case PCI_DEVICE_ID_YAMAHA_724F:
1995 	case PCI_DEVICE_ID_YAMAHA_740C:
1996 	case PCI_DEVICE_ID_YAMAHA_744:
1997 	case PCI_DEVICE_ID_YAMAHA_754:
1998 		inst = CntrlInst1E;
1999 		break;
2000 	default:
2001 		inst = CntrlInst;
2002 		break;
2003 	}
2004 	for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2005 		snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), inst[i]);
2006 
2007 	snd_ymfpci_enable_dsp(chip);
2008 }
2009 
2010 static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2011 {
2012 	long size, playback_ctrl_size;
2013 	int voice, bank, reg;
2014 	u8 *ptr;
2015 	dma_addr_t ptr_addr;
2016 
2017 	playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2018 	chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2019 	chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2020 	chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2021 	chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2022 
2023 	size = ((playback_ctrl_size + 0x00ff) & ~0x00ff) +
2024 	       ((chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES + 0x00ff) & ~0x00ff) +
2025 	       ((chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES + 0x00ff) & ~0x00ff) +
2026 	       ((chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES + 0x00ff) & ~0x00ff) +
2027 	       chip->work_size;
2028 	/* work_ptr must be aligned to 256 bytes, but it's already
2029 	   covered with the kernel page allocation mechanism */
2030 	if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
2031 				size, &chip->work_ptr) < 0)
2032 		return -ENOMEM;
2033 	ptr = chip->work_ptr.area;
2034 	ptr_addr = chip->work_ptr.addr;
2035 	memset(ptr, 0, size);	/* for sure */
2036 
2037 	chip->bank_base_playback = ptr;
2038 	chip->bank_base_playback_addr = ptr_addr;
2039 	chip->ctrl_playback = (u32 *)ptr;
2040 	chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2041 	ptr += (playback_ctrl_size + 0x00ff) & ~0x00ff;
2042 	ptr_addr += (playback_ctrl_size + 0x00ff) & ~0x00ff;
2043 	for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2044 		chip->voices[voice].number = voice;
2045 		chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2046 		chip->voices[voice].bank_addr = ptr_addr;
2047 		for (bank = 0; bank < 2; bank++) {
2048 			chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2049 			ptr += chip->bank_size_playback;
2050 			ptr_addr += chip->bank_size_playback;
2051 		}
2052 	}
2053 	ptr = (char *)(((unsigned long)ptr + 0x00ff) & ~0x00ff);
2054 	ptr_addr = (ptr_addr + 0x00ff) & ~0x00ff;
2055 	chip->bank_base_capture = ptr;
2056 	chip->bank_base_capture_addr = ptr_addr;
2057 	for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2058 		for (bank = 0; bank < 2; bank++) {
2059 			chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2060 			ptr += chip->bank_size_capture;
2061 			ptr_addr += chip->bank_size_capture;
2062 		}
2063 	ptr = (char *)(((unsigned long)ptr + 0x00ff) & ~0x00ff);
2064 	ptr_addr = (ptr_addr + 0x00ff) & ~0x00ff;
2065 	chip->bank_base_effect = ptr;
2066 	chip->bank_base_effect_addr = ptr_addr;
2067 	for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2068 		for (bank = 0; bank < 2; bank++) {
2069 			chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2070 			ptr += chip->bank_size_effect;
2071 			ptr_addr += chip->bank_size_effect;
2072 		}
2073 	ptr = (char *)(((unsigned long)ptr + 0x00ff) & ~0x00ff);
2074 	ptr_addr = (ptr_addr + 0x00ff) & ~0x00ff;
2075 	chip->work_base = ptr;
2076 	chip->work_base_addr = ptr_addr;
2077 
2078 	snd_assert(ptr + chip->work_size == chip->work_ptr.area + chip->work_ptr.bytes, );
2079 
2080 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2081 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2082 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2083 	snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2084 	snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2085 
2086 	/* S/PDIF output initialization */
2087 	chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2088 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2089 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2090 
2091 	/* S/PDIF input initialization */
2092 	snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2093 
2094 	/* digital mixer setup */
2095 	for (reg = 0x80; reg < 0xc0; reg += 4)
2096 		snd_ymfpci_writel(chip, reg, 0);
2097 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2098 	snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2099 	snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2100 	snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2101 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2102 	snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2103 	snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2104 
2105 	return 0;
2106 }
2107 
2108 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2109 {
2110 	u16 ctrl;
2111 
2112 	snd_assert(chip != NULL, return -EINVAL);
2113 
2114 	if (chip->res_reg_area) {	/* don't touch busy hardware */
2115 		snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2116 		snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2117 		snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2118 		snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2119 		snd_ymfpci_disable_dsp(chip);
2120 		snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2121 		snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2122 		snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2123 		snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2124 		snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2125 		ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2126 		snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2127 	}
2128 
2129 	snd_ymfpci_ac3_done(chip);
2130 
2131 	/* Set PCI device to D3 state */
2132 #if 0
2133 	/* FIXME: temporarily disabled, otherwise we cannot fire up
2134 	 * the chip again unless reboot.  ACPI bug?
2135 	 */
2136 	pci_set_power_state(chip->pci, 3);
2137 #endif
2138 
2139 #ifdef CONFIG_PM
2140 	vfree(chip->saved_regs);
2141 #endif
2142 	release_and_free_resource(chip->mpu_res);
2143 	release_and_free_resource(chip->fm_res);
2144 	snd_ymfpci_free_gameport(chip);
2145 	if (chip->reg_area_virt)
2146 		iounmap(chip->reg_area_virt);
2147 	if (chip->work_ptr.area)
2148 		snd_dma_free_pages(&chip->work_ptr);
2149 
2150 	if (chip->irq >= 0)
2151 		free_irq(chip->irq, (void *)chip);
2152 	release_and_free_resource(chip->res_reg_area);
2153 
2154 	pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2155 
2156 	pci_disable_device(chip->pci);
2157 	kfree(chip);
2158 	return 0;
2159 }
2160 
2161 static int snd_ymfpci_dev_free(struct snd_device *device)
2162 {
2163 	struct snd_ymfpci *chip = device->device_data;
2164 	return snd_ymfpci_free(chip);
2165 }
2166 
2167 #ifdef CONFIG_PM
2168 static int saved_regs_index[] = {
2169 	/* spdif */
2170 	YDSXGR_SPDIFOUTCTRL,
2171 	YDSXGR_SPDIFOUTSTATUS,
2172 	YDSXGR_SPDIFINCTRL,
2173 	/* volumes */
2174 	YDSXGR_PRIADCLOOPVOL,
2175 	YDSXGR_NATIVEDACINVOL,
2176 	YDSXGR_NATIVEDACOUTVOL,
2177 	// YDSXGR_BUF441OUTVOL,
2178 	YDSXGR_NATIVEADCINVOL,
2179 	YDSXGR_SPDIFLOOPVOL,
2180 	YDSXGR_SPDIFOUTVOL,
2181 	YDSXGR_ZVOUTVOL,
2182 	YDSXGR_LEGACYOUTVOL,
2183 	/* address bases */
2184 	YDSXGR_PLAYCTRLBASE,
2185 	YDSXGR_RECCTRLBASE,
2186 	YDSXGR_EFFCTRLBASE,
2187 	YDSXGR_WORKBASE,
2188 	/* capture set up */
2189 	YDSXGR_MAPOFREC,
2190 	YDSXGR_RECFORMAT,
2191 	YDSXGR_RECSLOTSR,
2192 	YDSXGR_ADCFORMAT,
2193 	YDSXGR_ADCSLOTSR,
2194 };
2195 #define YDSXGR_NUM_SAVED_REGS	ARRAY_SIZE(saved_regs_index)
2196 
2197 int snd_ymfpci_suspend(struct pci_dev *pci, pm_message_t state)
2198 {
2199 	struct snd_card *card = pci_get_drvdata(pci);
2200 	struct snd_ymfpci *chip = card->private_data;
2201 	unsigned int i;
2202 
2203 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2204 	snd_pcm_suspend_all(chip->pcm);
2205 	snd_pcm_suspend_all(chip->pcm2);
2206 	snd_pcm_suspend_all(chip->pcm_spdif);
2207 	snd_pcm_suspend_all(chip->pcm_4ch);
2208 	snd_ac97_suspend(chip->ac97);
2209 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2210 		chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2211 	chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2212 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2213 	snd_ymfpci_disable_dsp(chip);
2214 	pci_disable_device(pci);
2215 	pci_save_state(pci);
2216 	return 0;
2217 }
2218 
2219 int snd_ymfpci_resume(struct pci_dev *pci)
2220 {
2221 	struct snd_card *card = pci_get_drvdata(pci);
2222 	struct snd_ymfpci *chip = card->private_data;
2223 	unsigned int i;
2224 
2225 	pci_restore_state(pci);
2226 	pci_enable_device(pci);
2227 	pci_set_master(pci);
2228 	snd_ymfpci_aclink_reset(pci);
2229 	snd_ymfpci_codec_ready(chip, 0);
2230 	snd_ymfpci_download_image(chip);
2231 	udelay(100);
2232 
2233 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2234 		snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2235 
2236 	snd_ac97_resume(chip->ac97);
2237 
2238 	/* start hw again */
2239 	if (chip->start_count > 0) {
2240 		spin_lock_irq(&chip->reg_lock);
2241 		snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2242 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2243 		spin_unlock_irq(&chip->reg_lock);
2244 	}
2245 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2246 	return 0;
2247 }
2248 #endif /* CONFIG_PM */
2249 
2250 int __devinit snd_ymfpci_create(struct snd_card *card,
2251 				struct pci_dev * pci,
2252 				unsigned short old_legacy_ctrl,
2253 				struct snd_ymfpci ** rchip)
2254 {
2255 	struct snd_ymfpci *chip;
2256 	int err;
2257 	static struct snd_device_ops ops = {
2258 		.dev_free =	snd_ymfpci_dev_free,
2259 	};
2260 
2261 	*rchip = NULL;
2262 
2263 	/* enable PCI device */
2264 	if ((err = pci_enable_device(pci)) < 0)
2265 		return err;
2266 
2267 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2268 	if (chip == NULL) {
2269 		pci_disable_device(pci);
2270 		return -ENOMEM;
2271 	}
2272 	chip->old_legacy_ctrl = old_legacy_ctrl;
2273 	spin_lock_init(&chip->reg_lock);
2274 	spin_lock_init(&chip->voice_lock);
2275 	init_waitqueue_head(&chip->interrupt_sleep);
2276 	atomic_set(&chip->interrupt_sleep_count, 0);
2277 	chip->card = card;
2278 	chip->pci = pci;
2279 	chip->irq = -1;
2280 	chip->device_id = pci->device;
2281 	pci_read_config_byte(pci, PCI_REVISION_ID, (u8 *)&chip->rev);
2282 	chip->reg_area_phys = pci_resource_start(pci, 0);
2283 	chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
2284 	pci_set_master(pci);
2285 
2286 	if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2287 		snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2288 		snd_ymfpci_free(chip);
2289 		return -EBUSY;
2290 	}
2291 	if (request_irq(pci->irq, snd_ymfpci_interrupt, SA_INTERRUPT|SA_SHIRQ, "YMFPCI", (void *) chip)) {
2292 		snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2293 		snd_ymfpci_free(chip);
2294 		return -EBUSY;
2295 	}
2296 	chip->irq = pci->irq;
2297 
2298 	snd_ymfpci_aclink_reset(pci);
2299 	if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2300 		snd_ymfpci_free(chip);
2301 		return -EIO;
2302 	}
2303 
2304 	snd_ymfpci_download_image(chip);
2305 
2306 	udelay(100); /* seems we need a delay after downloading image.. */
2307 
2308 	if (snd_ymfpci_memalloc(chip) < 0) {
2309 		snd_ymfpci_free(chip);
2310 		return -EIO;
2311 	}
2312 
2313 	chip->rear_swap = 1;
2314 	if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
2315 		snd_ymfpci_free(chip);
2316 		return err;
2317 	}
2318 
2319 #ifdef CONFIG_PM
2320 	chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32));
2321 	if (chip->saved_regs == NULL) {
2322 		snd_ymfpci_free(chip);
2323 		return -ENOMEM;
2324 	}
2325 #endif
2326 
2327 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
2328 		snd_ymfpci_free(chip);
2329 		return err;
2330 	}
2331 
2332 	snd_ymfpci_proc_init(card, chip);
2333 
2334 	snd_card_set_dev(card, &pci->dev);
2335 
2336 	*rchip = chip;
2337 	return 0;
2338 }
2339