1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Routines for control of YMF724/740/744/754 chips 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/firmware.h> 9 #include <linux/init.h> 10 #include <linux/interrupt.h> 11 #include <linux/pci.h> 12 #include <linux/sched.h> 13 #include <linux/slab.h> 14 #include <linux/mutex.h> 15 #include <linux/module.h> 16 #include <linux/io.h> 17 18 #include <sound/core.h> 19 #include <sound/control.h> 20 #include <sound/info.h> 21 #include <sound/tlv.h> 22 #include "ymfpci.h" 23 #include <sound/asoundef.h> 24 #include <sound/mpu401.h> 25 26 #include <asm/byteorder.h> 27 28 /* 29 * common I/O routines 30 */ 31 32 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip); 33 34 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset) 35 { 36 return readb(chip->reg_area_virt + offset); 37 } 38 39 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val) 40 { 41 writeb(val, chip->reg_area_virt + offset); 42 } 43 44 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset) 45 { 46 return readw(chip->reg_area_virt + offset); 47 } 48 49 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val) 50 { 51 writew(val, chip->reg_area_virt + offset); 52 } 53 54 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset) 55 { 56 return readl(chip->reg_area_virt + offset); 57 } 58 59 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val) 60 { 61 writel(val, chip->reg_area_virt + offset); 62 } 63 64 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary) 65 { 66 unsigned long end_time; 67 u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR; 68 69 end_time = jiffies + msecs_to_jiffies(750); 70 do { 71 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0) 72 return 0; 73 schedule_timeout_uninterruptible(1); 74 } while (time_before(jiffies, end_time)); 75 dev_err(chip->card->dev, 76 "codec_ready: codec %i is not ready [0x%x]\n", 77 secondary, snd_ymfpci_readw(chip, reg)); 78 return -EBUSY; 79 } 80 81 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val) 82 { 83 struct snd_ymfpci *chip = ac97->private_data; 84 u32 cmd; 85 86 snd_ymfpci_codec_ready(chip, 0); 87 cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val; 88 snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd); 89 } 90 91 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg) 92 { 93 struct snd_ymfpci *chip = ac97->private_data; 94 95 if (snd_ymfpci_codec_ready(chip, 0)) 96 return ~0; 97 snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg); 98 if (snd_ymfpci_codec_ready(chip, 0)) 99 return ~0; 100 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) { 101 int i; 102 for (i = 0; i < 600; i++) 103 snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 104 } 105 return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 106 } 107 108 /* 109 * Misc routines 110 */ 111 112 static u32 snd_ymfpci_calc_delta(u32 rate) 113 { 114 switch (rate) { 115 case 8000: return 0x02aaab00; 116 case 11025: return 0x03accd00; 117 case 16000: return 0x05555500; 118 case 22050: return 0x07599a00; 119 case 32000: return 0x0aaaab00; 120 case 44100: return 0x0eb33300; 121 default: return ((rate << 16) / 375) << 5; 122 } 123 } 124 125 static u32 def_rate[8] = { 126 100, 2000, 8000, 11025, 16000, 22050, 32000, 48000 127 }; 128 129 static u32 snd_ymfpci_calc_lpfK(u32 rate) 130 { 131 u32 i; 132 static u32 val[8] = { 133 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000, 134 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000 135 }; 136 137 if (rate == 44100) 138 return 0x40000000; /* FIXME: What's the right value? */ 139 for (i = 0; i < 8; i++) 140 if (rate <= def_rate[i]) 141 return val[i]; 142 return val[0]; 143 } 144 145 static u32 snd_ymfpci_calc_lpfQ(u32 rate) 146 { 147 u32 i; 148 static u32 val[8] = { 149 0x35280000, 0x34A70000, 0x32020000, 0x31770000, 150 0x31390000, 0x31C90000, 0x33D00000, 0x40000000 151 }; 152 153 if (rate == 44100) 154 return 0x370A0000; 155 for (i = 0; i < 8; i++) 156 if (rate <= def_rate[i]) 157 return val[i]; 158 return val[0]; 159 } 160 161 /* 162 * Hardware start management 163 */ 164 165 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip) 166 { 167 unsigned long flags; 168 169 spin_lock_irqsave(&chip->reg_lock, flags); 170 if (chip->start_count++ > 0) 171 goto __end; 172 snd_ymfpci_writel(chip, YDSXGR_MODE, 173 snd_ymfpci_readl(chip, YDSXGR_MODE) | 3); 174 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 175 __end: 176 spin_unlock_irqrestore(&chip->reg_lock, flags); 177 } 178 179 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip) 180 { 181 unsigned long flags; 182 long timeout = 1000; 183 184 spin_lock_irqsave(&chip->reg_lock, flags); 185 if (--chip->start_count > 0) 186 goto __end; 187 snd_ymfpci_writel(chip, YDSXGR_MODE, 188 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3); 189 while (timeout-- > 0) { 190 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0) 191 break; 192 } 193 if (atomic_read(&chip->interrupt_sleep_count)) { 194 atomic_set(&chip->interrupt_sleep_count, 0); 195 wake_up(&chip->interrupt_sleep); 196 } 197 __end: 198 spin_unlock_irqrestore(&chip->reg_lock, flags); 199 } 200 201 /* 202 * Playback voice management 203 */ 204 205 static int voice_alloc(struct snd_ymfpci *chip, 206 enum snd_ymfpci_voice_type type, int pair, 207 struct snd_ymfpci_voice **rvoice) 208 { 209 struct snd_ymfpci_voice *voice, *voice2; 210 int idx; 211 212 *rvoice = NULL; 213 for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) { 214 voice = &chip->voices[idx]; 215 voice2 = pair ? &chip->voices[idx+1] : NULL; 216 if (voice->use || (voice2 && voice2->use)) 217 continue; 218 voice->use = 1; 219 if (voice2) 220 voice2->use = 1; 221 switch (type) { 222 case YMFPCI_PCM: 223 voice->pcm = 1; 224 if (voice2) 225 voice2->pcm = 1; 226 break; 227 case YMFPCI_SYNTH: 228 voice->synth = 1; 229 break; 230 case YMFPCI_MIDI: 231 voice->midi = 1; 232 break; 233 } 234 snd_ymfpci_hw_start(chip); 235 if (voice2) 236 snd_ymfpci_hw_start(chip); 237 *rvoice = voice; 238 return 0; 239 } 240 return -ENOMEM; 241 } 242 243 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip, 244 enum snd_ymfpci_voice_type type, int pair, 245 struct snd_ymfpci_voice **rvoice) 246 { 247 unsigned long flags; 248 int result; 249 250 if (snd_BUG_ON(!rvoice)) 251 return -EINVAL; 252 if (snd_BUG_ON(pair && type != YMFPCI_PCM)) 253 return -EINVAL; 254 255 spin_lock_irqsave(&chip->voice_lock, flags); 256 for (;;) { 257 result = voice_alloc(chip, type, pair, rvoice); 258 if (result == 0 || type != YMFPCI_PCM) 259 break; 260 /* TODO: synth/midi voice deallocation */ 261 break; 262 } 263 spin_unlock_irqrestore(&chip->voice_lock, flags); 264 return result; 265 } 266 267 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice) 268 { 269 unsigned long flags; 270 271 if (snd_BUG_ON(!pvoice)) 272 return -EINVAL; 273 snd_ymfpci_hw_stop(chip); 274 spin_lock_irqsave(&chip->voice_lock, flags); 275 if (pvoice->number == chip->src441_used) { 276 chip->src441_used = -1; 277 pvoice->ypcm->use_441_slot = 0; 278 } 279 pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0; 280 pvoice->ypcm = NULL; 281 pvoice->interrupt = NULL; 282 spin_unlock_irqrestore(&chip->voice_lock, flags); 283 return 0; 284 } 285 286 /* 287 * PCM part 288 */ 289 290 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice) 291 { 292 struct snd_ymfpci_pcm *ypcm; 293 u32 pos, delta; 294 295 if ((ypcm = voice->ypcm) == NULL) 296 return; 297 if (ypcm->substream == NULL) 298 return; 299 spin_lock(&chip->reg_lock); 300 if (ypcm->running) { 301 pos = le32_to_cpu(voice->bank[chip->active_bank].start); 302 if (pos < ypcm->last_pos) 303 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 304 else 305 delta = pos - ypcm->last_pos; 306 ypcm->period_pos += delta; 307 ypcm->last_pos = pos; 308 if (ypcm->period_pos >= ypcm->period_size) { 309 /* 310 dev_dbg(chip->card->dev, 311 "done - active_bank = 0x%x, start = 0x%x\n", 312 chip->active_bank, 313 voice->bank[chip->active_bank].start); 314 */ 315 ypcm->period_pos %= ypcm->period_size; 316 spin_unlock(&chip->reg_lock); 317 snd_pcm_period_elapsed(ypcm->substream); 318 spin_lock(&chip->reg_lock); 319 } 320 321 if (unlikely(ypcm->update_pcm_vol)) { 322 unsigned int subs = ypcm->substream->number; 323 unsigned int next_bank = 1 - chip->active_bank; 324 struct snd_ymfpci_playback_bank *bank; 325 __le32 volume; 326 327 bank = &voice->bank[next_bank]; 328 volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15); 329 bank->left_gain_end = volume; 330 if (ypcm->output_rear) 331 bank->eff2_gain_end = volume; 332 if (ypcm->voices[1]) 333 bank = &ypcm->voices[1]->bank[next_bank]; 334 volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15); 335 bank->right_gain_end = volume; 336 if (ypcm->output_rear) 337 bank->eff3_gain_end = volume; 338 ypcm->update_pcm_vol--; 339 } 340 } 341 spin_unlock(&chip->reg_lock); 342 } 343 344 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream) 345 { 346 struct snd_pcm_runtime *runtime = substream->runtime; 347 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 348 struct snd_ymfpci *chip = ypcm->chip; 349 u32 pos, delta; 350 351 spin_lock(&chip->reg_lock); 352 if (ypcm->running) { 353 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 354 if (pos < ypcm->last_pos) 355 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 356 else 357 delta = pos - ypcm->last_pos; 358 ypcm->period_pos += delta; 359 ypcm->last_pos = pos; 360 if (ypcm->period_pos >= ypcm->period_size) { 361 ypcm->period_pos %= ypcm->period_size; 362 /* 363 dev_dbg(chip->card->dev, 364 "done - active_bank = 0x%x, start = 0x%x\n", 365 chip->active_bank, 366 voice->bank[chip->active_bank].start); 367 */ 368 spin_unlock(&chip->reg_lock); 369 snd_pcm_period_elapsed(substream); 370 spin_lock(&chip->reg_lock); 371 } 372 } 373 spin_unlock(&chip->reg_lock); 374 } 375 376 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream, 377 int cmd) 378 { 379 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 380 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 381 struct snd_kcontrol *kctl = NULL; 382 int result = 0; 383 384 spin_lock(&chip->reg_lock); 385 if (ypcm->voices[0] == NULL) { 386 result = -EINVAL; 387 goto __unlock; 388 } 389 switch (cmd) { 390 case SNDRV_PCM_TRIGGER_START: 391 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 392 case SNDRV_PCM_TRIGGER_RESUME: 393 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr); 394 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 395 chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr); 396 ypcm->running = 1; 397 break; 398 case SNDRV_PCM_TRIGGER_STOP: 399 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 400 kctl = chip->pcm_mixer[substream->number].ctl; 401 kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 402 } 403 /* fall through */ 404 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 405 case SNDRV_PCM_TRIGGER_SUSPEND: 406 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0; 407 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 408 chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0; 409 ypcm->running = 0; 410 break; 411 default: 412 result = -EINVAL; 413 break; 414 } 415 __unlock: 416 spin_unlock(&chip->reg_lock); 417 if (kctl) 418 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 419 return result; 420 } 421 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream, 422 int cmd) 423 { 424 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 425 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 426 int result = 0; 427 u32 tmp; 428 429 spin_lock(&chip->reg_lock); 430 switch (cmd) { 431 case SNDRV_PCM_TRIGGER_START: 432 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 433 case SNDRV_PCM_TRIGGER_RESUME: 434 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number); 435 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 436 ypcm->running = 1; 437 break; 438 case SNDRV_PCM_TRIGGER_STOP: 439 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 440 case SNDRV_PCM_TRIGGER_SUSPEND: 441 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number); 442 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 443 ypcm->running = 0; 444 break; 445 default: 446 result = -EINVAL; 447 break; 448 } 449 spin_unlock(&chip->reg_lock); 450 return result; 451 } 452 453 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices) 454 { 455 int err; 456 457 if (ypcm->voices[1] != NULL && voices < 2) { 458 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]); 459 ypcm->voices[1] = NULL; 460 } 461 if (voices == 1 && ypcm->voices[0] != NULL) 462 return 0; /* already allocated */ 463 if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL) 464 return 0; /* already allocated */ 465 if (voices > 1) { 466 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) { 467 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]); 468 ypcm->voices[0] = NULL; 469 } 470 } 471 err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]); 472 if (err < 0) 473 return err; 474 ypcm->voices[0]->ypcm = ypcm; 475 ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt; 476 if (voices > 1) { 477 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1]; 478 ypcm->voices[1]->ypcm = ypcm; 479 } 480 return 0; 481 } 482 483 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx, 484 struct snd_pcm_runtime *runtime, 485 int has_pcm_volume) 486 { 487 struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx]; 488 u32 format; 489 u32 delta = snd_ymfpci_calc_delta(runtime->rate); 490 u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate); 491 u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate); 492 struct snd_ymfpci_playback_bank *bank; 493 unsigned int nbank; 494 __le32 vol_left, vol_right; 495 u8 use_left, use_right; 496 unsigned long flags; 497 498 if (snd_BUG_ON(!voice)) 499 return; 500 if (runtime->channels == 1) { 501 use_left = 1; 502 use_right = 1; 503 } else { 504 use_left = (voiceidx & 1) == 0; 505 use_right = !use_left; 506 } 507 if (has_pcm_volume) { 508 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer 509 [ypcm->substream->number].left << 15); 510 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer 511 [ypcm->substream->number].right << 15); 512 } else { 513 vol_left = cpu_to_le32(0x40000000); 514 vol_right = cpu_to_le32(0x40000000); 515 } 516 spin_lock_irqsave(&ypcm->chip->voice_lock, flags); 517 format = runtime->channels == 2 ? 0x00010000 : 0; 518 if (snd_pcm_format_width(runtime->format) == 8) 519 format |= 0x80000000; 520 else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && 521 runtime->rate == 44100 && runtime->channels == 2 && 522 voiceidx == 0 && (ypcm->chip->src441_used == -1 || 523 ypcm->chip->src441_used == voice->number)) { 524 ypcm->chip->src441_used = voice->number; 525 ypcm->use_441_slot = 1; 526 format |= 0x10000000; 527 } 528 if (ypcm->chip->src441_used == voice->number && 529 (format & 0x10000000) == 0) { 530 ypcm->chip->src441_used = -1; 531 ypcm->use_441_slot = 0; 532 } 533 if (runtime->channels == 2 && (voiceidx & 1) != 0) 534 format |= 1; 535 spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags); 536 for (nbank = 0; nbank < 2; nbank++) { 537 bank = &voice->bank[nbank]; 538 memset(bank, 0, sizeof(*bank)); 539 bank->format = cpu_to_le32(format); 540 bank->base = cpu_to_le32(runtime->dma_addr); 541 bank->loop_end = cpu_to_le32(ypcm->buffer_size); 542 bank->lpfQ = cpu_to_le32(lpfQ); 543 bank->delta = 544 bank->delta_end = cpu_to_le32(delta); 545 bank->lpfK = 546 bank->lpfK_end = cpu_to_le32(lpfK); 547 bank->eg_gain = 548 bank->eg_gain_end = cpu_to_le32(0x40000000); 549 550 if (ypcm->output_front) { 551 if (use_left) { 552 bank->left_gain = 553 bank->left_gain_end = vol_left; 554 } 555 if (use_right) { 556 bank->right_gain = 557 bank->right_gain_end = vol_right; 558 } 559 } 560 if (ypcm->output_rear) { 561 if (!ypcm->swap_rear) { 562 if (use_left) { 563 bank->eff2_gain = 564 bank->eff2_gain_end = vol_left; 565 } 566 if (use_right) { 567 bank->eff3_gain = 568 bank->eff3_gain_end = vol_right; 569 } 570 } else { 571 /* The SPDIF out channels seem to be swapped, so we have 572 * to swap them here, too. The rear analog out channels 573 * will be wrong, but otherwise AC3 would not work. 574 */ 575 if (use_left) { 576 bank->eff3_gain = 577 bank->eff3_gain_end = vol_left; 578 } 579 if (use_right) { 580 bank->eff2_gain = 581 bank->eff2_gain_end = vol_right; 582 } 583 } 584 } 585 } 586 } 587 588 static int snd_ymfpci_ac3_init(struct snd_ymfpci *chip) 589 { 590 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &chip->pci->dev, 591 4096, &chip->ac3_tmp_base) < 0) 592 return -ENOMEM; 593 594 chip->bank_effect[3][0]->base = 595 chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr); 596 chip->bank_effect[3][0]->loop_end = 597 chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024); 598 chip->bank_effect[4][0]->base = 599 chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048); 600 chip->bank_effect[4][0]->loop_end = 601 chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024); 602 603 spin_lock_irq(&chip->reg_lock); 604 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 605 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3); 606 spin_unlock_irq(&chip->reg_lock); 607 return 0; 608 } 609 610 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip) 611 { 612 spin_lock_irq(&chip->reg_lock); 613 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 614 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3)); 615 spin_unlock_irq(&chip->reg_lock); 616 // snd_ymfpci_irq_wait(chip); 617 if (chip->ac3_tmp_base.area) { 618 snd_dma_free_pages(&chip->ac3_tmp_base); 619 chip->ac3_tmp_base.area = NULL; 620 } 621 return 0; 622 } 623 624 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream, 625 struct snd_pcm_hw_params *hw_params) 626 { 627 struct snd_pcm_runtime *runtime = substream->runtime; 628 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 629 int err; 630 631 if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0) 632 return err; 633 if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0) 634 return err; 635 return 0; 636 } 637 638 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream) 639 { 640 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 641 struct snd_pcm_runtime *runtime = substream->runtime; 642 struct snd_ymfpci_pcm *ypcm; 643 644 if (runtime->private_data == NULL) 645 return 0; 646 ypcm = runtime->private_data; 647 648 /* wait, until the PCI operations are not finished */ 649 snd_ymfpci_irq_wait(chip); 650 snd_pcm_lib_free_pages(substream); 651 if (ypcm->voices[1]) { 652 snd_ymfpci_voice_free(chip, ypcm->voices[1]); 653 ypcm->voices[1] = NULL; 654 } 655 if (ypcm->voices[0]) { 656 snd_ymfpci_voice_free(chip, ypcm->voices[0]); 657 ypcm->voices[0] = NULL; 658 } 659 return 0; 660 } 661 662 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream) 663 { 664 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 665 struct snd_pcm_runtime *runtime = substream->runtime; 666 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 667 struct snd_kcontrol *kctl; 668 unsigned int nvoice; 669 670 ypcm->period_size = runtime->period_size; 671 ypcm->buffer_size = runtime->buffer_size; 672 ypcm->period_pos = 0; 673 ypcm->last_pos = 0; 674 for (nvoice = 0; nvoice < runtime->channels; nvoice++) 675 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime, 676 substream->pcm == chip->pcm); 677 678 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 679 kctl = chip->pcm_mixer[substream->number].ctl; 680 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 681 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 682 } 683 return 0; 684 } 685 686 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream, 687 struct snd_pcm_hw_params *hw_params) 688 { 689 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 690 } 691 692 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream) 693 { 694 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 695 696 /* wait, until the PCI operations are not finished */ 697 snd_ymfpci_irq_wait(chip); 698 return snd_pcm_lib_free_pages(substream); 699 } 700 701 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream) 702 { 703 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 704 struct snd_pcm_runtime *runtime = substream->runtime; 705 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 706 struct snd_ymfpci_capture_bank * bank; 707 int nbank; 708 u32 rate, format; 709 710 ypcm->period_size = runtime->period_size; 711 ypcm->buffer_size = runtime->buffer_size; 712 ypcm->period_pos = 0; 713 ypcm->last_pos = 0; 714 ypcm->shift = 0; 715 rate = ((48000 * 4096) / runtime->rate) - 1; 716 format = 0; 717 if (runtime->channels == 2) { 718 format |= 2; 719 ypcm->shift++; 720 } 721 if (snd_pcm_format_width(runtime->format) == 8) 722 format |= 1; 723 else 724 ypcm->shift++; 725 switch (ypcm->capture_bank_number) { 726 case 0: 727 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format); 728 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate); 729 break; 730 case 1: 731 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format); 732 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate); 733 break; 734 } 735 for (nbank = 0; nbank < 2; nbank++) { 736 bank = chip->bank_capture[ypcm->capture_bank_number][nbank]; 737 bank->base = cpu_to_le32(runtime->dma_addr); 738 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift); 739 bank->start = 0; 740 bank->num_of_loops = 0; 741 } 742 return 0; 743 } 744 745 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream) 746 { 747 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 748 struct snd_pcm_runtime *runtime = substream->runtime; 749 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 750 struct snd_ymfpci_voice *voice = ypcm->voices[0]; 751 752 if (!(ypcm->running && voice)) 753 return 0; 754 return le32_to_cpu(voice->bank[chip->active_bank].start); 755 } 756 757 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream) 758 { 759 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 760 struct snd_pcm_runtime *runtime = substream->runtime; 761 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 762 763 if (!ypcm->running) 764 return 0; 765 return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 766 } 767 768 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip) 769 { 770 wait_queue_entry_t wait; 771 int loops = 4; 772 773 while (loops-- > 0) { 774 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0) 775 continue; 776 init_waitqueue_entry(&wait, current); 777 add_wait_queue(&chip->interrupt_sleep, &wait); 778 atomic_inc(&chip->interrupt_sleep_count); 779 schedule_timeout_uninterruptible(msecs_to_jiffies(50)); 780 remove_wait_queue(&chip->interrupt_sleep, &wait); 781 } 782 } 783 784 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id) 785 { 786 struct snd_ymfpci *chip = dev_id; 787 u32 status, nvoice, mode; 788 struct snd_ymfpci_voice *voice; 789 790 status = snd_ymfpci_readl(chip, YDSXGR_STATUS); 791 if (status & 0x80000000) { 792 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 793 spin_lock(&chip->voice_lock); 794 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) { 795 voice = &chip->voices[nvoice]; 796 if (voice->interrupt) 797 voice->interrupt(chip, voice); 798 } 799 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) { 800 if (chip->capture_substream[nvoice]) 801 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]); 802 } 803 #if 0 804 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) { 805 if (chip->effect_substream[nvoice]) 806 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]); 807 } 808 #endif 809 spin_unlock(&chip->voice_lock); 810 spin_lock(&chip->reg_lock); 811 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000); 812 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2; 813 snd_ymfpci_writel(chip, YDSXGR_MODE, mode); 814 spin_unlock(&chip->reg_lock); 815 816 if (atomic_read(&chip->interrupt_sleep_count)) { 817 atomic_set(&chip->interrupt_sleep_count, 0); 818 wake_up(&chip->interrupt_sleep); 819 } 820 } 821 822 status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG); 823 if (status & 1) { 824 if (chip->timer) 825 snd_timer_interrupt(chip->timer, chip->timer_ticks); 826 } 827 snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status); 828 829 if (chip->rawmidi) 830 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data); 831 return IRQ_HANDLED; 832 } 833 834 static const struct snd_pcm_hardware snd_ymfpci_playback = 835 { 836 .info = (SNDRV_PCM_INFO_MMAP | 837 SNDRV_PCM_INFO_MMAP_VALID | 838 SNDRV_PCM_INFO_INTERLEAVED | 839 SNDRV_PCM_INFO_BLOCK_TRANSFER | 840 SNDRV_PCM_INFO_PAUSE | 841 SNDRV_PCM_INFO_RESUME), 842 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 843 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 844 .rate_min = 8000, 845 .rate_max = 48000, 846 .channels_min = 1, 847 .channels_max = 2, 848 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 849 .period_bytes_min = 64, 850 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 851 .periods_min = 3, 852 .periods_max = 1024, 853 .fifo_size = 0, 854 }; 855 856 static const struct snd_pcm_hardware snd_ymfpci_capture = 857 { 858 .info = (SNDRV_PCM_INFO_MMAP | 859 SNDRV_PCM_INFO_MMAP_VALID | 860 SNDRV_PCM_INFO_INTERLEAVED | 861 SNDRV_PCM_INFO_BLOCK_TRANSFER | 862 SNDRV_PCM_INFO_PAUSE | 863 SNDRV_PCM_INFO_RESUME), 864 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 865 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 866 .rate_min = 8000, 867 .rate_max = 48000, 868 .channels_min = 1, 869 .channels_max = 2, 870 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 871 .period_bytes_min = 64, 872 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 873 .periods_min = 3, 874 .periods_max = 1024, 875 .fifo_size = 0, 876 }; 877 878 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime) 879 { 880 kfree(runtime->private_data); 881 } 882 883 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream) 884 { 885 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 886 struct snd_pcm_runtime *runtime = substream->runtime; 887 struct snd_ymfpci_pcm *ypcm; 888 int err; 889 890 runtime->hw = snd_ymfpci_playback; 891 /* FIXME? True value is 256/48 = 5.33333 ms */ 892 err = snd_pcm_hw_constraint_minmax(runtime, 893 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 894 5334, UINT_MAX); 895 if (err < 0) 896 return err; 897 err = snd_pcm_hw_rule_noresample(runtime, 48000); 898 if (err < 0) 899 return err; 900 901 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 902 if (ypcm == NULL) 903 return -ENOMEM; 904 ypcm->chip = chip; 905 ypcm->type = PLAYBACK_VOICE; 906 ypcm->substream = substream; 907 runtime->private_data = ypcm; 908 runtime->private_free = snd_ymfpci_pcm_free_substream; 909 return 0; 910 } 911 912 /* call with spinlock held */ 913 static void ymfpci_open_extension(struct snd_ymfpci *chip) 914 { 915 if (! chip->rear_opened) { 916 if (! chip->spdif_opened) /* set AC3 */ 917 snd_ymfpci_writel(chip, YDSXGR_MODE, 918 snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30)); 919 /* enable second codec (4CHEN) */ 920 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 921 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010); 922 } 923 } 924 925 /* call with spinlock held */ 926 static void ymfpci_close_extension(struct snd_ymfpci *chip) 927 { 928 if (! chip->rear_opened) { 929 if (! chip->spdif_opened) 930 snd_ymfpci_writel(chip, YDSXGR_MODE, 931 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30)); 932 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 933 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010); 934 } 935 } 936 937 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream) 938 { 939 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 940 struct snd_pcm_runtime *runtime = substream->runtime; 941 struct snd_ymfpci_pcm *ypcm; 942 int err; 943 944 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 945 return err; 946 ypcm = runtime->private_data; 947 ypcm->output_front = 1; 948 ypcm->output_rear = chip->mode_dup4ch ? 1 : 0; 949 ypcm->swap_rear = 0; 950 spin_lock_irq(&chip->reg_lock); 951 if (ypcm->output_rear) { 952 ymfpci_open_extension(chip); 953 chip->rear_opened++; 954 } 955 spin_unlock_irq(&chip->reg_lock); 956 return 0; 957 } 958 959 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream) 960 { 961 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 962 struct snd_pcm_runtime *runtime = substream->runtime; 963 struct snd_ymfpci_pcm *ypcm; 964 int err; 965 966 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 967 return err; 968 ypcm = runtime->private_data; 969 ypcm->output_front = 0; 970 ypcm->output_rear = 1; 971 ypcm->swap_rear = 1; 972 spin_lock_irq(&chip->reg_lock); 973 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 974 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2); 975 ymfpci_open_extension(chip); 976 chip->spdif_pcm_bits = chip->spdif_bits; 977 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 978 chip->spdif_opened++; 979 spin_unlock_irq(&chip->reg_lock); 980 981 chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 982 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 983 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 984 return 0; 985 } 986 987 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream) 988 { 989 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 990 struct snd_pcm_runtime *runtime = substream->runtime; 991 struct snd_ymfpci_pcm *ypcm; 992 int err; 993 994 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 995 return err; 996 ypcm = runtime->private_data; 997 ypcm->output_front = 0; 998 ypcm->output_rear = 1; 999 ypcm->swap_rear = 0; 1000 spin_lock_irq(&chip->reg_lock); 1001 ymfpci_open_extension(chip); 1002 chip->rear_opened++; 1003 spin_unlock_irq(&chip->reg_lock); 1004 return 0; 1005 } 1006 1007 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream, 1008 u32 capture_bank_number) 1009 { 1010 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1011 struct snd_pcm_runtime *runtime = substream->runtime; 1012 struct snd_ymfpci_pcm *ypcm; 1013 int err; 1014 1015 runtime->hw = snd_ymfpci_capture; 1016 /* FIXME? True value is 256/48 = 5.33333 ms */ 1017 err = snd_pcm_hw_constraint_minmax(runtime, 1018 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1019 5334, UINT_MAX); 1020 if (err < 0) 1021 return err; 1022 err = snd_pcm_hw_rule_noresample(runtime, 48000); 1023 if (err < 0) 1024 return err; 1025 1026 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 1027 if (ypcm == NULL) 1028 return -ENOMEM; 1029 ypcm->chip = chip; 1030 ypcm->type = capture_bank_number + CAPTURE_REC; 1031 ypcm->substream = substream; 1032 ypcm->capture_bank_number = capture_bank_number; 1033 chip->capture_substream[capture_bank_number] = substream; 1034 runtime->private_data = ypcm; 1035 runtime->private_free = snd_ymfpci_pcm_free_substream; 1036 snd_ymfpci_hw_start(chip); 1037 return 0; 1038 } 1039 1040 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream) 1041 { 1042 return snd_ymfpci_capture_open(substream, 0); 1043 } 1044 1045 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream) 1046 { 1047 return snd_ymfpci_capture_open(substream, 1); 1048 } 1049 1050 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream) 1051 { 1052 return 0; 1053 } 1054 1055 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream) 1056 { 1057 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1058 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1059 1060 spin_lock_irq(&chip->reg_lock); 1061 if (ypcm->output_rear && chip->rear_opened > 0) { 1062 chip->rear_opened--; 1063 ymfpci_close_extension(chip); 1064 } 1065 spin_unlock_irq(&chip->reg_lock); 1066 return snd_ymfpci_playback_close_1(substream); 1067 } 1068 1069 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream) 1070 { 1071 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1072 1073 spin_lock_irq(&chip->reg_lock); 1074 chip->spdif_opened = 0; 1075 ymfpci_close_extension(chip); 1076 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 1077 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2); 1078 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1079 spin_unlock_irq(&chip->reg_lock); 1080 chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1081 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 1082 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 1083 return snd_ymfpci_playback_close_1(substream); 1084 } 1085 1086 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream) 1087 { 1088 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1089 1090 spin_lock_irq(&chip->reg_lock); 1091 if (chip->rear_opened > 0) { 1092 chip->rear_opened--; 1093 ymfpci_close_extension(chip); 1094 } 1095 spin_unlock_irq(&chip->reg_lock); 1096 return snd_ymfpci_playback_close_1(substream); 1097 } 1098 1099 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream) 1100 { 1101 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1102 struct snd_pcm_runtime *runtime = substream->runtime; 1103 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 1104 1105 if (ypcm != NULL) { 1106 chip->capture_substream[ypcm->capture_bank_number] = NULL; 1107 snd_ymfpci_hw_stop(chip); 1108 } 1109 return 0; 1110 } 1111 1112 static const struct snd_pcm_ops snd_ymfpci_playback_ops = { 1113 .open = snd_ymfpci_playback_open, 1114 .close = snd_ymfpci_playback_close, 1115 .ioctl = snd_pcm_lib_ioctl, 1116 .hw_params = snd_ymfpci_playback_hw_params, 1117 .hw_free = snd_ymfpci_playback_hw_free, 1118 .prepare = snd_ymfpci_playback_prepare, 1119 .trigger = snd_ymfpci_playback_trigger, 1120 .pointer = snd_ymfpci_playback_pointer, 1121 }; 1122 1123 static const struct snd_pcm_ops snd_ymfpci_capture_rec_ops = { 1124 .open = snd_ymfpci_capture_rec_open, 1125 .close = snd_ymfpci_capture_close, 1126 .ioctl = snd_pcm_lib_ioctl, 1127 .hw_params = snd_ymfpci_capture_hw_params, 1128 .hw_free = snd_ymfpci_capture_hw_free, 1129 .prepare = snd_ymfpci_capture_prepare, 1130 .trigger = snd_ymfpci_capture_trigger, 1131 .pointer = snd_ymfpci_capture_pointer, 1132 }; 1133 1134 int snd_ymfpci_pcm(struct snd_ymfpci *chip, int device) 1135 { 1136 struct snd_pcm *pcm; 1137 int err; 1138 1139 if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0) 1140 return err; 1141 pcm->private_data = chip; 1142 1143 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops); 1144 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops); 1145 1146 /* global setup */ 1147 pcm->info_flags = 0; 1148 strcpy(pcm->name, "YMFPCI"); 1149 chip->pcm = pcm; 1150 1151 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1152 &chip->pci->dev, 1153 64*1024, 256*1024); 1154 1155 return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1156 snd_pcm_std_chmaps, 2, 0, NULL); 1157 } 1158 1159 static const struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = { 1160 .open = snd_ymfpci_capture_ac97_open, 1161 .close = snd_ymfpci_capture_close, 1162 .ioctl = snd_pcm_lib_ioctl, 1163 .hw_params = snd_ymfpci_capture_hw_params, 1164 .hw_free = snd_ymfpci_capture_hw_free, 1165 .prepare = snd_ymfpci_capture_prepare, 1166 .trigger = snd_ymfpci_capture_trigger, 1167 .pointer = snd_ymfpci_capture_pointer, 1168 }; 1169 1170 int snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device) 1171 { 1172 struct snd_pcm *pcm; 1173 int err; 1174 1175 if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0) 1176 return err; 1177 pcm->private_data = chip; 1178 1179 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops); 1180 1181 /* global setup */ 1182 pcm->info_flags = 0; 1183 sprintf(pcm->name, "YMFPCI - %s", 1184 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97"); 1185 chip->pcm2 = pcm; 1186 1187 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1188 &chip->pci->dev, 1189 64*1024, 256*1024); 1190 1191 return 0; 1192 } 1193 1194 static const struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = { 1195 .open = snd_ymfpci_playback_spdif_open, 1196 .close = snd_ymfpci_playback_spdif_close, 1197 .ioctl = snd_pcm_lib_ioctl, 1198 .hw_params = snd_ymfpci_playback_hw_params, 1199 .hw_free = snd_ymfpci_playback_hw_free, 1200 .prepare = snd_ymfpci_playback_prepare, 1201 .trigger = snd_ymfpci_playback_trigger, 1202 .pointer = snd_ymfpci_playback_pointer, 1203 }; 1204 1205 int snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device) 1206 { 1207 struct snd_pcm *pcm; 1208 int err; 1209 1210 if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0) 1211 return err; 1212 pcm->private_data = chip; 1213 1214 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops); 1215 1216 /* global setup */ 1217 pcm->info_flags = 0; 1218 strcpy(pcm->name, "YMFPCI - IEC958"); 1219 chip->pcm_spdif = pcm; 1220 1221 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1222 &chip->pci->dev, 1223 64*1024, 256*1024); 1224 1225 return 0; 1226 } 1227 1228 static const struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = { 1229 .open = snd_ymfpci_playback_4ch_open, 1230 .close = snd_ymfpci_playback_4ch_close, 1231 .ioctl = snd_pcm_lib_ioctl, 1232 .hw_params = snd_ymfpci_playback_hw_params, 1233 .hw_free = snd_ymfpci_playback_hw_free, 1234 .prepare = snd_ymfpci_playback_prepare, 1235 .trigger = snd_ymfpci_playback_trigger, 1236 .pointer = snd_ymfpci_playback_pointer, 1237 }; 1238 1239 static const struct snd_pcm_chmap_elem surround_map[] = { 1240 { .channels = 1, 1241 .map = { SNDRV_CHMAP_MONO } }, 1242 { .channels = 2, 1243 .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 1244 { } 1245 }; 1246 1247 int snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device) 1248 { 1249 struct snd_pcm *pcm; 1250 int err; 1251 1252 if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0) 1253 return err; 1254 pcm->private_data = chip; 1255 1256 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops); 1257 1258 /* global setup */ 1259 pcm->info_flags = 0; 1260 strcpy(pcm->name, "YMFPCI - Rear PCM"); 1261 chip->pcm_4ch = pcm; 1262 1263 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1264 &chip->pci->dev, 1265 64*1024, 256*1024); 1266 1267 return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1268 surround_map, 2, 0, NULL); 1269 } 1270 1271 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1272 { 1273 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1274 uinfo->count = 1; 1275 return 0; 1276 } 1277 1278 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol, 1279 struct snd_ctl_elem_value *ucontrol) 1280 { 1281 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1282 1283 spin_lock_irq(&chip->reg_lock); 1284 ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff; 1285 ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff; 1286 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1287 spin_unlock_irq(&chip->reg_lock); 1288 return 0; 1289 } 1290 1291 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol, 1292 struct snd_ctl_elem_value *ucontrol) 1293 { 1294 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1295 unsigned int val; 1296 int change; 1297 1298 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1299 (ucontrol->value.iec958.status[1] << 8); 1300 spin_lock_irq(&chip->reg_lock); 1301 change = chip->spdif_bits != val; 1302 chip->spdif_bits = val; 1303 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL) 1304 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1305 spin_unlock_irq(&chip->reg_lock); 1306 return change; 1307 } 1308 1309 static const struct snd_kcontrol_new snd_ymfpci_spdif_default = 1310 { 1311 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1312 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1313 .info = snd_ymfpci_spdif_default_info, 1314 .get = snd_ymfpci_spdif_default_get, 1315 .put = snd_ymfpci_spdif_default_put 1316 }; 1317 1318 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1319 { 1320 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1321 uinfo->count = 1; 1322 return 0; 1323 } 1324 1325 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1326 struct snd_ctl_elem_value *ucontrol) 1327 { 1328 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1329 1330 spin_lock_irq(&chip->reg_lock); 1331 ucontrol->value.iec958.status[0] = 0x3e; 1332 ucontrol->value.iec958.status[1] = 0xff; 1333 spin_unlock_irq(&chip->reg_lock); 1334 return 0; 1335 } 1336 1337 static const struct snd_kcontrol_new snd_ymfpci_spdif_mask = 1338 { 1339 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1340 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1341 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1342 .info = snd_ymfpci_spdif_mask_info, 1343 .get = snd_ymfpci_spdif_mask_get, 1344 }; 1345 1346 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1347 { 1348 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1349 uinfo->count = 1; 1350 return 0; 1351 } 1352 1353 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1354 struct snd_ctl_elem_value *ucontrol) 1355 { 1356 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1357 1358 spin_lock_irq(&chip->reg_lock); 1359 ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff; 1360 ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff; 1361 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1362 spin_unlock_irq(&chip->reg_lock); 1363 return 0; 1364 } 1365 1366 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1367 struct snd_ctl_elem_value *ucontrol) 1368 { 1369 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1370 unsigned int val; 1371 int change; 1372 1373 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1374 (ucontrol->value.iec958.status[1] << 8); 1375 spin_lock_irq(&chip->reg_lock); 1376 change = chip->spdif_pcm_bits != val; 1377 chip->spdif_pcm_bits = val; 1378 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2)) 1379 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 1380 spin_unlock_irq(&chip->reg_lock); 1381 return change; 1382 } 1383 1384 static const struct snd_kcontrol_new snd_ymfpci_spdif_stream = 1385 { 1386 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1387 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1388 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1389 .info = snd_ymfpci_spdif_stream_info, 1390 .get = snd_ymfpci_spdif_stream_get, 1391 .put = snd_ymfpci_spdif_stream_put 1392 }; 1393 1394 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) 1395 { 1396 static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"}; 1397 1398 return snd_ctl_enum_info(info, 1, 3, texts); 1399 } 1400 1401 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1402 { 1403 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1404 u16 reg; 1405 1406 spin_lock_irq(&chip->reg_lock); 1407 reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1408 spin_unlock_irq(&chip->reg_lock); 1409 if (!(reg & 0x100)) 1410 value->value.enumerated.item[0] = 0; 1411 else 1412 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0); 1413 return 0; 1414 } 1415 1416 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1417 { 1418 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1419 u16 reg, old_reg; 1420 1421 spin_lock_irq(&chip->reg_lock); 1422 old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1423 if (value->value.enumerated.item[0] == 0) 1424 reg = old_reg & ~0x100; 1425 else 1426 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9); 1427 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg); 1428 spin_unlock_irq(&chip->reg_lock); 1429 return reg != old_reg; 1430 } 1431 1432 static const struct snd_kcontrol_new snd_ymfpci_drec_source = { 1433 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1434 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1435 .name = "Direct Recording Source", 1436 .info = snd_ymfpci_drec_source_info, 1437 .get = snd_ymfpci_drec_source_get, 1438 .put = snd_ymfpci_drec_source_put 1439 }; 1440 1441 /* 1442 * Mixer controls 1443 */ 1444 1445 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \ 1446 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1447 .info = snd_ymfpci_info_single, \ 1448 .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \ 1449 .private_value = ((reg) | ((shift) << 16)) } 1450 1451 #define snd_ymfpci_info_single snd_ctl_boolean_mono_info 1452 1453 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol, 1454 struct snd_ctl_elem_value *ucontrol) 1455 { 1456 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1457 int reg = kcontrol->private_value & 0xffff; 1458 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1459 unsigned int mask = 1; 1460 1461 switch (reg) { 1462 case YDSXGR_SPDIFOUTCTRL: break; 1463 case YDSXGR_SPDIFINCTRL: break; 1464 default: return -EINVAL; 1465 } 1466 ucontrol->value.integer.value[0] = 1467 (snd_ymfpci_readl(chip, reg) >> shift) & mask; 1468 return 0; 1469 } 1470 1471 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol, 1472 struct snd_ctl_elem_value *ucontrol) 1473 { 1474 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1475 int reg = kcontrol->private_value & 0xffff; 1476 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1477 unsigned int mask = 1; 1478 int change; 1479 unsigned int val, oval; 1480 1481 switch (reg) { 1482 case YDSXGR_SPDIFOUTCTRL: break; 1483 case YDSXGR_SPDIFINCTRL: break; 1484 default: return -EINVAL; 1485 } 1486 val = (ucontrol->value.integer.value[0] & mask); 1487 val <<= shift; 1488 spin_lock_irq(&chip->reg_lock); 1489 oval = snd_ymfpci_readl(chip, reg); 1490 val = (oval & ~(mask << shift)) | val; 1491 change = val != oval; 1492 snd_ymfpci_writel(chip, reg, val); 1493 spin_unlock_irq(&chip->reg_lock); 1494 return change; 1495 } 1496 1497 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0); 1498 1499 #define YMFPCI_DOUBLE(xname, xindex, reg) \ 1500 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1501 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 1502 .info = snd_ymfpci_info_double, \ 1503 .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \ 1504 .private_value = reg, \ 1505 .tlv = { .p = db_scale_native } } 1506 1507 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1508 { 1509 unsigned int reg = kcontrol->private_value; 1510 1511 if (reg < 0x80 || reg >= 0xc0) 1512 return -EINVAL; 1513 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1514 uinfo->count = 2; 1515 uinfo->value.integer.min = 0; 1516 uinfo->value.integer.max = 16383; 1517 return 0; 1518 } 1519 1520 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1521 { 1522 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1523 unsigned int reg = kcontrol->private_value; 1524 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1525 unsigned int val; 1526 1527 if (reg < 0x80 || reg >= 0xc0) 1528 return -EINVAL; 1529 spin_lock_irq(&chip->reg_lock); 1530 val = snd_ymfpci_readl(chip, reg); 1531 spin_unlock_irq(&chip->reg_lock); 1532 ucontrol->value.integer.value[0] = (val >> shift_left) & mask; 1533 ucontrol->value.integer.value[1] = (val >> shift_right) & mask; 1534 return 0; 1535 } 1536 1537 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1538 { 1539 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1540 unsigned int reg = kcontrol->private_value; 1541 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1542 int change; 1543 unsigned int val1, val2, oval; 1544 1545 if (reg < 0x80 || reg >= 0xc0) 1546 return -EINVAL; 1547 val1 = ucontrol->value.integer.value[0] & mask; 1548 val2 = ucontrol->value.integer.value[1] & mask; 1549 val1 <<= shift_left; 1550 val2 <<= shift_right; 1551 spin_lock_irq(&chip->reg_lock); 1552 oval = snd_ymfpci_readl(chip, reg); 1553 val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2; 1554 change = val1 != oval; 1555 snd_ymfpci_writel(chip, reg, val1); 1556 spin_unlock_irq(&chip->reg_lock); 1557 return change; 1558 } 1559 1560 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol, 1561 struct snd_ctl_elem_value *ucontrol) 1562 { 1563 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1564 unsigned int reg = YDSXGR_NATIVEDACOUTVOL; 1565 unsigned int reg2 = YDSXGR_BUF441OUTVOL; 1566 int change; 1567 unsigned int value, oval; 1568 1569 value = ucontrol->value.integer.value[0] & 0x3fff; 1570 value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16; 1571 spin_lock_irq(&chip->reg_lock); 1572 oval = snd_ymfpci_readl(chip, reg); 1573 change = value != oval; 1574 snd_ymfpci_writel(chip, reg, value); 1575 snd_ymfpci_writel(chip, reg2, value); 1576 spin_unlock_irq(&chip->reg_lock); 1577 return change; 1578 } 1579 1580 /* 1581 * 4ch duplication 1582 */ 1583 #define snd_ymfpci_info_dup4ch snd_ctl_boolean_mono_info 1584 1585 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1586 { 1587 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1588 ucontrol->value.integer.value[0] = chip->mode_dup4ch; 1589 return 0; 1590 } 1591 1592 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1593 { 1594 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1595 int change; 1596 change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch); 1597 if (change) 1598 chip->mode_dup4ch = !!ucontrol->value.integer.value[0]; 1599 return change; 1600 } 1601 1602 static const struct snd_kcontrol_new snd_ymfpci_dup4ch = { 1603 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1604 .name = "4ch Duplication", 1605 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1606 .info = snd_ymfpci_info_dup4ch, 1607 .get = snd_ymfpci_get_dup4ch, 1608 .put = snd_ymfpci_put_dup4ch, 1609 }; 1610 1611 static struct snd_kcontrol_new snd_ymfpci_controls[] = { 1612 { 1613 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1614 .name = "Wave Playback Volume", 1615 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1616 SNDRV_CTL_ELEM_ACCESS_TLV_READ, 1617 .info = snd_ymfpci_info_double, 1618 .get = snd_ymfpci_get_double, 1619 .put = snd_ymfpci_put_nativedacvol, 1620 .private_value = YDSXGR_NATIVEDACOUTVOL, 1621 .tlv = { .p = db_scale_native }, 1622 }, 1623 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL), 1624 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL), 1625 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL), 1626 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL), 1627 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL), 1628 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL), 1629 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL), 1630 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL), 1631 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL), 1632 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL), 1633 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL), 1634 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL), 1635 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0), 1636 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0), 1637 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4), 1638 }; 1639 1640 1641 /* 1642 * GPIO 1643 */ 1644 1645 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin) 1646 { 1647 u16 reg, mode; 1648 unsigned long flags; 1649 1650 spin_lock_irqsave(&chip->reg_lock, flags); 1651 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1652 reg &= ~(1 << (pin + 8)); 1653 reg |= (1 << pin); 1654 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1655 /* set the level mode for input line */ 1656 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG); 1657 mode &= ~(3 << (pin * 2)); 1658 snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode); 1659 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1660 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS); 1661 spin_unlock_irqrestore(&chip->reg_lock, flags); 1662 return (mode >> pin) & 1; 1663 } 1664 1665 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable) 1666 { 1667 u16 reg; 1668 unsigned long flags; 1669 1670 spin_lock_irqsave(&chip->reg_lock, flags); 1671 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1672 reg &= ~(1 << pin); 1673 reg &= ~(1 << (pin + 8)); 1674 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1675 snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin); 1676 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1677 spin_unlock_irqrestore(&chip->reg_lock, flags); 1678 1679 return 0; 1680 } 1681 1682 #define snd_ymfpci_gpio_sw_info snd_ctl_boolean_mono_info 1683 1684 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1685 { 1686 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1687 int pin = (int)kcontrol->private_value; 1688 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1689 return 0; 1690 } 1691 1692 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1693 { 1694 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1695 int pin = (int)kcontrol->private_value; 1696 1697 if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) { 1698 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]); 1699 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1700 return 1; 1701 } 1702 return 0; 1703 } 1704 1705 static const struct snd_kcontrol_new snd_ymfpci_rear_shared = { 1706 .name = "Shared Rear/Line-In Switch", 1707 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1708 .info = snd_ymfpci_gpio_sw_info, 1709 .get = snd_ymfpci_gpio_sw_get, 1710 .put = snd_ymfpci_gpio_sw_put, 1711 .private_value = 2, 1712 }; 1713 1714 /* 1715 * PCM voice volume 1716 */ 1717 1718 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol, 1719 struct snd_ctl_elem_info *uinfo) 1720 { 1721 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1722 uinfo->count = 2; 1723 uinfo->value.integer.min = 0; 1724 uinfo->value.integer.max = 0x8000; 1725 return 0; 1726 } 1727 1728 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol, 1729 struct snd_ctl_elem_value *ucontrol) 1730 { 1731 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1732 unsigned int subs = kcontrol->id.subdevice; 1733 1734 ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left; 1735 ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right; 1736 return 0; 1737 } 1738 1739 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol, 1740 struct snd_ctl_elem_value *ucontrol) 1741 { 1742 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1743 unsigned int subs = kcontrol->id.subdevice; 1744 struct snd_pcm_substream *substream; 1745 unsigned long flags; 1746 1747 if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left || 1748 ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) { 1749 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0]; 1750 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1]; 1751 if (chip->pcm_mixer[subs].left > 0x8000) 1752 chip->pcm_mixer[subs].left = 0x8000; 1753 if (chip->pcm_mixer[subs].right > 0x8000) 1754 chip->pcm_mixer[subs].right = 0x8000; 1755 1756 substream = (struct snd_pcm_substream *)kcontrol->private_value; 1757 spin_lock_irqsave(&chip->voice_lock, flags); 1758 if (substream->runtime && substream->runtime->private_data) { 1759 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1760 if (!ypcm->use_441_slot) 1761 ypcm->update_pcm_vol = 2; 1762 } 1763 spin_unlock_irqrestore(&chip->voice_lock, flags); 1764 return 1; 1765 } 1766 return 0; 1767 } 1768 1769 static const struct snd_kcontrol_new snd_ymfpci_pcm_volume = { 1770 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1771 .name = "PCM Playback Volume", 1772 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1773 SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1774 .info = snd_ymfpci_pcm_vol_info, 1775 .get = snd_ymfpci_pcm_vol_get, 1776 .put = snd_ymfpci_pcm_vol_put, 1777 }; 1778 1779 1780 /* 1781 * Mixer routines 1782 */ 1783 1784 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus) 1785 { 1786 struct snd_ymfpci *chip = bus->private_data; 1787 chip->ac97_bus = NULL; 1788 } 1789 1790 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97) 1791 { 1792 struct snd_ymfpci *chip = ac97->private_data; 1793 chip->ac97 = NULL; 1794 } 1795 1796 int snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch) 1797 { 1798 struct snd_ac97_template ac97; 1799 struct snd_kcontrol *kctl; 1800 struct snd_pcm_substream *substream; 1801 unsigned int idx; 1802 int err; 1803 static struct snd_ac97_bus_ops ops = { 1804 .write = snd_ymfpci_codec_write, 1805 .read = snd_ymfpci_codec_read, 1806 }; 1807 1808 if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0) 1809 return err; 1810 chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus; 1811 chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */ 1812 1813 memset(&ac97, 0, sizeof(ac97)); 1814 ac97.private_data = chip; 1815 ac97.private_free = snd_ymfpci_mixer_free_ac97; 1816 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0) 1817 return err; 1818 1819 /* to be sure */ 1820 snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS, 1821 AC97_EA_VRA|AC97_EA_VRM, 0); 1822 1823 for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) { 1824 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0) 1825 return err; 1826 } 1827 if (chip->ac97->ext_id & AC97_EI_SDAC) { 1828 kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip); 1829 err = snd_ctl_add(chip->card, kctl); 1830 if (err < 0) 1831 return err; 1832 } 1833 1834 /* add S/PDIF control */ 1835 if (snd_BUG_ON(!chip->pcm_spdif)) 1836 return -ENXIO; 1837 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0) 1838 return err; 1839 kctl->id.device = chip->pcm_spdif->device; 1840 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0) 1841 return err; 1842 kctl->id.device = chip->pcm_spdif->device; 1843 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0) 1844 return err; 1845 kctl->id.device = chip->pcm_spdif->device; 1846 chip->spdif_pcm_ctl = kctl; 1847 1848 /* direct recording source */ 1849 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && 1850 (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0) 1851 return err; 1852 1853 /* 1854 * shared rear/line-in 1855 */ 1856 if (rear_switch) { 1857 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0) 1858 return err; 1859 } 1860 1861 /* per-voice volume */ 1862 substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; 1863 for (idx = 0; idx < 32; ++idx) { 1864 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip); 1865 if (!kctl) 1866 return -ENOMEM; 1867 kctl->id.device = chip->pcm->device; 1868 kctl->id.subdevice = idx; 1869 kctl->private_value = (unsigned long)substream; 1870 if ((err = snd_ctl_add(chip->card, kctl)) < 0) 1871 return err; 1872 chip->pcm_mixer[idx].left = 0x8000; 1873 chip->pcm_mixer[idx].right = 0x8000; 1874 chip->pcm_mixer[idx].ctl = kctl; 1875 substream = substream->next; 1876 } 1877 1878 return 0; 1879 } 1880 1881 1882 /* 1883 * timer 1884 */ 1885 1886 static int snd_ymfpci_timer_start(struct snd_timer *timer) 1887 { 1888 struct snd_ymfpci *chip; 1889 unsigned long flags; 1890 unsigned int count; 1891 1892 chip = snd_timer_chip(timer); 1893 spin_lock_irqsave(&chip->reg_lock, flags); 1894 if (timer->sticks > 1) { 1895 chip->timer_ticks = timer->sticks; 1896 count = timer->sticks - 1; 1897 } else { 1898 /* 1899 * Divisor 1 is not allowed; fake it by using divisor 2 and 1900 * counting two ticks for each interrupt. 1901 */ 1902 chip->timer_ticks = 2; 1903 count = 2 - 1; 1904 } 1905 snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count); 1906 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03); 1907 spin_unlock_irqrestore(&chip->reg_lock, flags); 1908 return 0; 1909 } 1910 1911 static int snd_ymfpci_timer_stop(struct snd_timer *timer) 1912 { 1913 struct snd_ymfpci *chip; 1914 unsigned long flags; 1915 1916 chip = snd_timer_chip(timer); 1917 spin_lock_irqsave(&chip->reg_lock, flags); 1918 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00); 1919 spin_unlock_irqrestore(&chip->reg_lock, flags); 1920 return 0; 1921 } 1922 1923 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer, 1924 unsigned long *num, unsigned long *den) 1925 { 1926 *num = 1; 1927 *den = 96000; 1928 return 0; 1929 } 1930 1931 static struct snd_timer_hardware snd_ymfpci_timer_hw = { 1932 .flags = SNDRV_TIMER_HW_AUTO, 1933 .resolution = 10417, /* 1 / 96 kHz = 10.41666...us */ 1934 .ticks = 0x10000, 1935 .start = snd_ymfpci_timer_start, 1936 .stop = snd_ymfpci_timer_stop, 1937 .precise_resolution = snd_ymfpci_timer_precise_resolution, 1938 }; 1939 1940 int snd_ymfpci_timer(struct snd_ymfpci *chip, int device) 1941 { 1942 struct snd_timer *timer = NULL; 1943 struct snd_timer_id tid; 1944 int err; 1945 1946 tid.dev_class = SNDRV_TIMER_CLASS_CARD; 1947 tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE; 1948 tid.card = chip->card->number; 1949 tid.device = device; 1950 tid.subdevice = 0; 1951 if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) { 1952 strcpy(timer->name, "YMFPCI timer"); 1953 timer->private_data = chip; 1954 timer->hw = snd_ymfpci_timer_hw; 1955 } 1956 chip->timer = timer; 1957 return err; 1958 } 1959 1960 1961 /* 1962 * proc interface 1963 */ 1964 1965 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 1966 struct snd_info_buffer *buffer) 1967 { 1968 struct snd_ymfpci *chip = entry->private_data; 1969 int i; 1970 1971 snd_iprintf(buffer, "YMFPCI\n\n"); 1972 for (i = 0; i <= YDSXGR_WORKBASE; i += 4) 1973 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i)); 1974 } 1975 1976 static int snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip) 1977 { 1978 return snd_card_ro_proc_new(card, "ymfpci", chip, snd_ymfpci_proc_read); 1979 } 1980 1981 /* 1982 * initialization routines 1983 */ 1984 1985 static void snd_ymfpci_aclink_reset(struct pci_dev * pci) 1986 { 1987 u8 cmd; 1988 1989 pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd); 1990 #if 0 // force to reset 1991 if (cmd & 0x03) { 1992 #endif 1993 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 1994 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03); 1995 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 1996 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0); 1997 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0); 1998 #if 0 1999 } 2000 #endif 2001 } 2002 2003 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip) 2004 { 2005 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001); 2006 } 2007 2008 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip) 2009 { 2010 u32 val; 2011 int timeout = 1000; 2012 2013 val = snd_ymfpci_readl(chip, YDSXGR_CONFIG); 2014 if (val) 2015 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000); 2016 while (timeout-- > 0) { 2017 val = snd_ymfpci_readl(chip, YDSXGR_STATUS); 2018 if ((val & 0x00000002) == 0) 2019 break; 2020 } 2021 } 2022 2023 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip) 2024 { 2025 int err, is_1e; 2026 const char *name; 2027 2028 err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw", 2029 &chip->pci->dev); 2030 if (err >= 0) { 2031 if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) { 2032 dev_err(chip->card->dev, 2033 "DSP microcode has wrong size\n"); 2034 err = -EINVAL; 2035 } 2036 } 2037 if (err < 0) 2038 return err; 2039 is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F || 2040 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C || 2041 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 || 2042 chip->device_id == PCI_DEVICE_ID_YAMAHA_754; 2043 name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw"; 2044 err = request_firmware(&chip->controller_microcode, name, 2045 &chip->pci->dev); 2046 if (err >= 0) { 2047 if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) { 2048 dev_err(chip->card->dev, 2049 "controller microcode has wrong size\n"); 2050 err = -EINVAL; 2051 } 2052 } 2053 if (err < 0) 2054 return err; 2055 return 0; 2056 } 2057 2058 MODULE_FIRMWARE("yamaha/ds1_dsp.fw"); 2059 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw"); 2060 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw"); 2061 2062 static void snd_ymfpci_download_image(struct snd_ymfpci *chip) 2063 { 2064 int i; 2065 u16 ctrl; 2066 const __le32 *inst; 2067 2068 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000); 2069 snd_ymfpci_disable_dsp(chip); 2070 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000); 2071 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000); 2072 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000); 2073 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000); 2074 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000); 2075 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000); 2076 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000); 2077 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2078 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2079 2080 /* setup DSP instruction code */ 2081 inst = (const __le32 *)chip->dsp_microcode->data; 2082 for (i = 0; i < YDSXG_DSPLENGTH / 4; i++) 2083 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), 2084 le32_to_cpu(inst[i])); 2085 2086 /* setup control instruction code */ 2087 inst = (const __le32 *)chip->controller_microcode->data; 2088 for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++) 2089 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), 2090 le32_to_cpu(inst[i])); 2091 2092 snd_ymfpci_enable_dsp(chip); 2093 } 2094 2095 static int snd_ymfpci_memalloc(struct snd_ymfpci *chip) 2096 { 2097 long size, playback_ctrl_size; 2098 int voice, bank, reg; 2099 u8 *ptr; 2100 dma_addr_t ptr_addr; 2101 2102 playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES; 2103 chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2; 2104 chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2; 2105 chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2; 2106 chip->work_size = YDSXG_DEFAULT_WORK_SIZE; 2107 2108 size = ALIGN(playback_ctrl_size, 0x100) + 2109 ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) + 2110 ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) + 2111 ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) + 2112 chip->work_size; 2113 /* work_ptr must be aligned to 256 bytes, but it's already 2114 covered with the kernel page allocation mechanism */ 2115 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &chip->pci->dev, 2116 size, &chip->work_ptr) < 0) 2117 return -ENOMEM; 2118 ptr = chip->work_ptr.area; 2119 ptr_addr = chip->work_ptr.addr; 2120 memset(ptr, 0, size); /* for sure */ 2121 2122 chip->bank_base_playback = ptr; 2123 chip->bank_base_playback_addr = ptr_addr; 2124 chip->ctrl_playback = (__le32 *)ptr; 2125 chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES); 2126 ptr += ALIGN(playback_ctrl_size, 0x100); 2127 ptr_addr += ALIGN(playback_ctrl_size, 0x100); 2128 for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) { 2129 chip->voices[voice].number = voice; 2130 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr; 2131 chip->voices[voice].bank_addr = ptr_addr; 2132 for (bank = 0; bank < 2; bank++) { 2133 chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr; 2134 ptr += chip->bank_size_playback; 2135 ptr_addr += chip->bank_size_playback; 2136 } 2137 } 2138 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2139 ptr_addr = ALIGN(ptr_addr, 0x100); 2140 chip->bank_base_capture = ptr; 2141 chip->bank_base_capture_addr = ptr_addr; 2142 for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++) 2143 for (bank = 0; bank < 2; bank++) { 2144 chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr; 2145 ptr += chip->bank_size_capture; 2146 ptr_addr += chip->bank_size_capture; 2147 } 2148 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2149 ptr_addr = ALIGN(ptr_addr, 0x100); 2150 chip->bank_base_effect = ptr; 2151 chip->bank_base_effect_addr = ptr_addr; 2152 for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++) 2153 for (bank = 0; bank < 2; bank++) { 2154 chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr; 2155 ptr += chip->bank_size_effect; 2156 ptr_addr += chip->bank_size_effect; 2157 } 2158 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2159 ptr_addr = ALIGN(ptr_addr, 0x100); 2160 chip->work_base = ptr; 2161 chip->work_base_addr = ptr_addr; 2162 2163 snd_BUG_ON(ptr + chip->work_size != 2164 chip->work_ptr.area + chip->work_ptr.bytes); 2165 2166 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr); 2167 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr); 2168 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr); 2169 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr); 2170 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2); 2171 2172 /* S/PDIF output initialization */ 2173 chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff; 2174 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0); 2175 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 2176 2177 /* S/PDIF input initialization */ 2178 snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0); 2179 2180 /* digital mixer setup */ 2181 for (reg = 0x80; reg < 0xc0; reg += 4) 2182 snd_ymfpci_writel(chip, reg, 0); 2183 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff); 2184 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff); 2185 snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff); 2186 snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff); 2187 snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff); 2188 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff); 2189 snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff); 2190 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff); 2191 2192 return 0; 2193 } 2194 2195 static int snd_ymfpci_free(struct snd_ymfpci *chip) 2196 { 2197 u16 ctrl; 2198 2199 if (snd_BUG_ON(!chip)) 2200 return -EINVAL; 2201 2202 if (chip->res_reg_area) { /* don't touch busy hardware */ 2203 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2204 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); 2205 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0); 2206 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0); 2207 snd_ymfpci_disable_dsp(chip); 2208 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0); 2209 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0); 2210 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0); 2211 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0); 2212 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0); 2213 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2214 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2215 } 2216 2217 snd_ymfpci_ac3_done(chip); 2218 2219 /* Set PCI device to D3 state */ 2220 #if 0 2221 /* FIXME: temporarily disabled, otherwise we cannot fire up 2222 * the chip again unless reboot. ACPI bug? 2223 */ 2224 pci_set_power_state(chip->pci, PCI_D3hot); 2225 #endif 2226 2227 #ifdef CONFIG_PM_SLEEP 2228 kfree(chip->saved_regs); 2229 #endif 2230 if (chip->irq >= 0) 2231 free_irq(chip->irq, chip); 2232 release_and_free_resource(chip->mpu_res); 2233 release_and_free_resource(chip->fm_res); 2234 snd_ymfpci_free_gameport(chip); 2235 iounmap(chip->reg_area_virt); 2236 if (chip->work_ptr.area) 2237 snd_dma_free_pages(&chip->work_ptr); 2238 2239 release_and_free_resource(chip->res_reg_area); 2240 2241 pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl); 2242 2243 pci_disable_device(chip->pci); 2244 release_firmware(chip->dsp_microcode); 2245 release_firmware(chip->controller_microcode); 2246 kfree(chip); 2247 return 0; 2248 } 2249 2250 static int snd_ymfpci_dev_free(struct snd_device *device) 2251 { 2252 struct snd_ymfpci *chip = device->device_data; 2253 return snd_ymfpci_free(chip); 2254 } 2255 2256 #ifdef CONFIG_PM_SLEEP 2257 static int saved_regs_index[] = { 2258 /* spdif */ 2259 YDSXGR_SPDIFOUTCTRL, 2260 YDSXGR_SPDIFOUTSTATUS, 2261 YDSXGR_SPDIFINCTRL, 2262 /* volumes */ 2263 YDSXGR_PRIADCLOOPVOL, 2264 YDSXGR_NATIVEDACINVOL, 2265 YDSXGR_NATIVEDACOUTVOL, 2266 YDSXGR_BUF441OUTVOL, 2267 YDSXGR_NATIVEADCINVOL, 2268 YDSXGR_SPDIFLOOPVOL, 2269 YDSXGR_SPDIFOUTVOL, 2270 YDSXGR_ZVOUTVOL, 2271 YDSXGR_LEGACYOUTVOL, 2272 /* address bases */ 2273 YDSXGR_PLAYCTRLBASE, 2274 YDSXGR_RECCTRLBASE, 2275 YDSXGR_EFFCTRLBASE, 2276 YDSXGR_WORKBASE, 2277 /* capture set up */ 2278 YDSXGR_MAPOFREC, 2279 YDSXGR_RECFORMAT, 2280 YDSXGR_RECSLOTSR, 2281 YDSXGR_ADCFORMAT, 2282 YDSXGR_ADCSLOTSR, 2283 }; 2284 #define YDSXGR_NUM_SAVED_REGS ARRAY_SIZE(saved_regs_index) 2285 2286 static int snd_ymfpci_suspend(struct device *dev) 2287 { 2288 struct snd_card *card = dev_get_drvdata(dev); 2289 struct snd_ymfpci *chip = card->private_data; 2290 unsigned int i; 2291 2292 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 2293 snd_ac97_suspend(chip->ac97); 2294 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2295 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]); 2296 chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE); 2297 pci_read_config_word(chip->pci, PCIR_DSXG_LEGACY, 2298 &chip->saved_dsxg_legacy); 2299 pci_read_config_word(chip->pci, PCIR_DSXG_ELEGACY, 2300 &chip->saved_dsxg_elegacy); 2301 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2302 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); 2303 snd_ymfpci_disable_dsp(chip); 2304 return 0; 2305 } 2306 2307 static int snd_ymfpci_resume(struct device *dev) 2308 { 2309 struct pci_dev *pci = to_pci_dev(dev); 2310 struct snd_card *card = dev_get_drvdata(dev); 2311 struct snd_ymfpci *chip = card->private_data; 2312 unsigned int i; 2313 2314 snd_ymfpci_aclink_reset(pci); 2315 snd_ymfpci_codec_ready(chip, 0); 2316 snd_ymfpci_download_image(chip); 2317 udelay(100); 2318 2319 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2320 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]); 2321 2322 snd_ac97_resume(chip->ac97); 2323 2324 pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY, 2325 chip->saved_dsxg_legacy); 2326 pci_write_config_word(chip->pci, PCIR_DSXG_ELEGACY, 2327 chip->saved_dsxg_elegacy); 2328 2329 /* start hw again */ 2330 if (chip->start_count > 0) { 2331 spin_lock_irq(&chip->reg_lock); 2332 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode); 2333 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT); 2334 spin_unlock_irq(&chip->reg_lock); 2335 } 2336 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 2337 return 0; 2338 } 2339 2340 SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume); 2341 #endif /* CONFIG_PM_SLEEP */ 2342 2343 int snd_ymfpci_create(struct snd_card *card, 2344 struct pci_dev *pci, 2345 unsigned short old_legacy_ctrl, 2346 struct snd_ymfpci **rchip) 2347 { 2348 struct snd_ymfpci *chip; 2349 int err; 2350 static struct snd_device_ops ops = { 2351 .dev_free = snd_ymfpci_dev_free, 2352 }; 2353 2354 *rchip = NULL; 2355 2356 /* enable PCI device */ 2357 if ((err = pci_enable_device(pci)) < 0) 2358 return err; 2359 2360 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 2361 if (chip == NULL) { 2362 pci_disable_device(pci); 2363 return -ENOMEM; 2364 } 2365 chip->old_legacy_ctrl = old_legacy_ctrl; 2366 spin_lock_init(&chip->reg_lock); 2367 spin_lock_init(&chip->voice_lock); 2368 init_waitqueue_head(&chip->interrupt_sleep); 2369 atomic_set(&chip->interrupt_sleep_count, 0); 2370 chip->card = card; 2371 chip->pci = pci; 2372 chip->irq = -1; 2373 chip->device_id = pci->device; 2374 chip->rev = pci->revision; 2375 chip->reg_area_phys = pci_resource_start(pci, 0); 2376 chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000); 2377 pci_set_master(pci); 2378 chip->src441_used = -1; 2379 2380 if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) { 2381 dev_err(chip->card->dev, 2382 "unable to grab memory region 0x%lx-0x%lx\n", 2383 chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1); 2384 err = -EBUSY; 2385 goto free_chip; 2386 } 2387 if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED, 2388 KBUILD_MODNAME, chip)) { 2389 dev_err(chip->card->dev, "unable to grab IRQ %d\n", pci->irq); 2390 err = -EBUSY; 2391 goto free_chip; 2392 } 2393 chip->irq = pci->irq; 2394 2395 snd_ymfpci_aclink_reset(pci); 2396 if (snd_ymfpci_codec_ready(chip, 0) < 0) { 2397 err = -EIO; 2398 goto free_chip; 2399 } 2400 2401 err = snd_ymfpci_request_firmware(chip); 2402 if (err < 0) { 2403 dev_err(chip->card->dev, "firmware request failed: %d\n", err); 2404 goto free_chip; 2405 } 2406 snd_ymfpci_download_image(chip); 2407 2408 udelay(100); /* seems we need a delay after downloading image.. */ 2409 2410 if (snd_ymfpci_memalloc(chip) < 0) { 2411 err = -EIO; 2412 goto free_chip; 2413 } 2414 2415 err = snd_ymfpci_ac3_init(chip); 2416 if (err < 0) 2417 goto free_chip; 2418 2419 #ifdef CONFIG_PM_SLEEP 2420 chip->saved_regs = kmalloc_array(YDSXGR_NUM_SAVED_REGS, sizeof(u32), 2421 GFP_KERNEL); 2422 if (chip->saved_regs == NULL) { 2423 err = -ENOMEM; 2424 goto free_chip; 2425 } 2426 #endif 2427 2428 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); 2429 if (err < 0) 2430 goto free_chip; 2431 2432 snd_ymfpci_proc_init(card, chip); 2433 2434 *rchip = chip; 2435 return 0; 2436 2437 free_chip: 2438 snd_ymfpci_free(chip); 2439 return err; 2440 } 2441