1 /* 2 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 3 * Routines for control of YMF724/740/744/754 chips 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 */ 20 21 #include <linux/delay.h> 22 #include <linux/firmware.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/pci.h> 26 #include <linux/sched.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/mutex.h> 30 31 #include <sound/core.h> 32 #include <sound/control.h> 33 #include <sound/info.h> 34 #include <sound/tlv.h> 35 #include <sound/ymfpci.h> 36 #include <sound/asoundef.h> 37 #include <sound/mpu401.h> 38 39 #include <asm/io.h> 40 #include <asm/byteorder.h> 41 42 /* 43 * common I/O routines 44 */ 45 46 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip); 47 48 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset) 49 { 50 return readb(chip->reg_area_virt + offset); 51 } 52 53 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val) 54 { 55 writeb(val, chip->reg_area_virt + offset); 56 } 57 58 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset) 59 { 60 return readw(chip->reg_area_virt + offset); 61 } 62 63 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val) 64 { 65 writew(val, chip->reg_area_virt + offset); 66 } 67 68 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset) 69 { 70 return readl(chip->reg_area_virt + offset); 71 } 72 73 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val) 74 { 75 writel(val, chip->reg_area_virt + offset); 76 } 77 78 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary) 79 { 80 unsigned long end_time; 81 u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR; 82 83 end_time = jiffies + msecs_to_jiffies(750); 84 do { 85 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0) 86 return 0; 87 schedule_timeout_uninterruptible(1); 88 } while (time_before(jiffies, end_time)); 89 snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg)); 90 return -EBUSY; 91 } 92 93 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val) 94 { 95 struct snd_ymfpci *chip = ac97->private_data; 96 u32 cmd; 97 98 snd_ymfpci_codec_ready(chip, 0); 99 cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val; 100 snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd); 101 } 102 103 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg) 104 { 105 struct snd_ymfpci *chip = ac97->private_data; 106 107 if (snd_ymfpci_codec_ready(chip, 0)) 108 return ~0; 109 snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg); 110 if (snd_ymfpci_codec_ready(chip, 0)) 111 return ~0; 112 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) { 113 int i; 114 for (i = 0; i < 600; i++) 115 snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 116 } 117 return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 118 } 119 120 /* 121 * Misc routines 122 */ 123 124 static u32 snd_ymfpci_calc_delta(u32 rate) 125 { 126 switch (rate) { 127 case 8000: return 0x02aaab00; 128 case 11025: return 0x03accd00; 129 case 16000: return 0x05555500; 130 case 22050: return 0x07599a00; 131 case 32000: return 0x0aaaab00; 132 case 44100: return 0x0eb33300; 133 default: return ((rate << 16) / 375) << 5; 134 } 135 } 136 137 static u32 def_rate[8] = { 138 100, 2000, 8000, 11025, 16000, 22050, 32000, 48000 139 }; 140 141 static u32 snd_ymfpci_calc_lpfK(u32 rate) 142 { 143 u32 i; 144 static u32 val[8] = { 145 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000, 146 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000 147 }; 148 149 if (rate == 44100) 150 return 0x40000000; /* FIXME: What's the right value? */ 151 for (i = 0; i < 8; i++) 152 if (rate <= def_rate[i]) 153 return val[i]; 154 return val[0]; 155 } 156 157 static u32 snd_ymfpci_calc_lpfQ(u32 rate) 158 { 159 u32 i; 160 static u32 val[8] = { 161 0x35280000, 0x34A70000, 0x32020000, 0x31770000, 162 0x31390000, 0x31C90000, 0x33D00000, 0x40000000 163 }; 164 165 if (rate == 44100) 166 return 0x370A0000; 167 for (i = 0; i < 8; i++) 168 if (rate <= def_rate[i]) 169 return val[i]; 170 return val[0]; 171 } 172 173 /* 174 * Hardware start management 175 */ 176 177 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip) 178 { 179 unsigned long flags; 180 181 spin_lock_irqsave(&chip->reg_lock, flags); 182 if (chip->start_count++ > 0) 183 goto __end; 184 snd_ymfpci_writel(chip, YDSXGR_MODE, 185 snd_ymfpci_readl(chip, YDSXGR_MODE) | 3); 186 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 187 __end: 188 spin_unlock_irqrestore(&chip->reg_lock, flags); 189 } 190 191 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip) 192 { 193 unsigned long flags; 194 long timeout = 1000; 195 196 spin_lock_irqsave(&chip->reg_lock, flags); 197 if (--chip->start_count > 0) 198 goto __end; 199 snd_ymfpci_writel(chip, YDSXGR_MODE, 200 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3); 201 while (timeout-- > 0) { 202 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0) 203 break; 204 } 205 if (atomic_read(&chip->interrupt_sleep_count)) { 206 atomic_set(&chip->interrupt_sleep_count, 0); 207 wake_up(&chip->interrupt_sleep); 208 } 209 __end: 210 spin_unlock_irqrestore(&chip->reg_lock, flags); 211 } 212 213 /* 214 * Playback voice management 215 */ 216 217 static int voice_alloc(struct snd_ymfpci *chip, 218 enum snd_ymfpci_voice_type type, int pair, 219 struct snd_ymfpci_voice **rvoice) 220 { 221 struct snd_ymfpci_voice *voice, *voice2; 222 int idx; 223 224 *rvoice = NULL; 225 for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) { 226 voice = &chip->voices[idx]; 227 voice2 = pair ? &chip->voices[idx+1] : NULL; 228 if (voice->use || (voice2 && voice2->use)) 229 continue; 230 voice->use = 1; 231 if (voice2) 232 voice2->use = 1; 233 switch (type) { 234 case YMFPCI_PCM: 235 voice->pcm = 1; 236 if (voice2) 237 voice2->pcm = 1; 238 break; 239 case YMFPCI_SYNTH: 240 voice->synth = 1; 241 break; 242 case YMFPCI_MIDI: 243 voice->midi = 1; 244 break; 245 } 246 snd_ymfpci_hw_start(chip); 247 if (voice2) 248 snd_ymfpci_hw_start(chip); 249 *rvoice = voice; 250 return 0; 251 } 252 return -ENOMEM; 253 } 254 255 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip, 256 enum snd_ymfpci_voice_type type, int pair, 257 struct snd_ymfpci_voice **rvoice) 258 { 259 unsigned long flags; 260 int result; 261 262 if (snd_BUG_ON(!rvoice)) 263 return -EINVAL; 264 if (snd_BUG_ON(pair && type != YMFPCI_PCM)) 265 return -EINVAL; 266 267 spin_lock_irqsave(&chip->voice_lock, flags); 268 for (;;) { 269 result = voice_alloc(chip, type, pair, rvoice); 270 if (result == 0 || type != YMFPCI_PCM) 271 break; 272 /* TODO: synth/midi voice deallocation */ 273 break; 274 } 275 spin_unlock_irqrestore(&chip->voice_lock, flags); 276 return result; 277 } 278 279 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice) 280 { 281 unsigned long flags; 282 283 if (snd_BUG_ON(!pvoice)) 284 return -EINVAL; 285 snd_ymfpci_hw_stop(chip); 286 spin_lock_irqsave(&chip->voice_lock, flags); 287 if (pvoice->number == chip->src441_used) { 288 chip->src441_used = -1; 289 pvoice->ypcm->use_441_slot = 0; 290 } 291 pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0; 292 pvoice->ypcm = NULL; 293 pvoice->interrupt = NULL; 294 spin_unlock_irqrestore(&chip->voice_lock, flags); 295 return 0; 296 } 297 298 /* 299 * PCM part 300 */ 301 302 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice) 303 { 304 struct snd_ymfpci_pcm *ypcm; 305 u32 pos, delta; 306 307 if ((ypcm = voice->ypcm) == NULL) 308 return; 309 if (ypcm->substream == NULL) 310 return; 311 spin_lock(&chip->reg_lock); 312 if (ypcm->running) { 313 pos = le32_to_cpu(voice->bank[chip->active_bank].start); 314 if (pos < ypcm->last_pos) 315 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 316 else 317 delta = pos - ypcm->last_pos; 318 ypcm->period_pos += delta; 319 ypcm->last_pos = pos; 320 if (ypcm->period_pos >= ypcm->period_size) { 321 // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start); 322 ypcm->period_pos %= ypcm->period_size; 323 spin_unlock(&chip->reg_lock); 324 snd_pcm_period_elapsed(ypcm->substream); 325 spin_lock(&chip->reg_lock); 326 } 327 328 if (unlikely(ypcm->update_pcm_vol)) { 329 unsigned int subs = ypcm->substream->number; 330 unsigned int next_bank = 1 - chip->active_bank; 331 struct snd_ymfpci_playback_bank *bank; 332 u32 volume; 333 334 bank = &voice->bank[next_bank]; 335 volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15); 336 bank->left_gain_end = volume; 337 if (ypcm->output_rear) 338 bank->eff2_gain_end = volume; 339 if (ypcm->voices[1]) 340 bank = &ypcm->voices[1]->bank[next_bank]; 341 volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15); 342 bank->right_gain_end = volume; 343 if (ypcm->output_rear) 344 bank->eff3_gain_end = volume; 345 ypcm->update_pcm_vol--; 346 } 347 } 348 spin_unlock(&chip->reg_lock); 349 } 350 351 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream) 352 { 353 struct snd_pcm_runtime *runtime = substream->runtime; 354 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 355 struct snd_ymfpci *chip = ypcm->chip; 356 u32 pos, delta; 357 358 spin_lock(&chip->reg_lock); 359 if (ypcm->running) { 360 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 361 if (pos < ypcm->last_pos) 362 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 363 else 364 delta = pos - ypcm->last_pos; 365 ypcm->period_pos += delta; 366 ypcm->last_pos = pos; 367 if (ypcm->period_pos >= ypcm->period_size) { 368 ypcm->period_pos %= ypcm->period_size; 369 // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start); 370 spin_unlock(&chip->reg_lock); 371 snd_pcm_period_elapsed(substream); 372 spin_lock(&chip->reg_lock); 373 } 374 } 375 spin_unlock(&chip->reg_lock); 376 } 377 378 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream, 379 int cmd) 380 { 381 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 382 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 383 struct snd_kcontrol *kctl = NULL; 384 int result = 0; 385 386 spin_lock(&chip->reg_lock); 387 if (ypcm->voices[0] == NULL) { 388 result = -EINVAL; 389 goto __unlock; 390 } 391 switch (cmd) { 392 case SNDRV_PCM_TRIGGER_START: 393 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 394 case SNDRV_PCM_TRIGGER_RESUME: 395 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr); 396 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 397 chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr); 398 ypcm->running = 1; 399 break; 400 case SNDRV_PCM_TRIGGER_STOP: 401 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 402 kctl = chip->pcm_mixer[substream->number].ctl; 403 kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 404 } 405 /* fall through */ 406 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 407 case SNDRV_PCM_TRIGGER_SUSPEND: 408 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0; 409 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 410 chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0; 411 ypcm->running = 0; 412 break; 413 default: 414 result = -EINVAL; 415 break; 416 } 417 __unlock: 418 spin_unlock(&chip->reg_lock); 419 if (kctl) 420 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 421 return result; 422 } 423 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream, 424 int cmd) 425 { 426 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 427 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 428 int result = 0; 429 u32 tmp; 430 431 spin_lock(&chip->reg_lock); 432 switch (cmd) { 433 case SNDRV_PCM_TRIGGER_START: 434 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 435 case SNDRV_PCM_TRIGGER_RESUME: 436 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number); 437 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 438 ypcm->running = 1; 439 break; 440 case SNDRV_PCM_TRIGGER_STOP: 441 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 442 case SNDRV_PCM_TRIGGER_SUSPEND: 443 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number); 444 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 445 ypcm->running = 0; 446 break; 447 default: 448 result = -EINVAL; 449 break; 450 } 451 spin_unlock(&chip->reg_lock); 452 return result; 453 } 454 455 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices) 456 { 457 int err; 458 459 if (ypcm->voices[1] != NULL && voices < 2) { 460 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]); 461 ypcm->voices[1] = NULL; 462 } 463 if (voices == 1 && ypcm->voices[0] != NULL) 464 return 0; /* already allocated */ 465 if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL) 466 return 0; /* already allocated */ 467 if (voices > 1) { 468 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) { 469 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]); 470 ypcm->voices[0] = NULL; 471 } 472 } 473 err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]); 474 if (err < 0) 475 return err; 476 ypcm->voices[0]->ypcm = ypcm; 477 ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt; 478 if (voices > 1) { 479 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1]; 480 ypcm->voices[1]->ypcm = ypcm; 481 } 482 return 0; 483 } 484 485 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx, 486 struct snd_pcm_runtime *runtime, 487 int has_pcm_volume) 488 { 489 struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx]; 490 u32 format; 491 u32 delta = snd_ymfpci_calc_delta(runtime->rate); 492 u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate); 493 u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate); 494 struct snd_ymfpci_playback_bank *bank; 495 unsigned int nbank; 496 u32 vol_left, vol_right; 497 u8 use_left, use_right; 498 unsigned long flags; 499 500 if (snd_BUG_ON(!voice)) 501 return; 502 if (runtime->channels == 1) { 503 use_left = 1; 504 use_right = 1; 505 } else { 506 use_left = (voiceidx & 1) == 0; 507 use_right = !use_left; 508 } 509 if (has_pcm_volume) { 510 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer 511 [ypcm->substream->number].left << 15); 512 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer 513 [ypcm->substream->number].right << 15); 514 } else { 515 vol_left = cpu_to_le32(0x40000000); 516 vol_right = cpu_to_le32(0x40000000); 517 } 518 spin_lock_irqsave(&ypcm->chip->voice_lock, flags); 519 format = runtime->channels == 2 ? 0x00010000 : 0; 520 if (snd_pcm_format_width(runtime->format) == 8) 521 format |= 0x80000000; 522 else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && 523 runtime->rate == 44100 && runtime->channels == 2 && 524 voiceidx == 0 && (ypcm->chip->src441_used == -1 || 525 ypcm->chip->src441_used == voice->number)) { 526 ypcm->chip->src441_used = voice->number; 527 ypcm->use_441_slot = 1; 528 format |= 0x10000000; 529 } 530 if (ypcm->chip->src441_used == voice->number && 531 (format & 0x10000000) == 0) { 532 ypcm->chip->src441_used = -1; 533 ypcm->use_441_slot = 0; 534 } 535 if (runtime->channels == 2 && (voiceidx & 1) != 0) 536 format |= 1; 537 spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags); 538 for (nbank = 0; nbank < 2; nbank++) { 539 bank = &voice->bank[nbank]; 540 memset(bank, 0, sizeof(*bank)); 541 bank->format = cpu_to_le32(format); 542 bank->base = cpu_to_le32(runtime->dma_addr); 543 bank->loop_end = cpu_to_le32(ypcm->buffer_size); 544 bank->lpfQ = cpu_to_le32(lpfQ); 545 bank->delta = 546 bank->delta_end = cpu_to_le32(delta); 547 bank->lpfK = 548 bank->lpfK_end = cpu_to_le32(lpfK); 549 bank->eg_gain = 550 bank->eg_gain_end = cpu_to_le32(0x40000000); 551 552 if (ypcm->output_front) { 553 if (use_left) { 554 bank->left_gain = 555 bank->left_gain_end = vol_left; 556 } 557 if (use_right) { 558 bank->right_gain = 559 bank->right_gain_end = vol_right; 560 } 561 } 562 if (ypcm->output_rear) { 563 if (!ypcm->swap_rear) { 564 if (use_left) { 565 bank->eff2_gain = 566 bank->eff2_gain_end = vol_left; 567 } 568 if (use_right) { 569 bank->eff3_gain = 570 bank->eff3_gain_end = vol_right; 571 } 572 } else { 573 /* The SPDIF out channels seem to be swapped, so we have 574 * to swap them here, too. The rear analog out channels 575 * will be wrong, but otherwise AC3 would not work. 576 */ 577 if (use_left) { 578 bank->eff3_gain = 579 bank->eff3_gain_end = vol_left; 580 } 581 if (use_right) { 582 bank->eff2_gain = 583 bank->eff2_gain_end = vol_right; 584 } 585 } 586 } 587 } 588 } 589 590 static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip) 591 { 592 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 593 4096, &chip->ac3_tmp_base) < 0) 594 return -ENOMEM; 595 596 chip->bank_effect[3][0]->base = 597 chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr); 598 chip->bank_effect[3][0]->loop_end = 599 chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024); 600 chip->bank_effect[4][0]->base = 601 chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048); 602 chip->bank_effect[4][0]->loop_end = 603 chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024); 604 605 spin_lock_irq(&chip->reg_lock); 606 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 607 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3); 608 spin_unlock_irq(&chip->reg_lock); 609 return 0; 610 } 611 612 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip) 613 { 614 spin_lock_irq(&chip->reg_lock); 615 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 616 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3)); 617 spin_unlock_irq(&chip->reg_lock); 618 // snd_ymfpci_irq_wait(chip); 619 if (chip->ac3_tmp_base.area) { 620 snd_dma_free_pages(&chip->ac3_tmp_base); 621 chip->ac3_tmp_base.area = NULL; 622 } 623 return 0; 624 } 625 626 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream, 627 struct snd_pcm_hw_params *hw_params) 628 { 629 struct snd_pcm_runtime *runtime = substream->runtime; 630 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 631 int err; 632 633 if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0) 634 return err; 635 if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0) 636 return err; 637 return 0; 638 } 639 640 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream) 641 { 642 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 643 struct snd_pcm_runtime *runtime = substream->runtime; 644 struct snd_ymfpci_pcm *ypcm; 645 646 if (runtime->private_data == NULL) 647 return 0; 648 ypcm = runtime->private_data; 649 650 /* wait, until the PCI operations are not finished */ 651 snd_ymfpci_irq_wait(chip); 652 snd_pcm_lib_free_pages(substream); 653 if (ypcm->voices[1]) { 654 snd_ymfpci_voice_free(chip, ypcm->voices[1]); 655 ypcm->voices[1] = NULL; 656 } 657 if (ypcm->voices[0]) { 658 snd_ymfpci_voice_free(chip, ypcm->voices[0]); 659 ypcm->voices[0] = NULL; 660 } 661 return 0; 662 } 663 664 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream) 665 { 666 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 667 struct snd_pcm_runtime *runtime = substream->runtime; 668 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 669 struct snd_kcontrol *kctl; 670 unsigned int nvoice; 671 672 ypcm->period_size = runtime->period_size; 673 ypcm->buffer_size = runtime->buffer_size; 674 ypcm->period_pos = 0; 675 ypcm->last_pos = 0; 676 for (nvoice = 0; nvoice < runtime->channels; nvoice++) 677 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime, 678 substream->pcm == chip->pcm); 679 680 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 681 kctl = chip->pcm_mixer[substream->number].ctl; 682 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 683 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 684 } 685 return 0; 686 } 687 688 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream, 689 struct snd_pcm_hw_params *hw_params) 690 { 691 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 692 } 693 694 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream) 695 { 696 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 697 698 /* wait, until the PCI operations are not finished */ 699 snd_ymfpci_irq_wait(chip); 700 return snd_pcm_lib_free_pages(substream); 701 } 702 703 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream) 704 { 705 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 706 struct snd_pcm_runtime *runtime = substream->runtime; 707 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 708 struct snd_ymfpci_capture_bank * bank; 709 int nbank; 710 u32 rate, format; 711 712 ypcm->period_size = runtime->period_size; 713 ypcm->buffer_size = runtime->buffer_size; 714 ypcm->period_pos = 0; 715 ypcm->last_pos = 0; 716 ypcm->shift = 0; 717 rate = ((48000 * 4096) / runtime->rate) - 1; 718 format = 0; 719 if (runtime->channels == 2) { 720 format |= 2; 721 ypcm->shift++; 722 } 723 if (snd_pcm_format_width(runtime->format) == 8) 724 format |= 1; 725 else 726 ypcm->shift++; 727 switch (ypcm->capture_bank_number) { 728 case 0: 729 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format); 730 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate); 731 break; 732 case 1: 733 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format); 734 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate); 735 break; 736 } 737 for (nbank = 0; nbank < 2; nbank++) { 738 bank = chip->bank_capture[ypcm->capture_bank_number][nbank]; 739 bank->base = cpu_to_le32(runtime->dma_addr); 740 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift); 741 bank->start = 0; 742 bank->num_of_loops = 0; 743 } 744 return 0; 745 } 746 747 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream) 748 { 749 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 750 struct snd_pcm_runtime *runtime = substream->runtime; 751 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 752 struct snd_ymfpci_voice *voice = ypcm->voices[0]; 753 754 if (!(ypcm->running && voice)) 755 return 0; 756 return le32_to_cpu(voice->bank[chip->active_bank].start); 757 } 758 759 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream) 760 { 761 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 762 struct snd_pcm_runtime *runtime = substream->runtime; 763 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 764 765 if (!ypcm->running) 766 return 0; 767 return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 768 } 769 770 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip) 771 { 772 wait_queue_t wait; 773 int loops = 4; 774 775 while (loops-- > 0) { 776 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0) 777 continue; 778 init_waitqueue_entry(&wait, current); 779 add_wait_queue(&chip->interrupt_sleep, &wait); 780 atomic_inc(&chip->interrupt_sleep_count); 781 schedule_timeout_uninterruptible(msecs_to_jiffies(50)); 782 remove_wait_queue(&chip->interrupt_sleep, &wait); 783 } 784 } 785 786 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id) 787 { 788 struct snd_ymfpci *chip = dev_id; 789 u32 status, nvoice, mode; 790 struct snd_ymfpci_voice *voice; 791 792 status = snd_ymfpci_readl(chip, YDSXGR_STATUS); 793 if (status & 0x80000000) { 794 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 795 spin_lock(&chip->voice_lock); 796 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) { 797 voice = &chip->voices[nvoice]; 798 if (voice->interrupt) 799 voice->interrupt(chip, voice); 800 } 801 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) { 802 if (chip->capture_substream[nvoice]) 803 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]); 804 } 805 #if 0 806 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) { 807 if (chip->effect_substream[nvoice]) 808 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]); 809 } 810 #endif 811 spin_unlock(&chip->voice_lock); 812 spin_lock(&chip->reg_lock); 813 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000); 814 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2; 815 snd_ymfpci_writel(chip, YDSXGR_MODE, mode); 816 spin_unlock(&chip->reg_lock); 817 818 if (atomic_read(&chip->interrupt_sleep_count)) { 819 atomic_set(&chip->interrupt_sleep_count, 0); 820 wake_up(&chip->interrupt_sleep); 821 } 822 } 823 824 status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG); 825 if (status & 1) { 826 if (chip->timer) 827 snd_timer_interrupt(chip->timer, chip->timer->sticks); 828 } 829 snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status); 830 831 if (chip->rawmidi) 832 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data); 833 return IRQ_HANDLED; 834 } 835 836 static struct snd_pcm_hardware snd_ymfpci_playback = 837 { 838 .info = (SNDRV_PCM_INFO_MMAP | 839 SNDRV_PCM_INFO_MMAP_VALID | 840 SNDRV_PCM_INFO_INTERLEAVED | 841 SNDRV_PCM_INFO_BLOCK_TRANSFER | 842 SNDRV_PCM_INFO_PAUSE | 843 SNDRV_PCM_INFO_RESUME), 844 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 845 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 846 .rate_min = 8000, 847 .rate_max = 48000, 848 .channels_min = 1, 849 .channels_max = 2, 850 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 851 .period_bytes_min = 64, 852 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 853 .periods_min = 3, 854 .periods_max = 1024, 855 .fifo_size = 0, 856 }; 857 858 static struct snd_pcm_hardware snd_ymfpci_capture = 859 { 860 .info = (SNDRV_PCM_INFO_MMAP | 861 SNDRV_PCM_INFO_MMAP_VALID | 862 SNDRV_PCM_INFO_INTERLEAVED | 863 SNDRV_PCM_INFO_BLOCK_TRANSFER | 864 SNDRV_PCM_INFO_PAUSE | 865 SNDRV_PCM_INFO_RESUME), 866 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 867 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 868 .rate_min = 8000, 869 .rate_max = 48000, 870 .channels_min = 1, 871 .channels_max = 2, 872 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 873 .period_bytes_min = 64, 874 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 875 .periods_min = 3, 876 .periods_max = 1024, 877 .fifo_size = 0, 878 }; 879 880 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime) 881 { 882 kfree(runtime->private_data); 883 } 884 885 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream) 886 { 887 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 888 struct snd_pcm_runtime *runtime = substream->runtime; 889 struct snd_ymfpci_pcm *ypcm; 890 891 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 892 if (ypcm == NULL) 893 return -ENOMEM; 894 ypcm->chip = chip; 895 ypcm->type = PLAYBACK_VOICE; 896 ypcm->substream = substream; 897 runtime->hw = snd_ymfpci_playback; 898 runtime->private_data = ypcm; 899 runtime->private_free = snd_ymfpci_pcm_free_substream; 900 /* FIXME? True value is 256/48 = 5.33333 ms */ 901 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX); 902 return 0; 903 } 904 905 /* call with spinlock held */ 906 static void ymfpci_open_extension(struct snd_ymfpci *chip) 907 { 908 if (! chip->rear_opened) { 909 if (! chip->spdif_opened) /* set AC3 */ 910 snd_ymfpci_writel(chip, YDSXGR_MODE, 911 snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30)); 912 /* enable second codec (4CHEN) */ 913 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 914 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010); 915 } 916 } 917 918 /* call with spinlock held */ 919 static void ymfpci_close_extension(struct snd_ymfpci *chip) 920 { 921 if (! chip->rear_opened) { 922 if (! chip->spdif_opened) 923 snd_ymfpci_writel(chip, YDSXGR_MODE, 924 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30)); 925 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 926 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010); 927 } 928 } 929 930 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream) 931 { 932 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 933 struct snd_pcm_runtime *runtime = substream->runtime; 934 struct snd_ymfpci_pcm *ypcm; 935 int err; 936 937 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 938 return err; 939 ypcm = runtime->private_data; 940 ypcm->output_front = 1; 941 ypcm->output_rear = chip->mode_dup4ch ? 1 : 0; 942 ypcm->swap_rear = 0; 943 spin_lock_irq(&chip->reg_lock); 944 if (ypcm->output_rear) { 945 ymfpci_open_extension(chip); 946 chip->rear_opened++; 947 } 948 spin_unlock_irq(&chip->reg_lock); 949 return 0; 950 } 951 952 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream) 953 { 954 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 955 struct snd_pcm_runtime *runtime = substream->runtime; 956 struct snd_ymfpci_pcm *ypcm; 957 int err; 958 959 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 960 return err; 961 ypcm = runtime->private_data; 962 ypcm->output_front = 0; 963 ypcm->output_rear = 1; 964 ypcm->swap_rear = 1; 965 spin_lock_irq(&chip->reg_lock); 966 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 967 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2); 968 ymfpci_open_extension(chip); 969 chip->spdif_pcm_bits = chip->spdif_bits; 970 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 971 chip->spdif_opened++; 972 spin_unlock_irq(&chip->reg_lock); 973 974 chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 975 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 976 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 977 return 0; 978 } 979 980 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream) 981 { 982 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 983 struct snd_pcm_runtime *runtime = substream->runtime; 984 struct snd_ymfpci_pcm *ypcm; 985 int err; 986 987 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 988 return err; 989 ypcm = runtime->private_data; 990 ypcm->output_front = 0; 991 ypcm->output_rear = 1; 992 ypcm->swap_rear = 0; 993 spin_lock_irq(&chip->reg_lock); 994 ymfpci_open_extension(chip); 995 chip->rear_opened++; 996 spin_unlock_irq(&chip->reg_lock); 997 return 0; 998 } 999 1000 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream, 1001 u32 capture_bank_number) 1002 { 1003 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1004 struct snd_pcm_runtime *runtime = substream->runtime; 1005 struct snd_ymfpci_pcm *ypcm; 1006 1007 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 1008 if (ypcm == NULL) 1009 return -ENOMEM; 1010 ypcm->chip = chip; 1011 ypcm->type = capture_bank_number + CAPTURE_REC; 1012 ypcm->substream = substream; 1013 ypcm->capture_bank_number = capture_bank_number; 1014 chip->capture_substream[capture_bank_number] = substream; 1015 runtime->hw = snd_ymfpci_capture; 1016 /* FIXME? True value is 256/48 = 5.33333 ms */ 1017 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX); 1018 runtime->private_data = ypcm; 1019 runtime->private_free = snd_ymfpci_pcm_free_substream; 1020 snd_ymfpci_hw_start(chip); 1021 return 0; 1022 } 1023 1024 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream) 1025 { 1026 return snd_ymfpci_capture_open(substream, 0); 1027 } 1028 1029 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream) 1030 { 1031 return snd_ymfpci_capture_open(substream, 1); 1032 } 1033 1034 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream) 1035 { 1036 return 0; 1037 } 1038 1039 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream) 1040 { 1041 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1042 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1043 1044 spin_lock_irq(&chip->reg_lock); 1045 if (ypcm->output_rear && chip->rear_opened > 0) { 1046 chip->rear_opened--; 1047 ymfpci_close_extension(chip); 1048 } 1049 spin_unlock_irq(&chip->reg_lock); 1050 return snd_ymfpci_playback_close_1(substream); 1051 } 1052 1053 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream) 1054 { 1055 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1056 1057 spin_lock_irq(&chip->reg_lock); 1058 chip->spdif_opened = 0; 1059 ymfpci_close_extension(chip); 1060 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 1061 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2); 1062 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1063 spin_unlock_irq(&chip->reg_lock); 1064 chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1065 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 1066 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 1067 return snd_ymfpci_playback_close_1(substream); 1068 } 1069 1070 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream) 1071 { 1072 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1073 1074 spin_lock_irq(&chip->reg_lock); 1075 if (chip->rear_opened > 0) { 1076 chip->rear_opened--; 1077 ymfpci_close_extension(chip); 1078 } 1079 spin_unlock_irq(&chip->reg_lock); 1080 return snd_ymfpci_playback_close_1(substream); 1081 } 1082 1083 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream) 1084 { 1085 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1086 struct snd_pcm_runtime *runtime = substream->runtime; 1087 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 1088 1089 if (ypcm != NULL) { 1090 chip->capture_substream[ypcm->capture_bank_number] = NULL; 1091 snd_ymfpci_hw_stop(chip); 1092 } 1093 return 0; 1094 } 1095 1096 static struct snd_pcm_ops snd_ymfpci_playback_ops = { 1097 .open = snd_ymfpci_playback_open, 1098 .close = snd_ymfpci_playback_close, 1099 .ioctl = snd_pcm_lib_ioctl, 1100 .hw_params = snd_ymfpci_playback_hw_params, 1101 .hw_free = snd_ymfpci_playback_hw_free, 1102 .prepare = snd_ymfpci_playback_prepare, 1103 .trigger = snd_ymfpci_playback_trigger, 1104 .pointer = snd_ymfpci_playback_pointer, 1105 }; 1106 1107 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = { 1108 .open = snd_ymfpci_capture_rec_open, 1109 .close = snd_ymfpci_capture_close, 1110 .ioctl = snd_pcm_lib_ioctl, 1111 .hw_params = snd_ymfpci_capture_hw_params, 1112 .hw_free = snd_ymfpci_capture_hw_free, 1113 .prepare = snd_ymfpci_capture_prepare, 1114 .trigger = snd_ymfpci_capture_trigger, 1115 .pointer = snd_ymfpci_capture_pointer, 1116 }; 1117 1118 int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1119 { 1120 struct snd_pcm *pcm; 1121 int err; 1122 1123 if (rpcm) 1124 *rpcm = NULL; 1125 if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0) 1126 return err; 1127 pcm->private_data = chip; 1128 1129 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops); 1130 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops); 1131 1132 /* global setup */ 1133 pcm->info_flags = 0; 1134 strcpy(pcm->name, "YMFPCI"); 1135 chip->pcm = pcm; 1136 1137 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1138 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1139 1140 if (rpcm) 1141 *rpcm = pcm; 1142 return 0; 1143 } 1144 1145 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = { 1146 .open = snd_ymfpci_capture_ac97_open, 1147 .close = snd_ymfpci_capture_close, 1148 .ioctl = snd_pcm_lib_ioctl, 1149 .hw_params = snd_ymfpci_capture_hw_params, 1150 .hw_free = snd_ymfpci_capture_hw_free, 1151 .prepare = snd_ymfpci_capture_prepare, 1152 .trigger = snd_ymfpci_capture_trigger, 1153 .pointer = snd_ymfpci_capture_pointer, 1154 }; 1155 1156 int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1157 { 1158 struct snd_pcm *pcm; 1159 int err; 1160 1161 if (rpcm) 1162 *rpcm = NULL; 1163 if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0) 1164 return err; 1165 pcm->private_data = chip; 1166 1167 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops); 1168 1169 /* global setup */ 1170 pcm->info_flags = 0; 1171 sprintf(pcm->name, "YMFPCI - %s", 1172 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97"); 1173 chip->pcm2 = pcm; 1174 1175 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1176 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1177 1178 if (rpcm) 1179 *rpcm = pcm; 1180 return 0; 1181 } 1182 1183 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = { 1184 .open = snd_ymfpci_playback_spdif_open, 1185 .close = snd_ymfpci_playback_spdif_close, 1186 .ioctl = snd_pcm_lib_ioctl, 1187 .hw_params = snd_ymfpci_playback_hw_params, 1188 .hw_free = snd_ymfpci_playback_hw_free, 1189 .prepare = snd_ymfpci_playback_prepare, 1190 .trigger = snd_ymfpci_playback_trigger, 1191 .pointer = snd_ymfpci_playback_pointer, 1192 }; 1193 1194 int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1195 { 1196 struct snd_pcm *pcm; 1197 int err; 1198 1199 if (rpcm) 1200 *rpcm = NULL; 1201 if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0) 1202 return err; 1203 pcm->private_data = chip; 1204 1205 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops); 1206 1207 /* global setup */ 1208 pcm->info_flags = 0; 1209 strcpy(pcm->name, "YMFPCI - IEC958"); 1210 chip->pcm_spdif = pcm; 1211 1212 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1213 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1214 1215 if (rpcm) 1216 *rpcm = pcm; 1217 return 0; 1218 } 1219 1220 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = { 1221 .open = snd_ymfpci_playback_4ch_open, 1222 .close = snd_ymfpci_playback_4ch_close, 1223 .ioctl = snd_pcm_lib_ioctl, 1224 .hw_params = snd_ymfpci_playback_hw_params, 1225 .hw_free = snd_ymfpci_playback_hw_free, 1226 .prepare = snd_ymfpci_playback_prepare, 1227 .trigger = snd_ymfpci_playback_trigger, 1228 .pointer = snd_ymfpci_playback_pointer, 1229 }; 1230 1231 int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1232 { 1233 struct snd_pcm *pcm; 1234 int err; 1235 1236 if (rpcm) 1237 *rpcm = NULL; 1238 if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0) 1239 return err; 1240 pcm->private_data = chip; 1241 1242 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops); 1243 1244 /* global setup */ 1245 pcm->info_flags = 0; 1246 strcpy(pcm->name, "YMFPCI - Rear PCM"); 1247 chip->pcm_4ch = pcm; 1248 1249 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1250 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1251 1252 if (rpcm) 1253 *rpcm = pcm; 1254 return 0; 1255 } 1256 1257 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1258 { 1259 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1260 uinfo->count = 1; 1261 return 0; 1262 } 1263 1264 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol, 1265 struct snd_ctl_elem_value *ucontrol) 1266 { 1267 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1268 1269 spin_lock_irq(&chip->reg_lock); 1270 ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff; 1271 ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff; 1272 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1273 spin_unlock_irq(&chip->reg_lock); 1274 return 0; 1275 } 1276 1277 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol, 1278 struct snd_ctl_elem_value *ucontrol) 1279 { 1280 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1281 unsigned int val; 1282 int change; 1283 1284 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1285 (ucontrol->value.iec958.status[1] << 8); 1286 spin_lock_irq(&chip->reg_lock); 1287 change = chip->spdif_bits != val; 1288 chip->spdif_bits = val; 1289 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL) 1290 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1291 spin_unlock_irq(&chip->reg_lock); 1292 return change; 1293 } 1294 1295 static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata = 1296 { 1297 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1298 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1299 .info = snd_ymfpci_spdif_default_info, 1300 .get = snd_ymfpci_spdif_default_get, 1301 .put = snd_ymfpci_spdif_default_put 1302 }; 1303 1304 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1305 { 1306 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1307 uinfo->count = 1; 1308 return 0; 1309 } 1310 1311 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1312 struct snd_ctl_elem_value *ucontrol) 1313 { 1314 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1315 1316 spin_lock_irq(&chip->reg_lock); 1317 ucontrol->value.iec958.status[0] = 0x3e; 1318 ucontrol->value.iec958.status[1] = 0xff; 1319 spin_unlock_irq(&chip->reg_lock); 1320 return 0; 1321 } 1322 1323 static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata = 1324 { 1325 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1326 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1327 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1328 .info = snd_ymfpci_spdif_mask_info, 1329 .get = snd_ymfpci_spdif_mask_get, 1330 }; 1331 1332 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1333 { 1334 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1335 uinfo->count = 1; 1336 return 0; 1337 } 1338 1339 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1340 struct snd_ctl_elem_value *ucontrol) 1341 { 1342 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1343 1344 spin_lock_irq(&chip->reg_lock); 1345 ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff; 1346 ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff; 1347 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1348 spin_unlock_irq(&chip->reg_lock); 1349 return 0; 1350 } 1351 1352 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1353 struct snd_ctl_elem_value *ucontrol) 1354 { 1355 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1356 unsigned int val; 1357 int change; 1358 1359 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1360 (ucontrol->value.iec958.status[1] << 8); 1361 spin_lock_irq(&chip->reg_lock); 1362 change = chip->spdif_pcm_bits != val; 1363 chip->spdif_pcm_bits = val; 1364 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2)) 1365 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 1366 spin_unlock_irq(&chip->reg_lock); 1367 return change; 1368 } 1369 1370 static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata = 1371 { 1372 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1373 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1374 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1375 .info = snd_ymfpci_spdif_stream_info, 1376 .get = snd_ymfpci_spdif_stream_get, 1377 .put = snd_ymfpci_spdif_stream_put 1378 }; 1379 1380 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) 1381 { 1382 static char *texts[3] = {"AC'97", "IEC958", "ZV Port"}; 1383 1384 info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1385 info->count = 1; 1386 info->value.enumerated.items = 3; 1387 if (info->value.enumerated.item > 2) 1388 info->value.enumerated.item = 2; 1389 strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]); 1390 return 0; 1391 } 1392 1393 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1394 { 1395 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1396 u16 reg; 1397 1398 spin_lock_irq(&chip->reg_lock); 1399 reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1400 spin_unlock_irq(&chip->reg_lock); 1401 if (!(reg & 0x100)) 1402 value->value.enumerated.item[0] = 0; 1403 else 1404 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0); 1405 return 0; 1406 } 1407 1408 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1409 { 1410 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1411 u16 reg, old_reg; 1412 1413 spin_lock_irq(&chip->reg_lock); 1414 old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1415 if (value->value.enumerated.item[0] == 0) 1416 reg = old_reg & ~0x100; 1417 else 1418 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9); 1419 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg); 1420 spin_unlock_irq(&chip->reg_lock); 1421 return reg != old_reg; 1422 } 1423 1424 static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = { 1425 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1426 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1427 .name = "Direct Recording Source", 1428 .info = snd_ymfpci_drec_source_info, 1429 .get = snd_ymfpci_drec_source_get, 1430 .put = snd_ymfpci_drec_source_put 1431 }; 1432 1433 /* 1434 * Mixer controls 1435 */ 1436 1437 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \ 1438 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1439 .info = snd_ymfpci_info_single, \ 1440 .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \ 1441 .private_value = ((reg) | ((shift) << 16)) } 1442 1443 #define snd_ymfpci_info_single snd_ctl_boolean_mono_info 1444 1445 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol, 1446 struct snd_ctl_elem_value *ucontrol) 1447 { 1448 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1449 int reg = kcontrol->private_value & 0xffff; 1450 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1451 unsigned int mask = 1; 1452 1453 switch (reg) { 1454 case YDSXGR_SPDIFOUTCTRL: break; 1455 case YDSXGR_SPDIFINCTRL: break; 1456 default: return -EINVAL; 1457 } 1458 ucontrol->value.integer.value[0] = 1459 (snd_ymfpci_readl(chip, reg) >> shift) & mask; 1460 return 0; 1461 } 1462 1463 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol, 1464 struct snd_ctl_elem_value *ucontrol) 1465 { 1466 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1467 int reg = kcontrol->private_value & 0xffff; 1468 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1469 unsigned int mask = 1; 1470 int change; 1471 unsigned int val, oval; 1472 1473 switch (reg) { 1474 case YDSXGR_SPDIFOUTCTRL: break; 1475 case YDSXGR_SPDIFINCTRL: break; 1476 default: return -EINVAL; 1477 } 1478 val = (ucontrol->value.integer.value[0] & mask); 1479 val <<= shift; 1480 spin_lock_irq(&chip->reg_lock); 1481 oval = snd_ymfpci_readl(chip, reg); 1482 val = (oval & ~(mask << shift)) | val; 1483 change = val != oval; 1484 snd_ymfpci_writel(chip, reg, val); 1485 spin_unlock_irq(&chip->reg_lock); 1486 return change; 1487 } 1488 1489 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0); 1490 1491 #define YMFPCI_DOUBLE(xname, xindex, reg) \ 1492 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1493 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 1494 .info = snd_ymfpci_info_double, \ 1495 .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \ 1496 .private_value = reg, \ 1497 .tlv = { .p = db_scale_native } } 1498 1499 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1500 { 1501 unsigned int reg = kcontrol->private_value; 1502 1503 if (reg < 0x80 || reg >= 0xc0) 1504 return -EINVAL; 1505 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1506 uinfo->count = 2; 1507 uinfo->value.integer.min = 0; 1508 uinfo->value.integer.max = 16383; 1509 return 0; 1510 } 1511 1512 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1513 { 1514 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1515 unsigned int reg = kcontrol->private_value; 1516 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1517 unsigned int val; 1518 1519 if (reg < 0x80 || reg >= 0xc0) 1520 return -EINVAL; 1521 spin_lock_irq(&chip->reg_lock); 1522 val = snd_ymfpci_readl(chip, reg); 1523 spin_unlock_irq(&chip->reg_lock); 1524 ucontrol->value.integer.value[0] = (val >> shift_left) & mask; 1525 ucontrol->value.integer.value[1] = (val >> shift_right) & mask; 1526 return 0; 1527 } 1528 1529 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1530 { 1531 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1532 unsigned int reg = kcontrol->private_value; 1533 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1534 int change; 1535 unsigned int val1, val2, oval; 1536 1537 if (reg < 0x80 || reg >= 0xc0) 1538 return -EINVAL; 1539 val1 = ucontrol->value.integer.value[0] & mask; 1540 val2 = ucontrol->value.integer.value[1] & mask; 1541 val1 <<= shift_left; 1542 val2 <<= shift_right; 1543 spin_lock_irq(&chip->reg_lock); 1544 oval = snd_ymfpci_readl(chip, reg); 1545 val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2; 1546 change = val1 != oval; 1547 snd_ymfpci_writel(chip, reg, val1); 1548 spin_unlock_irq(&chip->reg_lock); 1549 return change; 1550 } 1551 1552 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol, 1553 struct snd_ctl_elem_value *ucontrol) 1554 { 1555 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1556 unsigned int reg = YDSXGR_NATIVEDACOUTVOL; 1557 unsigned int reg2 = YDSXGR_BUF441OUTVOL; 1558 int change; 1559 unsigned int value, oval; 1560 1561 value = ucontrol->value.integer.value[0] & 0x3fff; 1562 value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16; 1563 spin_lock_irq(&chip->reg_lock); 1564 oval = snd_ymfpci_readl(chip, reg); 1565 change = value != oval; 1566 snd_ymfpci_writel(chip, reg, value); 1567 snd_ymfpci_writel(chip, reg2, value); 1568 spin_unlock_irq(&chip->reg_lock); 1569 return change; 1570 } 1571 1572 /* 1573 * 4ch duplication 1574 */ 1575 #define snd_ymfpci_info_dup4ch snd_ctl_boolean_mono_info 1576 1577 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1578 { 1579 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1580 ucontrol->value.integer.value[0] = chip->mode_dup4ch; 1581 return 0; 1582 } 1583 1584 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1585 { 1586 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1587 int change; 1588 change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch); 1589 if (change) 1590 chip->mode_dup4ch = !!ucontrol->value.integer.value[0]; 1591 return change; 1592 } 1593 1594 1595 static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = { 1596 { 1597 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1598 .name = "Wave Playback Volume", 1599 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1600 SNDRV_CTL_ELEM_ACCESS_TLV_READ, 1601 .info = snd_ymfpci_info_double, 1602 .get = snd_ymfpci_get_double, 1603 .put = snd_ymfpci_put_nativedacvol, 1604 .private_value = YDSXGR_NATIVEDACOUTVOL, 1605 .tlv = { .p = db_scale_native }, 1606 }, 1607 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL), 1608 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL), 1609 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL), 1610 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL), 1611 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL), 1612 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL), 1613 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL), 1614 YMFPCI_DOUBLE("FM Legacy Volume", 0, YDSXGR_LEGACYOUTVOL), 1615 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL), 1616 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL), 1617 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL), 1618 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL), 1619 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0), 1620 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0), 1621 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4), 1622 { 1623 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1624 .name = "4ch Duplication", 1625 .info = snd_ymfpci_info_dup4ch, 1626 .get = snd_ymfpci_get_dup4ch, 1627 .put = snd_ymfpci_put_dup4ch, 1628 }, 1629 }; 1630 1631 1632 /* 1633 * GPIO 1634 */ 1635 1636 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin) 1637 { 1638 u16 reg, mode; 1639 unsigned long flags; 1640 1641 spin_lock_irqsave(&chip->reg_lock, flags); 1642 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1643 reg &= ~(1 << (pin + 8)); 1644 reg |= (1 << pin); 1645 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1646 /* set the level mode for input line */ 1647 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG); 1648 mode &= ~(3 << (pin * 2)); 1649 snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode); 1650 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1651 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS); 1652 spin_unlock_irqrestore(&chip->reg_lock, flags); 1653 return (mode >> pin) & 1; 1654 } 1655 1656 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable) 1657 { 1658 u16 reg; 1659 unsigned long flags; 1660 1661 spin_lock_irqsave(&chip->reg_lock, flags); 1662 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1663 reg &= ~(1 << pin); 1664 reg &= ~(1 << (pin + 8)); 1665 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1666 snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin); 1667 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1668 spin_unlock_irqrestore(&chip->reg_lock, flags); 1669 1670 return 0; 1671 } 1672 1673 #define snd_ymfpci_gpio_sw_info snd_ctl_boolean_mono_info 1674 1675 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1676 { 1677 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1678 int pin = (int)kcontrol->private_value; 1679 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1680 return 0; 1681 } 1682 1683 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1684 { 1685 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1686 int pin = (int)kcontrol->private_value; 1687 1688 if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) { 1689 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]); 1690 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1691 return 1; 1692 } 1693 return 0; 1694 } 1695 1696 static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = { 1697 .name = "Shared Rear/Line-In Switch", 1698 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1699 .info = snd_ymfpci_gpio_sw_info, 1700 .get = snd_ymfpci_gpio_sw_get, 1701 .put = snd_ymfpci_gpio_sw_put, 1702 .private_value = 2, 1703 }; 1704 1705 /* 1706 * PCM voice volume 1707 */ 1708 1709 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol, 1710 struct snd_ctl_elem_info *uinfo) 1711 { 1712 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1713 uinfo->count = 2; 1714 uinfo->value.integer.min = 0; 1715 uinfo->value.integer.max = 0x8000; 1716 return 0; 1717 } 1718 1719 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol, 1720 struct snd_ctl_elem_value *ucontrol) 1721 { 1722 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1723 unsigned int subs = kcontrol->id.subdevice; 1724 1725 ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left; 1726 ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right; 1727 return 0; 1728 } 1729 1730 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol, 1731 struct snd_ctl_elem_value *ucontrol) 1732 { 1733 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1734 unsigned int subs = kcontrol->id.subdevice; 1735 struct snd_pcm_substream *substream; 1736 unsigned long flags; 1737 1738 if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left || 1739 ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) { 1740 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0]; 1741 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1]; 1742 if (chip->pcm_mixer[subs].left > 0x8000) 1743 chip->pcm_mixer[subs].left = 0x8000; 1744 if (chip->pcm_mixer[subs].right > 0x8000) 1745 chip->pcm_mixer[subs].right = 0x8000; 1746 1747 substream = (struct snd_pcm_substream *)kcontrol->private_value; 1748 spin_lock_irqsave(&chip->voice_lock, flags); 1749 if (substream->runtime && substream->runtime->private_data) { 1750 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1751 if (!ypcm->use_441_slot) 1752 ypcm->update_pcm_vol = 2; 1753 } 1754 spin_unlock_irqrestore(&chip->voice_lock, flags); 1755 return 1; 1756 } 1757 return 0; 1758 } 1759 1760 static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = { 1761 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1762 .name = "PCM Playback Volume", 1763 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1764 SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1765 .info = snd_ymfpci_pcm_vol_info, 1766 .get = snd_ymfpci_pcm_vol_get, 1767 .put = snd_ymfpci_pcm_vol_put, 1768 }; 1769 1770 1771 /* 1772 * Mixer routines 1773 */ 1774 1775 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus) 1776 { 1777 struct snd_ymfpci *chip = bus->private_data; 1778 chip->ac97_bus = NULL; 1779 } 1780 1781 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97) 1782 { 1783 struct snd_ymfpci *chip = ac97->private_data; 1784 chip->ac97 = NULL; 1785 } 1786 1787 int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch) 1788 { 1789 struct snd_ac97_template ac97; 1790 struct snd_kcontrol *kctl; 1791 struct snd_pcm_substream *substream; 1792 unsigned int idx; 1793 int err; 1794 static struct snd_ac97_bus_ops ops = { 1795 .write = snd_ymfpci_codec_write, 1796 .read = snd_ymfpci_codec_read, 1797 }; 1798 1799 if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0) 1800 return err; 1801 chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus; 1802 chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */ 1803 1804 memset(&ac97, 0, sizeof(ac97)); 1805 ac97.private_data = chip; 1806 ac97.private_free = snd_ymfpci_mixer_free_ac97; 1807 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0) 1808 return err; 1809 1810 /* to be sure */ 1811 snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS, 1812 AC97_EA_VRA|AC97_EA_VRM, 0); 1813 1814 for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) { 1815 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0) 1816 return err; 1817 } 1818 1819 /* add S/PDIF control */ 1820 if (snd_BUG_ON(!chip->pcm_spdif)) 1821 return -ENXIO; 1822 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0) 1823 return err; 1824 kctl->id.device = chip->pcm_spdif->device; 1825 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0) 1826 return err; 1827 kctl->id.device = chip->pcm_spdif->device; 1828 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0) 1829 return err; 1830 kctl->id.device = chip->pcm_spdif->device; 1831 chip->spdif_pcm_ctl = kctl; 1832 1833 /* direct recording source */ 1834 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && 1835 (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0) 1836 return err; 1837 1838 /* 1839 * shared rear/line-in 1840 */ 1841 if (rear_switch) { 1842 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0) 1843 return err; 1844 } 1845 1846 /* per-voice volume */ 1847 substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; 1848 for (idx = 0; idx < 32; ++idx) { 1849 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip); 1850 if (!kctl) 1851 return -ENOMEM; 1852 kctl->id.device = chip->pcm->device; 1853 kctl->id.subdevice = idx; 1854 kctl->private_value = (unsigned long)substream; 1855 if ((err = snd_ctl_add(chip->card, kctl)) < 0) 1856 return err; 1857 chip->pcm_mixer[idx].left = 0x8000; 1858 chip->pcm_mixer[idx].right = 0x8000; 1859 chip->pcm_mixer[idx].ctl = kctl; 1860 substream = substream->next; 1861 } 1862 1863 return 0; 1864 } 1865 1866 1867 /* 1868 * timer 1869 */ 1870 1871 static int snd_ymfpci_timer_start(struct snd_timer *timer) 1872 { 1873 struct snd_ymfpci *chip; 1874 unsigned long flags; 1875 unsigned int count; 1876 1877 chip = snd_timer_chip(timer); 1878 count = (timer->sticks << 1) - 1; 1879 spin_lock_irqsave(&chip->reg_lock, flags); 1880 snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count); 1881 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03); 1882 spin_unlock_irqrestore(&chip->reg_lock, flags); 1883 return 0; 1884 } 1885 1886 static int snd_ymfpci_timer_stop(struct snd_timer *timer) 1887 { 1888 struct snd_ymfpci *chip; 1889 unsigned long flags; 1890 1891 chip = snd_timer_chip(timer); 1892 spin_lock_irqsave(&chip->reg_lock, flags); 1893 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00); 1894 spin_unlock_irqrestore(&chip->reg_lock, flags); 1895 return 0; 1896 } 1897 1898 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer, 1899 unsigned long *num, unsigned long *den) 1900 { 1901 *num = 1; 1902 *den = 48000; 1903 return 0; 1904 } 1905 1906 static struct snd_timer_hardware snd_ymfpci_timer_hw = { 1907 .flags = SNDRV_TIMER_HW_AUTO, 1908 .resolution = 20833, /* 1/fs = 20.8333...us */ 1909 .ticks = 0x8000, 1910 .start = snd_ymfpci_timer_start, 1911 .stop = snd_ymfpci_timer_stop, 1912 .precise_resolution = snd_ymfpci_timer_precise_resolution, 1913 }; 1914 1915 int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device) 1916 { 1917 struct snd_timer *timer = NULL; 1918 struct snd_timer_id tid; 1919 int err; 1920 1921 tid.dev_class = SNDRV_TIMER_CLASS_CARD; 1922 tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE; 1923 tid.card = chip->card->number; 1924 tid.device = device; 1925 tid.subdevice = 0; 1926 if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) { 1927 strcpy(timer->name, "YMFPCI timer"); 1928 timer->private_data = chip; 1929 timer->hw = snd_ymfpci_timer_hw; 1930 } 1931 chip->timer = timer; 1932 return err; 1933 } 1934 1935 1936 /* 1937 * proc interface 1938 */ 1939 1940 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 1941 struct snd_info_buffer *buffer) 1942 { 1943 struct snd_ymfpci *chip = entry->private_data; 1944 int i; 1945 1946 snd_iprintf(buffer, "YMFPCI\n\n"); 1947 for (i = 0; i <= YDSXGR_WORKBASE; i += 4) 1948 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i)); 1949 } 1950 1951 static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip) 1952 { 1953 struct snd_info_entry *entry; 1954 1955 if (! snd_card_proc_new(card, "ymfpci", &entry)) 1956 snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read); 1957 return 0; 1958 } 1959 1960 /* 1961 * initialization routines 1962 */ 1963 1964 static void snd_ymfpci_aclink_reset(struct pci_dev * pci) 1965 { 1966 u8 cmd; 1967 1968 pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd); 1969 #if 0 // force to reset 1970 if (cmd & 0x03) { 1971 #endif 1972 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 1973 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03); 1974 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 1975 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0); 1976 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0); 1977 #if 0 1978 } 1979 #endif 1980 } 1981 1982 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip) 1983 { 1984 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001); 1985 } 1986 1987 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip) 1988 { 1989 u32 val; 1990 int timeout = 1000; 1991 1992 val = snd_ymfpci_readl(chip, YDSXGR_CONFIG); 1993 if (val) 1994 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000); 1995 while (timeout-- > 0) { 1996 val = snd_ymfpci_readl(chip, YDSXGR_STATUS); 1997 if ((val & 0x00000002) == 0) 1998 break; 1999 } 2000 } 2001 2002 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip) 2003 { 2004 int err, is_1e; 2005 const char *name; 2006 2007 err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw", 2008 &chip->pci->dev); 2009 if (err >= 0) { 2010 if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) { 2011 snd_printk(KERN_ERR "DSP microcode has wrong size\n"); 2012 err = -EINVAL; 2013 } 2014 } 2015 if (err < 0) 2016 return err; 2017 is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F || 2018 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C || 2019 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 || 2020 chip->device_id == PCI_DEVICE_ID_YAMAHA_754; 2021 name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw"; 2022 err = request_firmware(&chip->controller_microcode, name, 2023 &chip->pci->dev); 2024 if (err >= 0) { 2025 if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) { 2026 snd_printk(KERN_ERR "controller microcode" 2027 " has wrong size\n"); 2028 err = -EINVAL; 2029 } 2030 } 2031 if (err < 0) 2032 return err; 2033 return 0; 2034 } 2035 2036 MODULE_FIRMWARE("yamaha/ds1_dsp.fw"); 2037 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw"); 2038 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw"); 2039 2040 static void snd_ymfpci_download_image(struct snd_ymfpci *chip) 2041 { 2042 int i; 2043 u16 ctrl; 2044 const __le32 *inst; 2045 2046 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000); 2047 snd_ymfpci_disable_dsp(chip); 2048 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000); 2049 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000); 2050 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000); 2051 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000); 2052 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000); 2053 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000); 2054 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000); 2055 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2056 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2057 2058 /* setup DSP instruction code */ 2059 inst = (const __le32 *)chip->dsp_microcode->data; 2060 for (i = 0; i < YDSXG_DSPLENGTH / 4; i++) 2061 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), 2062 le32_to_cpu(inst[i])); 2063 2064 /* setup control instruction code */ 2065 inst = (const __le32 *)chip->controller_microcode->data; 2066 for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++) 2067 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), 2068 le32_to_cpu(inst[i])); 2069 2070 snd_ymfpci_enable_dsp(chip); 2071 } 2072 2073 static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip) 2074 { 2075 long size, playback_ctrl_size; 2076 int voice, bank, reg; 2077 u8 *ptr; 2078 dma_addr_t ptr_addr; 2079 2080 playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES; 2081 chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2; 2082 chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2; 2083 chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2; 2084 chip->work_size = YDSXG_DEFAULT_WORK_SIZE; 2085 2086 size = ALIGN(playback_ctrl_size, 0x100) + 2087 ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) + 2088 ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) + 2089 ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) + 2090 chip->work_size; 2091 /* work_ptr must be aligned to 256 bytes, but it's already 2092 covered with the kernel page allocation mechanism */ 2093 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 2094 size, &chip->work_ptr) < 0) 2095 return -ENOMEM; 2096 ptr = chip->work_ptr.area; 2097 ptr_addr = chip->work_ptr.addr; 2098 memset(ptr, 0, size); /* for sure */ 2099 2100 chip->bank_base_playback = ptr; 2101 chip->bank_base_playback_addr = ptr_addr; 2102 chip->ctrl_playback = (u32 *)ptr; 2103 chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES); 2104 ptr += ALIGN(playback_ctrl_size, 0x100); 2105 ptr_addr += ALIGN(playback_ctrl_size, 0x100); 2106 for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) { 2107 chip->voices[voice].number = voice; 2108 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr; 2109 chip->voices[voice].bank_addr = ptr_addr; 2110 for (bank = 0; bank < 2; bank++) { 2111 chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr; 2112 ptr += chip->bank_size_playback; 2113 ptr_addr += chip->bank_size_playback; 2114 } 2115 } 2116 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2117 ptr_addr = ALIGN(ptr_addr, 0x100); 2118 chip->bank_base_capture = ptr; 2119 chip->bank_base_capture_addr = ptr_addr; 2120 for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++) 2121 for (bank = 0; bank < 2; bank++) { 2122 chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr; 2123 ptr += chip->bank_size_capture; 2124 ptr_addr += chip->bank_size_capture; 2125 } 2126 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2127 ptr_addr = ALIGN(ptr_addr, 0x100); 2128 chip->bank_base_effect = ptr; 2129 chip->bank_base_effect_addr = ptr_addr; 2130 for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++) 2131 for (bank = 0; bank < 2; bank++) { 2132 chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr; 2133 ptr += chip->bank_size_effect; 2134 ptr_addr += chip->bank_size_effect; 2135 } 2136 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2137 ptr_addr = ALIGN(ptr_addr, 0x100); 2138 chip->work_base = ptr; 2139 chip->work_base_addr = ptr_addr; 2140 2141 snd_BUG_ON(ptr + chip->work_size != 2142 chip->work_ptr.area + chip->work_ptr.bytes); 2143 2144 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr); 2145 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr); 2146 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr); 2147 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr); 2148 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2); 2149 2150 /* S/PDIF output initialization */ 2151 chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff; 2152 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0); 2153 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 2154 2155 /* S/PDIF input initialization */ 2156 snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0); 2157 2158 /* digital mixer setup */ 2159 for (reg = 0x80; reg < 0xc0; reg += 4) 2160 snd_ymfpci_writel(chip, reg, 0); 2161 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff); 2162 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff); 2163 snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff); 2164 snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff); 2165 snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff); 2166 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff); 2167 snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff); 2168 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff); 2169 2170 return 0; 2171 } 2172 2173 static int snd_ymfpci_free(struct snd_ymfpci *chip) 2174 { 2175 u16 ctrl; 2176 2177 if (snd_BUG_ON(!chip)) 2178 return -EINVAL; 2179 2180 if (chip->res_reg_area) { /* don't touch busy hardware */ 2181 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2182 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); 2183 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0); 2184 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0); 2185 snd_ymfpci_disable_dsp(chip); 2186 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0); 2187 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0); 2188 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0); 2189 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0); 2190 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0); 2191 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2192 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2193 } 2194 2195 snd_ymfpci_ac3_done(chip); 2196 2197 /* Set PCI device to D3 state */ 2198 #if 0 2199 /* FIXME: temporarily disabled, otherwise we cannot fire up 2200 * the chip again unless reboot. ACPI bug? 2201 */ 2202 pci_set_power_state(chip->pci, 3); 2203 #endif 2204 2205 #ifdef CONFIG_PM 2206 vfree(chip->saved_regs); 2207 #endif 2208 if (chip->irq >= 0) 2209 free_irq(chip->irq, chip); 2210 release_and_free_resource(chip->mpu_res); 2211 release_and_free_resource(chip->fm_res); 2212 snd_ymfpci_free_gameport(chip); 2213 if (chip->reg_area_virt) 2214 iounmap(chip->reg_area_virt); 2215 if (chip->work_ptr.area) 2216 snd_dma_free_pages(&chip->work_ptr); 2217 2218 release_and_free_resource(chip->res_reg_area); 2219 2220 pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl); 2221 2222 pci_disable_device(chip->pci); 2223 release_firmware(chip->dsp_microcode); 2224 release_firmware(chip->controller_microcode); 2225 kfree(chip); 2226 return 0; 2227 } 2228 2229 static int snd_ymfpci_dev_free(struct snd_device *device) 2230 { 2231 struct snd_ymfpci *chip = device->device_data; 2232 return snd_ymfpci_free(chip); 2233 } 2234 2235 #ifdef CONFIG_PM 2236 static int saved_regs_index[] = { 2237 /* spdif */ 2238 YDSXGR_SPDIFOUTCTRL, 2239 YDSXGR_SPDIFOUTSTATUS, 2240 YDSXGR_SPDIFINCTRL, 2241 /* volumes */ 2242 YDSXGR_PRIADCLOOPVOL, 2243 YDSXGR_NATIVEDACINVOL, 2244 YDSXGR_NATIVEDACOUTVOL, 2245 YDSXGR_BUF441OUTVOL, 2246 YDSXGR_NATIVEADCINVOL, 2247 YDSXGR_SPDIFLOOPVOL, 2248 YDSXGR_SPDIFOUTVOL, 2249 YDSXGR_ZVOUTVOL, 2250 YDSXGR_LEGACYOUTVOL, 2251 /* address bases */ 2252 YDSXGR_PLAYCTRLBASE, 2253 YDSXGR_RECCTRLBASE, 2254 YDSXGR_EFFCTRLBASE, 2255 YDSXGR_WORKBASE, 2256 /* capture set up */ 2257 YDSXGR_MAPOFREC, 2258 YDSXGR_RECFORMAT, 2259 YDSXGR_RECSLOTSR, 2260 YDSXGR_ADCFORMAT, 2261 YDSXGR_ADCSLOTSR, 2262 }; 2263 #define YDSXGR_NUM_SAVED_REGS ARRAY_SIZE(saved_regs_index) 2264 2265 int snd_ymfpci_suspend(struct pci_dev *pci, pm_message_t state) 2266 { 2267 struct snd_card *card = pci_get_drvdata(pci); 2268 struct snd_ymfpci *chip = card->private_data; 2269 unsigned int i; 2270 2271 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 2272 snd_pcm_suspend_all(chip->pcm); 2273 snd_pcm_suspend_all(chip->pcm2); 2274 snd_pcm_suspend_all(chip->pcm_spdif); 2275 snd_pcm_suspend_all(chip->pcm_4ch); 2276 snd_ac97_suspend(chip->ac97); 2277 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2278 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]); 2279 chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE); 2280 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2281 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); 2282 snd_ymfpci_disable_dsp(chip); 2283 pci_disable_device(pci); 2284 pci_save_state(pci); 2285 pci_set_power_state(pci, pci_choose_state(pci, state)); 2286 return 0; 2287 } 2288 2289 int snd_ymfpci_resume(struct pci_dev *pci) 2290 { 2291 struct snd_card *card = pci_get_drvdata(pci); 2292 struct snd_ymfpci *chip = card->private_data; 2293 unsigned int i; 2294 2295 pci_set_power_state(pci, PCI_D0); 2296 pci_restore_state(pci); 2297 if (pci_enable_device(pci) < 0) { 2298 printk(KERN_ERR "ymfpci: pci_enable_device failed, " 2299 "disabling device\n"); 2300 snd_card_disconnect(card); 2301 return -EIO; 2302 } 2303 pci_set_master(pci); 2304 snd_ymfpci_aclink_reset(pci); 2305 snd_ymfpci_codec_ready(chip, 0); 2306 snd_ymfpci_download_image(chip); 2307 udelay(100); 2308 2309 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2310 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]); 2311 2312 snd_ac97_resume(chip->ac97); 2313 2314 /* start hw again */ 2315 if (chip->start_count > 0) { 2316 spin_lock_irq(&chip->reg_lock); 2317 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode); 2318 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT); 2319 spin_unlock_irq(&chip->reg_lock); 2320 } 2321 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 2322 return 0; 2323 } 2324 #endif /* CONFIG_PM */ 2325 2326 int __devinit snd_ymfpci_create(struct snd_card *card, 2327 struct pci_dev * pci, 2328 unsigned short old_legacy_ctrl, 2329 struct snd_ymfpci ** rchip) 2330 { 2331 struct snd_ymfpci *chip; 2332 int err; 2333 static struct snd_device_ops ops = { 2334 .dev_free = snd_ymfpci_dev_free, 2335 }; 2336 2337 *rchip = NULL; 2338 2339 /* enable PCI device */ 2340 if ((err = pci_enable_device(pci)) < 0) 2341 return err; 2342 2343 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 2344 if (chip == NULL) { 2345 pci_disable_device(pci); 2346 return -ENOMEM; 2347 } 2348 chip->old_legacy_ctrl = old_legacy_ctrl; 2349 spin_lock_init(&chip->reg_lock); 2350 spin_lock_init(&chip->voice_lock); 2351 init_waitqueue_head(&chip->interrupt_sleep); 2352 atomic_set(&chip->interrupt_sleep_count, 0); 2353 chip->card = card; 2354 chip->pci = pci; 2355 chip->irq = -1; 2356 chip->device_id = pci->device; 2357 chip->rev = pci->revision; 2358 chip->reg_area_phys = pci_resource_start(pci, 0); 2359 chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000); 2360 pci_set_master(pci); 2361 chip->src441_used = -1; 2362 2363 if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) { 2364 snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1); 2365 snd_ymfpci_free(chip); 2366 return -EBUSY; 2367 } 2368 if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED, 2369 "YMFPCI", chip)) { 2370 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq); 2371 snd_ymfpci_free(chip); 2372 return -EBUSY; 2373 } 2374 chip->irq = pci->irq; 2375 2376 snd_ymfpci_aclink_reset(pci); 2377 if (snd_ymfpci_codec_ready(chip, 0) < 0) { 2378 snd_ymfpci_free(chip); 2379 return -EIO; 2380 } 2381 2382 err = snd_ymfpci_request_firmware(chip); 2383 if (err < 0) { 2384 snd_printk(KERN_ERR "firmware request failed: %d\n", err); 2385 snd_ymfpci_free(chip); 2386 return err; 2387 } 2388 snd_ymfpci_download_image(chip); 2389 2390 udelay(100); /* seems we need a delay after downloading image.. */ 2391 2392 if (snd_ymfpci_memalloc(chip) < 0) { 2393 snd_ymfpci_free(chip); 2394 return -EIO; 2395 } 2396 2397 if ((err = snd_ymfpci_ac3_init(chip)) < 0) { 2398 snd_ymfpci_free(chip); 2399 return err; 2400 } 2401 2402 #ifdef CONFIG_PM 2403 chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32)); 2404 if (chip->saved_regs == NULL) { 2405 snd_ymfpci_free(chip); 2406 return -ENOMEM; 2407 } 2408 #endif 2409 2410 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) { 2411 snd_ymfpci_free(chip); 2412 return err; 2413 } 2414 2415 snd_ymfpci_proc_init(card, chip); 2416 2417 snd_card_set_dev(card, &pci->dev); 2418 2419 *rchip = chip; 2420 return 0; 2421 } 2422