xref: /linux/sound/pci/ymfpci/ymfpci_main.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
3  *  Routines for control of YMF724/740/744/754 chips
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  *
19  */
20 
21 #include <sound/driver.h>
22 #include <linux/delay.h>
23 #include <linux/firmware.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/sched.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 
31 #include <sound/core.h>
32 #include <sound/control.h>
33 #include <sound/info.h>
34 #include <sound/tlv.h>
35 #include <sound/ymfpci.h>
36 #include <sound/asoundef.h>
37 #include <sound/mpu401.h>
38 
39 #include <asm/io.h>
40 #include <asm/byteorder.h>
41 
42 /*
43  *  common I/O routines
44  */
45 
46 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
47 
48 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
49 {
50 	return readb(chip->reg_area_virt + offset);
51 }
52 
53 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
54 {
55 	writeb(val, chip->reg_area_virt + offset);
56 }
57 
58 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
59 {
60 	return readw(chip->reg_area_virt + offset);
61 }
62 
63 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
64 {
65 	writew(val, chip->reg_area_virt + offset);
66 }
67 
68 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
69 {
70 	return readl(chip->reg_area_virt + offset);
71 }
72 
73 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
74 {
75 	writel(val, chip->reg_area_virt + offset);
76 }
77 
78 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
79 {
80 	unsigned long end_time;
81 	u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
82 
83 	end_time = jiffies + msecs_to_jiffies(750);
84 	do {
85 		if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
86 			return 0;
87 		set_current_state(TASK_UNINTERRUPTIBLE);
88 		schedule_timeout_uninterruptible(1);
89 	} while (time_before(jiffies, end_time));
90 	snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg));
91 	return -EBUSY;
92 }
93 
94 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
95 {
96 	struct snd_ymfpci *chip = ac97->private_data;
97 	u32 cmd;
98 
99 	snd_ymfpci_codec_ready(chip, 0);
100 	cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
101 	snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
102 }
103 
104 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
105 {
106 	struct snd_ymfpci *chip = ac97->private_data;
107 
108 	if (snd_ymfpci_codec_ready(chip, 0))
109 		return ~0;
110 	snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
111 	if (snd_ymfpci_codec_ready(chip, 0))
112 		return ~0;
113 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
114 		int i;
115 		for (i = 0; i < 600; i++)
116 			snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
117 	}
118 	return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
119 }
120 
121 /*
122  *  Misc routines
123  */
124 
125 static u32 snd_ymfpci_calc_delta(u32 rate)
126 {
127 	switch (rate) {
128 	case 8000:	return 0x02aaab00;
129 	case 11025:	return 0x03accd00;
130 	case 16000:	return 0x05555500;
131 	case 22050:	return 0x07599a00;
132 	case 32000:	return 0x0aaaab00;
133 	case 44100:	return 0x0eb33300;
134 	default:	return ((rate << 16) / 375) << 5;
135 	}
136 }
137 
138 static u32 def_rate[8] = {
139 	100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
140 };
141 
142 static u32 snd_ymfpci_calc_lpfK(u32 rate)
143 {
144 	u32 i;
145 	static u32 val[8] = {
146 		0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
147 		0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
148 	};
149 
150 	if (rate == 44100)
151 		return 0x40000000;	/* FIXME: What's the right value? */
152 	for (i = 0; i < 8; i++)
153 		if (rate <= def_rate[i])
154 			return val[i];
155 	return val[0];
156 }
157 
158 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
159 {
160 	u32 i;
161 	static u32 val[8] = {
162 		0x35280000, 0x34A70000, 0x32020000, 0x31770000,
163 		0x31390000, 0x31C90000, 0x33D00000, 0x40000000
164 	};
165 
166 	if (rate == 44100)
167 		return 0x370A0000;
168 	for (i = 0; i < 8; i++)
169 		if (rate <= def_rate[i])
170 			return val[i];
171 	return val[0];
172 }
173 
174 static void snd_ymfpci_pcm_441_volume_set(struct snd_ymfpci_pcm *ypcm)
175 {
176 	unsigned int value;
177 	struct snd_ymfpci_pcm_mixer *mixer;
178 
179 	mixer = &ypcm->chip->pcm_mixer[ypcm->substream->number];
180 	value = min_t(unsigned int, mixer->left, 0x7fff) >> 1;
181 	value |= (min_t(unsigned int, mixer->right, 0x7fff) >> 1) << 16;
182 	snd_ymfpci_writel(ypcm->chip, YDSXGR_BUF441OUTVOL, value);
183 }
184 
185 /*
186  *  Hardware start management
187  */
188 
189 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
190 {
191 	unsigned long flags;
192 
193 	spin_lock_irqsave(&chip->reg_lock, flags);
194 	if (chip->start_count++ > 0)
195 		goto __end;
196 	snd_ymfpci_writel(chip, YDSXGR_MODE,
197 			  snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
198 	chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
199       __end:
200       	spin_unlock_irqrestore(&chip->reg_lock, flags);
201 }
202 
203 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
204 {
205 	unsigned long flags;
206 	long timeout = 1000;
207 
208 	spin_lock_irqsave(&chip->reg_lock, flags);
209 	if (--chip->start_count > 0)
210 		goto __end;
211 	snd_ymfpci_writel(chip, YDSXGR_MODE,
212 			  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
213 	while (timeout-- > 0) {
214 		if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
215 			break;
216 	}
217 	if (atomic_read(&chip->interrupt_sleep_count)) {
218 		atomic_set(&chip->interrupt_sleep_count, 0);
219 		wake_up(&chip->interrupt_sleep);
220 	}
221       __end:
222       	spin_unlock_irqrestore(&chip->reg_lock, flags);
223 }
224 
225 /*
226  *  Playback voice management
227  */
228 
229 static int voice_alloc(struct snd_ymfpci *chip,
230 		       enum snd_ymfpci_voice_type type, int pair,
231 		       struct snd_ymfpci_voice **rvoice)
232 {
233 	struct snd_ymfpci_voice *voice, *voice2;
234 	int idx;
235 
236 	*rvoice = NULL;
237 	for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
238 		voice = &chip->voices[idx];
239 		voice2 = pair ? &chip->voices[idx+1] : NULL;
240 		if (voice->use || (voice2 && voice2->use))
241 			continue;
242 		voice->use = 1;
243 		if (voice2)
244 			voice2->use = 1;
245 		switch (type) {
246 		case YMFPCI_PCM:
247 			voice->pcm = 1;
248 			if (voice2)
249 				voice2->pcm = 1;
250 			break;
251 		case YMFPCI_SYNTH:
252 			voice->synth = 1;
253 			break;
254 		case YMFPCI_MIDI:
255 			voice->midi = 1;
256 			break;
257 		}
258 		snd_ymfpci_hw_start(chip);
259 		if (voice2)
260 			snd_ymfpci_hw_start(chip);
261 		*rvoice = voice;
262 		return 0;
263 	}
264 	return -ENOMEM;
265 }
266 
267 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
268 				  enum snd_ymfpci_voice_type type, int pair,
269 				  struct snd_ymfpci_voice **rvoice)
270 {
271 	unsigned long flags;
272 	int result;
273 
274 	snd_assert(rvoice != NULL, return -EINVAL);
275 	snd_assert(!pair || type == YMFPCI_PCM, return -EINVAL);
276 
277 	spin_lock_irqsave(&chip->voice_lock, flags);
278 	for (;;) {
279 		result = voice_alloc(chip, type, pair, rvoice);
280 		if (result == 0 || type != YMFPCI_PCM)
281 			break;
282 		/* TODO: synth/midi voice deallocation */
283 		break;
284 	}
285 	spin_unlock_irqrestore(&chip->voice_lock, flags);
286 	return result;
287 }
288 
289 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
290 {
291 	unsigned long flags;
292 
293 	snd_assert(pvoice != NULL, return -EINVAL);
294 	snd_ymfpci_hw_stop(chip);
295 	spin_lock_irqsave(&chip->voice_lock, flags);
296 	if (pvoice->number == chip->src441_used) {
297 		chip->src441_used = -1;
298 		pvoice->ypcm->use_441_slot = 0;
299 	}
300 	pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
301 	pvoice->ypcm = NULL;
302 	pvoice->interrupt = NULL;
303 	spin_unlock_irqrestore(&chip->voice_lock, flags);
304 	return 0;
305 }
306 
307 /*
308  *  PCM part
309  */
310 
311 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
312 {
313 	struct snd_ymfpci_pcm *ypcm;
314 	u32 pos, delta;
315 
316 	if ((ypcm = voice->ypcm) == NULL)
317 		return;
318 	if (ypcm->substream == NULL)
319 		return;
320 	spin_lock(&chip->reg_lock);
321 	if (ypcm->running) {
322 		pos = le32_to_cpu(voice->bank[chip->active_bank].start);
323 		if (pos < ypcm->last_pos)
324 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
325 		else
326 			delta = pos - ypcm->last_pos;
327 		ypcm->period_pos += delta;
328 		ypcm->last_pos = pos;
329 		if (ypcm->period_pos >= ypcm->period_size) {
330 			// printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
331 			ypcm->period_pos %= ypcm->period_size;
332 			spin_unlock(&chip->reg_lock);
333 			snd_pcm_period_elapsed(ypcm->substream);
334 			spin_lock(&chip->reg_lock);
335 		}
336 
337 		if (unlikely(ypcm->update_pcm_vol)) {
338 			unsigned int subs = ypcm->substream->number;
339 			unsigned int next_bank = 1 - chip->active_bank;
340 			struct snd_ymfpci_playback_bank *bank;
341 			u32 volume;
342 
343 			bank = &voice->bank[next_bank];
344 			volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
345 			bank->left_gain_end = volume;
346 			if (ypcm->output_rear)
347 				bank->eff2_gain_end = volume;
348 			if (ypcm->voices[1])
349 				bank = &ypcm->voices[1]->bank[next_bank];
350 			volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
351 			bank->right_gain_end = volume;
352 			if (ypcm->output_rear)
353 				bank->eff3_gain_end = volume;
354 			ypcm->update_pcm_vol--;
355 		}
356 	}
357 	spin_unlock(&chip->reg_lock);
358 }
359 
360 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
361 {
362 	struct snd_pcm_runtime *runtime = substream->runtime;
363 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
364 	struct snd_ymfpci *chip = ypcm->chip;
365 	u32 pos, delta;
366 
367 	spin_lock(&chip->reg_lock);
368 	if (ypcm->running) {
369 		pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
370 		if (pos < ypcm->last_pos)
371 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
372 		else
373 			delta = pos - ypcm->last_pos;
374 		ypcm->period_pos += delta;
375 		ypcm->last_pos = pos;
376 		if (ypcm->period_pos >= ypcm->period_size) {
377 			ypcm->period_pos %= ypcm->period_size;
378 			// printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
379 			spin_unlock(&chip->reg_lock);
380 			snd_pcm_period_elapsed(substream);
381 			spin_lock(&chip->reg_lock);
382 		}
383 	}
384 	spin_unlock(&chip->reg_lock);
385 }
386 
387 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
388 				       int cmd)
389 {
390 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
391 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
392 	int result = 0;
393 
394 	spin_lock(&chip->reg_lock);
395 	if (ypcm->voices[0] == NULL) {
396 		result = -EINVAL;
397 		goto __unlock;
398 	}
399 	switch (cmd) {
400 	case SNDRV_PCM_TRIGGER_START:
401 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
402 	case SNDRV_PCM_TRIGGER_RESUME:
403 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
404 		if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
405 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
406 		ypcm->running = 1;
407 		break;
408 	case SNDRV_PCM_TRIGGER_STOP:
409 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
410 	case SNDRV_PCM_TRIGGER_SUSPEND:
411 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
412 		if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
413 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
414 		ypcm->running = 0;
415 		break;
416 	default:
417 		result = -EINVAL;
418 		break;
419 	}
420       __unlock:
421 	spin_unlock(&chip->reg_lock);
422 	return result;
423 }
424 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
425 				      int cmd)
426 {
427 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
428 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
429 	int result = 0;
430 	u32 tmp;
431 
432 	spin_lock(&chip->reg_lock);
433 	switch (cmd) {
434 	case SNDRV_PCM_TRIGGER_START:
435 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
436 	case SNDRV_PCM_TRIGGER_RESUME:
437 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
438 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
439 		ypcm->running = 1;
440 		break;
441 	case SNDRV_PCM_TRIGGER_STOP:
442 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
443 	case SNDRV_PCM_TRIGGER_SUSPEND:
444 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
445 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
446 		ypcm->running = 0;
447 		break;
448 	default:
449 		result = -EINVAL;
450 		break;
451 	}
452 	spin_unlock(&chip->reg_lock);
453 	return result;
454 }
455 
456 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
457 {
458 	int err;
459 
460 	if (ypcm->voices[1] != NULL && voices < 2) {
461 		snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
462 		ypcm->voices[1] = NULL;
463 	}
464 	if (voices == 1 && ypcm->voices[0] != NULL)
465 		return 0;		/* already allocated */
466 	if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
467 		return 0;		/* already allocated */
468 	if (voices > 1) {
469 		if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
470 			snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
471 			ypcm->voices[0] = NULL;
472 		}
473 	}
474 	err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
475 	if (err < 0)
476 		return err;
477 	ypcm->voices[0]->ypcm = ypcm;
478 	ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
479 	if (voices > 1) {
480 		ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
481 		ypcm->voices[1]->ypcm = ypcm;
482 	}
483 	return 0;
484 }
485 
486 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
487 				      struct snd_pcm_runtime *runtime,
488 				      int has_pcm_volume)
489 {
490 	struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
491 	u32 format;
492 	u32 delta = snd_ymfpci_calc_delta(runtime->rate);
493 	u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
494 	u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
495 	struct snd_ymfpci_playback_bank *bank;
496 	unsigned int nbank;
497 	u32 vol_left, vol_right;
498 	u8 use_left, use_right;
499 	unsigned long flags;
500 
501 	snd_assert(voice != NULL, return);
502 	if (runtime->channels == 1) {
503 		use_left = 1;
504 		use_right = 1;
505 	} else {
506 		use_left = (voiceidx & 1) == 0;
507 		use_right = !use_left;
508 	}
509 	if (has_pcm_volume) {
510 		vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
511 				       [ypcm->substream->number].left << 15);
512 		vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
513 					[ypcm->substream->number].right << 15);
514 	} else {
515 		vol_left = cpu_to_le32(0x40000000);
516 		vol_right = cpu_to_le32(0x40000000);
517 	}
518 	spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
519 	format = runtime->channels == 2 ? 0x00010000 : 0;
520 	if (snd_pcm_format_width(runtime->format) == 8)
521 		format |= 0x80000000;
522 	else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
523 		 runtime->rate == 44100 && runtime->channels == 2 &&
524 		 voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
525 				   ypcm->chip->src441_used == voice->number)) {
526 		ypcm->chip->src441_used = voice->number;
527 		ypcm->use_441_slot = 1;
528 		format |= 0x10000000;
529 		snd_ymfpci_pcm_441_volume_set(ypcm);
530 	}
531 	if (ypcm->chip->src441_used == voice->number &&
532 	    (format & 0x10000000) == 0) {
533 		ypcm->chip->src441_used = -1;
534 		ypcm->use_441_slot = 0;
535 	}
536 	if (runtime->channels == 2 && (voiceidx & 1) != 0)
537 		format |= 1;
538 	spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
539 	for (nbank = 0; nbank < 2; nbank++) {
540 		bank = &voice->bank[nbank];
541 		memset(bank, 0, sizeof(*bank));
542 		bank->format = cpu_to_le32(format);
543 		bank->base = cpu_to_le32(runtime->dma_addr);
544 		bank->loop_end = cpu_to_le32(ypcm->buffer_size);
545 		bank->lpfQ = cpu_to_le32(lpfQ);
546 		bank->delta =
547 		bank->delta_end = cpu_to_le32(delta);
548 		bank->lpfK =
549 		bank->lpfK_end = cpu_to_le32(lpfK);
550 		bank->eg_gain =
551 		bank->eg_gain_end = cpu_to_le32(0x40000000);
552 
553 		if (ypcm->output_front) {
554 			if (use_left) {
555 				bank->left_gain =
556 				bank->left_gain_end = vol_left;
557 			}
558 			if (use_right) {
559 				bank->right_gain =
560 				bank->right_gain_end = vol_right;
561 			}
562 		}
563 		if (ypcm->output_rear) {
564 		        if (!ypcm->swap_rear) {
565         			if (use_left) {
566         				bank->eff2_gain =
567         				bank->eff2_gain_end = vol_left;
568         			}
569         			if (use_right) {
570         				bank->eff3_gain =
571         				bank->eff3_gain_end = vol_right;
572         			}
573 		        } else {
574         			/* The SPDIF out channels seem to be swapped, so we have
575         			 * to swap them here, too.  The rear analog out channels
576         			 * will be wrong, but otherwise AC3 would not work.
577         			 */
578         			if (use_left) {
579         				bank->eff3_gain =
580         				bank->eff3_gain_end = vol_left;
581         			}
582         			if (use_right) {
583         				bank->eff2_gain =
584         				bank->eff2_gain_end = vol_right;
585         			}
586         		}
587                 }
588 	}
589 }
590 
591 static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
592 {
593 	if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
594 				4096, &chip->ac3_tmp_base) < 0)
595 		return -ENOMEM;
596 
597 	chip->bank_effect[3][0]->base =
598 	chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
599 	chip->bank_effect[3][0]->loop_end =
600 	chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
601 	chip->bank_effect[4][0]->base =
602 	chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
603 	chip->bank_effect[4][0]->loop_end =
604 	chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
605 
606 	spin_lock_irq(&chip->reg_lock);
607 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
608 			  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
609 	spin_unlock_irq(&chip->reg_lock);
610 	return 0;
611 }
612 
613 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
614 {
615 	spin_lock_irq(&chip->reg_lock);
616 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
617 			  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
618 	spin_unlock_irq(&chip->reg_lock);
619 	// snd_ymfpci_irq_wait(chip);
620 	if (chip->ac3_tmp_base.area) {
621 		snd_dma_free_pages(&chip->ac3_tmp_base);
622 		chip->ac3_tmp_base.area = NULL;
623 	}
624 	return 0;
625 }
626 
627 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
628 					 struct snd_pcm_hw_params *hw_params)
629 {
630 	struct snd_pcm_runtime *runtime = substream->runtime;
631 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
632 	int err;
633 
634 	if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
635 		return err;
636 	if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
637 		return err;
638 	return 0;
639 }
640 
641 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
642 {
643 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
644 	struct snd_pcm_runtime *runtime = substream->runtime;
645 	struct snd_ymfpci_pcm *ypcm;
646 
647 	if (runtime->private_data == NULL)
648 		return 0;
649 	ypcm = runtime->private_data;
650 
651 	/* wait, until the PCI operations are not finished */
652 	snd_ymfpci_irq_wait(chip);
653 	snd_pcm_lib_free_pages(substream);
654 	if (ypcm->voices[1]) {
655 		snd_ymfpci_voice_free(chip, ypcm->voices[1]);
656 		ypcm->voices[1] = NULL;
657 	}
658 	if (ypcm->voices[0]) {
659 		snd_ymfpci_voice_free(chip, ypcm->voices[0]);
660 		ypcm->voices[0] = NULL;
661 	}
662 	return 0;
663 }
664 
665 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
666 {
667 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
668 	struct snd_pcm_runtime *runtime = substream->runtime;
669 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
670 	unsigned int nvoice;
671 
672 	ypcm->period_size = runtime->period_size;
673 	ypcm->buffer_size = runtime->buffer_size;
674 	ypcm->period_pos = 0;
675 	ypcm->last_pos = 0;
676 	for (nvoice = 0; nvoice < runtime->channels; nvoice++)
677 		snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
678 					  substream->pcm == chip->pcm);
679 	return 0;
680 }
681 
682 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
683 					struct snd_pcm_hw_params *hw_params)
684 {
685 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
686 }
687 
688 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
689 {
690 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
691 
692 	/* wait, until the PCI operations are not finished */
693 	snd_ymfpci_irq_wait(chip);
694 	return snd_pcm_lib_free_pages(substream);
695 }
696 
697 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
698 {
699 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
700 	struct snd_pcm_runtime *runtime = substream->runtime;
701 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
702 	struct snd_ymfpci_capture_bank * bank;
703 	int nbank;
704 	u32 rate, format;
705 
706 	ypcm->period_size = runtime->period_size;
707 	ypcm->buffer_size = runtime->buffer_size;
708 	ypcm->period_pos = 0;
709 	ypcm->last_pos = 0;
710 	ypcm->shift = 0;
711 	rate = ((48000 * 4096) / runtime->rate) - 1;
712 	format = 0;
713 	if (runtime->channels == 2) {
714 		format |= 2;
715 		ypcm->shift++;
716 	}
717 	if (snd_pcm_format_width(runtime->format) == 8)
718 		format |= 1;
719 	else
720 		ypcm->shift++;
721 	switch (ypcm->capture_bank_number) {
722 	case 0:
723 		snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
724 		snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
725 		break;
726 	case 1:
727 		snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
728 		snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
729 		break;
730 	}
731 	for (nbank = 0; nbank < 2; nbank++) {
732 		bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
733 		bank->base = cpu_to_le32(runtime->dma_addr);
734 		bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
735 		bank->start = 0;
736 		bank->num_of_loops = 0;
737 	}
738 	return 0;
739 }
740 
741 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
742 {
743 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
744 	struct snd_pcm_runtime *runtime = substream->runtime;
745 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
746 	struct snd_ymfpci_voice *voice = ypcm->voices[0];
747 
748 	if (!(ypcm->running && voice))
749 		return 0;
750 	return le32_to_cpu(voice->bank[chip->active_bank].start);
751 }
752 
753 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
754 {
755 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
756 	struct snd_pcm_runtime *runtime = substream->runtime;
757 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
758 
759 	if (!ypcm->running)
760 		return 0;
761 	return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
762 }
763 
764 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
765 {
766 	wait_queue_t wait;
767 	int loops = 4;
768 
769 	while (loops-- > 0) {
770 		if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
771 		 	continue;
772 		init_waitqueue_entry(&wait, current);
773 		add_wait_queue(&chip->interrupt_sleep, &wait);
774 		atomic_inc(&chip->interrupt_sleep_count);
775 		schedule_timeout_uninterruptible(msecs_to_jiffies(50));
776 		remove_wait_queue(&chip->interrupt_sleep, &wait);
777 	}
778 }
779 
780 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
781 {
782 	struct snd_ymfpci *chip = dev_id;
783 	u32 status, nvoice, mode;
784 	struct snd_ymfpci_voice *voice;
785 
786 	status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
787 	if (status & 0x80000000) {
788 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
789 		spin_lock(&chip->voice_lock);
790 		for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
791 			voice = &chip->voices[nvoice];
792 			if (voice->interrupt)
793 				voice->interrupt(chip, voice);
794 		}
795 		for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
796 			if (chip->capture_substream[nvoice])
797 				snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
798 		}
799 #if 0
800 		for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
801 			if (chip->effect_substream[nvoice])
802 				snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
803 		}
804 #endif
805 		spin_unlock(&chip->voice_lock);
806 		spin_lock(&chip->reg_lock);
807 		snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
808 		mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
809 		snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
810 		spin_unlock(&chip->reg_lock);
811 
812 		if (atomic_read(&chip->interrupt_sleep_count)) {
813 			atomic_set(&chip->interrupt_sleep_count, 0);
814 			wake_up(&chip->interrupt_sleep);
815 		}
816 	}
817 
818 	status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
819 	if (status & 1) {
820 		if (chip->timer)
821 			snd_timer_interrupt(chip->timer, chip->timer->sticks);
822 	}
823 	snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
824 
825 	if (chip->rawmidi)
826 		snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
827 	return IRQ_HANDLED;
828 }
829 
830 static struct snd_pcm_hardware snd_ymfpci_playback =
831 {
832 	.info =			(SNDRV_PCM_INFO_MMAP |
833 				 SNDRV_PCM_INFO_MMAP_VALID |
834 				 SNDRV_PCM_INFO_INTERLEAVED |
835 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
836 				 SNDRV_PCM_INFO_PAUSE |
837 				 SNDRV_PCM_INFO_RESUME),
838 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
839 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
840 	.rate_min =		8000,
841 	.rate_max =		48000,
842 	.channels_min =		1,
843 	.channels_max =		2,
844 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
845 	.period_bytes_min =	64,
846 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
847 	.periods_min =		3,
848 	.periods_max =		1024,
849 	.fifo_size =		0,
850 };
851 
852 static struct snd_pcm_hardware snd_ymfpci_capture =
853 {
854 	.info =			(SNDRV_PCM_INFO_MMAP |
855 				 SNDRV_PCM_INFO_MMAP_VALID |
856 				 SNDRV_PCM_INFO_INTERLEAVED |
857 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
858 				 SNDRV_PCM_INFO_PAUSE |
859 				 SNDRV_PCM_INFO_RESUME),
860 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
861 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
862 	.rate_min =		8000,
863 	.rate_max =		48000,
864 	.channels_min =		1,
865 	.channels_max =		2,
866 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
867 	.period_bytes_min =	64,
868 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
869 	.periods_min =		3,
870 	.periods_max =		1024,
871 	.fifo_size =		0,
872 };
873 
874 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
875 {
876 	kfree(runtime->private_data);
877 }
878 
879 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
880 {
881 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
882 	struct snd_pcm_runtime *runtime = substream->runtime;
883 	struct snd_ymfpci_pcm *ypcm;
884 
885 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
886 	if (ypcm == NULL)
887 		return -ENOMEM;
888 	ypcm->chip = chip;
889 	ypcm->type = PLAYBACK_VOICE;
890 	ypcm->substream = substream;
891 	runtime->hw = snd_ymfpci_playback;
892 	runtime->private_data = ypcm;
893 	runtime->private_free = snd_ymfpci_pcm_free_substream;
894 	/* FIXME? True value is 256/48 = 5.33333 ms */
895 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
896 	return 0;
897 }
898 
899 /* call with spinlock held */
900 static void ymfpci_open_extension(struct snd_ymfpci *chip)
901 {
902 	if (! chip->rear_opened) {
903 		if (! chip->spdif_opened) /* set AC3 */
904 			snd_ymfpci_writel(chip, YDSXGR_MODE,
905 					  snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
906 		/* enable second codec (4CHEN) */
907 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
908 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
909 	}
910 }
911 
912 /* call with spinlock held */
913 static void ymfpci_close_extension(struct snd_ymfpci *chip)
914 {
915 	if (! chip->rear_opened) {
916 		if (! chip->spdif_opened)
917 			snd_ymfpci_writel(chip, YDSXGR_MODE,
918 					  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
919 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
920 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
921 	}
922 }
923 
924 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
925 {
926 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
927 	struct snd_pcm_runtime *runtime = substream->runtime;
928 	struct snd_ymfpci_pcm *ypcm;
929 	struct snd_kcontrol *kctl;
930 	int err;
931 
932 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
933 		return err;
934 	ypcm = runtime->private_data;
935 	ypcm->output_front = 1;
936 	ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
937 	ypcm->swap_rear = 0;
938 	spin_lock_irq(&chip->reg_lock);
939 	if (ypcm->output_rear) {
940 		ymfpci_open_extension(chip);
941 		chip->rear_opened++;
942 	}
943 	spin_unlock_irq(&chip->reg_lock);
944 
945 	kctl = chip->pcm_mixer[substream->number].ctl;
946 	kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
947 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
948 	return 0;
949 }
950 
951 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
952 {
953 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
954 	struct snd_pcm_runtime *runtime = substream->runtime;
955 	struct snd_ymfpci_pcm *ypcm;
956 	int err;
957 
958 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
959 		return err;
960 	ypcm = runtime->private_data;
961 	ypcm->output_front = 0;
962 	ypcm->output_rear = 1;
963 	ypcm->swap_rear = 1;
964 	spin_lock_irq(&chip->reg_lock);
965 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
966 			  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
967 	ymfpci_open_extension(chip);
968 	chip->spdif_pcm_bits = chip->spdif_bits;
969 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
970 	chip->spdif_opened++;
971 	spin_unlock_irq(&chip->reg_lock);
972 
973 	chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
974 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
975 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
976 	return 0;
977 }
978 
979 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
980 {
981 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
982 	struct snd_pcm_runtime *runtime = substream->runtime;
983 	struct snd_ymfpci_pcm *ypcm;
984 	int err;
985 
986 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
987 		return err;
988 	ypcm = runtime->private_data;
989 	ypcm->output_front = 0;
990 	ypcm->output_rear = 1;
991 	ypcm->swap_rear = 0;
992 	spin_lock_irq(&chip->reg_lock);
993 	ymfpci_open_extension(chip);
994 	chip->rear_opened++;
995 	spin_unlock_irq(&chip->reg_lock);
996 	return 0;
997 }
998 
999 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
1000 				   u32 capture_bank_number)
1001 {
1002 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1003 	struct snd_pcm_runtime *runtime = substream->runtime;
1004 	struct snd_ymfpci_pcm *ypcm;
1005 
1006 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1007 	if (ypcm == NULL)
1008 		return -ENOMEM;
1009 	ypcm->chip = chip;
1010 	ypcm->type = capture_bank_number + CAPTURE_REC;
1011 	ypcm->substream = substream;
1012 	ypcm->capture_bank_number = capture_bank_number;
1013 	chip->capture_substream[capture_bank_number] = substream;
1014 	runtime->hw = snd_ymfpci_capture;
1015 	/* FIXME? True value is 256/48 = 5.33333 ms */
1016 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
1017 	runtime->private_data = ypcm;
1018 	runtime->private_free = snd_ymfpci_pcm_free_substream;
1019 	snd_ymfpci_hw_start(chip);
1020 	return 0;
1021 }
1022 
1023 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1024 {
1025 	return snd_ymfpci_capture_open(substream, 0);
1026 }
1027 
1028 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1029 {
1030 	return snd_ymfpci_capture_open(substream, 1);
1031 }
1032 
1033 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1034 {
1035 	return 0;
1036 }
1037 
1038 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1039 {
1040 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1041 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1042 	struct snd_kcontrol *kctl;
1043 
1044 	spin_lock_irq(&chip->reg_lock);
1045 	if (ypcm->output_rear && chip->rear_opened > 0) {
1046 		chip->rear_opened--;
1047 		ymfpci_close_extension(chip);
1048 	}
1049 	spin_unlock_irq(&chip->reg_lock);
1050 	kctl = chip->pcm_mixer[substream->number].ctl;
1051 	kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1052 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
1053 	return snd_ymfpci_playback_close_1(substream);
1054 }
1055 
1056 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1057 {
1058 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1059 
1060 	spin_lock_irq(&chip->reg_lock);
1061 	chip->spdif_opened = 0;
1062 	ymfpci_close_extension(chip);
1063 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1064 			  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1065 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1066 	spin_unlock_irq(&chip->reg_lock);
1067 	chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1068 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1069 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1070 	return snd_ymfpci_playback_close_1(substream);
1071 }
1072 
1073 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1074 {
1075 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1076 
1077 	spin_lock_irq(&chip->reg_lock);
1078 	if (chip->rear_opened > 0) {
1079 		chip->rear_opened--;
1080 		ymfpci_close_extension(chip);
1081 	}
1082 	spin_unlock_irq(&chip->reg_lock);
1083 	return snd_ymfpci_playback_close_1(substream);
1084 }
1085 
1086 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1087 {
1088 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1089 	struct snd_pcm_runtime *runtime = substream->runtime;
1090 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1091 
1092 	if (ypcm != NULL) {
1093 		chip->capture_substream[ypcm->capture_bank_number] = NULL;
1094 		snd_ymfpci_hw_stop(chip);
1095 	}
1096 	return 0;
1097 }
1098 
1099 static struct snd_pcm_ops snd_ymfpci_playback_ops = {
1100 	.open =			snd_ymfpci_playback_open,
1101 	.close =		snd_ymfpci_playback_close,
1102 	.ioctl =		snd_pcm_lib_ioctl,
1103 	.hw_params =		snd_ymfpci_playback_hw_params,
1104 	.hw_free =		snd_ymfpci_playback_hw_free,
1105 	.prepare =		snd_ymfpci_playback_prepare,
1106 	.trigger =		snd_ymfpci_playback_trigger,
1107 	.pointer =		snd_ymfpci_playback_pointer,
1108 };
1109 
1110 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1111 	.open =			snd_ymfpci_capture_rec_open,
1112 	.close =		snd_ymfpci_capture_close,
1113 	.ioctl =		snd_pcm_lib_ioctl,
1114 	.hw_params =		snd_ymfpci_capture_hw_params,
1115 	.hw_free =		snd_ymfpci_capture_hw_free,
1116 	.prepare =		snd_ymfpci_capture_prepare,
1117 	.trigger =		snd_ymfpci_capture_trigger,
1118 	.pointer =		snd_ymfpci_capture_pointer,
1119 };
1120 
1121 int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1122 {
1123 	struct snd_pcm *pcm;
1124 	int err;
1125 
1126 	if (rpcm)
1127 		*rpcm = NULL;
1128 	if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1129 		return err;
1130 	pcm->private_data = chip;
1131 
1132 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1133 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1134 
1135 	/* global setup */
1136 	pcm->info_flags = 0;
1137 	strcpy(pcm->name, "YMFPCI");
1138 	chip->pcm = pcm;
1139 
1140 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1141 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1142 
1143 	if (rpcm)
1144 		*rpcm = pcm;
1145 	return 0;
1146 }
1147 
1148 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1149 	.open =			snd_ymfpci_capture_ac97_open,
1150 	.close =		snd_ymfpci_capture_close,
1151 	.ioctl =		snd_pcm_lib_ioctl,
1152 	.hw_params =		snd_ymfpci_capture_hw_params,
1153 	.hw_free =		snd_ymfpci_capture_hw_free,
1154 	.prepare =		snd_ymfpci_capture_prepare,
1155 	.trigger =		snd_ymfpci_capture_trigger,
1156 	.pointer =		snd_ymfpci_capture_pointer,
1157 };
1158 
1159 int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1160 {
1161 	struct snd_pcm *pcm;
1162 	int err;
1163 
1164 	if (rpcm)
1165 		*rpcm = NULL;
1166 	if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1167 		return err;
1168 	pcm->private_data = chip;
1169 
1170 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1171 
1172 	/* global setup */
1173 	pcm->info_flags = 0;
1174 	sprintf(pcm->name, "YMFPCI - %s",
1175 		chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1176 	chip->pcm2 = pcm;
1177 
1178 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1179 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1180 
1181 	if (rpcm)
1182 		*rpcm = pcm;
1183 	return 0;
1184 }
1185 
1186 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1187 	.open =			snd_ymfpci_playback_spdif_open,
1188 	.close =		snd_ymfpci_playback_spdif_close,
1189 	.ioctl =		snd_pcm_lib_ioctl,
1190 	.hw_params =		snd_ymfpci_playback_hw_params,
1191 	.hw_free =		snd_ymfpci_playback_hw_free,
1192 	.prepare =		snd_ymfpci_playback_prepare,
1193 	.trigger =		snd_ymfpci_playback_trigger,
1194 	.pointer =		snd_ymfpci_playback_pointer,
1195 };
1196 
1197 int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1198 {
1199 	struct snd_pcm *pcm;
1200 	int err;
1201 
1202 	if (rpcm)
1203 		*rpcm = NULL;
1204 	if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1205 		return err;
1206 	pcm->private_data = chip;
1207 
1208 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1209 
1210 	/* global setup */
1211 	pcm->info_flags = 0;
1212 	strcpy(pcm->name, "YMFPCI - IEC958");
1213 	chip->pcm_spdif = pcm;
1214 
1215 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1216 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1217 
1218 	if (rpcm)
1219 		*rpcm = pcm;
1220 	return 0;
1221 }
1222 
1223 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1224 	.open =			snd_ymfpci_playback_4ch_open,
1225 	.close =		snd_ymfpci_playback_4ch_close,
1226 	.ioctl =		snd_pcm_lib_ioctl,
1227 	.hw_params =		snd_ymfpci_playback_hw_params,
1228 	.hw_free =		snd_ymfpci_playback_hw_free,
1229 	.prepare =		snd_ymfpci_playback_prepare,
1230 	.trigger =		snd_ymfpci_playback_trigger,
1231 	.pointer =		snd_ymfpci_playback_pointer,
1232 };
1233 
1234 int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1235 {
1236 	struct snd_pcm *pcm;
1237 	int err;
1238 
1239 	if (rpcm)
1240 		*rpcm = NULL;
1241 	if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1242 		return err;
1243 	pcm->private_data = chip;
1244 
1245 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1246 
1247 	/* global setup */
1248 	pcm->info_flags = 0;
1249 	strcpy(pcm->name, "YMFPCI - Rear PCM");
1250 	chip->pcm_4ch = pcm;
1251 
1252 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1253 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1254 
1255 	if (rpcm)
1256 		*rpcm = pcm;
1257 	return 0;
1258 }
1259 
1260 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1261 {
1262 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1263 	uinfo->count = 1;
1264 	return 0;
1265 }
1266 
1267 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1268 					struct snd_ctl_elem_value *ucontrol)
1269 {
1270 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1271 
1272 	spin_lock_irq(&chip->reg_lock);
1273 	ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1274 	ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1275 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1276 	spin_unlock_irq(&chip->reg_lock);
1277 	return 0;
1278 }
1279 
1280 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1281 					 struct snd_ctl_elem_value *ucontrol)
1282 {
1283 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1284 	unsigned int val;
1285 	int change;
1286 
1287 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1288 	      (ucontrol->value.iec958.status[1] << 8);
1289 	spin_lock_irq(&chip->reg_lock);
1290 	change = chip->spdif_bits != val;
1291 	chip->spdif_bits = val;
1292 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1293 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1294 	spin_unlock_irq(&chip->reg_lock);
1295 	return change;
1296 }
1297 
1298 static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata =
1299 {
1300 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1301 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1302 	.info =		snd_ymfpci_spdif_default_info,
1303 	.get =		snd_ymfpci_spdif_default_get,
1304 	.put =		snd_ymfpci_spdif_default_put
1305 };
1306 
1307 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1308 {
1309 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1310 	uinfo->count = 1;
1311 	return 0;
1312 }
1313 
1314 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1315 				      struct snd_ctl_elem_value *ucontrol)
1316 {
1317 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1318 
1319 	spin_lock_irq(&chip->reg_lock);
1320 	ucontrol->value.iec958.status[0] = 0x3e;
1321 	ucontrol->value.iec958.status[1] = 0xff;
1322 	spin_unlock_irq(&chip->reg_lock);
1323 	return 0;
1324 }
1325 
1326 static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata =
1327 {
1328 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1329 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1330 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1331 	.info =		snd_ymfpci_spdif_mask_info,
1332 	.get =		snd_ymfpci_spdif_mask_get,
1333 };
1334 
1335 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1336 {
1337 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1338 	uinfo->count = 1;
1339 	return 0;
1340 }
1341 
1342 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1343 					struct snd_ctl_elem_value *ucontrol)
1344 {
1345 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1346 
1347 	spin_lock_irq(&chip->reg_lock);
1348 	ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1349 	ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1350 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1351 	spin_unlock_irq(&chip->reg_lock);
1352 	return 0;
1353 }
1354 
1355 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1356 					struct snd_ctl_elem_value *ucontrol)
1357 {
1358 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1359 	unsigned int val;
1360 	int change;
1361 
1362 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1363 	      (ucontrol->value.iec958.status[1] << 8);
1364 	spin_lock_irq(&chip->reg_lock);
1365 	change = chip->spdif_pcm_bits != val;
1366 	chip->spdif_pcm_bits = val;
1367 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1368 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1369 	spin_unlock_irq(&chip->reg_lock);
1370 	return change;
1371 }
1372 
1373 static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata =
1374 {
1375 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1376 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1377 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1378 	.info =		snd_ymfpci_spdif_stream_info,
1379 	.get =		snd_ymfpci_spdif_stream_get,
1380 	.put =		snd_ymfpci_spdif_stream_put
1381 };
1382 
1383 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1384 {
1385 	static char *texts[3] = {"AC'97", "IEC958", "ZV Port"};
1386 
1387 	info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1388 	info->count = 1;
1389 	info->value.enumerated.items = 3;
1390 	if (info->value.enumerated.item > 2)
1391 		info->value.enumerated.item = 2;
1392 	strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]);
1393 	return 0;
1394 }
1395 
1396 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1397 {
1398 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1399 	u16 reg;
1400 
1401 	spin_lock_irq(&chip->reg_lock);
1402 	reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1403 	spin_unlock_irq(&chip->reg_lock);
1404 	if (!(reg & 0x100))
1405 		value->value.enumerated.item[0] = 0;
1406 	else
1407 		value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1408 	return 0;
1409 }
1410 
1411 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1412 {
1413 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1414 	u16 reg, old_reg;
1415 
1416 	spin_lock_irq(&chip->reg_lock);
1417 	old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1418 	if (value->value.enumerated.item[0] == 0)
1419 		reg = old_reg & ~0x100;
1420 	else
1421 		reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1422 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1423 	spin_unlock_irq(&chip->reg_lock);
1424 	return reg != old_reg;
1425 }
1426 
1427 static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = {
1428 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE,
1429 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
1430 	.name =		"Direct Recording Source",
1431 	.info =		snd_ymfpci_drec_source_info,
1432 	.get =		snd_ymfpci_drec_source_get,
1433 	.put =		snd_ymfpci_drec_source_put
1434 };
1435 
1436 /*
1437  *  Mixer controls
1438  */
1439 
1440 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1441 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1442   .info = snd_ymfpci_info_single, \
1443   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1444   .private_value = ((reg) | ((shift) << 16)) }
1445 
1446 static int snd_ymfpci_info_single(struct snd_kcontrol *kcontrol,
1447 				  struct snd_ctl_elem_info *uinfo)
1448 {
1449 	int reg = kcontrol->private_value & 0xffff;
1450 
1451 	switch (reg) {
1452 	case YDSXGR_SPDIFOUTCTRL: break;
1453 	case YDSXGR_SPDIFINCTRL: break;
1454 	default: return -EINVAL;
1455 	}
1456 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1457 	uinfo->count = 1;
1458 	uinfo->value.integer.min = 0;
1459 	uinfo->value.integer.max = 1;
1460 	return 0;
1461 }
1462 
1463 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1464 				 struct snd_ctl_elem_value *ucontrol)
1465 {
1466 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1467 	int reg = kcontrol->private_value & 0xffff;
1468 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1469 	unsigned int mask = 1;
1470 
1471 	switch (reg) {
1472 	case YDSXGR_SPDIFOUTCTRL: break;
1473 	case YDSXGR_SPDIFINCTRL: break;
1474 	default: return -EINVAL;
1475 	}
1476 	ucontrol->value.integer.value[0] =
1477 		(snd_ymfpci_readl(chip, reg) >> shift) & mask;
1478 	return 0;
1479 }
1480 
1481 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1482 				 struct snd_ctl_elem_value *ucontrol)
1483 {
1484 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1485 	int reg = kcontrol->private_value & 0xffff;
1486 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1487  	unsigned int mask = 1;
1488 	int change;
1489 	unsigned int val, oval;
1490 
1491 	switch (reg) {
1492 	case YDSXGR_SPDIFOUTCTRL: break;
1493 	case YDSXGR_SPDIFINCTRL: break;
1494 	default: return -EINVAL;
1495 	}
1496 	val = (ucontrol->value.integer.value[0] & mask);
1497 	val <<= shift;
1498 	spin_lock_irq(&chip->reg_lock);
1499 	oval = snd_ymfpci_readl(chip, reg);
1500 	val = (oval & ~(mask << shift)) | val;
1501 	change = val != oval;
1502 	snd_ymfpci_writel(chip, reg, val);
1503 	spin_unlock_irq(&chip->reg_lock);
1504 	return change;
1505 }
1506 
1507 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1508 
1509 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1510 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1511   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1512   .info = snd_ymfpci_info_double, \
1513   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1514   .private_value = reg, \
1515   .tlv = { .p = db_scale_native } }
1516 
1517 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1518 {
1519 	unsigned int reg = kcontrol->private_value;
1520 
1521 	if (reg < 0x80 || reg >= 0xc0)
1522 		return -EINVAL;
1523 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1524 	uinfo->count = 2;
1525 	uinfo->value.integer.min = 0;
1526 	uinfo->value.integer.max = 16383;
1527 	return 0;
1528 }
1529 
1530 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1531 {
1532 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1533 	unsigned int reg = kcontrol->private_value;
1534 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1535 	unsigned int val;
1536 
1537 	if (reg < 0x80 || reg >= 0xc0)
1538 		return -EINVAL;
1539 	spin_lock_irq(&chip->reg_lock);
1540 	val = snd_ymfpci_readl(chip, reg);
1541 	spin_unlock_irq(&chip->reg_lock);
1542 	ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1543 	ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1544 	return 0;
1545 }
1546 
1547 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1548 {
1549 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1550 	unsigned int reg = kcontrol->private_value;
1551 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1552 	int change;
1553 	unsigned int val1, val2, oval;
1554 
1555 	if (reg < 0x80 || reg >= 0xc0)
1556 		return -EINVAL;
1557 	val1 = ucontrol->value.integer.value[0] & mask;
1558 	val2 = ucontrol->value.integer.value[1] & mask;
1559 	val1 <<= shift_left;
1560 	val2 <<= shift_right;
1561 	spin_lock_irq(&chip->reg_lock);
1562 	oval = snd_ymfpci_readl(chip, reg);
1563 	val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1564 	change = val1 != oval;
1565 	snd_ymfpci_writel(chip, reg, val1);
1566 	spin_unlock_irq(&chip->reg_lock);
1567 	return change;
1568 }
1569 
1570 /*
1571  * 4ch duplication
1572  */
1573 static int snd_ymfpci_info_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1574 {
1575 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1576 	uinfo->count = 1;
1577 	uinfo->value.integer.min = 0;
1578 	uinfo->value.integer.max = 1;
1579 	return 0;
1580 }
1581 
1582 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1583 {
1584 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1585 	ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1586 	return 0;
1587 }
1588 
1589 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1590 {
1591 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1592 	int change;
1593 	change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1594 	if (change)
1595 		chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1596 	return change;
1597 }
1598 
1599 
1600 static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = {
1601 YMFPCI_DOUBLE("Wave Playback Volume", 0, YDSXGR_NATIVEDACOUTVOL),
1602 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1603 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1604 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1605 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1606 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1607 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1608 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1609 YMFPCI_DOUBLE("FM Legacy Volume", 0, YDSXGR_LEGACYOUTVOL),
1610 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1611 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1612 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1613 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1614 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1615 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1616 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1617 {
1618 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1619 	.name = "4ch Duplication",
1620 	.info = snd_ymfpci_info_dup4ch,
1621 	.get = snd_ymfpci_get_dup4ch,
1622 	.put = snd_ymfpci_put_dup4ch,
1623 },
1624 };
1625 
1626 
1627 /*
1628  * GPIO
1629  */
1630 
1631 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1632 {
1633 	u16 reg, mode;
1634 	unsigned long flags;
1635 
1636 	spin_lock_irqsave(&chip->reg_lock, flags);
1637 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1638 	reg &= ~(1 << (pin + 8));
1639 	reg |= (1 << pin);
1640 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1641 	/* set the level mode for input line */
1642 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1643 	mode &= ~(3 << (pin * 2));
1644 	snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1645 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1646 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1647 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1648 	return (mode >> pin) & 1;
1649 }
1650 
1651 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1652 {
1653 	u16 reg;
1654 	unsigned long flags;
1655 
1656 	spin_lock_irqsave(&chip->reg_lock, flags);
1657 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1658 	reg &= ~(1 << pin);
1659 	reg &= ~(1 << (pin + 8));
1660 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1661 	snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1662 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1663 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1664 
1665 	return 0;
1666 }
1667 
1668 static int snd_ymfpci_gpio_sw_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1669 {
1670 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1671 	uinfo->count = 1;
1672 	uinfo->value.integer.min = 0;
1673 	uinfo->value.integer.max = 1;
1674 	return 0;
1675 }
1676 
1677 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1678 {
1679 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1680 	int pin = (int)kcontrol->private_value;
1681 	ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1682 	return 0;
1683 }
1684 
1685 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1686 {
1687 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1688 	int pin = (int)kcontrol->private_value;
1689 
1690 	if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1691 		snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1692 		ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1693 		return 1;
1694 	}
1695 	return 0;
1696 }
1697 
1698 static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = {
1699 	.name = "Shared Rear/Line-In Switch",
1700 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1701 	.info = snd_ymfpci_gpio_sw_info,
1702 	.get = snd_ymfpci_gpio_sw_get,
1703 	.put = snd_ymfpci_gpio_sw_put,
1704 	.private_value = 2,
1705 };
1706 
1707 /*
1708  * PCM voice volume
1709  */
1710 
1711 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1712 				   struct snd_ctl_elem_info *uinfo)
1713 {
1714 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1715 	uinfo->count = 2;
1716 	uinfo->value.integer.min = 0;
1717 	uinfo->value.integer.max = 0x8000;
1718 	return 0;
1719 }
1720 
1721 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1722 				  struct snd_ctl_elem_value *ucontrol)
1723 {
1724 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1725 	unsigned int subs = kcontrol->id.subdevice;
1726 
1727 	ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1728 	ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1729 	return 0;
1730 }
1731 
1732 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1733 				  struct snd_ctl_elem_value *ucontrol)
1734 {
1735 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1736 	unsigned int subs = kcontrol->id.subdevice;
1737 	struct snd_pcm_substream *substream;
1738 	unsigned long flags;
1739 
1740 	if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1741 	    ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1742 		chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1743 		chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1744 
1745 		substream = (struct snd_pcm_substream *)kcontrol->private_value;
1746 		spin_lock_irqsave(&chip->voice_lock, flags);
1747 		if (substream->runtime && substream->runtime->private_data) {
1748 			struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1749 			if (!ypcm->use_441_slot)
1750 				ypcm->update_pcm_vol = 2;
1751 			else
1752 				snd_ymfpci_pcm_441_volume_set(ypcm);
1753 		}
1754 		spin_unlock_irqrestore(&chip->voice_lock, flags);
1755 		return 1;
1756 	}
1757 	return 0;
1758 }
1759 
1760 static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = {
1761 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1762 	.name = "PCM Playback Volume",
1763 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1764 		SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1765 	.info = snd_ymfpci_pcm_vol_info,
1766 	.get = snd_ymfpci_pcm_vol_get,
1767 	.put = snd_ymfpci_pcm_vol_put,
1768 };
1769 
1770 
1771 /*
1772  *  Mixer routines
1773  */
1774 
1775 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1776 {
1777 	struct snd_ymfpci *chip = bus->private_data;
1778 	chip->ac97_bus = NULL;
1779 }
1780 
1781 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1782 {
1783 	struct snd_ymfpci *chip = ac97->private_data;
1784 	chip->ac97 = NULL;
1785 }
1786 
1787 int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1788 {
1789 	struct snd_ac97_template ac97;
1790 	struct snd_kcontrol *kctl;
1791 	struct snd_pcm_substream *substream;
1792 	unsigned int idx;
1793 	int err;
1794 	static struct snd_ac97_bus_ops ops = {
1795 		.write = snd_ymfpci_codec_write,
1796 		.read = snd_ymfpci_codec_read,
1797 	};
1798 
1799 	if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1800 		return err;
1801 	chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1802 	chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1803 
1804 	memset(&ac97, 0, sizeof(ac97));
1805 	ac97.private_data = chip;
1806 	ac97.private_free = snd_ymfpci_mixer_free_ac97;
1807 	if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1808 		return err;
1809 
1810 	/* to be sure */
1811 	snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1812 			     AC97_EA_VRA|AC97_EA_VRM, 0);
1813 
1814 	for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1815 		if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1816 			return err;
1817 	}
1818 
1819 	/* add S/PDIF control */
1820 	snd_assert(chip->pcm_spdif != NULL, return -EIO);
1821 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1822 		return err;
1823 	kctl->id.device = chip->pcm_spdif->device;
1824 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1825 		return err;
1826 	kctl->id.device = chip->pcm_spdif->device;
1827 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1828 		return err;
1829 	kctl->id.device = chip->pcm_spdif->device;
1830 	chip->spdif_pcm_ctl = kctl;
1831 
1832 	/* direct recording source */
1833 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1834 	    (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1835 		return err;
1836 
1837 	/*
1838 	 * shared rear/line-in
1839 	 */
1840 	if (rear_switch) {
1841 		if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1842 			return err;
1843 	}
1844 
1845 	/* per-voice volume */
1846 	substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1847 	for (idx = 0; idx < 32; ++idx) {
1848 		kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1849 		if (!kctl)
1850 			return -ENOMEM;
1851 		kctl->id.device = chip->pcm->device;
1852 		kctl->id.subdevice = idx;
1853 		kctl->private_value = (unsigned long)substream;
1854 		if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1855 			return err;
1856 		chip->pcm_mixer[idx].left = 0x8000;
1857 		chip->pcm_mixer[idx].right = 0x8000;
1858 		chip->pcm_mixer[idx].ctl = kctl;
1859 		substream = substream->next;
1860 	}
1861 
1862 	return 0;
1863 }
1864 
1865 
1866 /*
1867  * timer
1868  */
1869 
1870 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1871 {
1872 	struct snd_ymfpci *chip;
1873 	unsigned long flags;
1874 	unsigned int count;
1875 
1876 	chip = snd_timer_chip(timer);
1877 	count = (timer->sticks << 1) - 1;
1878 	spin_lock_irqsave(&chip->reg_lock, flags);
1879 	snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1880 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1881 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1882 	return 0;
1883 }
1884 
1885 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1886 {
1887 	struct snd_ymfpci *chip;
1888 	unsigned long flags;
1889 
1890 	chip = snd_timer_chip(timer);
1891 	spin_lock_irqsave(&chip->reg_lock, flags);
1892 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1893 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1894 	return 0;
1895 }
1896 
1897 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1898 					       unsigned long *num, unsigned long *den)
1899 {
1900 	*num = 1;
1901 	*den = 48000;
1902 	return 0;
1903 }
1904 
1905 static struct snd_timer_hardware snd_ymfpci_timer_hw = {
1906 	.flags = SNDRV_TIMER_HW_AUTO,
1907 	.resolution = 20833, /* 1/fs = 20.8333...us */
1908 	.ticks = 0x8000,
1909 	.start = snd_ymfpci_timer_start,
1910 	.stop = snd_ymfpci_timer_stop,
1911 	.precise_resolution = snd_ymfpci_timer_precise_resolution,
1912 };
1913 
1914 int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1915 {
1916 	struct snd_timer *timer = NULL;
1917 	struct snd_timer_id tid;
1918 	int err;
1919 
1920 	tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1921 	tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1922 	tid.card = chip->card->number;
1923 	tid.device = device;
1924 	tid.subdevice = 0;
1925 	if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1926 		strcpy(timer->name, "YMFPCI timer");
1927 		timer->private_data = chip;
1928 		timer->hw = snd_ymfpci_timer_hw;
1929 	}
1930 	chip->timer = timer;
1931 	return err;
1932 }
1933 
1934 
1935 /*
1936  *  proc interface
1937  */
1938 
1939 static void snd_ymfpci_proc_read(struct snd_info_entry *entry,
1940 				 struct snd_info_buffer *buffer)
1941 {
1942 	struct snd_ymfpci *chip = entry->private_data;
1943 	int i;
1944 
1945 	snd_iprintf(buffer, "YMFPCI\n\n");
1946 	for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1947 		snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1948 }
1949 
1950 static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1951 {
1952 	struct snd_info_entry *entry;
1953 
1954 	if (! snd_card_proc_new(card, "ymfpci", &entry))
1955 		snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read);
1956 	return 0;
1957 }
1958 
1959 /*
1960  *  initialization routines
1961  */
1962 
1963 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1964 {
1965 	u8 cmd;
1966 
1967 	pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1968 #if 0 // force to reset
1969 	if (cmd & 0x03) {
1970 #endif
1971 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1972 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1973 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1974 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
1975 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
1976 #if 0
1977 	}
1978 #endif
1979 }
1980 
1981 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
1982 {
1983 	snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
1984 }
1985 
1986 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
1987 {
1988 	u32 val;
1989 	int timeout = 1000;
1990 
1991 	val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
1992 	if (val)
1993 		snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
1994 	while (timeout-- > 0) {
1995 		val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
1996 		if ((val & 0x00000002) == 0)
1997 			break;
1998 	}
1999 }
2000 
2001 #ifdef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL
2002 
2003 #include "ymfpci_image.h"
2004 
2005 static struct firmware snd_ymfpci_dsp_microcode = {
2006 	.size = YDSXG_DSPLENGTH,
2007 	.data = (u8 *)DspInst,
2008 };
2009 static struct firmware snd_ymfpci_controller_microcode = {
2010 	.size = YDSXG_CTRLLENGTH,
2011 	.data = (u8 *)CntrlInst,
2012 };
2013 static struct firmware snd_ymfpci_controller_1e_microcode = {
2014 	.size = YDSXG_CTRLLENGTH,
2015 	.data = (u8 *)CntrlInst1E,
2016 };
2017 #endif
2018 
2019 #ifdef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL
2020 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2021 {
2022 	chip->dsp_microcode = &snd_ymfpci_dsp_microcode;
2023 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2024 	    chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2025 	    chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2026 	    chip->device_id == PCI_DEVICE_ID_YAMAHA_754)
2027 		chip->controller_microcode =
2028 			&snd_ymfpci_controller_1e_microcode;
2029 	else
2030 		chip->controller_microcode =
2031 			&snd_ymfpci_controller_microcode;
2032 	return 0;
2033 }
2034 
2035 #else /* use fw_loader */
2036 
2037 #ifdef __LITTLE_ENDIAN
2038 static inline void snd_ymfpci_convert_from_le(const struct firmware *fw) { }
2039 #else
2040 static void snd_ymfpci_convert_from_le(const struct firmware *fw)
2041 {
2042 	int i;
2043 	u32 *data = (u32 *)fw->data;
2044 
2045 	for (i = 0; i < fw->size / 4; ++i)
2046 		le32_to_cpus(&data[i]);
2047 }
2048 #endif
2049 
2050 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2051 {
2052 	int err, is_1e;
2053 	const char *name;
2054 
2055 	err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2056 			       &chip->pci->dev);
2057 	if (err >= 0) {
2058 		if (chip->dsp_microcode->size == YDSXG_DSPLENGTH)
2059 			snd_ymfpci_convert_from_le(chip->dsp_microcode);
2060 		else {
2061 			snd_printk(KERN_ERR "DSP microcode has wrong size\n");
2062 			err = -EINVAL;
2063 		}
2064 	}
2065 	if (err < 0)
2066 		return err;
2067 	is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2068 		chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2069 		chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2070 		chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2071 	name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2072 	err = request_firmware(&chip->controller_microcode, name,
2073 			       &chip->pci->dev);
2074 	if (err >= 0) {
2075 		if (chip->controller_microcode->size == YDSXG_CTRLLENGTH)
2076 			snd_ymfpci_convert_from_le(chip->controller_microcode);
2077 		else {
2078 			snd_printk(KERN_ERR "controller microcode"
2079 				   " has wrong size\n");
2080 			err = -EINVAL;
2081 		}
2082 	}
2083 	if (err < 0)
2084 		return err;
2085 	return 0;
2086 }
2087 
2088 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2089 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2090 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2091 
2092 #endif
2093 
2094 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2095 {
2096 	int i;
2097 	u16 ctrl;
2098 	u32 *inst;
2099 
2100 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2101 	snd_ymfpci_disable_dsp(chip);
2102 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2103 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2104 	snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2105 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2106 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2107 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2108 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2109 	ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2110 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2111 
2112 	/* setup DSP instruction code */
2113 	inst = (u32 *)chip->dsp_microcode->data;
2114 	for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2115 		snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), inst[i]);
2116 
2117 	/* setup control instruction code */
2118 	inst = (u32 *)chip->controller_microcode->data;
2119 	for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2120 		snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), inst[i]);
2121 
2122 	snd_ymfpci_enable_dsp(chip);
2123 }
2124 
2125 static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2126 {
2127 	long size, playback_ctrl_size;
2128 	int voice, bank, reg;
2129 	u8 *ptr;
2130 	dma_addr_t ptr_addr;
2131 
2132 	playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2133 	chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2134 	chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2135 	chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2136 	chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2137 
2138 	size = ALIGN(playback_ctrl_size, 0x100) +
2139 	       ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2140 	       ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2141 	       ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2142 	       chip->work_size;
2143 	/* work_ptr must be aligned to 256 bytes, but it's already
2144 	   covered with the kernel page allocation mechanism */
2145 	if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
2146 				size, &chip->work_ptr) < 0)
2147 		return -ENOMEM;
2148 	ptr = chip->work_ptr.area;
2149 	ptr_addr = chip->work_ptr.addr;
2150 	memset(ptr, 0, size);	/* for sure */
2151 
2152 	chip->bank_base_playback = ptr;
2153 	chip->bank_base_playback_addr = ptr_addr;
2154 	chip->ctrl_playback = (u32 *)ptr;
2155 	chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2156 	ptr += ALIGN(playback_ctrl_size, 0x100);
2157 	ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2158 	for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2159 		chip->voices[voice].number = voice;
2160 		chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2161 		chip->voices[voice].bank_addr = ptr_addr;
2162 		for (bank = 0; bank < 2; bank++) {
2163 			chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2164 			ptr += chip->bank_size_playback;
2165 			ptr_addr += chip->bank_size_playback;
2166 		}
2167 	}
2168 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2169 	ptr_addr = ALIGN(ptr_addr, 0x100);
2170 	chip->bank_base_capture = ptr;
2171 	chip->bank_base_capture_addr = ptr_addr;
2172 	for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2173 		for (bank = 0; bank < 2; bank++) {
2174 			chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2175 			ptr += chip->bank_size_capture;
2176 			ptr_addr += chip->bank_size_capture;
2177 		}
2178 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2179 	ptr_addr = ALIGN(ptr_addr, 0x100);
2180 	chip->bank_base_effect = ptr;
2181 	chip->bank_base_effect_addr = ptr_addr;
2182 	for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2183 		for (bank = 0; bank < 2; bank++) {
2184 			chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2185 			ptr += chip->bank_size_effect;
2186 			ptr_addr += chip->bank_size_effect;
2187 		}
2188 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2189 	ptr_addr = ALIGN(ptr_addr, 0x100);
2190 	chip->work_base = ptr;
2191 	chip->work_base_addr = ptr_addr;
2192 
2193 	snd_assert(ptr + chip->work_size == chip->work_ptr.area + chip->work_ptr.bytes, );
2194 
2195 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2196 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2197 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2198 	snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2199 	snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2200 
2201 	/* S/PDIF output initialization */
2202 	chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2203 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2204 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2205 
2206 	/* S/PDIF input initialization */
2207 	snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2208 
2209 	/* digital mixer setup */
2210 	for (reg = 0x80; reg < 0xc0; reg += 4)
2211 		snd_ymfpci_writel(chip, reg, 0);
2212 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2213 	snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2214 	snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2215 	snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2216 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2217 	snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2218 	snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2219 
2220 	return 0;
2221 }
2222 
2223 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2224 {
2225 	u16 ctrl;
2226 
2227 	snd_assert(chip != NULL, return -EINVAL);
2228 
2229 	if (chip->res_reg_area) {	/* don't touch busy hardware */
2230 		snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2231 		snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2232 		snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2233 		snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2234 		snd_ymfpci_disable_dsp(chip);
2235 		snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2236 		snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2237 		snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2238 		snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2239 		snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2240 		ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2241 		snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2242 	}
2243 
2244 	snd_ymfpci_ac3_done(chip);
2245 
2246 	/* Set PCI device to D3 state */
2247 #if 0
2248 	/* FIXME: temporarily disabled, otherwise we cannot fire up
2249 	 * the chip again unless reboot.  ACPI bug?
2250 	 */
2251 	pci_set_power_state(chip->pci, 3);
2252 #endif
2253 
2254 #ifdef CONFIG_PM
2255 	vfree(chip->saved_regs);
2256 #endif
2257 	release_and_free_resource(chip->mpu_res);
2258 	release_and_free_resource(chip->fm_res);
2259 	snd_ymfpci_free_gameport(chip);
2260 	if (chip->reg_area_virt)
2261 		iounmap(chip->reg_area_virt);
2262 	if (chip->work_ptr.area)
2263 		snd_dma_free_pages(&chip->work_ptr);
2264 
2265 	if (chip->irq >= 0)
2266 		free_irq(chip->irq, chip);
2267 	release_and_free_resource(chip->res_reg_area);
2268 
2269 	pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2270 
2271 	pci_disable_device(chip->pci);
2272 #ifndef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL
2273 	release_firmware(chip->dsp_microcode);
2274 	release_firmware(chip->controller_microcode);
2275 #endif
2276 	kfree(chip);
2277 	return 0;
2278 }
2279 
2280 static int snd_ymfpci_dev_free(struct snd_device *device)
2281 {
2282 	struct snd_ymfpci *chip = device->device_data;
2283 	return snd_ymfpci_free(chip);
2284 }
2285 
2286 #ifdef CONFIG_PM
2287 static int saved_regs_index[] = {
2288 	/* spdif */
2289 	YDSXGR_SPDIFOUTCTRL,
2290 	YDSXGR_SPDIFOUTSTATUS,
2291 	YDSXGR_SPDIFINCTRL,
2292 	/* volumes */
2293 	YDSXGR_PRIADCLOOPVOL,
2294 	YDSXGR_NATIVEDACINVOL,
2295 	YDSXGR_NATIVEDACOUTVOL,
2296 	YDSXGR_BUF441OUTVOL,
2297 	YDSXGR_NATIVEADCINVOL,
2298 	YDSXGR_SPDIFLOOPVOL,
2299 	YDSXGR_SPDIFOUTVOL,
2300 	YDSXGR_ZVOUTVOL,
2301 	YDSXGR_LEGACYOUTVOL,
2302 	/* address bases */
2303 	YDSXGR_PLAYCTRLBASE,
2304 	YDSXGR_RECCTRLBASE,
2305 	YDSXGR_EFFCTRLBASE,
2306 	YDSXGR_WORKBASE,
2307 	/* capture set up */
2308 	YDSXGR_MAPOFREC,
2309 	YDSXGR_RECFORMAT,
2310 	YDSXGR_RECSLOTSR,
2311 	YDSXGR_ADCFORMAT,
2312 	YDSXGR_ADCSLOTSR,
2313 };
2314 #define YDSXGR_NUM_SAVED_REGS	ARRAY_SIZE(saved_regs_index)
2315 
2316 int snd_ymfpci_suspend(struct pci_dev *pci, pm_message_t state)
2317 {
2318 	struct snd_card *card = pci_get_drvdata(pci);
2319 	struct snd_ymfpci *chip = card->private_data;
2320 	unsigned int i;
2321 
2322 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2323 	snd_pcm_suspend_all(chip->pcm);
2324 	snd_pcm_suspend_all(chip->pcm2);
2325 	snd_pcm_suspend_all(chip->pcm_spdif);
2326 	snd_pcm_suspend_all(chip->pcm_4ch);
2327 	snd_ac97_suspend(chip->ac97);
2328 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2329 		chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2330 	chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2331 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2332 	snd_ymfpci_disable_dsp(chip);
2333 	pci_disable_device(pci);
2334 	pci_save_state(pci);
2335 	pci_set_power_state(pci, pci_choose_state(pci, state));
2336 	return 0;
2337 }
2338 
2339 int snd_ymfpci_resume(struct pci_dev *pci)
2340 {
2341 	struct snd_card *card = pci_get_drvdata(pci);
2342 	struct snd_ymfpci *chip = card->private_data;
2343 	unsigned int i;
2344 
2345 	pci_set_power_state(pci, PCI_D0);
2346 	pci_restore_state(pci);
2347 	if (pci_enable_device(pci) < 0) {
2348 		printk(KERN_ERR "ymfpci: pci_enable_device failed, "
2349 		       "disabling device\n");
2350 		snd_card_disconnect(card);
2351 		return -EIO;
2352 	}
2353 	pci_set_master(pci);
2354 	snd_ymfpci_aclink_reset(pci);
2355 	snd_ymfpci_codec_ready(chip, 0);
2356 	snd_ymfpci_download_image(chip);
2357 	udelay(100);
2358 
2359 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2360 		snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2361 
2362 	snd_ac97_resume(chip->ac97);
2363 
2364 	/* start hw again */
2365 	if (chip->start_count > 0) {
2366 		spin_lock_irq(&chip->reg_lock);
2367 		snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2368 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2369 		spin_unlock_irq(&chip->reg_lock);
2370 	}
2371 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2372 	return 0;
2373 }
2374 #endif /* CONFIG_PM */
2375 
2376 int __devinit snd_ymfpci_create(struct snd_card *card,
2377 				struct pci_dev * pci,
2378 				unsigned short old_legacy_ctrl,
2379 				struct snd_ymfpci ** rchip)
2380 {
2381 	struct snd_ymfpci *chip;
2382 	int err;
2383 	static struct snd_device_ops ops = {
2384 		.dev_free =	snd_ymfpci_dev_free,
2385 	};
2386 
2387 	*rchip = NULL;
2388 
2389 	/* enable PCI device */
2390 	if ((err = pci_enable_device(pci)) < 0)
2391 		return err;
2392 
2393 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2394 	if (chip == NULL) {
2395 		pci_disable_device(pci);
2396 		return -ENOMEM;
2397 	}
2398 	chip->old_legacy_ctrl = old_legacy_ctrl;
2399 	spin_lock_init(&chip->reg_lock);
2400 	spin_lock_init(&chip->voice_lock);
2401 	init_waitqueue_head(&chip->interrupt_sleep);
2402 	atomic_set(&chip->interrupt_sleep_count, 0);
2403 	chip->card = card;
2404 	chip->pci = pci;
2405 	chip->irq = -1;
2406 	chip->device_id = pci->device;
2407 	chip->rev = pci->revision;
2408 	chip->reg_area_phys = pci_resource_start(pci, 0);
2409 	chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
2410 	pci_set_master(pci);
2411 	chip->src441_used = -1;
2412 
2413 	if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2414 		snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2415 		snd_ymfpci_free(chip);
2416 		return -EBUSY;
2417 	}
2418 	if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2419 			"YMFPCI", chip)) {
2420 		snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2421 		snd_ymfpci_free(chip);
2422 		return -EBUSY;
2423 	}
2424 	chip->irq = pci->irq;
2425 
2426 	snd_ymfpci_aclink_reset(pci);
2427 	if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2428 		snd_ymfpci_free(chip);
2429 		return -EIO;
2430 	}
2431 
2432 	err = snd_ymfpci_request_firmware(chip);
2433 	if (err < 0) {
2434 		snd_printk(KERN_ERR "firmware request failed: %d\n", err);
2435 		snd_ymfpci_free(chip);
2436 		return err;
2437 	}
2438 	snd_ymfpci_download_image(chip);
2439 
2440 	udelay(100); /* seems we need a delay after downloading image.. */
2441 
2442 	if (snd_ymfpci_memalloc(chip) < 0) {
2443 		snd_ymfpci_free(chip);
2444 		return -EIO;
2445 	}
2446 
2447 	if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
2448 		snd_ymfpci_free(chip);
2449 		return err;
2450 	}
2451 
2452 #ifdef CONFIG_PM
2453 	chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32));
2454 	if (chip->saved_regs == NULL) {
2455 		snd_ymfpci_free(chip);
2456 		return -ENOMEM;
2457 	}
2458 #endif
2459 
2460 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
2461 		snd_ymfpci_free(chip);
2462 		return err;
2463 	}
2464 
2465 	snd_ymfpci_proc_init(card, chip);
2466 
2467 	snd_card_set_dev(card, &pci->dev);
2468 
2469 	*rchip = chip;
2470 	return 0;
2471 }
2472