xref: /linux/sound/pci/ymfpci/ymfpci_main.c (revision 0f7e753fc3851aac8aeea6b551cbbcf6ca9093dd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *  Routines for control of YMF724/740/744/754 chips
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/firmware.h>
9 #include <linux/init.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/sched.h>
13 #include <linux/slab.h>
14 #include <linux/mutex.h>
15 #include <linux/module.h>
16 #include <linux/io.h>
17 
18 #include <sound/core.h>
19 #include <sound/control.h>
20 #include <sound/info.h>
21 #include <sound/tlv.h>
22 #include "ymfpci.h"
23 #include <sound/asoundef.h>
24 #include <sound/mpu401.h>
25 
26 #include <asm/byteorder.h>
27 
28 /*
29  *  common I/O routines
30  */
31 
32 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
33 
34 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
35 {
36 	writeb(val, chip->reg_area_virt + offset);
37 }
38 
39 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
40 {
41 	return readw(chip->reg_area_virt + offset);
42 }
43 
44 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
45 {
46 	writew(val, chip->reg_area_virt + offset);
47 }
48 
49 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
50 {
51 	return readl(chip->reg_area_virt + offset);
52 }
53 
54 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
55 {
56 	writel(val, chip->reg_area_virt + offset);
57 }
58 
59 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
60 {
61 	unsigned long end_time;
62 	u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
63 
64 	end_time = jiffies + msecs_to_jiffies(750);
65 	do {
66 		if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
67 			return 0;
68 		schedule_timeout_uninterruptible(1);
69 	} while (time_before(jiffies, end_time));
70 	dev_err(chip->card->dev,
71 		"codec_ready: codec %i is not ready [0x%x]\n",
72 		secondary, snd_ymfpci_readw(chip, reg));
73 	return -EBUSY;
74 }
75 
76 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
77 {
78 	struct snd_ymfpci *chip = ac97->private_data;
79 	u32 cmd;
80 
81 	snd_ymfpci_codec_ready(chip, 0);
82 	cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
83 	snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
84 }
85 
86 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
87 {
88 	struct snd_ymfpci *chip = ac97->private_data;
89 
90 	if (snd_ymfpci_codec_ready(chip, 0))
91 		return ~0;
92 	snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
93 	if (snd_ymfpci_codec_ready(chip, 0))
94 		return ~0;
95 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
96 		int i;
97 		for (i = 0; i < 600; i++)
98 			snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
99 	}
100 	return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
101 }
102 
103 /*
104  *  Misc routines
105  */
106 
107 static u32 snd_ymfpci_calc_delta(u32 rate)
108 {
109 	switch (rate) {
110 	case 8000:	return 0x02aaab00;
111 	case 11025:	return 0x03accd00;
112 	case 16000:	return 0x05555500;
113 	case 22050:	return 0x07599a00;
114 	case 32000:	return 0x0aaaab00;
115 	case 44100:	return 0x0eb33300;
116 	default:	return ((rate << 16) / 375) << 5;
117 	}
118 }
119 
120 static const u32 def_rate[8] = {
121 	100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
122 };
123 
124 static u32 snd_ymfpci_calc_lpfK(u32 rate)
125 {
126 	u32 i;
127 	static const u32 val[8] = {
128 		0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
129 		0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
130 	};
131 
132 	if (rate == 44100)
133 		return 0x40000000;	/* FIXME: What's the right value? */
134 	for (i = 0; i < 8; i++)
135 		if (rate <= def_rate[i])
136 			return val[i];
137 	return val[0];
138 }
139 
140 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
141 {
142 	u32 i;
143 	static const u32 val[8] = {
144 		0x35280000, 0x34A70000, 0x32020000, 0x31770000,
145 		0x31390000, 0x31C90000, 0x33D00000, 0x40000000
146 	};
147 
148 	if (rate == 44100)
149 		return 0x370A0000;
150 	for (i = 0; i < 8; i++)
151 		if (rate <= def_rate[i])
152 			return val[i];
153 	return val[0];
154 }
155 
156 /*
157  *  Hardware start management
158  */
159 
160 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
161 {
162 	unsigned long flags;
163 
164 	spin_lock_irqsave(&chip->reg_lock, flags);
165 	if (chip->start_count++ > 0)
166 		goto __end;
167 	snd_ymfpci_writel(chip, YDSXGR_MODE,
168 			  snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
169 	chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
170       __end:
171       	spin_unlock_irqrestore(&chip->reg_lock, flags);
172 }
173 
174 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
175 {
176 	unsigned long flags;
177 	long timeout = 1000;
178 
179 	spin_lock_irqsave(&chip->reg_lock, flags);
180 	if (--chip->start_count > 0)
181 		goto __end;
182 	snd_ymfpci_writel(chip, YDSXGR_MODE,
183 			  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
184 	while (timeout-- > 0) {
185 		if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
186 			break;
187 	}
188 	if (atomic_read(&chip->interrupt_sleep_count)) {
189 		atomic_set(&chip->interrupt_sleep_count, 0);
190 		wake_up(&chip->interrupt_sleep);
191 	}
192       __end:
193       	spin_unlock_irqrestore(&chip->reg_lock, flags);
194 }
195 
196 /*
197  *  Playback voice management
198  */
199 
200 static int voice_alloc(struct snd_ymfpci *chip,
201 		       enum snd_ymfpci_voice_type type, int pair,
202 		       struct snd_ymfpci_voice **rvoice)
203 {
204 	struct snd_ymfpci_voice *voice, *voice2;
205 	int idx;
206 
207 	*rvoice = NULL;
208 	for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
209 		voice = &chip->voices[idx];
210 		voice2 = pair ? &chip->voices[idx+1] : NULL;
211 		if (voice->use || (voice2 && voice2->use))
212 			continue;
213 		voice->use = 1;
214 		if (voice2)
215 			voice2->use = 1;
216 		switch (type) {
217 		case YMFPCI_PCM:
218 			voice->pcm = 1;
219 			if (voice2)
220 				voice2->pcm = 1;
221 			break;
222 		case YMFPCI_SYNTH:
223 			voice->synth = 1;
224 			break;
225 		case YMFPCI_MIDI:
226 			voice->midi = 1;
227 			break;
228 		}
229 		snd_ymfpci_hw_start(chip);
230 		if (voice2)
231 			snd_ymfpci_hw_start(chip);
232 		*rvoice = voice;
233 		return 0;
234 	}
235 	return -ENOMEM;
236 }
237 
238 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
239 				  enum snd_ymfpci_voice_type type, int pair,
240 				  struct snd_ymfpci_voice **rvoice)
241 {
242 	unsigned long flags;
243 	int result;
244 
245 	if (snd_BUG_ON(!rvoice))
246 		return -EINVAL;
247 	if (snd_BUG_ON(pair && type != YMFPCI_PCM))
248 		return -EINVAL;
249 
250 	spin_lock_irqsave(&chip->voice_lock, flags);
251 	for (;;) {
252 		result = voice_alloc(chip, type, pair, rvoice);
253 		if (result == 0 || type != YMFPCI_PCM)
254 			break;
255 		/* TODO: synth/midi voice deallocation */
256 		break;
257 	}
258 	spin_unlock_irqrestore(&chip->voice_lock, flags);
259 	return result;
260 }
261 
262 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
263 {
264 	unsigned long flags;
265 
266 	if (snd_BUG_ON(!pvoice))
267 		return -EINVAL;
268 	snd_ymfpci_hw_stop(chip);
269 	spin_lock_irqsave(&chip->voice_lock, flags);
270 	if (pvoice->number == chip->src441_used) {
271 		chip->src441_used = -1;
272 		pvoice->ypcm->use_441_slot = 0;
273 	}
274 	pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
275 	pvoice->ypcm = NULL;
276 	pvoice->interrupt = NULL;
277 	spin_unlock_irqrestore(&chip->voice_lock, flags);
278 	return 0;
279 }
280 
281 /*
282  *  PCM part
283  */
284 
285 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
286 {
287 	struct snd_ymfpci_pcm *ypcm;
288 	u32 pos, delta;
289 
290 	ypcm = voice->ypcm;
291 	if (!ypcm)
292 		return;
293 	if (ypcm->substream == NULL)
294 		return;
295 	spin_lock(&chip->reg_lock);
296 	if (ypcm->running) {
297 		pos = le32_to_cpu(voice->bank[chip->active_bank].start);
298 		if (pos < ypcm->last_pos)
299 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
300 		else
301 			delta = pos - ypcm->last_pos;
302 		ypcm->period_pos += delta;
303 		ypcm->last_pos = pos;
304 		if (ypcm->period_pos >= ypcm->period_size) {
305 			/*
306 			dev_dbg(chip->card->dev,
307 			       "done - active_bank = 0x%x, start = 0x%x\n",
308 			       chip->active_bank,
309 			       voice->bank[chip->active_bank].start);
310 			*/
311 			ypcm->period_pos %= ypcm->period_size;
312 			spin_unlock(&chip->reg_lock);
313 			snd_pcm_period_elapsed(ypcm->substream);
314 			spin_lock(&chip->reg_lock);
315 		}
316 
317 		if (unlikely(ypcm->update_pcm_vol)) {
318 			unsigned int subs = ypcm->substream->number;
319 			unsigned int next_bank = 1 - chip->active_bank;
320 			struct snd_ymfpci_playback_bank *bank;
321 			__le32 volume;
322 
323 			bank = &voice->bank[next_bank];
324 			volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
325 			bank->left_gain_end = volume;
326 			if (ypcm->output_rear)
327 				bank->eff2_gain_end = volume;
328 			if (ypcm->voices[1])
329 				bank = &ypcm->voices[1]->bank[next_bank];
330 			volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
331 			bank->right_gain_end = volume;
332 			if (ypcm->output_rear)
333 				bank->eff3_gain_end = volume;
334 			ypcm->update_pcm_vol--;
335 		}
336 	}
337 	spin_unlock(&chip->reg_lock);
338 }
339 
340 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
341 {
342 	struct snd_pcm_runtime *runtime = substream->runtime;
343 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
344 	struct snd_ymfpci *chip = ypcm->chip;
345 	u32 pos, delta;
346 
347 	spin_lock(&chip->reg_lock);
348 	if (ypcm->running) {
349 		pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
350 		if (pos < ypcm->last_pos)
351 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
352 		else
353 			delta = pos - ypcm->last_pos;
354 		ypcm->period_pos += delta;
355 		ypcm->last_pos = pos;
356 		if (ypcm->period_pos >= ypcm->period_size) {
357 			ypcm->period_pos %= ypcm->period_size;
358 			/*
359 			dev_dbg(chip->card->dev,
360 			       "done - active_bank = 0x%x, start = 0x%x\n",
361 			       chip->active_bank,
362 			       voice->bank[chip->active_bank].start);
363 			*/
364 			spin_unlock(&chip->reg_lock);
365 			snd_pcm_period_elapsed(substream);
366 			spin_lock(&chip->reg_lock);
367 		}
368 	}
369 	spin_unlock(&chip->reg_lock);
370 }
371 
372 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
373 				       int cmd)
374 {
375 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
376 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
377 	struct snd_kcontrol *kctl = NULL;
378 	int result = 0;
379 
380 	spin_lock(&chip->reg_lock);
381 	if (ypcm->voices[0] == NULL) {
382 		result = -EINVAL;
383 		goto __unlock;
384 	}
385 	switch (cmd) {
386 	case SNDRV_PCM_TRIGGER_START:
387 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
388 	case SNDRV_PCM_TRIGGER_RESUME:
389 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
390 		if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
391 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
392 		ypcm->running = 1;
393 		break;
394 	case SNDRV_PCM_TRIGGER_STOP:
395 		if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
396 			kctl = chip->pcm_mixer[substream->number].ctl;
397 			kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
398 		}
399 		fallthrough;
400 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
401 	case SNDRV_PCM_TRIGGER_SUSPEND:
402 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
403 		if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
404 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
405 		ypcm->running = 0;
406 		break;
407 	default:
408 		result = -EINVAL;
409 		break;
410 	}
411       __unlock:
412 	spin_unlock(&chip->reg_lock);
413 	if (kctl)
414 		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
415 	return result;
416 }
417 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
418 				      int cmd)
419 {
420 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
421 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
422 	int result = 0;
423 	u32 tmp;
424 
425 	spin_lock(&chip->reg_lock);
426 	switch (cmd) {
427 	case SNDRV_PCM_TRIGGER_START:
428 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
429 	case SNDRV_PCM_TRIGGER_RESUME:
430 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
431 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
432 		ypcm->running = 1;
433 		break;
434 	case SNDRV_PCM_TRIGGER_STOP:
435 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
436 	case SNDRV_PCM_TRIGGER_SUSPEND:
437 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
438 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
439 		ypcm->running = 0;
440 		break;
441 	default:
442 		result = -EINVAL;
443 		break;
444 	}
445 	spin_unlock(&chip->reg_lock);
446 	return result;
447 }
448 
449 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
450 {
451 	int err;
452 
453 	if (ypcm->voices[1] != NULL && voices < 2) {
454 		snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
455 		ypcm->voices[1] = NULL;
456 	}
457 	if (voices == 1 && ypcm->voices[0] != NULL)
458 		return 0;		/* already allocated */
459 	if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
460 		return 0;		/* already allocated */
461 	if (voices > 1) {
462 		if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
463 			snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
464 			ypcm->voices[0] = NULL;
465 		}
466 	}
467 	err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
468 	if (err < 0)
469 		return err;
470 	ypcm->voices[0]->ypcm = ypcm;
471 	ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
472 	if (voices > 1) {
473 		ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
474 		ypcm->voices[1]->ypcm = ypcm;
475 	}
476 	return 0;
477 }
478 
479 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
480 				      struct snd_pcm_runtime *runtime,
481 				      int has_pcm_volume)
482 {
483 	struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
484 	u32 format;
485 	u32 delta = snd_ymfpci_calc_delta(runtime->rate);
486 	u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
487 	u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
488 	struct snd_ymfpci_playback_bank *bank;
489 	unsigned int nbank;
490 	__le32 vol_left, vol_right;
491 	u8 use_left, use_right;
492 	unsigned long flags;
493 
494 	if (snd_BUG_ON(!voice))
495 		return;
496 	if (runtime->channels == 1) {
497 		use_left = 1;
498 		use_right = 1;
499 	} else {
500 		use_left = (voiceidx & 1) == 0;
501 		use_right = !use_left;
502 	}
503 	if (has_pcm_volume) {
504 		vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
505 				       [ypcm->substream->number].left << 15);
506 		vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
507 					[ypcm->substream->number].right << 15);
508 	} else {
509 		vol_left = cpu_to_le32(0x40000000);
510 		vol_right = cpu_to_le32(0x40000000);
511 	}
512 	spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
513 	format = runtime->channels == 2 ? 0x00010000 : 0;
514 	if (snd_pcm_format_width(runtime->format) == 8)
515 		format |= 0x80000000;
516 	else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
517 		 runtime->rate == 44100 && runtime->channels == 2 &&
518 		 voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
519 				   ypcm->chip->src441_used == voice->number)) {
520 		ypcm->chip->src441_used = voice->number;
521 		ypcm->use_441_slot = 1;
522 		format |= 0x10000000;
523 	}
524 	if (ypcm->chip->src441_used == voice->number &&
525 	    (format & 0x10000000) == 0) {
526 		ypcm->chip->src441_used = -1;
527 		ypcm->use_441_slot = 0;
528 	}
529 	if (runtime->channels == 2 && (voiceidx & 1) != 0)
530 		format |= 1;
531 	spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
532 	for (nbank = 0; nbank < 2; nbank++) {
533 		bank = &voice->bank[nbank];
534 		memset(bank, 0, sizeof(*bank));
535 		bank->format = cpu_to_le32(format);
536 		bank->base = cpu_to_le32(runtime->dma_addr);
537 		bank->loop_end = cpu_to_le32(ypcm->buffer_size);
538 		bank->lpfQ = cpu_to_le32(lpfQ);
539 		bank->delta =
540 		bank->delta_end = cpu_to_le32(delta);
541 		bank->lpfK =
542 		bank->lpfK_end = cpu_to_le32(lpfK);
543 		bank->eg_gain =
544 		bank->eg_gain_end = cpu_to_le32(0x40000000);
545 
546 		if (ypcm->output_front) {
547 			if (use_left) {
548 				bank->left_gain =
549 				bank->left_gain_end = vol_left;
550 			}
551 			if (use_right) {
552 				bank->right_gain =
553 				bank->right_gain_end = vol_right;
554 			}
555 		}
556 		if (ypcm->output_rear) {
557 		        if (!ypcm->swap_rear) {
558         			if (use_left) {
559         				bank->eff2_gain =
560         				bank->eff2_gain_end = vol_left;
561         			}
562         			if (use_right) {
563         				bank->eff3_gain =
564         				bank->eff3_gain_end = vol_right;
565         			}
566 		        } else {
567         			/* The SPDIF out channels seem to be swapped, so we have
568         			 * to swap them here, too.  The rear analog out channels
569         			 * will be wrong, but otherwise AC3 would not work.
570         			 */
571         			if (use_left) {
572         				bank->eff3_gain =
573         				bank->eff3_gain_end = vol_left;
574         			}
575         			if (use_right) {
576         				bank->eff2_gain =
577         				bank->eff2_gain_end = vol_right;
578         			}
579         		}
580                 }
581 	}
582 }
583 
584 static int snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
585 {
586 	if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &chip->pci->dev,
587 				4096, &chip->ac3_tmp_base) < 0)
588 		return -ENOMEM;
589 
590 	chip->bank_effect[3][0]->base =
591 	chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
592 	chip->bank_effect[3][0]->loop_end =
593 	chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
594 	chip->bank_effect[4][0]->base =
595 	chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
596 	chip->bank_effect[4][0]->loop_end =
597 	chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
598 
599 	spin_lock_irq(&chip->reg_lock);
600 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
601 			  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
602 	spin_unlock_irq(&chip->reg_lock);
603 	return 0;
604 }
605 
606 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
607 {
608 	spin_lock_irq(&chip->reg_lock);
609 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
610 			  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
611 	spin_unlock_irq(&chip->reg_lock);
612 	// snd_ymfpci_irq_wait(chip);
613 	if (chip->ac3_tmp_base.area) {
614 		snd_dma_free_pages(&chip->ac3_tmp_base);
615 		chip->ac3_tmp_base.area = NULL;
616 	}
617 	return 0;
618 }
619 
620 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
621 					 struct snd_pcm_hw_params *hw_params)
622 {
623 	struct snd_pcm_runtime *runtime = substream->runtime;
624 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
625 	int err;
626 
627 	err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params));
628 	if (err < 0)
629 		return err;
630 	return 0;
631 }
632 
633 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
634 {
635 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
636 	struct snd_pcm_runtime *runtime = substream->runtime;
637 	struct snd_ymfpci_pcm *ypcm;
638 
639 	if (runtime->private_data == NULL)
640 		return 0;
641 	ypcm = runtime->private_data;
642 
643 	/* wait, until the PCI operations are not finished */
644 	snd_ymfpci_irq_wait(chip);
645 	if (ypcm->voices[1]) {
646 		snd_ymfpci_voice_free(chip, ypcm->voices[1]);
647 		ypcm->voices[1] = NULL;
648 	}
649 	if (ypcm->voices[0]) {
650 		snd_ymfpci_voice_free(chip, ypcm->voices[0]);
651 		ypcm->voices[0] = NULL;
652 	}
653 	return 0;
654 }
655 
656 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
657 {
658 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
659 	struct snd_pcm_runtime *runtime = substream->runtime;
660 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
661 	struct snd_kcontrol *kctl;
662 	unsigned int nvoice;
663 
664 	ypcm->period_size = runtime->period_size;
665 	ypcm->buffer_size = runtime->buffer_size;
666 	ypcm->period_pos = 0;
667 	ypcm->last_pos = 0;
668 	for (nvoice = 0; nvoice < runtime->channels; nvoice++)
669 		snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
670 					  substream->pcm == chip->pcm);
671 
672 	if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
673 		kctl = chip->pcm_mixer[substream->number].ctl;
674 		kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
675 		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
676 	}
677 	return 0;
678 }
679 
680 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
681 {
682 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
683 
684 	/* wait, until the PCI operations are not finished */
685 	snd_ymfpci_irq_wait(chip);
686 	return 0;
687 }
688 
689 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
690 {
691 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
692 	struct snd_pcm_runtime *runtime = substream->runtime;
693 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
694 	struct snd_ymfpci_capture_bank * bank;
695 	int nbank;
696 	u32 rate, format;
697 
698 	ypcm->period_size = runtime->period_size;
699 	ypcm->buffer_size = runtime->buffer_size;
700 	ypcm->period_pos = 0;
701 	ypcm->last_pos = 0;
702 	ypcm->shift = 0;
703 	rate = ((48000 * 4096) / runtime->rate) - 1;
704 	format = 0;
705 	if (runtime->channels == 2) {
706 		format |= 2;
707 		ypcm->shift++;
708 	}
709 	if (snd_pcm_format_width(runtime->format) == 8)
710 		format |= 1;
711 	else
712 		ypcm->shift++;
713 	switch (ypcm->capture_bank_number) {
714 	case 0:
715 		snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
716 		snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
717 		break;
718 	case 1:
719 		snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
720 		snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
721 		break;
722 	}
723 	for (nbank = 0; nbank < 2; nbank++) {
724 		bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
725 		bank->base = cpu_to_le32(runtime->dma_addr);
726 		bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
727 		bank->start = 0;
728 		bank->num_of_loops = 0;
729 	}
730 	return 0;
731 }
732 
733 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
734 {
735 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
736 	struct snd_pcm_runtime *runtime = substream->runtime;
737 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
738 	struct snd_ymfpci_voice *voice = ypcm->voices[0];
739 
740 	if (!(ypcm->running && voice))
741 		return 0;
742 	return le32_to_cpu(voice->bank[chip->active_bank].start);
743 }
744 
745 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
746 {
747 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
748 	struct snd_pcm_runtime *runtime = substream->runtime;
749 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
750 
751 	if (!ypcm->running)
752 		return 0;
753 	return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
754 }
755 
756 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
757 {
758 	wait_queue_entry_t wait;
759 	int loops = 4;
760 
761 	while (loops-- > 0) {
762 		if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
763 		 	continue;
764 		init_waitqueue_entry(&wait, current);
765 		add_wait_queue(&chip->interrupt_sleep, &wait);
766 		atomic_inc(&chip->interrupt_sleep_count);
767 		schedule_timeout_uninterruptible(msecs_to_jiffies(50));
768 		remove_wait_queue(&chip->interrupt_sleep, &wait);
769 	}
770 }
771 
772 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
773 {
774 	struct snd_ymfpci *chip = dev_id;
775 	u32 status, nvoice, mode;
776 	struct snd_ymfpci_voice *voice;
777 
778 	status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
779 	if (status & 0x80000000) {
780 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
781 		spin_lock(&chip->voice_lock);
782 		for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
783 			voice = &chip->voices[nvoice];
784 			if (voice->interrupt)
785 				voice->interrupt(chip, voice);
786 		}
787 		for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
788 			if (chip->capture_substream[nvoice])
789 				snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
790 		}
791 #if 0
792 		for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
793 			if (chip->effect_substream[nvoice])
794 				snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
795 		}
796 #endif
797 		spin_unlock(&chip->voice_lock);
798 		spin_lock(&chip->reg_lock);
799 		snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
800 		mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
801 		snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
802 		spin_unlock(&chip->reg_lock);
803 
804 		if (atomic_read(&chip->interrupt_sleep_count)) {
805 			atomic_set(&chip->interrupt_sleep_count, 0);
806 			wake_up(&chip->interrupt_sleep);
807 		}
808 	}
809 
810 	status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
811 	if (status & 1) {
812 		if (chip->timer)
813 			snd_timer_interrupt(chip->timer, chip->timer_ticks);
814 	}
815 	snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
816 
817 	if (chip->rawmidi)
818 		snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
819 	return IRQ_HANDLED;
820 }
821 
822 static const struct snd_pcm_hardware snd_ymfpci_playback =
823 {
824 	.info =			(SNDRV_PCM_INFO_MMAP |
825 				 SNDRV_PCM_INFO_MMAP_VALID |
826 				 SNDRV_PCM_INFO_INTERLEAVED |
827 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
828 				 SNDRV_PCM_INFO_PAUSE |
829 				 SNDRV_PCM_INFO_RESUME),
830 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
831 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
832 	.rate_min =		8000,
833 	.rate_max =		48000,
834 	.channels_min =		1,
835 	.channels_max =		2,
836 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
837 	.period_bytes_min =	64,
838 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
839 	.periods_min =		3,
840 	.periods_max =		1024,
841 	.fifo_size =		0,
842 };
843 
844 static const struct snd_pcm_hardware snd_ymfpci_capture =
845 {
846 	.info =			(SNDRV_PCM_INFO_MMAP |
847 				 SNDRV_PCM_INFO_MMAP_VALID |
848 				 SNDRV_PCM_INFO_INTERLEAVED |
849 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
850 				 SNDRV_PCM_INFO_PAUSE |
851 				 SNDRV_PCM_INFO_RESUME),
852 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
853 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
854 	.rate_min =		8000,
855 	.rate_max =		48000,
856 	.channels_min =		1,
857 	.channels_max =		2,
858 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
859 	.period_bytes_min =	64,
860 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
861 	.periods_min =		3,
862 	.periods_max =		1024,
863 	.fifo_size =		0,
864 };
865 
866 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
867 {
868 	kfree(runtime->private_data);
869 }
870 
871 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
872 {
873 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
874 	struct snd_pcm_runtime *runtime = substream->runtime;
875 	struct snd_ymfpci_pcm *ypcm;
876 	int err;
877 
878 	runtime->hw = snd_ymfpci_playback;
879 	/* FIXME? True value is 256/48 = 5.33333 ms */
880 	err = snd_pcm_hw_constraint_minmax(runtime,
881 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
882 					   5334, UINT_MAX);
883 	if (err < 0)
884 		return err;
885 	err = snd_pcm_hw_rule_noresample(runtime, 48000);
886 	if (err < 0)
887 		return err;
888 
889 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
890 	if (ypcm == NULL)
891 		return -ENOMEM;
892 	ypcm->chip = chip;
893 	ypcm->type = PLAYBACK_VOICE;
894 	ypcm->substream = substream;
895 	runtime->private_data = ypcm;
896 	runtime->private_free = snd_ymfpci_pcm_free_substream;
897 	return 0;
898 }
899 
900 /* call with spinlock held */
901 static void ymfpci_open_extension(struct snd_ymfpci *chip)
902 {
903 	if (! chip->rear_opened) {
904 		if (! chip->spdif_opened) /* set AC3 */
905 			snd_ymfpci_writel(chip, YDSXGR_MODE,
906 					  snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
907 		/* enable second codec (4CHEN) */
908 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
909 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
910 	}
911 }
912 
913 /* call with spinlock held */
914 static void ymfpci_close_extension(struct snd_ymfpci *chip)
915 {
916 	if (! chip->rear_opened) {
917 		if (! chip->spdif_opened)
918 			snd_ymfpci_writel(chip, YDSXGR_MODE,
919 					  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
920 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
921 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
922 	}
923 }
924 
925 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
926 {
927 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
928 	struct snd_pcm_runtime *runtime = substream->runtime;
929 	struct snd_ymfpci_pcm *ypcm;
930 	int err;
931 
932 	err = snd_ymfpci_playback_open_1(substream);
933 	if (err < 0)
934 		return err;
935 	ypcm = runtime->private_data;
936 	ypcm->output_front = 1;
937 	ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
938 	ypcm->swap_rear = 0;
939 	spin_lock_irq(&chip->reg_lock);
940 	if (ypcm->output_rear) {
941 		ymfpci_open_extension(chip);
942 		chip->rear_opened++;
943 	}
944 	spin_unlock_irq(&chip->reg_lock);
945 	return 0;
946 }
947 
948 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
949 {
950 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
951 	struct snd_pcm_runtime *runtime = substream->runtime;
952 	struct snd_ymfpci_pcm *ypcm;
953 	int err;
954 
955 	err = snd_ymfpci_playback_open_1(substream);
956 	if (err < 0)
957 		return err;
958 	ypcm = runtime->private_data;
959 	ypcm->output_front = 0;
960 	ypcm->output_rear = 1;
961 	ypcm->swap_rear = 1;
962 	spin_lock_irq(&chip->reg_lock);
963 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
964 			  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
965 	ymfpci_open_extension(chip);
966 	chip->spdif_pcm_bits = chip->spdif_bits;
967 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
968 	chip->spdif_opened++;
969 	spin_unlock_irq(&chip->reg_lock);
970 
971 	chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
972 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
973 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
974 	return 0;
975 }
976 
977 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
978 {
979 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
980 	struct snd_pcm_runtime *runtime = substream->runtime;
981 	struct snd_ymfpci_pcm *ypcm;
982 	int err;
983 
984 	err = snd_ymfpci_playback_open_1(substream);
985 	if (err < 0)
986 		return err;
987 	ypcm = runtime->private_data;
988 	ypcm->output_front = 0;
989 	ypcm->output_rear = 1;
990 	ypcm->swap_rear = 0;
991 	spin_lock_irq(&chip->reg_lock);
992 	ymfpci_open_extension(chip);
993 	chip->rear_opened++;
994 	spin_unlock_irq(&chip->reg_lock);
995 	return 0;
996 }
997 
998 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
999 				   u32 capture_bank_number)
1000 {
1001 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1002 	struct snd_pcm_runtime *runtime = substream->runtime;
1003 	struct snd_ymfpci_pcm *ypcm;
1004 	int err;
1005 
1006 	runtime->hw = snd_ymfpci_capture;
1007 	/* FIXME? True value is 256/48 = 5.33333 ms */
1008 	err = snd_pcm_hw_constraint_minmax(runtime,
1009 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1010 					   5334, UINT_MAX);
1011 	if (err < 0)
1012 		return err;
1013 	err = snd_pcm_hw_rule_noresample(runtime, 48000);
1014 	if (err < 0)
1015 		return err;
1016 
1017 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1018 	if (ypcm == NULL)
1019 		return -ENOMEM;
1020 	ypcm->chip = chip;
1021 	ypcm->type = capture_bank_number + CAPTURE_REC;
1022 	ypcm->substream = substream;
1023 	ypcm->capture_bank_number = capture_bank_number;
1024 	chip->capture_substream[capture_bank_number] = substream;
1025 	runtime->private_data = ypcm;
1026 	runtime->private_free = snd_ymfpci_pcm_free_substream;
1027 	snd_ymfpci_hw_start(chip);
1028 	return 0;
1029 }
1030 
1031 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1032 {
1033 	return snd_ymfpci_capture_open(substream, 0);
1034 }
1035 
1036 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1037 {
1038 	return snd_ymfpci_capture_open(substream, 1);
1039 }
1040 
1041 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1042 {
1043 	return 0;
1044 }
1045 
1046 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1047 {
1048 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1049 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1050 
1051 	spin_lock_irq(&chip->reg_lock);
1052 	if (ypcm->output_rear && chip->rear_opened > 0) {
1053 		chip->rear_opened--;
1054 		ymfpci_close_extension(chip);
1055 	}
1056 	spin_unlock_irq(&chip->reg_lock);
1057 	return snd_ymfpci_playback_close_1(substream);
1058 }
1059 
1060 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1061 {
1062 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1063 
1064 	spin_lock_irq(&chip->reg_lock);
1065 	chip->spdif_opened = 0;
1066 	ymfpci_close_extension(chip);
1067 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1068 			  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1069 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1070 	spin_unlock_irq(&chip->reg_lock);
1071 	chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1072 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1073 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1074 	return snd_ymfpci_playback_close_1(substream);
1075 }
1076 
1077 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1078 {
1079 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1080 
1081 	spin_lock_irq(&chip->reg_lock);
1082 	if (chip->rear_opened > 0) {
1083 		chip->rear_opened--;
1084 		ymfpci_close_extension(chip);
1085 	}
1086 	spin_unlock_irq(&chip->reg_lock);
1087 	return snd_ymfpci_playback_close_1(substream);
1088 }
1089 
1090 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1091 {
1092 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1093 	struct snd_pcm_runtime *runtime = substream->runtime;
1094 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1095 
1096 	if (ypcm != NULL) {
1097 		chip->capture_substream[ypcm->capture_bank_number] = NULL;
1098 		snd_ymfpci_hw_stop(chip);
1099 	}
1100 	return 0;
1101 }
1102 
1103 static const struct snd_pcm_ops snd_ymfpci_playback_ops = {
1104 	.open =			snd_ymfpci_playback_open,
1105 	.close =		snd_ymfpci_playback_close,
1106 	.hw_params =		snd_ymfpci_playback_hw_params,
1107 	.hw_free =		snd_ymfpci_playback_hw_free,
1108 	.prepare =		snd_ymfpci_playback_prepare,
1109 	.trigger =		snd_ymfpci_playback_trigger,
1110 	.pointer =		snd_ymfpci_playback_pointer,
1111 };
1112 
1113 static const struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1114 	.open =			snd_ymfpci_capture_rec_open,
1115 	.close =		snd_ymfpci_capture_close,
1116 	.hw_free =		snd_ymfpci_capture_hw_free,
1117 	.prepare =		snd_ymfpci_capture_prepare,
1118 	.trigger =		snd_ymfpci_capture_trigger,
1119 	.pointer =		snd_ymfpci_capture_pointer,
1120 };
1121 
1122 int snd_ymfpci_pcm(struct snd_ymfpci *chip, int device)
1123 {
1124 	struct snd_pcm *pcm;
1125 	int err;
1126 
1127 	err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm);
1128 	if (err < 0)
1129 		return err;
1130 	pcm->private_data = chip;
1131 
1132 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1133 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1134 
1135 	/* global setup */
1136 	pcm->info_flags = 0;
1137 	strcpy(pcm->name, "YMFPCI");
1138 	chip->pcm = pcm;
1139 
1140 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1141 				       &chip->pci->dev, 64*1024, 256*1024);
1142 
1143 	return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1144 				     snd_pcm_std_chmaps, 2, 0, NULL);
1145 }
1146 
1147 static const struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1148 	.open =			snd_ymfpci_capture_ac97_open,
1149 	.close =		snd_ymfpci_capture_close,
1150 	.hw_free =		snd_ymfpci_capture_hw_free,
1151 	.prepare =		snd_ymfpci_capture_prepare,
1152 	.trigger =		snd_ymfpci_capture_trigger,
1153 	.pointer =		snd_ymfpci_capture_pointer,
1154 };
1155 
1156 int snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device)
1157 {
1158 	struct snd_pcm *pcm;
1159 	int err;
1160 
1161 	err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm);
1162 	if (err < 0)
1163 		return err;
1164 	pcm->private_data = chip;
1165 
1166 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1167 
1168 	/* global setup */
1169 	pcm->info_flags = 0;
1170 	sprintf(pcm->name, "YMFPCI - %s",
1171 		chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1172 	chip->pcm2 = pcm;
1173 
1174 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1175 				       &chip->pci->dev, 64*1024, 256*1024);
1176 
1177 	return 0;
1178 }
1179 
1180 static const struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1181 	.open =			snd_ymfpci_playback_spdif_open,
1182 	.close =		snd_ymfpci_playback_spdif_close,
1183 	.hw_params =		snd_ymfpci_playback_hw_params,
1184 	.hw_free =		snd_ymfpci_playback_hw_free,
1185 	.prepare =		snd_ymfpci_playback_prepare,
1186 	.trigger =		snd_ymfpci_playback_trigger,
1187 	.pointer =		snd_ymfpci_playback_pointer,
1188 };
1189 
1190 int snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device)
1191 {
1192 	struct snd_pcm *pcm;
1193 	int err;
1194 
1195 	err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm);
1196 	if (err < 0)
1197 		return err;
1198 	pcm->private_data = chip;
1199 
1200 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1201 
1202 	/* global setup */
1203 	pcm->info_flags = 0;
1204 	strcpy(pcm->name, "YMFPCI - IEC958");
1205 	chip->pcm_spdif = pcm;
1206 
1207 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1208 				       &chip->pci->dev, 64*1024, 256*1024);
1209 
1210 	return 0;
1211 }
1212 
1213 static const struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1214 	.open =			snd_ymfpci_playback_4ch_open,
1215 	.close =		snd_ymfpci_playback_4ch_close,
1216 	.hw_params =		snd_ymfpci_playback_hw_params,
1217 	.hw_free =		snd_ymfpci_playback_hw_free,
1218 	.prepare =		snd_ymfpci_playback_prepare,
1219 	.trigger =		snd_ymfpci_playback_trigger,
1220 	.pointer =		snd_ymfpci_playback_pointer,
1221 };
1222 
1223 static const struct snd_pcm_chmap_elem surround_map[] = {
1224 	{ .channels = 1,
1225 	  .map = { SNDRV_CHMAP_MONO } },
1226 	{ .channels = 2,
1227 	  .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
1228 	{ }
1229 };
1230 
1231 int snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device)
1232 {
1233 	struct snd_pcm *pcm;
1234 	int err;
1235 
1236 	err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm);
1237 	if (err < 0)
1238 		return err;
1239 	pcm->private_data = chip;
1240 
1241 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1242 
1243 	/* global setup */
1244 	pcm->info_flags = 0;
1245 	strcpy(pcm->name, "YMFPCI - Rear PCM");
1246 	chip->pcm_4ch = pcm;
1247 
1248 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1249 				       &chip->pci->dev, 64*1024, 256*1024);
1250 
1251 	return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1252 				     surround_map, 2, 0, NULL);
1253 }
1254 
1255 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1256 {
1257 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1258 	uinfo->count = 1;
1259 	return 0;
1260 }
1261 
1262 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1263 					struct snd_ctl_elem_value *ucontrol)
1264 {
1265 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1266 
1267 	spin_lock_irq(&chip->reg_lock);
1268 	ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1269 	ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1270 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1271 	spin_unlock_irq(&chip->reg_lock);
1272 	return 0;
1273 }
1274 
1275 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1276 					 struct snd_ctl_elem_value *ucontrol)
1277 {
1278 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1279 	unsigned int val;
1280 	int change;
1281 
1282 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1283 	      (ucontrol->value.iec958.status[1] << 8);
1284 	spin_lock_irq(&chip->reg_lock);
1285 	change = chip->spdif_bits != val;
1286 	chip->spdif_bits = val;
1287 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1288 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1289 	spin_unlock_irq(&chip->reg_lock);
1290 	return change;
1291 }
1292 
1293 static const struct snd_kcontrol_new snd_ymfpci_spdif_default =
1294 {
1295 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1296 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1297 	.info =		snd_ymfpci_spdif_default_info,
1298 	.get =		snd_ymfpci_spdif_default_get,
1299 	.put =		snd_ymfpci_spdif_default_put
1300 };
1301 
1302 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1303 {
1304 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1305 	uinfo->count = 1;
1306 	return 0;
1307 }
1308 
1309 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1310 				      struct snd_ctl_elem_value *ucontrol)
1311 {
1312 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1313 
1314 	spin_lock_irq(&chip->reg_lock);
1315 	ucontrol->value.iec958.status[0] = 0x3e;
1316 	ucontrol->value.iec958.status[1] = 0xff;
1317 	spin_unlock_irq(&chip->reg_lock);
1318 	return 0;
1319 }
1320 
1321 static const struct snd_kcontrol_new snd_ymfpci_spdif_mask =
1322 {
1323 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1324 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1325 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1326 	.info =		snd_ymfpci_spdif_mask_info,
1327 	.get =		snd_ymfpci_spdif_mask_get,
1328 };
1329 
1330 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1331 {
1332 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1333 	uinfo->count = 1;
1334 	return 0;
1335 }
1336 
1337 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1338 					struct snd_ctl_elem_value *ucontrol)
1339 {
1340 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1341 
1342 	spin_lock_irq(&chip->reg_lock);
1343 	ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1344 	ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1345 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1346 	spin_unlock_irq(&chip->reg_lock);
1347 	return 0;
1348 }
1349 
1350 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1351 					struct snd_ctl_elem_value *ucontrol)
1352 {
1353 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1354 	unsigned int val;
1355 	int change;
1356 
1357 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1358 	      (ucontrol->value.iec958.status[1] << 8);
1359 	spin_lock_irq(&chip->reg_lock);
1360 	change = chip->spdif_pcm_bits != val;
1361 	chip->spdif_pcm_bits = val;
1362 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1363 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1364 	spin_unlock_irq(&chip->reg_lock);
1365 	return change;
1366 }
1367 
1368 static const struct snd_kcontrol_new snd_ymfpci_spdif_stream =
1369 {
1370 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1371 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1372 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1373 	.info =		snd_ymfpci_spdif_stream_info,
1374 	.get =		snd_ymfpci_spdif_stream_get,
1375 	.put =		snd_ymfpci_spdif_stream_put
1376 };
1377 
1378 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1379 {
1380 	static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"};
1381 
1382 	return snd_ctl_enum_info(info, 1, 3, texts);
1383 }
1384 
1385 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1386 {
1387 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1388 	u16 reg;
1389 
1390 	spin_lock_irq(&chip->reg_lock);
1391 	reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1392 	spin_unlock_irq(&chip->reg_lock);
1393 	if (!(reg & 0x100))
1394 		value->value.enumerated.item[0] = 0;
1395 	else
1396 		value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1397 	return 0;
1398 }
1399 
1400 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1401 {
1402 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1403 	u16 reg, old_reg;
1404 
1405 	spin_lock_irq(&chip->reg_lock);
1406 	old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1407 	if (value->value.enumerated.item[0] == 0)
1408 		reg = old_reg & ~0x100;
1409 	else
1410 		reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1411 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1412 	spin_unlock_irq(&chip->reg_lock);
1413 	return reg != old_reg;
1414 }
1415 
1416 static const struct snd_kcontrol_new snd_ymfpci_drec_source = {
1417 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE,
1418 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
1419 	.name =		"Direct Recording Source",
1420 	.info =		snd_ymfpci_drec_source_info,
1421 	.get =		snd_ymfpci_drec_source_get,
1422 	.put =		snd_ymfpci_drec_source_put
1423 };
1424 
1425 /*
1426  *  Mixer controls
1427  */
1428 
1429 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1430 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1431   .info = snd_ymfpci_info_single, \
1432   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1433   .private_value = ((reg) | ((shift) << 16)) }
1434 
1435 #define snd_ymfpci_info_single		snd_ctl_boolean_mono_info
1436 
1437 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1438 				 struct snd_ctl_elem_value *ucontrol)
1439 {
1440 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1441 	int reg = kcontrol->private_value & 0xffff;
1442 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1443 	unsigned int mask = 1;
1444 
1445 	switch (reg) {
1446 	case YDSXGR_SPDIFOUTCTRL: break;
1447 	case YDSXGR_SPDIFINCTRL: break;
1448 	default: return -EINVAL;
1449 	}
1450 	ucontrol->value.integer.value[0] =
1451 		(snd_ymfpci_readl(chip, reg) >> shift) & mask;
1452 	return 0;
1453 }
1454 
1455 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1456 				 struct snd_ctl_elem_value *ucontrol)
1457 {
1458 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1459 	int reg = kcontrol->private_value & 0xffff;
1460 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1461  	unsigned int mask = 1;
1462 	int change;
1463 	unsigned int val, oval;
1464 
1465 	switch (reg) {
1466 	case YDSXGR_SPDIFOUTCTRL: break;
1467 	case YDSXGR_SPDIFINCTRL: break;
1468 	default: return -EINVAL;
1469 	}
1470 	val = (ucontrol->value.integer.value[0] & mask);
1471 	val <<= shift;
1472 	spin_lock_irq(&chip->reg_lock);
1473 	oval = snd_ymfpci_readl(chip, reg);
1474 	val = (oval & ~(mask << shift)) | val;
1475 	change = val != oval;
1476 	snd_ymfpci_writel(chip, reg, val);
1477 	spin_unlock_irq(&chip->reg_lock);
1478 	return change;
1479 }
1480 
1481 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1482 
1483 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1484 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1485   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1486   .info = snd_ymfpci_info_double, \
1487   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1488   .private_value = reg, \
1489   .tlv = { .p = db_scale_native } }
1490 
1491 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1492 {
1493 	unsigned int reg = kcontrol->private_value;
1494 
1495 	if (reg < 0x80 || reg >= 0xc0)
1496 		return -EINVAL;
1497 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1498 	uinfo->count = 2;
1499 	uinfo->value.integer.min = 0;
1500 	uinfo->value.integer.max = 16383;
1501 	return 0;
1502 }
1503 
1504 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1505 {
1506 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1507 	unsigned int reg = kcontrol->private_value;
1508 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1509 	unsigned int val;
1510 
1511 	if (reg < 0x80 || reg >= 0xc0)
1512 		return -EINVAL;
1513 	spin_lock_irq(&chip->reg_lock);
1514 	val = snd_ymfpci_readl(chip, reg);
1515 	spin_unlock_irq(&chip->reg_lock);
1516 	ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1517 	ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1518 	return 0;
1519 }
1520 
1521 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1522 {
1523 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1524 	unsigned int reg = kcontrol->private_value;
1525 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1526 	int change;
1527 	unsigned int val1, val2, oval;
1528 
1529 	if (reg < 0x80 || reg >= 0xc0)
1530 		return -EINVAL;
1531 	val1 = ucontrol->value.integer.value[0] & mask;
1532 	val2 = ucontrol->value.integer.value[1] & mask;
1533 	val1 <<= shift_left;
1534 	val2 <<= shift_right;
1535 	spin_lock_irq(&chip->reg_lock);
1536 	oval = snd_ymfpci_readl(chip, reg);
1537 	val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1538 	change = val1 != oval;
1539 	snd_ymfpci_writel(chip, reg, val1);
1540 	spin_unlock_irq(&chip->reg_lock);
1541 	return change;
1542 }
1543 
1544 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
1545 				       struct snd_ctl_elem_value *ucontrol)
1546 {
1547 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1548 	unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
1549 	unsigned int reg2 = YDSXGR_BUF441OUTVOL;
1550 	int change;
1551 	unsigned int value, oval;
1552 
1553 	value = ucontrol->value.integer.value[0] & 0x3fff;
1554 	value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
1555 	spin_lock_irq(&chip->reg_lock);
1556 	oval = snd_ymfpci_readl(chip, reg);
1557 	change = value != oval;
1558 	snd_ymfpci_writel(chip, reg, value);
1559 	snd_ymfpci_writel(chip, reg2, value);
1560 	spin_unlock_irq(&chip->reg_lock);
1561 	return change;
1562 }
1563 
1564 /*
1565  * 4ch duplication
1566  */
1567 #define snd_ymfpci_info_dup4ch		snd_ctl_boolean_mono_info
1568 
1569 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1570 {
1571 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1572 	ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1573 	return 0;
1574 }
1575 
1576 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1577 {
1578 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1579 	int change;
1580 	change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1581 	if (change)
1582 		chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1583 	return change;
1584 }
1585 
1586 static const struct snd_kcontrol_new snd_ymfpci_dup4ch = {
1587 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1588 	.name = "4ch Duplication",
1589 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1590 	.info = snd_ymfpci_info_dup4ch,
1591 	.get = snd_ymfpci_get_dup4ch,
1592 	.put = snd_ymfpci_put_dup4ch,
1593 };
1594 
1595 static const struct snd_kcontrol_new snd_ymfpci_controls[] = {
1596 {
1597 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1598 	.name = "Wave Playback Volume",
1599 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1600 		  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
1601 	.info = snd_ymfpci_info_double,
1602 	.get = snd_ymfpci_get_double,
1603 	.put = snd_ymfpci_put_nativedacvol,
1604 	.private_value = YDSXGR_NATIVEDACOUTVOL,
1605 	.tlv = { .p = db_scale_native },
1606 },
1607 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1608 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1609 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1610 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1611 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1612 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1613 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1614 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL),
1615 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1616 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1617 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1618 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1619 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1620 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1621 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1622 };
1623 
1624 
1625 /*
1626  * GPIO
1627  */
1628 
1629 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1630 {
1631 	u16 reg, mode;
1632 	unsigned long flags;
1633 
1634 	spin_lock_irqsave(&chip->reg_lock, flags);
1635 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1636 	reg &= ~(1 << (pin + 8));
1637 	reg |= (1 << pin);
1638 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1639 	/* set the level mode for input line */
1640 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1641 	mode &= ~(3 << (pin * 2));
1642 	snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1643 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1644 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1645 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1646 	return (mode >> pin) & 1;
1647 }
1648 
1649 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1650 {
1651 	u16 reg;
1652 	unsigned long flags;
1653 
1654 	spin_lock_irqsave(&chip->reg_lock, flags);
1655 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1656 	reg &= ~(1 << pin);
1657 	reg &= ~(1 << (pin + 8));
1658 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1659 	snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1660 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1661 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1662 
1663 	return 0;
1664 }
1665 
1666 #define snd_ymfpci_gpio_sw_info		snd_ctl_boolean_mono_info
1667 
1668 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1669 {
1670 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1671 	int pin = (int)kcontrol->private_value;
1672 	ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1673 	return 0;
1674 }
1675 
1676 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1677 {
1678 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1679 	int pin = (int)kcontrol->private_value;
1680 
1681 	if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1682 		snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1683 		ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1684 		return 1;
1685 	}
1686 	return 0;
1687 }
1688 
1689 static const struct snd_kcontrol_new snd_ymfpci_rear_shared = {
1690 	.name = "Shared Rear/Line-In Switch",
1691 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1692 	.info = snd_ymfpci_gpio_sw_info,
1693 	.get = snd_ymfpci_gpio_sw_get,
1694 	.put = snd_ymfpci_gpio_sw_put,
1695 	.private_value = 2,
1696 };
1697 
1698 /*
1699  * PCM voice volume
1700  */
1701 
1702 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1703 				   struct snd_ctl_elem_info *uinfo)
1704 {
1705 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1706 	uinfo->count = 2;
1707 	uinfo->value.integer.min = 0;
1708 	uinfo->value.integer.max = 0x8000;
1709 	return 0;
1710 }
1711 
1712 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1713 				  struct snd_ctl_elem_value *ucontrol)
1714 {
1715 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1716 	unsigned int subs = kcontrol->id.subdevice;
1717 
1718 	ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1719 	ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1720 	return 0;
1721 }
1722 
1723 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1724 				  struct snd_ctl_elem_value *ucontrol)
1725 {
1726 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1727 	unsigned int subs = kcontrol->id.subdevice;
1728 	struct snd_pcm_substream *substream;
1729 	unsigned long flags;
1730 
1731 	if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1732 	    ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1733 		chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1734 		chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1735 		if (chip->pcm_mixer[subs].left > 0x8000)
1736 			chip->pcm_mixer[subs].left = 0x8000;
1737 		if (chip->pcm_mixer[subs].right > 0x8000)
1738 			chip->pcm_mixer[subs].right = 0x8000;
1739 
1740 		substream = (struct snd_pcm_substream *)kcontrol->private_value;
1741 		spin_lock_irqsave(&chip->voice_lock, flags);
1742 		if (substream->runtime && substream->runtime->private_data) {
1743 			struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1744 			if (!ypcm->use_441_slot)
1745 				ypcm->update_pcm_vol = 2;
1746 		}
1747 		spin_unlock_irqrestore(&chip->voice_lock, flags);
1748 		return 1;
1749 	}
1750 	return 0;
1751 }
1752 
1753 static const struct snd_kcontrol_new snd_ymfpci_pcm_volume = {
1754 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1755 	.name = "PCM Playback Volume",
1756 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1757 		SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1758 	.info = snd_ymfpci_pcm_vol_info,
1759 	.get = snd_ymfpci_pcm_vol_get,
1760 	.put = snd_ymfpci_pcm_vol_put,
1761 };
1762 
1763 
1764 /*
1765  *  Mixer routines
1766  */
1767 
1768 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1769 {
1770 	struct snd_ymfpci *chip = bus->private_data;
1771 	chip->ac97_bus = NULL;
1772 }
1773 
1774 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1775 {
1776 	struct snd_ymfpci *chip = ac97->private_data;
1777 	chip->ac97 = NULL;
1778 }
1779 
1780 int snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1781 {
1782 	struct snd_ac97_template ac97;
1783 	struct snd_kcontrol *kctl;
1784 	struct snd_pcm_substream *substream;
1785 	unsigned int idx;
1786 	int err;
1787 	static const struct snd_ac97_bus_ops ops = {
1788 		.write = snd_ymfpci_codec_write,
1789 		.read = snd_ymfpci_codec_read,
1790 	};
1791 
1792 	err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus);
1793 	if (err < 0)
1794 		return err;
1795 	chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1796 	chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1797 
1798 	memset(&ac97, 0, sizeof(ac97));
1799 	ac97.private_data = chip;
1800 	ac97.private_free = snd_ymfpci_mixer_free_ac97;
1801 	err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97);
1802 	if (err < 0)
1803 		return err;
1804 
1805 	/* to be sure */
1806 	snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1807 			     AC97_EA_VRA|AC97_EA_VRM, 0);
1808 
1809 	for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1810 		err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip));
1811 		if (err < 0)
1812 			return err;
1813 	}
1814 	if (chip->ac97->ext_id & AC97_EI_SDAC) {
1815 		kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip);
1816 		err = snd_ctl_add(chip->card, kctl);
1817 		if (err < 0)
1818 			return err;
1819 	}
1820 
1821 	/* add S/PDIF control */
1822 	if (snd_BUG_ON(!chip->pcm_spdif))
1823 		return -ENXIO;
1824 	kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip);
1825 	kctl->id.device = chip->pcm_spdif->device;
1826 	err = snd_ctl_add(chip->card, kctl);
1827 	if (err < 0)
1828 		return err;
1829 	kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip);
1830 	kctl->id.device = chip->pcm_spdif->device;
1831 	err = snd_ctl_add(chip->card, kctl);
1832 	if (err < 0)
1833 		return err;
1834 	kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip);
1835 	kctl->id.device = chip->pcm_spdif->device;
1836 	err = snd_ctl_add(chip->card, kctl);
1837 	if (err < 0)
1838 		return err;
1839 	chip->spdif_pcm_ctl = kctl;
1840 
1841 	/* direct recording source */
1842 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754) {
1843 		kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip);
1844 		err = snd_ctl_add(chip->card, kctl);
1845 		if (err < 0)
1846 			return err;
1847 	}
1848 
1849 	/*
1850 	 * shared rear/line-in
1851 	 */
1852 	if (rear_switch) {
1853 		err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip));
1854 		if (err < 0)
1855 			return err;
1856 	}
1857 
1858 	/* per-voice volume */
1859 	substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1860 	for (idx = 0; idx < 32; ++idx) {
1861 		kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1862 		if (!kctl)
1863 			return -ENOMEM;
1864 		kctl->id.device = chip->pcm->device;
1865 		kctl->id.subdevice = idx;
1866 		kctl->private_value = (unsigned long)substream;
1867 		err = snd_ctl_add(chip->card, kctl);
1868 		if (err < 0)
1869 			return err;
1870 		chip->pcm_mixer[idx].left = 0x8000;
1871 		chip->pcm_mixer[idx].right = 0x8000;
1872 		chip->pcm_mixer[idx].ctl = kctl;
1873 		substream = substream->next;
1874 	}
1875 
1876 	return 0;
1877 }
1878 
1879 
1880 /*
1881  * timer
1882  */
1883 
1884 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1885 {
1886 	struct snd_ymfpci *chip;
1887 	unsigned long flags;
1888 	unsigned int count;
1889 
1890 	chip = snd_timer_chip(timer);
1891 	spin_lock_irqsave(&chip->reg_lock, flags);
1892 	if (timer->sticks > 1) {
1893 		chip->timer_ticks = timer->sticks;
1894 		count = timer->sticks - 1;
1895 	} else {
1896 		/*
1897 		 * Divisor 1 is not allowed; fake it by using divisor 2 and
1898 		 * counting two ticks for each interrupt.
1899 		 */
1900 		chip->timer_ticks = 2;
1901 		count = 2 - 1;
1902 	}
1903 	snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1904 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1905 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1906 	return 0;
1907 }
1908 
1909 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1910 {
1911 	struct snd_ymfpci *chip;
1912 	unsigned long flags;
1913 
1914 	chip = snd_timer_chip(timer);
1915 	spin_lock_irqsave(&chip->reg_lock, flags);
1916 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1917 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1918 	return 0;
1919 }
1920 
1921 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1922 					       unsigned long *num, unsigned long *den)
1923 {
1924 	*num = 1;
1925 	*den = 96000;
1926 	return 0;
1927 }
1928 
1929 static const struct snd_timer_hardware snd_ymfpci_timer_hw = {
1930 	.flags = SNDRV_TIMER_HW_AUTO,
1931 	.resolution = 10417, /* 1 / 96 kHz = 10.41666...us */
1932 	.ticks = 0x10000,
1933 	.start = snd_ymfpci_timer_start,
1934 	.stop = snd_ymfpci_timer_stop,
1935 	.precise_resolution = snd_ymfpci_timer_precise_resolution,
1936 };
1937 
1938 int snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1939 {
1940 	struct snd_timer *timer = NULL;
1941 	struct snd_timer_id tid;
1942 	int err;
1943 
1944 	tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1945 	tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1946 	tid.card = chip->card->number;
1947 	tid.device = device;
1948 	tid.subdevice = 0;
1949 	err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer);
1950 	if (err >= 0) {
1951 		strcpy(timer->name, "YMFPCI timer");
1952 		timer->private_data = chip;
1953 		timer->hw = snd_ymfpci_timer_hw;
1954 	}
1955 	chip->timer = timer;
1956 	return err;
1957 }
1958 
1959 
1960 /*
1961  *  proc interface
1962  */
1963 
1964 static void snd_ymfpci_proc_read(struct snd_info_entry *entry,
1965 				 struct snd_info_buffer *buffer)
1966 {
1967 	struct snd_ymfpci *chip = entry->private_data;
1968 	int i;
1969 
1970 	snd_iprintf(buffer, "YMFPCI\n\n");
1971 	for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1972 		snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1973 }
1974 
1975 static int snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1976 {
1977 	return snd_card_ro_proc_new(card, "ymfpci", chip, snd_ymfpci_proc_read);
1978 }
1979 
1980 /*
1981  *  initialization routines
1982  */
1983 
1984 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1985 {
1986 	u8 cmd;
1987 
1988 	pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1989 #if 0 // force to reset
1990 	if (cmd & 0x03) {
1991 #endif
1992 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1993 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1994 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1995 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
1996 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
1997 #if 0
1998 	}
1999 #endif
2000 }
2001 
2002 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
2003 {
2004 	snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
2005 }
2006 
2007 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
2008 {
2009 	u32 val;
2010 	int timeout = 1000;
2011 
2012 	val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
2013 	if (val)
2014 		snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
2015 	while (timeout-- > 0) {
2016 		val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
2017 		if ((val & 0x00000002) == 0)
2018 			break;
2019 	}
2020 }
2021 
2022 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2023 {
2024 	int err, is_1e;
2025 	const char *name;
2026 
2027 	err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2028 			       &chip->pci->dev);
2029 	if (err >= 0) {
2030 		if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
2031 			dev_err(chip->card->dev,
2032 				"DSP microcode has wrong size\n");
2033 			err = -EINVAL;
2034 		}
2035 	}
2036 	if (err < 0)
2037 		return err;
2038 	is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2039 		chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2040 		chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2041 		chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2042 	name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2043 	err = request_firmware(&chip->controller_microcode, name,
2044 			       &chip->pci->dev);
2045 	if (err >= 0) {
2046 		if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
2047 			dev_err(chip->card->dev,
2048 				"controller microcode has wrong size\n");
2049 			err = -EINVAL;
2050 		}
2051 	}
2052 	if (err < 0)
2053 		return err;
2054 	return 0;
2055 }
2056 
2057 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2058 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2059 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2060 
2061 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2062 {
2063 	int i;
2064 	u16 ctrl;
2065 	const __le32 *inst;
2066 
2067 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2068 	snd_ymfpci_disable_dsp(chip);
2069 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2070 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2071 	snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2072 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2073 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2074 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2075 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2076 	ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2077 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2078 
2079 	/* setup DSP instruction code */
2080 	inst = (const __le32 *)chip->dsp_microcode->data;
2081 	for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2082 		snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
2083 				  le32_to_cpu(inst[i]));
2084 
2085 	/* setup control instruction code */
2086 	inst = (const __le32 *)chip->controller_microcode->data;
2087 	for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2088 		snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
2089 				  le32_to_cpu(inst[i]));
2090 
2091 	snd_ymfpci_enable_dsp(chip);
2092 }
2093 
2094 static int snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2095 {
2096 	long size, playback_ctrl_size;
2097 	int voice, bank, reg;
2098 	u8 *ptr;
2099 	dma_addr_t ptr_addr;
2100 
2101 	playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2102 	chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2103 	chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2104 	chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2105 	chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2106 
2107 	size = ALIGN(playback_ctrl_size, 0x100) +
2108 	       ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2109 	       ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2110 	       ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2111 	       chip->work_size;
2112 	/* work_ptr must be aligned to 256 bytes, but it's already
2113 	   covered with the kernel page allocation mechanism */
2114 	chip->work_ptr = snd_devm_alloc_pages(&chip->pci->dev,
2115 					      SNDRV_DMA_TYPE_DEV, size);
2116 	if (!chip->work_ptr)
2117 		return -ENOMEM;
2118 	ptr = chip->work_ptr->area;
2119 	ptr_addr = chip->work_ptr->addr;
2120 	memset(ptr, 0, size);	/* for sure */
2121 
2122 	chip->bank_base_playback = ptr;
2123 	chip->bank_base_playback_addr = ptr_addr;
2124 	chip->ctrl_playback = (__le32 *)ptr;
2125 	chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2126 	ptr += ALIGN(playback_ctrl_size, 0x100);
2127 	ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2128 	for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2129 		chip->voices[voice].number = voice;
2130 		chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2131 		chip->voices[voice].bank_addr = ptr_addr;
2132 		for (bank = 0; bank < 2; bank++) {
2133 			chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2134 			ptr += chip->bank_size_playback;
2135 			ptr_addr += chip->bank_size_playback;
2136 		}
2137 	}
2138 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2139 	ptr_addr = ALIGN(ptr_addr, 0x100);
2140 	chip->bank_base_capture = ptr;
2141 	chip->bank_base_capture_addr = ptr_addr;
2142 	for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2143 		for (bank = 0; bank < 2; bank++) {
2144 			chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2145 			ptr += chip->bank_size_capture;
2146 			ptr_addr += chip->bank_size_capture;
2147 		}
2148 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2149 	ptr_addr = ALIGN(ptr_addr, 0x100);
2150 	chip->bank_base_effect = ptr;
2151 	chip->bank_base_effect_addr = ptr_addr;
2152 	for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2153 		for (bank = 0; bank < 2; bank++) {
2154 			chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2155 			ptr += chip->bank_size_effect;
2156 			ptr_addr += chip->bank_size_effect;
2157 		}
2158 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2159 	ptr_addr = ALIGN(ptr_addr, 0x100);
2160 	chip->work_base = ptr;
2161 	chip->work_base_addr = ptr_addr;
2162 
2163 	snd_BUG_ON(ptr + PAGE_ALIGN(chip->work_size) !=
2164 		   chip->work_ptr->area + chip->work_ptr->bytes);
2165 
2166 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2167 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2168 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2169 	snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2170 	snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2171 
2172 	/* S/PDIF output initialization */
2173 	chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2174 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2175 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2176 
2177 	/* S/PDIF input initialization */
2178 	snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2179 
2180 	/* digital mixer setup */
2181 	for (reg = 0x80; reg < 0xc0; reg += 4)
2182 		snd_ymfpci_writel(chip, reg, 0);
2183 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2184 	snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
2185 	snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2186 	snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2187 	snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2188 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2189 	snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2190 	snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2191 
2192 	return 0;
2193 }
2194 
2195 static void snd_ymfpci_free(struct snd_card *card)
2196 {
2197 	struct snd_ymfpci *chip = card->private_data;
2198 	u16 ctrl;
2199 
2200 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2201 	snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2202 	snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2203 	snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2204 	snd_ymfpci_disable_dsp(chip);
2205 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2206 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2207 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2208 	snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2209 	snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2210 	ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2211 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2212 
2213 	snd_ymfpci_ac3_done(chip);
2214 
2215 	snd_ymfpci_free_gameport(chip);
2216 
2217 	pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY, chip->old_legacy_ctrl);
2218 
2219 	release_firmware(chip->dsp_microcode);
2220 	release_firmware(chip->controller_microcode);
2221 }
2222 
2223 static int snd_ymfpci_suspend(struct device *dev)
2224 {
2225 	struct snd_card *card = dev_get_drvdata(dev);
2226 	struct snd_ymfpci *chip = card->private_data;
2227 	unsigned int i, legacy_reg_count = DSXG_PCI_NUM_SAVED_LEGACY_REGS;
2228 
2229 	if (chip->pci->device >= 0x0010) /* YMF 744/754 */
2230 		legacy_reg_count = DSXG_PCI_NUM_SAVED_REGS;
2231 
2232 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2233 	snd_ac97_suspend(chip->ac97);
2234 
2235 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2236 		chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2237 
2238 	chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2239 
2240 	for (i = 0; i < legacy_reg_count; i++)
2241 		pci_read_config_word(chip->pci, pci_saved_regs_index[i],
2242 				      chip->saved_dsxg_pci_regs + i);
2243 
2244 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2245 	snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2246 	snd_ymfpci_disable_dsp(chip);
2247 	return 0;
2248 }
2249 
2250 static int snd_ymfpci_resume(struct device *dev)
2251 {
2252 	struct pci_dev *pci = to_pci_dev(dev);
2253 	struct snd_card *card = dev_get_drvdata(dev);
2254 	struct snd_ymfpci *chip = card->private_data;
2255 	unsigned int i, legacy_reg_count = DSXG_PCI_NUM_SAVED_LEGACY_REGS;
2256 
2257 	if (chip->pci->device >= 0x0010) /* YMF 744/754 */
2258 		legacy_reg_count = DSXG_PCI_NUM_SAVED_REGS;
2259 
2260 	snd_ymfpci_aclink_reset(pci);
2261 	snd_ymfpci_codec_ready(chip, 0);
2262 	snd_ymfpci_download_image(chip);
2263 	udelay(100);
2264 
2265 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2266 		snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2267 
2268 	snd_ac97_resume(chip->ac97);
2269 
2270 	for (i = 0; i < legacy_reg_count; i++)
2271 		pci_write_config_word(chip->pci, pci_saved_regs_index[i],
2272 				      chip->saved_dsxg_pci_regs[i]);
2273 
2274 	/* start hw again */
2275 	if (chip->start_count > 0) {
2276 		spin_lock_irq(&chip->reg_lock);
2277 		snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2278 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2279 		spin_unlock_irq(&chip->reg_lock);
2280 	}
2281 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2282 	return 0;
2283 }
2284 
2285 DEFINE_SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume);
2286 
2287 int snd_ymfpci_create(struct snd_card *card,
2288 		      struct pci_dev *pci,
2289 		      u16 old_legacy_ctrl)
2290 {
2291 	struct snd_ymfpci *chip = card->private_data;
2292 	int err;
2293 
2294 	/* enable PCI device */
2295 	err = pcim_enable_device(pci);
2296 	if (err < 0)
2297 		return err;
2298 
2299 	chip->old_legacy_ctrl = old_legacy_ctrl;
2300 	spin_lock_init(&chip->reg_lock);
2301 	spin_lock_init(&chip->voice_lock);
2302 	init_waitqueue_head(&chip->interrupt_sleep);
2303 	atomic_set(&chip->interrupt_sleep_count, 0);
2304 	chip->card = card;
2305 	chip->pci = pci;
2306 	chip->irq = -1;
2307 	chip->device_id = pci->device;
2308 	chip->rev = pci->revision;
2309 
2310 	err = pci_request_regions(pci, "YMFPCI");
2311 	if (err < 0)
2312 		return err;
2313 
2314 	chip->reg_area_phys = pci_resource_start(pci, 0);
2315 	chip->reg_area_virt = devm_ioremap(&pci->dev, chip->reg_area_phys, 0x8000);
2316 	if (!chip->reg_area_virt) {
2317 		dev_err(chip->card->dev,
2318 			"unable to grab memory region 0x%lx-0x%lx\n",
2319 			chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2320 		return -EBUSY;
2321 	}
2322 	pci_set_master(pci);
2323 	chip->src441_used = -1;
2324 
2325 	if (devm_request_irq(&pci->dev, pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2326 			KBUILD_MODNAME, chip)) {
2327 		dev_err(chip->card->dev, "unable to grab IRQ %d\n", pci->irq);
2328 		return -EBUSY;
2329 	}
2330 	chip->irq = pci->irq;
2331 	card->sync_irq = chip->irq;
2332 	card->private_free = snd_ymfpci_free;
2333 
2334 	snd_ymfpci_aclink_reset(pci);
2335 	if (snd_ymfpci_codec_ready(chip, 0) < 0)
2336 		return -EIO;
2337 
2338 	err = snd_ymfpci_request_firmware(chip);
2339 	if (err < 0) {
2340 		dev_err(chip->card->dev, "firmware request failed: %d\n", err);
2341 		return err;
2342 	}
2343 	snd_ymfpci_download_image(chip);
2344 
2345 	udelay(100); /* seems we need a delay after downloading image.. */
2346 
2347 	if (snd_ymfpci_memalloc(chip) < 0)
2348 		return -EIO;
2349 
2350 	err = snd_ymfpci_ac3_init(chip);
2351 	if (err < 0)
2352 		return err;
2353 
2354 	snd_ymfpci_proc_init(card, chip);
2355 
2356 	return 0;
2357 }
2358